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Abstract of Dissertation

Smooth Extensions for Finite CW Complexes
and the Index Theory

by

Guihua Gong

Doctor of Philosophy

in

Mathematics

State University of New York at Stony Brook

1990

The C*-algebra extensions of a topological space X can be made into
an abelian group Ext(X) which is naturally equivalent to the K-homology
group of odd dimension which has a close relation with index theory and is
one of the starting points of KK theory.

The C,-smoothness of an extension of a manifold was introduced by
Douglas and is one source of the motivation of Connes’ non-commutative
geometry. In this thesis, we generalize the notion of C),-smoothness to a
finite CW complex and obtain necessary and suflicient conditions for an
extension of a finite CW complex to be Cp-smooth modulo torsion.

Let X be a compact metrizable space and 7 € Ext(X) is defined by a
unital * monomorphism 7 : C(X) — Q(H), where Q(H ) is Calkin algebra of
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the infinite dimensional complex separable Hilbert space H. For any n-tuple
of functions (fi, fa2,-- -, fu) € C(X) which satisfies |fi(2)]2 + |fo(2)|* +- -+
[fu(@)[? # 0 for all z € X, we can study the index (7(f1), 7(f2), - -, 7(fa))
associated to the n-tuple, where the index is Curto’s index for the Fredholm
n-tuple. It is easy to see that the index will be zero for an n-tuple of
(f1, f2,-++, fr) whenever 7 is a torsion element in Ext(X). In this thesis, we

prove that the converse is true for X being finite CW complex.
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Introduction

Let H be an infinite dimensional complex separable Hilbert space. By
L{H) and K(H) we shall denote the C*-algebras of bounded operators and
compact operators respectively on H, and Q(H) will denote the quotient
L(H)/K(H) with canonical surjection 7 : L(H) — Q(H).

Let X be a compact metrizable space . By C(X) we shall denote the
C*-algebra of continuous complex valued functions on X. An extension 7 €
Ext(X) of the algebra C(X) by K(H) is defined by a unital * monomor-
phism 7 : C(X) — Q(H) [9].

- For two extensions 7 and 7 of C(X) by K(H), we say 7 and 1, are
equivalent if there exists a unitary operator U on H such that m(f) =
7(U*)r( fIn(U). By Ext(X) we shall denote the collection of equivalence
classes of extensions of C(X) by K(H) .

Let 7 and 73 be * monomorphisms from C(X) into Q(H) and ay = [7]
and a; = [13] denote the elements of Ext(X) they determine. Further, let
p:QUH) D Q(H) — Q(H) , be the map determined by the diagram

L(H)eLH) — LHeH) % L(H)
| 77 Il
Queqm) Q(H)

where v is induced by any unitary between H @& H and H. Now if 7 :
C(X) ~» Q(H) is the map defined by




7(f) = p(r(f) ® 1))

for f in C(X), then we set a1 4 ay = [r]. One can verify that [7] does not
depend on the choice of v.

An extension 7 : C(X) — Q(H) is said to be trivial if there exists a
unital ¥ monomorphism ¢ : C(X) — L{H) such that 7 = 7 0 6. The basic
fact of C*-algebra extension theory is that Ext(X) is an abelian group with
the equivalence class of the trivial extension as the unit.

We refer to [ 14 ] and [ 7 ] for the basic theory of C*-algebra extensions.

Ext(X) was introduced by Brown, Douglas and Fillmore in order to clas-
sify essentially normal operatérs up to unitary equivalence modulo the com-
pact operators. It can be proved that Ext(X) is isomorhpic to K-homology
K;(X) (defined by using Spanier-Whitehead duality). But Ext(X) has a
close relation with the index theory of elliptic operators [ 1 ], [ 14 ] and is a
starting point of KK-theory. Furthermore, this kind of functor can be de-
fined for “non-commutative spaces” which is useful to give a new invariant
for group actions and foliations [ 12 .

Let GI,(C) and U(n) be the topological groups of nxn complex in-
vertible matrices and nXn unitary matrices respectively. K1(X) is defined
to be the collection of homotopy equivalence classes of maps from X to
U2 GLL(C) or maps from X to U2, U(n) ( note GI,(C) and U(n) are ho-

motopy equivalent). Therefore an element in K*{X) can be represented by

amap 6 : X — GI,(C) or 8 : X — U(n) for n large enough.
Now we will establish the pairing between Ext(X) and K'(X). Let
T € Ext(X) and § € K'(X). First we note that # : X — GI,(C) can be




regarded as an invertible element in C(X) ® M,,. Therefore (7 ® 1,)(8) is
an invertible element in Q(H @ H @ --- @ H). The pairing of 7 and 8 is

n—copies

defined by

(1, 8) = index((r ® 1,)(8)) € Z.

Before studying Ext(X) and K'(X), some topological results will be
proved in Chapter 1 which will be used in later chapters and are interest-
ing in their own right. In particular, we prove the following useful theorem
which enables us to reduce some problems from the general case to the case

of spheres.

Theorem 1.2. Let X be ¢ compact metrizable space. For any 7 €
KYX), there ezist maps f; : X — S*~1 (i = 1,2,---,k) such that
mT = Y., f18; for some integer m # 0 and 8; € K'(S*1).

In[ 13 ], R.E.Curto defined an index for a Fredholm n-tuple of almost
commuting operators. And he associated a matrix A(fl,Tz,...,Tn) to every

n-tuple of operators (17,73, - ,' Tn) Such that
inde:v(Tl, TQ, .. Tn) = indem(A(Tl,Tg,---,Tn))-

Similarly, we can associate an Ay, 5,1, € LX) to each n-tuple of func-

tions (fi1, fa,-++, fa) € C(X) with

[f1(@) + | fa(2)] 45 - + [ fule)* # O (%)




for all £ € X, which satisfies

(Ta A(flsfﬁ:"';fn)) = indem("_(fl)a T(f2)a Tty T(fn))

for any T € Ext(X).

It is easy to see that indem(f(fll),'r(fg), v+, 7(fa)) will be zero for any
n-tuple of (fi, fa, -+, f) satisfying (*) whenever 7 is a torsion element in
Ext(X).

In Chapter 2, we will prove the following theorem

Theorem 2.2. Let X be o finite CW complex and 7 € Ezt(X ) such
that for each n-tuple of functions (fi, fa, -, fn) € C(X) satisfying (), we
have

indez(7T(f1), 7(fe), -+, 7(fa)) = 0.

Then T must be a torsion element in Ezi(X ).

The above theorem is equivalent to : For any € K'(X), there exists
an n-tuple of functions (fi, fa, -, fu) € C(X) satisfying (*) such that
mé = A(f1, 12, 1n) for some integer m # 0.

In Chapter 3, we study the Cp-sf_nooth extensions of finite CW complexes
and finite CW complex pairs. The following definition of C,-smoothness

for smooth manifolds can be found in [ 11 ].

Definition 0.1. Let M be o smooth compact manifold (perhaps with

boundary) aend let C°(M) denote the x-algebra of all smooth functions on
M. A1 € Ext(M)is C,-smooth if there exists a x-linear map p : C*(M) —




L(H) such that p(ab) — p(a)p(b) € C, and 70 p = 7|ge(an.

The notion of C,-smoothness was introduced by Douglas and is one
source of the motivation for Connes non-commutative geometry.

It was shown in [ 21], [ 15] that the Cj-smooth elements of Ext(X)
come from the 1-skeleton of X modulo torsion. And also it was shown in
[ 16 ] that each C,_y-smooth element of Ext(5?"~1) is trivial. The natural
problem is to classify C,-smooth extensions modulo torsion for a general
CW complex,

In Chapter 3, we generalize Definition 0.1 to a finite CW complex and
obtain the following theorem which solves the above problem. Especially,

the results in [ 21 ], [ 15 ] and [ 16 ] are direct consequences of our theorem.

Theorem 3.2 & Theorem 3.4. Let X be a finite CW complex, X*
denote the k-skeleton of X, and 7 € Ezi(X ). Then there exists an integer
my # 0 such that myt is C,-smooth if and only if there exists an inte-
ger my # 0 such that mor € 1, (Ext(X?** 1)), where i, : Est(X*™ ') —
Bzt(X ) i3 induced by the inclusion map i ;: X** 1 — X. Furthermore, if
X s a smooth compact (Qn-I)-manifold, then each element in Ext(X ) 1s

Cp-smooth when p >n — 1.

Theorem 3.3. Let X be a finite CW complez, 7 € Ext(X) = K1(X)
and ch : Ki(X)® Q — Hou(X,Q) be the Chern map, where Hogy(X,Q)

denotes the direct sum of all the ordinary homology groups of odd dimension

with rational coefficients. Then there exists an integer m # 0 such that mr




is Cp-smooth if and only if chr € ®}_  Hau1(X, Q).

More generally , we also obtain similar results for the relative extension
theory of finite CW complex pairs. | e

In Chapter 4, we study p-summable Fredholm modules of C’°°(M )
which can be thought of as elements of Ky(M) = KK(C(M),C), and their
Chern characters in the cyclic cohomology H3(C®(M)), where H{(C*(M))
is an analogue of deRham homology theory obtained by first using algebra
language which then can be generalized to non-commutative algebras. (See
[ 11 ] for details.) We will say more about H}(C(M)) in Chapter 4. In

particular, we prove the following theorem.

Theorem 4.2. If M is o compact smooth manifold without boundary
and ¢ € HE(C®(M)) (k even), then there exist (k+1)-summable Fredholm
modules ; (i = 1,2,---,n) and complez numbers o; (i = 1,2,--- n) such

that 3 i, aich™r; ~ ¢ in H(C(M)), where ch* is Connes’ Chern map.

We would like to point out that A. Connes constructed the graded Chern

characters

ch* : {(n + 1)-summable Fredholm modules} — HF(C®(M))

in Section 2 of [ 11 ], where n is an even integer, and that he also proved -

that

ch*: {finite summable Fredholm modules} —— He**"(C °°(M)) o




is surjective modulo torsion. Theorem 4.2 says that the Chern map is a
graded surjection.
Some of the results in Chapter 1, 3 and 4 have been anounced in [ 18 ].

In Chapter 5, we will give some remarks for the case of non-commutative

algebras and raise some open problems.




Chapter 1

Some Topological Results

In this Chapter, we will prove some topological results. Theorem 1.1 will
be used in defining C,-smooth extension for general finite CW complexes.
Theorem 1.2 will be used in proving our main results in Chapter 2 and

Chapter 3. Theorem 1.3 will be used in Chapter 3 and Chapter 4.

Theorem 1.1 If X s a finite CW complex, then there exists a compact
smooth manifold M (perhaps with boundary), and two maps f : X — M
and g : M —» X such that g o f is homotopic to id|x.

Using the following Proposition [ 19 ], we can reduce the proof of this

theorermn to the case of X being a simplicial complex.

Proposition 1.1 Every CW complex has the homotopy type of a simplicial

complez.

Before proving Theorem 1.1, we prove the following Lemma. :




Lemma 1.1 For any finite simplicial complex X, there exists an embedding
t: X — R* (for some n) and an open neighborhood U of i(X) such that
i(X} i3 a retract of U.

Proof: Let {v1,v2,--,v,} be the vertices of X. We can define ¢ : X -

R” to be the piecewise linear map determined by

z(Ul‘ﬁ) = (Oa' "505]-)03' ' '70) € R
k-1 n—k

Let Y = {(a3, a9, - ,0,) € B*]| — 2 < a;, < 2 for all k}. It is easy to
see that Y is a closed neighborhood of #(X) in R". We can triangulate ¥V
so that ¢(X) is a subcomplex of ¥. The result of (1.6) on p.50 of [ 30 ]
says that (Y,¢(X)) is an NDR pair. This means that there is an open
neighborhood U; of X in Y such that X is a retract of U;. If U; is not open
in R", we can replace U; by a smaller open neighborhood U of X.

I Q.E.D.

Proof of Theorem 1.1: By Lemma 1.1, without loss of generality, we can
assume X is a closed subset of B* with an open neighborhood U such that
X is a retract of U.

Define a map v : R* — R by u(a:) = d(z,X) (for all z ¢ R™) which
is the distance between the point # and the closed subset X. Then there
exists an € > 0 such that {z | u(z) < 3¢} C U.

It is well known that there exists a smooth map v : R* — R (See
Proposition 17.8 on p.213 of [ 8 ]) with |u(z) —v(z}| < e for all # € R"*. By
the Sard Theorem, there exists a regular value ¢ of the map v in (¢, 2¢). So

if we choose M = { z | v(z) < ¢}, then M is a compact smooth manifold
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with smooth boundary { z | v(z) = ¢}. It is easy to see that X ¢ M C U.
S0 X is a retract of M. We can define the map f to be the inclusion from
X to M, and the map ¢ to be a retraction from M to X, thus completing
the proof of Theorem 1.1. o

We believe that Theorem 1.1 is a well known result in topolog.y.. We
provide a proof here because we have been unable to find a precise reference
for it.

Our next aim is fo prove the following main theorem in this chapter.

Theorem 1.2 Let X be a compact metrizable space. For any 7 € K'(X),
there ezist maps f;: X — S*=1 (4 =1,2,-++,k) such that mr = 3.5 | £6;
for some integer m # 0 and 6; € K'(S%1).

The proof of Theorem 1.2 will be divided mto several steps.

Lemma 1.2 If Theorem 1.2 is true for the special case of X = U(n), then

the theorem is true for an arbitary compact metrizable space X.

Proof: Assume the theorem is true for U(n) and X is a compact metriz-
able space. Let 7 € K'(X). Then 7 can be realized as amap f : X - U(n)
for n large enough. Let 7 € K'(U(n)) be the element determined by the
identity map from U(n) to U(n). Hence 7 = f*#. By our assumption
m? = Y&, f8; for some maps f; : U(n) — 216, € KY(§*!) and

integer m # 0. Therefore

mr = f:l(fofi)*ei-
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This completes the proof of Lemma 1.2.
Q.E.D.

Lemma 1.3 Theorem 1.2 is true for X = ST x S x -+ x §9»°1,

Proof: Consider ordinary cohomology H*(X) = @; H(X). The Kiinneth

formula yields:
HYX)= H*(Sl) ® H (5% ® H*(Ss) Q- ® H*(Szn—l)_

Let 11,73, -+, Tan_y be generators of H*(S), H3(S%),---, H""1(§%1),
respectively. Then H*(X) is generated by 1,71,73, ", Ton—1,T1 X T3, Ty X
Tyy+ro, T4 X T3 X Tg X +++ X Ton_1 a8 & group. But each 7, X 75, X +++ X 7,
(1 <p; <2n—1 are odd numbers) is a generator of HPITP2t-¥Pk(GP1
SP2 x ... x SP). Let f be the canonical map of degree 1 from SP x 572 x
oo X SPE to SPrtertetre (this map collapses S, §7 x §%2 x --- x SPi-1 x
{pt} x 5P+t x ... % SP* to one point, where {pt} denotes a fixed point
in S7). Then f induces an isomorphism from HP1TP2+ 4Pk (GPr+ret—ti) 40
HPvtpet k(S0 5 §P2 . .. x §P% ). This proves T, X T, X+ X Tp, = f*8 for
some § ¢ Hritrztotre(Getprtetes)  Therefore, for any element 7 € H*(X)

(X = 8" x §% x -+ x 8271 there exist maps f; 1 X — S™ such that
T = Efg'*gi

for some 8; € H*(S™).
By using bijectivity (up to a rational multiplier) and the naturality of
the Chern map between K*(X) and H*(X), one verifies Lemma 1.3 easily.
Q.E.D.
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By Lemma 1.2 and Lemma 1.3, we need only to reduce the case of
X =U(n) to the case of X = §' x 5% x - -+ x §*! for proving Theorem
1.2. e

First, we recall some results on the topology of U(n). Let p,': U(n) -
5?1 be the map which maps A € U(n) to the last column of A which can

be thought of as an element in $%*~1. Then we have the fibre bundle .
Un — 1) 2% U(n) 22 5201,
‘B 0

where 4,, is the inclusion map which maps B € U(n — 1) to €
0 1

U(n).
Suppose m < n, and consider the finite CW complex pair (U(n), U(m)),
where U(m) is embedded in U(n) by the inclusion map which maps B €

B 0
U{m) to € U(n). The following Lemma is about the cell
n—m

structure of the pair (U(n), U(m)).

Lemma 1.4 There exists a finite CW complez X with U(m) as the 2m-
skeleton of X and o homotopy equivalence f : U(n) — X such that flyga) =
id.

Proof: We need only to prove the case n = m + 1. Consider the fibre
bundle
U(m) - U(m+ 1) — §¥m+L

By Theorem 8.5 on p.187 of [ 30 ], we have m(U(m + 1),U{(m)). =
(S ) for all k > 1. Hence mi(U(m + 1),U(m)) = 0 whenever

0<k<2m.
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The Theorem 2.6 on p.219 of [ 30 | implies that any n-connected CW
pair (X, A) is weakly homotopy equivalent to a CW pair (Y, A) with A being
the n-skeleton of Y. And Theorem 3.5 on p.220 of [ 30 ] sa,ys i:hét_'weakly
homotopy equivalence between two CW pairs is homotopy eql.ii'vélén'.(_:e. Put
these two theorems together to finish the proof of Lemma 1.4. . T

QED.

As in the proof of Lemma 1.4, if (X, A} is an n-connected CW paif,’ we
can always assume that A is the n-skeleton of X. In particular, if X is an
n-connected CW complex, we can assume that the n-skeleton of X is a set -
consisting of a single point. This argument will be used several times iﬁ

this paper.

Lemma 1.5 H*(U(n)) = Z{z1,z3, -, To,_1} 15 an ezterior algebra with
odd dimensional generators {xq_1}%,. In addition, the following state-

ments are true

1. If e : U(m) — U(n) {(m < n) is the inclusion, then i* : H*(U(n)) =
L{z1, 23, +, Zgn-1} — H'(U(m)) = L{y1, Y3, ** s Yam-1} i5 defined by

P L1 = Yai-1, when 0 <i<m
t*xgq =0, whenm+1<z2<n

for a proper choice of generators {21}, and {ya_1}2,.

2. If po: U(n) — S™ 1 is defined as before, then p* maps the generator
Of H2n~l(52n—1) {0 Ton_y = H?n—l(U(n))'
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Proof: The first part of this lemma is a standard result in topology
(see p.164 in [ 20 ]) which can be proved by using the spectral sequence of
the fibre bundle U(n — 1) - U(n) — $2*}. The additional parts (1) and
(2) can be easily proved by using Lemma 1.4 and the above fibre bundle.

Q.E.D.

Let x{™ denote a map of degree k from S2~1 to itself. Before proving

the next lemma (which is a key lemma in proving Theorem 1.2), we state

a result about homotopy operations.

Proposition 1.2 For any integer k and any [a] € 7(S*1) lrep'r‘esented
by a: S — S we have X\ o af = dkfa) in m(SY).

This Proposition is a special case of Theorem 8.9 on p.537 of [ 30 | which
is proved by using the Whitehead product.

Lemma 1.6 Let (U(n),U(m)) be as before (m < n). Then there ezists
k # 0 such that chm) 0 py - U(m) — 51 can be extended to a map from
U(n) to 5?1

Proof: We use xi, p to denote X](cm) and p,, respectively, for short.

Let X be the space in Lemma 1.4, where we replace U(n) by X. Let X°
denote the i-skeleton of X. Then X?™ = U(m). We will prove by induction

that there exists an integer k; # 0 such that yi, 0p: U(m) — S*~! can be

extended to X*. Assume that there exists an integer &; # 0 such that xz,0p

can be extended to X' (i > 2m). We are going to prove that there exists

an integer k;yq # 0 such that y,, o p can be extended to X*1. Becatise

i > 2m, by Serre’s Theorem, m;($*" 1) is a finite group. Let N be the
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order of this group. Choose k;yy = 4Nk;. Then y;.,, op = xan 0 (Xx; © D)

can be extended to X! (which we also denote by x4

i1 ©P) by the induction

assumption.
Let ¢! be an arbitary (i + 1)-cell of X and 8 : §* — Geit! € X* be

the attaching map of ¢'*1. By obstruction theory, the map yy,,,op: X' —
5?m=1 can be extended to e't! if and only if (xk,, 0p)o 8 : S — §¥m-1

defines a trivial map. But by Proposition 1.2

(Xriyi 02) 0 8] = [xaw o (xp; 0p) 0 6]
= 4N[(xs; 0p) o]

= 0

in m;(S%™~1). This completes the proof of Lemma 1.6.
Q.E.D.

Lemma 1.7 There exists o map t : U(n) = S' x §2 x -+ - x §%~1 guch
that for any v € H*(U(n)), there exists an integer m # 0 and 0 € H*(S* x
S8 x oo x 8 1) with mr = 6.

Proof: By Lemma 1.6, we have maps u; : U(n) — S%71 (i =1,2,---,n)
which extend some xﬁ) op:U(s) — S%1 where k; £ 0 (i = 1,2,--- ,n) are
integers.

Let 8; be the generator of H%~1(S%-1) for each ¢ and zy,%3, -+, Tan_1
be generators of the ring H*(U(n)) in each dimension. Then by Lemma
1.5 we have uff = k;x9;.1. It is easy to see that v = uy X uy X -+ X u,?, :

U(n) - 8 x 83 x -+« x §%1 is the map we want.

*J
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Q.E.D.

Now Theorem 1.2 just follows from Lemma 1.2, Lemma 1.3 and Lemma
1.7 where we use the Chern map again.

Corollary . Let X be a compact metrizable space. For any T € H™ 1(X),
there ezist an integer m # 0 and f : X -~ S*1 such that mr = f*0, where
6 is the generator of H¥"1(§%1),

Proof: This is a direct consequence of Theorem 1.2 using the Chern
map.

Q.E.D.

Remark 1 . The following result can be concluded from [ 23 | and
[10]: I X is a finite CW complex and dimX < 2k — 1, then for any
7 € H*(X), there exist a map f : X — S* and an integer m # 0 such
that m7 = f*6. Our Corollary is a similar result which has no restriction
ot the dimension of X. And we should point out the following facts : (1)
Theorem 1.2 and the Corollary are not true for K°(X) and H*(X) (we
give a counterexample below). (2) In Theorem 1.2 and the Corollary, it
is essential to have a multiplier of 7. Generally, we cannot find f; with
T =3y [0 or f with T = f*0.

Remark 2 . By [ 20 | (top line on p.165), U(n) and S*x $3x - .. x 521
have the same rational homotopy type. But this is not enough to conclude
the existence of the map v in Lemma 1.7

We give the following example which shows that Theorem 1.2 and its

Corollary are not true for the even case.

Example . Let g : 5° — 5% be the Hopf map and let X = D*U, 52 be

the CW complex obtained by attaching a 4-dimensional disk to $? via g.
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Let  be the generator of HA(X) = Z. It f : X — 52 such that mr = f*6
for some integer m # 0, where 8 is the generator of H2($?), then f|s» would
be homotopic to x(2) which is a map of degree m from S? to itself. ‘By p.227
- 228 of [ 8], the map :

flgo

Sai)sz___lisa

is the map with Hopf index m?. Therefore it is nontrivial. But f|s: can be

extended to X. This i1s a contradiction.

We conclude this chapter with the following theorem which is a special

case of the Theorem on p.210 line 7 of | 27 |.

Theorem 1.3 If (X,Y) is a finite CW complex pair and 7 € H(X,Y),
then there exist a smooth compact oriented k-manifold M with boundary
OM and a map f: M - X with f(OM) CY such that mr = f*0 for some
integer m £ 0 and 6 € Hy(M,0M ). In particular, if Y is empty, then M

can be chosen as @ smooth compact oriented manifold without boundary.




Chapter 2

The Relation between

K-Theory, Index Theory and |

Invertible n-Tuples of

Functions

Throughout this chapter, X and ¥ will denote compact metrizable spaces.
Let H, L(H), Q(H) and « : L(H) — Q(H) be as in the Introduction. Let
7 C(X) = Q(H) be a fuithful + homomorphism which determines an
element in Ext(X) (also denoted by 7). We can find a positive linear map B
(see [ 14]) p: C(X) — L(H) with 7 0 p = 7. For any n-tuple of functions .::3 :'.
(Fuofor- -+ £2) € C(X) which satisfies |fi(2)[ 4 Lfa(@) -+ fale)E £0

for all z, we can prove that (p(fi), o(f2), -, p(fn)) is a Fredholm essen-

tially normal n-tuple of operators. Therefore we can associate an mteger

18
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index(p(f1), p(f2), - -, p(fn)) (in the sense of [ 13 ]) with this n-tuple. We
will study the relation between index{(p(f1), p(f2), - -, p(fn)) and 7.

First we review some definitions and basic results in | 13 ]

Definition . Let (T},Ty,---,T,) be an n-tuple of operators acting on
H.

1 (T, Ty, T,) is @ commutative n-tuple, if TT; = T;T; for all 1 <
t,j < n.

2. (Ty,Ty,---,T,) 15 an almost commutative n-tuple zf m(THw(T;) =
w(T)w(T}) or equivalently, of T,T; ~ 1;T; is a compact operator for
all 1 <i,j <n. :

8. (Ty, Tz, -+, Ty, ) is an essentially normal n-tuple if m(T))w(T;) = n(Tjn(Ty)
and n(T)m(T}) = w(TH(L}) for all 1 <i,j < n. |

For any n-tuple of operators (71,13, ---,T,,), we can associate a Koszul

System to (71, Ty, --,T,) as follows :
D._ |
oﬁﬂnﬁﬂn_l w%l---—ﬂlﬁﬂo—m (D)
|

where Hy, = H @ C&) ((}) copies of H), and if {e;; Ae;, A--- Ae,;,} are

generators of C(&}, then
Di(z @ej AveAej) = Dig (1) Tiej Aejy Ao Aé Ares A 1

If (Ty,Ts,---,T) is a commutative n-tuple, then the Koszul system

becomes a Koszul complex which means DyDyyy = 0. If (13,15, - - ,Tn) is
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an almost commutative n-tuple, then DDy, is compact for all k. We can

pass to the following complex

00— Qu I gy Bt g, I 0y —0 @

where @), = Q(H)®C%) ((7) copies of Calkin algebra) and dj, is the matrix
associated to Dy € L{Hy, Hy_;) in the canonical way (i.e. the entries of dy.
are the projections in Q(H) of the entries of Dy). Curto gave the following

definition.

Definition . An almost commutative n-tuple (Tl,Tg,-.--,Tn) is Fred-
holm if the complex (d) associated to the Koszul system (D) of (T4, Ts,---,1,,). ;
is ezact. This is equivalent to the condition that (w(T),x(T32), -, #x(T.))

18 nonsingular in the sense of [ 28 .

In order to study the index theory of a Fredholm n-tuple (11, Ts,---, Th),
Curto associated a 27! x 277! matrix Ay 1y, 1) a8 follows :

If n = 2, then
L

A(Tl Ty = .
=17 17

Generally, we can define A 1,..1,) by
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A(T3 |T2 1'"?Tﬂ—1]

g 2 2 2
4 — T2y 2
(Tl ,Tz,'“,Tn)

AFTI Ty Tn—1)
T /

27:,—1)(211—1
Furthermore, Curto proved that (71,Ty, -+, T,) is Fredholm if and only
if A7y 1y,.1) 18 Fredholm. And he defined

index(1y, Ty, -+, 1) = index Ay 15, 1)

It is easy to prove that the index of a Fredholm n-tuple is an invariant

of compact pertubation and deformation. Therefore index(11, 7%, ,10)

depends only on (w(11), 7(13), -, 7 (1))

Let us go back to our topic. As at the begining of this chapter, let
(f1, f2y - ++ fn) be an n-tuple of functions on X. We will associate to
(F1, far -+ fa) the 2771 x 271 matrix A(j, sy (exactly the same as as
sociating Ary .1, 10 (Th, Ty, Ty) above) by defining :

(f f f 0 )

—f2 A 0 fs
Apfot)=| = 0 A —f - .

0 ~f o A
R S S S
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Then by Corollary 3.3 in [ 13 ], A(4, 1,1, () is an invertible matrix if and
ouly if |fi(2)[? + |fa(@)? + - + [ ful@)]? # . i

If the n-tuple (fi, fa,- -, fu) satisfies | f1 ()24 fal@) 4+ -+ ful2)[? £ 0
for all & € X, then we call (fi, far---, fa) an invertible n-tuple. For any
invertible n-tuple (fi, fa,+ -, fu), the associated matrix Ay, fz J;)-_ o be
regarded as a map from X to Glyn-1(C). Therefore Az, s,,..1,) defines an
element in K*(X) (denoted by A, 4, .5,y € K'(X)).

Let K'(X) be the subgroup of K1(X) generated by all the elements of

the form Ay, f,,...5.)- We will prove the following Theorem.

Theorem 2.1 For any 7 € KYX), there ezists an integer m # 0 such
that mr € K'(X).

Lemma 2.1 K($¥1) = K}(§%1),

Proof : Let 5™ 1 = {(z1,29, " ",2,) € C* | 22 + 22 +--- + 22 = 1}.
Define f;, : §%"~1 — C by

fk(zlazb' ) ';Zn) — Zk
for (21,22, ,2n) € S?* L. Tt is obvious that
(@) + 1 fal@)* + -+ + [ fal@)]* # 0.

Therefore Ay, 5, 5.) € K1(S$? 1), But it is easy to see that Aty forerdn) 18

the element a,, defined on p.240, line 21 in | 2 ] which is a generator of both_ '
Tan_1(Glpn1(C)) and K1(S2=1), which completes the proof of Lemmia 2.1.
" QED.
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Proof of Theorem 2.1 : Note the following fact : If f: X — Y is a map
between compact metrizable spaces X and Y, then f*K'(Y) C KY(X). I
is easy to see that Theorem 2.1 follows from Lemma 2.1 and Theorem 1.2.

Q.E.D.

As in the introduction, there is a pairing between K'(X) and Ext(X)

defined by

(6, 7) = index(r @ 1,)(8),
where 8 € K'(X) 1s defined by 8 : X — GI,(C) and 7 € Ext(X) is defined
by 7: C(X) — Q(H). If we take 8 = Ay, 5,,..1,), then

(9, T) = inde&:(’r®12n—1)(A(f11f2,...,f“))
= indexA(r(s)7(f2) ()

= index(7(f1),7(f2), -, 7(fa))-

The following result is a consequence of Theorem 2.1,

Theorem 2.2 Let X be a finite CW comples and v € Ext(X ). Then 1

18 @ torsion element if and only if for any invertible n-tuple of funciions

(f1s fay- -+, fo) € C(X), we have

index(r(f1), 7(f2), -, 7(fa)} = 0.

Proof : The “only if” part is trivial. For the “if” part, by using Theorem
2.1, it is easy to prove that for any 6 € K'(X), we have {6, 7) = 0.
Therefore, 7 is a torsion element (see p.41 in [ 14 ]).

Q.E.D.
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Professor John Spielberg point out the following fact to the author:
there are a compact metrizable space X and 7 € Ext(X) such that {8, 7) =

0 for each § € K'(X), but 7 is not a torsion element. Therefore Theorem

2.2 is not true for arbitary compact metrizable space.




Chapter 3

Smooth Extensions for a Finite

CW Complex

In this chapter, we study C),-smoothness of extensions for finite CW com-

plexes and CW complex pairs. The notion of C)-smoothness was introduced

by Douglas and studied in [ 21 |, [ 22 ], [ 15 ] and [ 16 ]. In this aspect, the
two most important results are the following:

(1). Ci-smooth elements of Ext(X) come from the l-skeleton of X
modulo torsion [ 21 ], [ 15 |, when X is a simplicial complex.

(2). C,_y-smooth elements of Ext(5*!) are trivial [ 16 ].

The natural problem is to characterize the C,-smooth extensions for a
general space X (e.g. CW complex). In this chapter, we first generalize
the definition of Cj-smoothness (Definition 0.1 in the Introduction} to a
finite CW complex. And we obtain necessary and sufficient conditions for

an extension of a finite CW complex to be Cp-smooth modulo torsion. In

25
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particular, the above results (1) and (2) are direct consequences of our
theorem. We also prove a similar result for a relative extension of a CW
complex pair. Our results answer several open questions in [15 ] and [ 16 |.
Finally, we apply our theorem to operator theory and study an éé_'s_entiaﬂy

T

!

T,
and [T}, 7] (1 <4,j < n)in Cy-class. o
Let H, L(H), K(H), Q(H) and = : L(H) — Q(H) be as in the Intro-

normal n-tuple of operators (174,73, --,T,) with the commutators

duction. Recall that if T' is a compact operator on H, then there exist.s"é_,':

complete orthonormal basis {1, }52, of H such that
T* T, = A2ay,

where {1, }}1%5 is a sequence of nonnegative real numbers with A, — 0. We
say T is in the Schatten — von Neuman p-class (denoted by T € C)), if
T e K(H)and 22, A2 < 4oo, It is obvious that C, C C, when p < ¢q.

=1

Therefore, in Definition 0.1 in the Introduction, if T is Cp-smooth, then ' |

is Cy-smooth whenever ¢ > p.

Theorem 1.1 in Chapter 1 is used to give the following definition of

Cy-smooth for a finite CW complex.

Definition 3.1 Let X be a finite CW complez, and M and f be as in

Theorem 1.1. Then 1 € Ext(X ) is Cp-smooth if for € Ext(M ) is C,-smooth . '_ '.
(see Definition 0.1). |

Theorem 3.1 The definition of C,-smoothness does not depend on the_'

choice of M or on the maps f and g in Theorem 1.1.

To prove Theorem 3.1, we need the following lemma :
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Lemma 3.1 Let M and N be compact smooth mamfold.s (perhaps with
boundary), and let u be a continuous map between M a.nd N Ifr e
Ext(M) is Cy-smooth, then u,m € Ext(N) is C, _smooth. |

Proof : By Proposition 17.8 on p.213 of { 8 |, there exisﬁé:' ._a::.:.é;zr_.:nooth
map v between M and N such that u is homotopy equivalent ts v So we
can asstume v is a smooth map. o

Let 7 : C(M) — Q(H) be a Cp-smooth extension. Then by S
Definition 0.1 there exists a positive linear * map p : C°(M) — L(H ) such
that pox =7 and p(fg) — p(f)p(g) € C, for all f,g € C°(M). S

Let us describe u,m € Ext(N). First we define , : C(N) — Q(H) 'a,s_.r fR

the following :

n(f)=7(fou)

for f € C(N). Then 7 is a * homomorphism. But in general, 7 is B

not faithful. So we cannot say wu,7 is determined by 7. However, if" B

T2+ C(N) — Q(H) is a faithful * homomorphism which can be lifted -

to a * homomorphism p, : C(N) -+ L(H) (this means that 7 is trivial :

in Ext(N)), then u,7 is determined by 1 ® 75 : C(N) — Q(H & H). Let -

p1: C®(N) — L(H) be a positive linear map determined by

pi(f) = p(f ou)

for f € C®(N). It is easy to verify that py @ (pa2|ce(ny) : C°°(N) -
L(H @ H) satisfles the condition in Definition 0.1 which serves as the hftmg

for 1y @ 7. Therefore u,t is C,-smooth.

QED.
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Proof of Theorem §.1. Let M, and fi, g1 be another choice of space and
maps which satisfies Theorem 1.1. Because g o f is homotopic to id|x, fi

is homotopic to f; 0 g o f. Therefore

frT = (fl © Q')*(f*T)-

By Lemma 3.1, if f,7 is C,-smooth, then fi,7 is Cp-smooth. The proof of
the converse is exactly the same. _
Q.E.D.
The following two corollaries are direct consequences of Lemma 3.1 and
its proof.
Corollary 1. In Definition 0.1, the notion of C,-smoothness does not
depend on the particular smooth structure associated to the manifold M.
Proof. Take f to be the identity map on M in Lemma 3.1.
Q.E.D.
Corollary 2. Let f : X — Y be a continuous map. Then f, takes the
Cp-smooth clements of Ext(X ) to C,-smooth elements of Ezi(Y ).

Corollary 1 above answers the question on p.68 of [ 15 |.

Now let M be a smooth compact oriented manifold without bound-
ary. We recall how to construct the element of Ext(M) from a self adjoint
pseudo-differential operator A acting on the bundle E of M defined in [ 4 ].
Let E be a C*™ vector bundle over M with a C* Hermitian structure.
Let C*(F) denote the vector space of all " sections of E. Choose a

Riemannian metric for M and define an inner product {, ) for C*°(E) by

(u, v} = for{u(p),v(p))dp u,v € C<(E),p € M,
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where p 1s the smooth measure on M determined by the Riemannian metric.
The completion of C™(E) with respect to this inner product is the Hilbert
space I2(E). Given f € C(M), M; : L*(E) — L*(E) is the multiplication
operator defined by

(Myv)(p) = f(p)v(p) ve L¥E),pe M, feC(M).

Let A be a self-adjoint pseudo-differential operator from C*(E) to
C*(E). A can be viewed as a possibly unbounded self-adjoint operator
on L*(E). Let P, be the spectral projection of A for [0,00). Then P, is
a pseudo-differential operator of order zero by Proposition 2.4 in [ 4 ]. Let
H be the range of Py. We can define an element 74 € Ext(M) associated
to A by the following :

'TA(f) = TT(PAMfPA) c Q(H)

for f € C(M). It is easy to check that 74 is a *-homomorphism from C(M)
to Q(H) (see Lemma 2.10 in [ 4 ]). Therefore 74 determines an element 111
Ext(M). One of the main results in [ 4 ] is that all the elements of Ext(M )
can be realized in the form .74 for some A (Theorem 2 in [ 4 ]) We are

going to use the above construction to prove the following theorem.

Theorem 3.2 If M is an n-dimensional oriented compact smooth manifold
without boundary, then all the elements of Ext(M ) are Cy-smooth whenever
p>%

Proof. We Just need to verify that 1, is Cp-smooth. Let p A’ C'°°(M )

L(H) be the * posﬂzlve linear map defined by
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PA(f) = PAMfPA & L(H), fe COO(M)

Then it is obvious that 7|gery = T 0 pa. To prove this thebfeih, we need

only to prove

pal(fg) ~ pa(f)pa(g) € Cp when p> 2 and f,g € C°(M).

But

pa(fg) — pa(Fpalg)
= PuM;M,Py — PAM;P,PsM,Py
= PyMiM,Py— M;PysM,Ps + M;Py*M,Py — PaM;PyM,Py
= [Py, My]M,Py — |Pa, M{|Ps M, P,

= [PA: Mf][MngA]PA

i
= [Pa, M;)(M, P4 — P4 M,Py) 1
According to Proposition 1 in Appendix 1 in [ 11 |, we need only to prove
that [P4, M) and [M,, P4} arein Cy,. By the argument in [ 4 | we know that ‘
[P4, My] is a pseudo-differential operator of order —1. Therefore [Py, M/]

is a bounded operator from HY(E) = L*(E) to HY(E) (H*E) and H'(E)

are Sobelev spaces). Please note that the embedding from HY(E) to HYE)
is in C; when ¢ > dimM. Therefore [P4, My] € Ca,. It is the same to prove |
[M,, Pa] € Cyp. This completes the proof of Theorem 3.2.

Q.E.D.

Now we are going to prove our main results in this chapter.
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Theorem 3.3 Let X be a finite CW complex, 7 € Ext(X) = K(X) and
ch: K1(X)YRQ — Hyu(X, Q) be the Chern map, where Hygu(X, Q) denotes
the direct sum of all the ordinary homology groups of odd dimeénsion with

rational coefficients. Then there ezists an integer m # 0 such that mr is

C-smooth if and only if chr € ®F_ Hy1(X, Q).

Proof. If chr € @®}_1Ha—1(X, Q), then chr = 8, +03+- - -+ 02,4, Where

021 € Hy1(X,Q). Without loss of generality, we can assume chr =
8 € Hy,1(X,Q). By Theorem 1.3 in Chapter 1, there exist a compact
oriented smooth manifold M and a map f : M — X such that § = f.4
where 8 € Hy1(M,Q). (Please note that we use rational coefficients
here, so we do not need to multiply # by an integer.) By surjectivity of
the Chern map between K (M) @ Q and H,4(M,Q), there exist a ¥ €
Ext(M) = K(M) and a rational number 2 with ch(27) = 6. Therefore,
cht = f.ch(2F) = ch(f‘*(gf')). Using the injectivity of the Chern map,

T = 2(f.7) in H(X)eQ.
Hence, there exists an integer m; with
myr = BE(f.F) in K1(X).
Therefore,
magr = map(fuF) = fulmap?).

Let m = m;q. From Theorem 3.2 and Corollary 2 of Theorem 3.1, we know

that m7 is Cy-smooth. This completes the proof of the “ if 7 part.
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Suppose that there exists an integer m # 0 with m7 being C,-smooth.
We are going to prove chr € @}, Hy-1(X, Q). If not, there exists a 6 €
H%-1(X Q) with ¢ > n, such that the pairing (chr, 9) 75 0 By the
Corollary of Theorem 1.2, there exist a map f : X — Sz'““l and 9 €
H%-1(§%-1) such that 6§ = f*EH where 2 is a rational number By our
assumption, mr is C,-smooth. Therefore mfir = fom7 is a C, Smooth
element in Ext($%~1). By Proposition 3in [ 16 |, mf,7 is the trivial element

in Ext(S%~1) = Z. Therefore f,r = 0. Hence

0 = {chf.T,

=}
—

= {fu«chr,

~ N i A= i~

G b= TR N
b=}
o
Dyt

= {chr, f*
= {chr, 6)
# 0

This contradiction completes the proof of the “ only if ” part of Theorem
3.3.

Q.E.D.

The following theorem is almost equivalent to the above results but is

perhaps more useful in practice.

Theorem 3.4 Let X be a finite CW complez, X* denote the k-skeleton
of X and v € Ext{X ). Then there exists an integer my # 0 such that

maT is Cy-smooth if and only if there exists an integer my # 0 such that
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myr € i (BetX* 1), where 1, : Ext(X*™ ') — Ezt(X) is induced by the

inclusion map i : X 5 X,

Proof : If there exists an integer my £ 0 with my7 béi.ng.':(};ﬁ"_smooth,
then by Theorem 3.3, chr € @7 Hop_1(X,Q). Please note the ..%oﬁowing
well known fact from homology theory, i, : Hy(X™) — Hy(X) is a bijection
when k < n and a surjection when k = n. It is routine to prove that there
exists an integer my # 0 with ma7 € ,(X?*71). The “ if 7 part follows
from Theorem 3.2, Theorem 3.3 and the bijectivity of the Chern map.fro:m
Ki(X)®Qto Houa(X)® Q.

Q.E.D.

Corollary 1. If X is a (2n-1)-connected finite CW complez, then all
the C,-smooth elements of Ext(X ) are torsion elements.

Proof :  As in Chapter 1, we know X is homotopic to a CW complex
with its 2n-1 skeleton being a single point. According to Corollary 2 of
Theorem 3.1, we can assume that the 2n-1 skeleton of X is one point.
Thus this Corollary follows from Theorem 3.4.

Q.E.D.

Corollary 2. Let X be a (2n-1)-connected finite CW complez and
dimX < 2n+ 1. Then all the C,-smooth clements of Ext(X ) are trivial.

Proof : Let 7 € Ext{X) be C\-smooth. According to Corollary 1, there
exists an integer m £ 0 with m7 = 0. Consider the relative homology exact
sequence of (X, X**), where X is the 2n-skeleton of X (see p.37 of | 14 ]

for the sequence).

Ext(X2%) 25 Ext(X) L5Ext(X/X )
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Since dimX < 2n-+1, X/X® is the space of the bouquet §2"+1y g2 +ly. ..y
521 of several 2n+1 dimensional spheres. This implies that Ext(X/X*")
is torsion free. Therefore p,7 = 0. So 7 = 2.0 for § € Ext(X 2:h-) - But X

is (2n-1)-connected, so we can assume that X?*~! is one point: Hence X n
is the bouquet of 2n-dimensional spheres. Therefore K'(X?*) = 0 T h]S

completes the proof of Corollary 2.

The main theorem of [ 16 ] (see Proposition 3 in that paper) is the

special case of our Corollary 1 when we take X to be S"*1, And the two

main theorems of [ 15 ] (see p.65 and p.66) are the special cases of our
Corollary 1 and Corollary 2 respectively taking n = 1. But we should point
out that Proposition 3 in [ 16 ] is used in proving our main results and that
the original proof of the theorem in [ 15 | inspired our proof of Corollary 2.

Now, we will briefly discuss the C,-smoothness for a relative extension

of a finite CW complex pair.

Definition 3.2 Let (X,Y) be a relative finite CW complez pair. Then v €
Ext{X,Y) 13 said to be C,-smooth if the image of T under the canonical
isomorphism from Ext(X,Y) to Est(X/[Y) 1s C,-smooth.

One can prove the following theorem.

Theorem 3.5 Let 7 € Ext(X,Y). Then the following are equivalent :
1. Thcre ezists an nteger m # 0 such that mr is Cy-smooth.

2. chr € O}, Hgk 1(X,Y,Q), where H(X,Y,Q) denotes the Telatwe

homology group of th_e-CW complex pair with rational coefficients.

Q.E;DI..{'_:-: :
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Before we end this chapter, we give an application of our theorem to
operator theory.

Let X be a finite simplicial complex embedded in R We‘ say that
X is smoothly embedded in R* if we can find a closed neighborhood U
with smooth boundary, such that X is a retract of U and the réffaction
T:U—>Xishom0topictoamapf:U—%Xwithz'of:U—)X..:-_—}U
being smooth. We can prove that any 1-dimensional simplicial complex can
be smoothly embedded in R*. And while I believe that this is true for any
dimension, I have been unable to prove it.

We give the following theorem as an application of our results in this

chapter.

Theorem 3.6 Let (T\,Ty,-+-,T,) be an essentially normal n-tuple of op-
erators and X C C" be the essential spectrum of the n-tuple. Then the
following statements are true :

(1) If X is a closed m-dimensional smooth oriented manifold embedded
in C", then for any p > =, there exists an n-tuple of compact operators
(K1, Ky, -+, K) with [T+ K, TP 4 K € G,

(2) If X s a m-dimensional simplicial complex smoothly embedded in
C", then for some n-tuple (51,52, +,Sn) =
(Th @TI@---@TL,Q“Z@TZ@---@T%,--.,IH@TRQ-.eaTn) (k is an in-

k—copies k-—copies k—copies

teger), there exists an n-tuple of compact operators actingon H QH ®--- & H

k—copies

such that [S; + K, S; + K;] € Clayy and [S; + K;,SF+ K7 € Crz41-

Proof : (1) follows from Theorem 3.2 and (2) follows from Theorem
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3.4 and the Corollary 2 of Theorem 3.1.
Q.E.D.
If we take X = 5§?"~! then we answer the question on p.109 of [ 16 ]. In
particular, we have the following fact : If (1),,,7%,,--+,T,,) is the n-tuple
of Toeplitz operators on H*(9B,), then there exist n compact operators

(K1, K, -+, K,) such that [T}, + K;, T, + K;] € C, when p > n— 1. There

doesn’t seem to be any direct proof of this fact.




Chapter 4

Summable Fredholm Modules i-_

of c*°(M) for a Compact
Smooth Manifold M

Corresponding to K (X) = Ext(X) {9][ 14 ], in the even case, Kasparov
[ 25 ] proved that each element of Kp(X) can be realized as a Fredholm
module of C(X) and therefore Ko(X) = KK(C(X),C). We refer to [ 7 ]
for the general theory of K-homology and KK-groups.

Let M be a coxhpact smooth manifold, and C°(M) denote the algebra

of smooth functions on M. The notion of a p-summable Fredholm module of

C*(M), which can be thought of as an element in Ko(M) = KK(C(X),C),

is the even analogy of C\-smooth extension and it was introduced by Connes . g

[11].
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In this chapter, we study the p-summable Fredholm modules of C°°(M )? : = o
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and their Chern characters in H}(C°(M)), where H{(C>(M)) is the cyclic
cohomology of C*°(M). Furthermore, we also study the case of a compact
manifold with boundary. S

First we bricfly recall some definitions and basic results. Let X bé a com-
pact metrizable space, and I'(X) denote the collection of triples (H , 0, F)
which are called the Fredholm modules of C(X), where,

(1) H = Ho@® Hy is a Z, graded Hilbext space with a grading operator
£, E€ = (—1)%0t¢ for all £ € Ho or £ € Hy; B

(2) 0 = 09 @ 04, and o; : C(X) — L(H;) is a continuous * homom.or_.—'

phism;
(3) Fe L(H), F* =1, FE = —£F, and for any f € C(X), one has

Fo(f)—o(f)F € K(H).

Ko(X) is defined to be I'(X) modulo certain equivalence relations (for
details see § 2 of [ 5 | or Chapter 5 of [ 14 ]).

If M is a compact smooth manifold, then a p-summable Fredholm mod-
ule of C*°(M) is an element of I'(M) which satisfies the following stronger
condition:

() FeL(H), F?=1, FE = —£F, and for any f € C*(M), one has

Fo(f) - o(f)F € C,.

In [ 11 ], Connes defined the cyclic cohomology H{(.A) of an algebra A _
over C as follows. Let C}(.A) be the set of n+1 linear functions on A'which'

satisfy :

r(a',a?,-+,a",a%) = (—1)*7(a®, a', %, - -, a™),Va®, at, a?, - - - ,a"‘E.A
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Define b: C}(A) — CYTHA) by

(bT)(aD,a,lja,z’...,a'ﬂ+1) = T(aﬂal’a2’___,an+1) :
+ Z(“‘l)gT(aoa s atattt e a”thy
=1 o R
+ (_1)n+1T(an+laﬂj . an)

One can verify b = 0. H¥(A) is defined to be

Ker{b: C}HA) — CY (A}
Im{b: Cy HA) — CH A}

Connes defined a useful map S : H}(A) — H¥2(A), and defined He=n( 4)
to be the inductive limit of the groups H3"(.A) under the map S : Hi*(A) —
H?2(A), or equivalently, the quotient of &% H2"( A) by the equivalence
relation ¢ ~ S¢. H(A) is defined in same way.

In §2 of [Connes], Connes also constructed the graded Chern map
ch* : {{n+1)-summable Fredholm modules} — HY(C*(M)),
where n is an even integer. And he proved that

ch* : {finite summable Fredholm modules} — H®*(C*(M))

is a surjection up to complex multipliers. Our main result in this chapter

says that the Chern map is a graded surjection.

Theorem 4.1 Let M be an n-dimensional compact oriented smooth man-

ifold (n even). Then all the elements of Ko(M) can be realized as (n—/—])—

summable Fredholm modules.
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Proof : In § 5 of [ 4 ], Baum-Douglas proved that each element 7 in
Ko(M) can be represented by a first order elliptic pseudo—dlfferentlal oper-
ator. Then by § 6 of [ 11 ], we know that T can be realized as an (n—l—l)

summable Fredholm module. This completes the proof.

QE’D

Before proving our main result, we give the following two lemmas

Lemma 4.1 If X is a finite CW complez and 7 € Hi(X,C), then the're

exist compact oriented smooth k-manifolds M; (¢ = 1,2,---,n) wzthout
boundary and maps f; + M; — X such that 7 = Y2, fu.b; for som'e::.
8; € Hp(M;,C), where Hp(X,C) denotes the homology of X with complem.

coefficients.

This Lemma is another version of Theorem 1.3. We omit the proof here.

Please note that one should use several manifolds rather than a single

manifold (in Theorem 1.3) because of the complex coefficients.

Lemma 4.2 If M, N are compact smooth manifolds and f : M — N 1is
a conlinuous map, then f. maps p-summable elements of Ko(M) to p-

summable elements of Ko(N).
The proof of this Lemma is exactly the same as that of Lemma 3.1.

Theorem 4.2 If M s ¢ compact smooth manifold without boundary and .
$ € HY(C™(M)) (k even), then there exist (k+1)-summable Fredholm mad--_-!_'-.'_
ules 7; (1 =1,2,.-+,n) and complez numbers a; (1 = 1,2,---,n) such that."_.:

Ty aich*ty ~ ¢ in H*(C™(M)), where ch* is Connes’ Chern map.




Proof : Let ¢ € HF(C*(M)). According to (l)and(Z)o The
n [ 11 ], we know that ¢ corresponds to ¢ + ¢i_o ++ @
h s Hoon(C(M)) — &;Hyi(M, C), where ¢u—; € Hy_;(M,C

out by Connes in [ 11 ], the composition of the following t'\#d"'maps;

I{()(M) & C C_h’*, Heven(coo(]vf)) i} @jﬂzj(M, C) :

is the usual Chern map from Ko(M) & C to &;H,;(M,C) (denoted by ch
where ch* is induced by Connes’ Chern map ch* : Ko(M) — H 6”3”(0&.(11'& :

Therefore the composition of the following sequence of maps

cuen o0 h Ch_l Ch* every oS | .. - B
Heen(Co(M)) % @; Hyy(M, C) Lo Ko(M, C) L Heven(Co(M))

is the identity map. From the above fact, we need only to prove that o

for each ¢;_;, there exist k+1-summable Fredholm modules 7; € Ko(M)
(1:=1,2,---,n)and ; € C (¢ = 1,2,---,n) such that ch™'¢s_; = %, oy
as elements of Ko(M) @ C.

Without loss of generality, we just need to prove this for ¢.

Using Lemma 4.1, we have ¢, = 3.1, fi.0;, where 8; € H(M;,C) and
M; is a connected compact oriented smooth k-manifold. Since Hy(M;)QC =
Hi(M;,C) = C as well as Hy(M;,Z) = Z, there exists a §; € C\ {0}
such that 3;8; corresponds to an integer under the isomorphism between
H;(M,C) and C. This means that 8;; can be expressed as an element of
Hy(M;,Z). Therefore ch™3;6; € Ko(M)®C can be chosen as an element in

(Co(M;). Hence ch™!§;6; can be represented by a (k+1)-summable Fredholm
module according to Theorem 4.1. Lemma 4.2 says that fi.ch™153:8; €
Ko(M) can be represented by a k+1-summable Fredholm module. But




ch™'$r = Ty F

as the element in Ko(M) ® C, where ; = fi.ch™ 5:6;. Thlsc nplet

proof.

Now, we characterize the p-summable Fredholm module of C’g"( [):
M being the interior of a compact oriented smooth manifold M with bou
ary OM, where C°(M) denotes the smooth functions on M with compa
support. Let Co(M) be the set of the continuous functions on M vanisﬂiﬁgi_
on OM and T'(M,J0M) be the collection of Fredholm modules of C’D(M_)i. __
(To define the Fredholm modules of Cy(M ), one need only to replace C(X) -
by Co(M) in the definition of I'(X).) A p-summable Fredholm module of
C>(M) is an element of I'(M, M) which satisfies the stronger condition
(3"), where we replace C°(M) by C*(M).

Lemma 4.3 For cach 7 € Ko(M,0M), there exists a Fredholm module
(H,0,F) of Co(M) which represents 7.

Proof : The lemma follows from the fact : The inclusion map from
Co(M) to Co( M)T induces a surjection from K K(Co(M)+,C) to KK(Co(M), C),
where Cy(M)* is the algebra of Cy(M) adjoint a unit.

Q.E.D.

If 1 € Ko(M,O8M) can be represented by a p-summable Fredholn mod-
ule, we say that 7 is a p-surnmable element.

In the old preprint of | 6 |, the authers gave some estimates which can
be used to prove that all the clements of Ko(3,0M) are ntl-summable
when n = dimM.




Lemma 4.4 If f: M — N is a continuous map be't{u'éé?:r..-zs.'o%iénted compd.ct".::_:_'
smooth manifolds with boundaries such that f(OM) C ON; then f. maps p- : _
summable elements of KO(H, OM) to p-summable elements of I{Q(—N, ON). -

Proof : Note the following fact which can be proved by using collared
neighborhoods of boundaries : f is homotopic to a smooth map g : M — N
with g|aar C ON. We reduce the proof to the case of f being smooth. The
rest of the proof is similar to Lemma 3.1.

Q.E.D.

From homology theory we know that Ky(M,dM) is isomorphic to
Ko(M/OM,{pt}) which is the reduced K-homology of M/OM. If f is a
map from M /OM to X, then f induces a map

fr s Ko(M,0M) — Ko(X).

Lemma 4.5 Let M be an oriented compact smooth manifold with boundary
OM and N be an oriented compact smooth maenifold without boundary. If
f: M/OM — N is a continuous map, then f. maps p-summable elements

of Ko(M,0M) to p-summable elements of Io(N).

Proof : Note that f is homotopic to a map g which is smooth out

to 8M and take a neighborhood of 8M in M/OM to a single point in N,
where OM is thought of as a point in M /@M. The Lemma will follow.

Q.ED.

Theorem 4.3 Let 7 € Ko(M,0M) and p be an even integer. Then the

following conditions are equivalent ;




(1). There exists an integer m £ 0 such thut 7 (1
(2). chr € O, Ho(B,0M, Q), where Hy(M,0M,Q
ative homology group of the pair (M,0M) with mﬁéﬁdl‘. é‘_’_ﬁﬁiﬁ. nt

Proof : (2) = (1) follows from Theorem 1.3 , Leniﬁia,._ :
argument before Lemma 4.4. | -

(1) = (2) : I chr ¢ @FHu(M,0M,Q), then there exists 6 €
KT, 0M) with (8,7) # 0 and ch*0 € H*(M,0M,Q) with i > k. But |
# can be realized as a pull-back of an element § € K°(BU(n)) via a Inap
f from M/8M to the oriented compact smooth manifold BU(n), where
BU(n) is the classifying space of complex bundles. Because mr is (p+1)-
summable, m f,7 is (p+1)-summable. By Theorem 46 in | 11 ]

Ch.f*T e @§=1H2k(BU(n)7 Q)

But ch*8 € H¥*(BU(n), Q). Therefore {6, f,r) =0.
On the other hand,

(0, for) = {(f*4, 7y = (8, 7) #0.

This contradiction completes the proof of the Theorem.

Q.E.D.




Chapter 5

Open Problems

In this chapter, we consider some open problems and speculate on”:"x_z'vh__at.:

their solution might be .

1. In Theorem 3.3 and Theorem 3.4, we classify the C,-smooth ex-
tensions modulo torsion for p an integer. Can one classify the Cp-smooth
extensions modulo torsion for arbitary p?

Ifpe(n— %,n] for an integer n, the problem can be solved. Actually
Theorem 3.3 and Theorem 3.4 are still true if we replace C,-smooth by
Cy-smooth for p € (n—1,n]. Because C, C C, when p € (n—3,n], we only
need to prove the “ if ” part of the theorem for this case. But the “if ”
part is true since Theorem 3.2 holds not ounly for p = n but also for p >

1 2n--1

n—z =% if we assume that M is a 2n—1 dimensional manifold.

If p € (n,n+ 3] for an integer n, the problem is still open. We would like

to point out that the problem will be solved if one can prove the following




conjecture.
Conjecture 1 All the C,,_y-smooth extensions of S5%=1 are trivial.

"This conjecture is a refinement of Proposition 3 of [ 16 |.

2. In this paper, we only classify C,,-smooth extensions modulo torsion.

But we believe the following is true.

Conjecture 2 Let X be a finite CW complez and X% be the k-skeleton of
X. Then 7 € Ext(X ) 1s C,-smooth if and only if v € i,(Bzt(X)), where i,
: Bet(X* 1) — Bot(X ) is induced by the inclusion map ¢ : X** 1 — X.

This conjecture is a refinement of our Theorem 3.4 and a generalization

of the conjecture on p.67 in [ 15 ] to the case of higher dimensions.

- 3. In Theorem 3.6, we need the condition that X is a simplicial com-
plex. If we drop this condition, a reasonable guess would be the following
statement:

Let (T3,T%,---,T,) be an essentially normal n-tuple of operators. Then
there exists an n-tuple of compact operators (K, Ks,- -+, K,) such that
[T; + K, T; + Kjl€ C, and [Ty + K, T + K;]€ Cy for all 1 < 4,5 < n.

But the following example is a counterexample.

Example Let H = ¢, H;, and let U; be the unilateral shift on H;

and S; = a;(U; — 1), where {a;}{2, is a sequence of positive numbers'_v_v'it_h_'z-:-."-




o = 0. Lot T = 02,5, act on H = @2, H;. Then T is an essentiall

normal operator with essential spectrum X defined by : RRERAE

X = U?ﬂ{(a’:y”(m + O‘n)z + 1yt = ai} CR*=C,

If we let o, = n~%, one can prove that [T + K, T* + K*} ¢ ¢ for aﬁy : =

compact perturbation 1' - K of T' by using the theorem on p.64 of [ 15 ]
And if we let «,, = n_%’, then one can easily prove [T, T*] ¢ C,. It seems to

be true that [T+ K, T*+ K*] ¢ C, for any compact perturbation T+ K of T

4. One can study the Cy-smooth elements of K*(A) for a noncommu-
tative C™-algebra A. This problem involves making a suitable choice of a
dense subalgebra of A. It will be a start if one can prove the following result,
corresponding to our Lemma 3.1 : If v is a continuous *-homomorphism
between A and B, then v* maps the Cp-smooth elements of K1(B) to the
Cp-smooth elements of K(.4). One way to prove this result is to find a -
homomorphism v between A and B such that v maps the dense subalgebra
of A to the dense subalgebra of B and v is homotopy equivalent to u.

I believe that the Exel-Loring filtration of K1(A) [ 17 ] should be useful
in giving some necessary conditions for an element of K'(A) to be C,-
smooth. In particular, the following conjecture should be true for some

algebras with nice dense subalgebras :

Conjecture 3 Let 7 € K'Y(A). Then there ezists m # 0 with mr C,-
smooth if and only if (7, 8) =0 for all 6 € Fy, 1 K A), where Fyp K (A)
is the (2n + 1) filtration of K'(A) of Exzel-Loring.
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One way to approach the conjecture is to reduce the case df'_a_,‘ _1;;5(_:_(':511_1 utative
algebra to the case of a commutative algebra. If r € K 1(.,4) a,nd th e-_ékists
a *-homomorphism f : A — C(M) with 7 = f*8 for some § KYNC(M)):

Ext(M), then we can conclude that 7 is Cp-smooth from t"he Tact

ules over the smooth subalgebra and find the relation between the

p-summable Fredholm modules over the smooth subalgebra and the.:_.'.
cohomology of this subalgebra. If G is trivial, we have found the explicit.

relation in Theorem 4.2.

6. Finally, one can study the p-summable Fredholm modules for bivar
ant K-homology KK(C(M),C(N)) and the relation of the p—sumﬁiablé
Fredholm modules with their bivariant Chern character. Work in this d

rection should be related to that of [ 29 ], [ 26 | and [ 24 ].
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