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Abstract of the Dissertation
Examples of Symplectic Structures On Fiber Bundles
by
Brian John Kasper
Doctor of Philosophy
in
Mathematics
State University of New York

at Stony Brook

1990

In this dissertation we investigate the uniqueness of a symplectic form
constructed on the total space of a fiber bundle. We first show that any
symplectic form on a product of two compact Riemann surfaces compatible
with the topological splitting is isotopic to a split symplectic form. But
such uniqueness need not hold in higher dimensions, for we also produce
an example of a symplectic form on a 6-dimensional product manifold X =
X' x X" compatible with the topological splitting but not isotopic to any
symplectic form split across X’ and X " This result is proven by studying
an example of McDuff, and in particular by examining spaces of pseudo-
holomorphic spheres in X' x X" associated to the symplectic form.

In the general case we consider a symplectic fibration w : E —» B with
fiber F, where (F,wr) and (B,wg) are closed symplectic manifolds. We
produce an example of such a fbration and cohomologous 2-forms § and

‘A" on E such that 8 + m*wp and @' 4+ 7*wp are non-isotopic symplectic

1ii




forms on E, both compatible with the fibration. To construct the example

we generalize a result of Sternberg to show how a family of connections on

a principal bundle P — B can be used to build an extension B of the

symplectic forms on the fibers, and also prove a nondegeneracy result to
guarantee that 8 + m*wy is nondegenerate and so symplectic. The proof of
the non-uniqueness result again uses the example of McDuff and the same

techniques of examining spaces of pseudo-holomorphic spheres.
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Chapter 1
Introduction

A symplectic form w on a manifold M determines two basic pieces of topo-
logical data: a deRham cohomology class [w] € H?*(M), and a homotopy
class of almost-complex structures on M. By work of Gromov [6] it has
long been known that if the manifold M is open then such topological data
can always be realized by some symplectic form. If, however, M is closed
(compact without boundary) it is not known if such an existence result
holds. So at this point we are held to the problem of constructing, by var-
ious techniques, examples of symplectic forms on closed manifolds to see
what phenomena can occur. On the other hand, there is a basic method
(Moser’s Theorem) for understanding problems of uniqueness of symplectic
forms on closed manifolds. The particular problems we study in this dis-
sertation involve uniqueness of a symplectic form built on the total space
of a fiber bundle, given symplectic forms on the base and the fiber.

In Chapter 3 we discuss the easiest example of a fiber bundle, the Carte-
sian product of two manifolds. If (My,w;)} and (Mz,w;) are two symplectic
manifolds, then there is a obvious split symplectic form w @w; on the prod-

uct manifold M, x M,; in this case we need make no choices to construct

the form on the total space. Split symplectic forms are always compatible




with the topological splitting M; x M,, meaning the symplectic form splits
in cohomology and restricts symplectically to slices. The question we deal
with here is whether a symplectic form on M; x M, compatible with the
topological splitting is isotopic to a split symplectic form. On compact
4-manifolds this is the case.

Theorem 3.1.1 Let ¥, and T, be compact orientable surfaces and w a
symplectic form on Ty x Ty compatible with the topological splitting, with
[w] = a@®b. Then for any symplectic forms wy on Ty with [wi] = a and w,
on Ty with [wy] = b, w i3 isotopic fo wy B ws.

The main result of Chapter 3 is an example of a 6-dimensional product
manifold on which there is a symplectic form compatible with the topolog-
ical splitting, but that is not isotopic to any split symplectic form.
Theorem 3.1.2 There exists a symplectic form 71 on a product of closed
symplectic manifolds X' x X" such that 7 is compatible with the topological
splitting but is not isotopic to any symplectic form split across X' and X".

Theorem 3.1.2 is proven in Section 3.3 by studying an example of Mec-
Duff (reproduced in Section 3.2) of two symplectic forms which determine
the same topological data but that are not isotopic. The proofs of both
these results follow the same outline. To each of two different symplec-
tic forms on the same manifold we associate spaces of pseudo-holomorphic
spheres, and on each space of spheres we define maps to 5?, These maps
have different generalized Hopf invariants, which are invariants of a com-
pact bordism class of the maps. If the symplectic forms were isotopic, one
could use a (weak) isotopy of the symplectic forms together with a Com-
pactness Theorem for spaces of pseudo-holomorphic spheres to construct a
bordism of the above maps to S%, producing a contradiction.

In Chapter 4 we discuss the general case of a compact fiber bundle; let
(F,wr) and (B,wp) be closed symplectic manifolds, and consider a fiber
bundle 7 ;: E —» B with fiber F, and such that the structure group of the

bundle preserves wr. A symplectic form wg on F is compatible with the




fibration 7 if wg restricts on each fiber to be wr. By a result of Thurston’s,
the necessary and sufficient condition for finding a compatible symplectic
form on E is the existence of a cohomology class in H?(E) which restricts
on each fiber to [wr]. To show this, one first constructs a closed 2-form
B on E that restricts on each fiber to be wp (there are many choices of
such an extension); then using the compactness, it is not hard to show that
8+ Kn*wp is a compatible symplectic form on E for K € R large. A basic
uniqueness question is how the isotopy class of the symplectic form so built
depends on the choice of the extension §. Our main result is the following.
Theorem 4.1.4 There exists a compact symplectic fibration 7 : E — X

over a compact symplectic manifold (X,wx) and two closed cohomologous
2-forms Bo and By on E such that

ﬂg +-7T*LUX and 181 + W*wx

are symplectic forms on E, both compatible with the fibration m, but which
are not isolopic.

The proof of this Theorem is given in Chapter 5. The construction of
the example is based on a generalization (given in Section 4.2) of a method
due to Sternberg for building a closed extension § using a connection on
a principal bundle. The actual proof of Theorem 4.1.4 follows the same
outline as the work in McDuff’s Example, and explicitly uses the symplectic
forms constructed by her.

To begin with, in Chapter 2 we review basic facts of symplectic geometry
and of pseudo-holomorphic curves in symplectic manifolds used to prove our

results.



Chapter 2

Preliminaries

2.1 Basic Symplectic Geometry

For basic references on symplectic geometry we refer the reader to Arnold [1],
Liebermann and Marle [9], and Weinstein [19].

A symplectic manifoldis a pair (M, w) where M is a smooth 2n-manifold
and w is a smooth 2-form on M which is closed (dw = 0) and nondegenerate;

here nondegenerate means the top power
Ww'swA- Aw

never vanishes and so is a volume form on M. Hence all symplectic mani-
folds have a natural orientation and a natural volume. The basic example

of a symplectic manifold is (R**,w,) where
o = diL'l A d(li‘g + - dl‘gn._lf\d.fgn.

Theorem 2.1.1 (Darboux) About every point in a symplectic manifold

(M?*,w) there exist local coordinates (z1,...,x3,) such that

W= d&?} A dCi’Ig + -4 d(ﬂgn_lf\d.’ﬂgn.




Thus the only local invariant of a symplectic manifold is its dimension. We

say a smooth map between symplectic manifolds
F . (Ml,wl) e (Mz,wg)

is symplectic if F*w, = w,. A symplectic diffeomorphism we call a sym-
plectomorphism.

Since a symplectic form w on M is closed it determines a deRham
cohomology class [w] € H*(M). Two symplectic forms wo and w; on M
are weakly isotopic if they can be joined by a smooth l-parameter family
of symplectic forms w,, 0 < ¢t < 1, with constant cohomology class. We
say wp and w, are strongly isotopic if there is an isotopy of M (a smooth
1-parameter family of diffeomorphisms g; of M with go = Id) such that

giw) = wg. Clearly strongly isotopic implies weakly isotopic.

Theorem 2.1.2 (Moser) Let M be o compact manifold and wy and wy
be weakly isotopic symplectic forms on M. Then wy and wy are sirongly

wsotopic.

Thus on compact manifolds it is natural to consider uniqueness of sym-
plectic forms up to isotopy. Since all manifolds we deal with will be closed
(compact without boundary) we shall simply say two symplectic forms on
M are isotopic, and equally consider a (weak) isotopy of symplectic forms
and an underlying isotopy of the manifold.

An almost-compler structure on a manifold M is a bundle automorphism
J:TM —TM

with J? = —Id. Since the symplectic group Sp(2n, R) deformation retracts
to the unitary group U(n) every symplectic manifold possesses an almost-
complex structure, determined by the symplectic form up to homotopy. We

can always choose such an almost-complex structure J to tame w , meaning

w(v, Jv) > 0 VveT,M, v#0.




The space of almost-complex structures on M that tame w 1s contractible.
The original definition of nondegeneracy of a 2-form w is equivalent to

the requirement that the map

T™™™ —-— T"M

v o (v

is a bundle isomorphism, where i(v)w is contraction of v with w. So any
real-valued function f on (M,w) determines a vector field Vy on M by
{Viw = df; we call V; the Hamiltonian vector field associated to the
(Hamiltonian) function f. Since w is closed, it follows by the Weyl identity
Lyw = d(i(V)w)+4(V)dw that Ly,w = 0, so every Hamiltonian vector field
is a symplectic vector field (the flow generated by the vector field preserves
the symplectic form). We will denote by X(M,w) the symplectic vector
fields on (M,w). If a symplectic vector field has compact support, we can
integrate it to get a l-parameter group of symplectomorphisms of (M,w);
thus every symplectic manifold has many automorphisms.

A (left) action of a connected Lie group G on a symplectic manifold
(M,w) is symplectic if we are given a smooth embedding of G into the
group Diff(M,w) of symplectic diffeomorphisms of (M,w); ie., if Vg € G
the map

M — M

T — g-2

is a symplectomorphism of M. There is then an induced Lie algebra ho-

momorphism

g — X(M,w)

d
£ — ai (ea:p(—tf) : 37)|t:0




where G is the Lie algebra of G. A symplectic action of G is strengly
Homaltonian if this Lie algebra homomorphism lifts as Lie algebra homo-

morphisms

Co(M) - A(M,w)

g

so that the diagram commutes. The Lie bracket on C*®(}) is the Poisson
bracket {f,g9} = w(V,,V;). For each £ € G let &y € X(M,w) be the
,symplectic vector field on M corresponding to £, and let H, € C*(M) be
the Hamiltonian function corresponding to €. Thus i({y)w = dH,.

Given such a lifting there is then a moment map
prM— G
defined by
(€ 1(=)) = He(z) VzeM,E€eg (2.1.1)

where (-,-) is the pairing of ¢ and G*. Since G is connected the moment

map g is equivariant
ug - 2) = Ad;p(z) VoeG,ze M (2.1.2)
where Ad* 1s the coadjoint representation of G on G* defined by
(6, Adgp} = (Adg-1€, ) Weg,uegdgeG (213

and Ad is the standard adjoint representation of G on §.



2.2 Pseudo-holomorphic Curves

For standard references to this material we refer the reader to Gromov [5],
McDuff [10,11] and Wolfson [22]. Our presentation here is that of Mec-
Duff [11].

Let (M, J) be an almost-complex manifold and let (52, 7) be the 2-sphere

with its standard complex structure; a map
fe(8%8) — (M, )

is said to be a (rational) pseudo-holomorphic curve if its derivative is com-
plex linear
feot=Jof,.

The image of such a map we call a J-holomorphic sphere. These curves
were introduced into symplectic geometry by Gromov with the idea that,
since every symplectic manifold (M,w) has almost-complex structures, one
can study the J-holomorphic curves for a J which tames w to try to obtain
information about the symplectic structure w. In our case this involves
defining invariants associated to certain spaces of J-holomorphic spheres.
Since there i1s a contractible space of almost-complex structures taming w
one needs to understand these invariants as J, and hence the J-spheres,
varies in the moduli space.

Let (M,w) be a closed symplectic manifold. Choose integers s and
p large so that the Sobolev space W, (5% M) of maps f : §? — M
whose s"'-derivative is in L” makes sense; we want the maps to be at least

continuous. Fix a class A € Hy(M; Z) that is not a multiple class, meaning
A # mB for B e Hy(M;1Z). Let

Fa= {f € W, (8% M) | f represents class A }

Let J = J(w) be the Frechet space of ¢"™-smooth almost-complex struc-
tures J on M which tame w. As noted by McDuff [11, Section 2] and




proven by Floer [2, Section 5], we may always work with C**-smooth almost-
complex structures, as follows: For each J € J one can define a Hilbert
space J' = J'(J) of C*-smooth perturbations of J such that the L*-closure
of J' contains an open neighborhood of J in J. In particular J equals the
union of all such J'. Let

Mu(T)={(f,T) € Fs x J"| f is J—holomorphic} .

Theorem 2.2.1 M4(J") is ¢ C®-smooth oriented Banach manifold and
the projection Py = Pa(J") : Ma(J") — T’ 18 Fredholm with

Index Py = 2(n + c¢(4))
where dim M = 2n and ¢ = ;(TM, J).

By elliptic regularity if J is C* and f is J-holomorphic then fis C*°. Since
we shall always work with C*°-smooth almost-complex structures, all maps
and spaces we deal with will be C*-smooth.

A J € J is called regular if it is a regular value of some Fredholm
projection P4(J'). By standard Fredholm theory the set of regular values

is of second category in J’, and hence is dense in 7. Let
M,(A,J) = P;'(J)
be the set of parametrized J —holdmorphic A-curves,

Theorem 2.2.2 For a dense set of regular values J € T, My(A,J) is a
C*-smooth oriented manifold of dimension 2(n + c(A)), if it i3 nonempty.
If o i3 a path between two regular Jy and Jy, then « may be slightly per-
turbed relative to the endpoints so that M,(A, ) = P7'(c) ts a C®-smooth
noncompact oriented cobordism of M,(A, Jy) and M,(A, Jy).
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For rational pseudo-holomorphic curves we can locate a regular value of
P, as follows. If J is integrable and f : (5§%,7) — (M, J) is J-holomorphic
then f*(TM) is a holomorphic vector-bundle over $%; by a theorem of
Grothendieck f*(T'M) splits uniquely (up to ordering) as a sum of holo-

morphic line bundles
FFTMy=Li®L:®... 0 Ly.

Theorem 2.2.3 If J i3 integrable and for all J-holomorphic A-curves
f (82,4 — (M,J) every summand of f*(TM) has ¢;(L;)(S?) > -2,
then J 1s o reqular value of Ps(J'), for any J' containing J.

Since the Lie group G = PSL(2,C) of automorphisms of ($%:) is a
noncompact manifold of 6 real dimensions, if M,(A, J) is nonempty then
it cannot be compact. However, in some cases one can show the quotient

space of J-holomorphic A-spheres Ma(J) = M,(A, J)/G is compact.

Theorem 2.2.4 If Ma(J) = M, (A, J}/G 13 not compact then there exists
o continuous map S* — M representing a homology class B € Hy(M;Z)
such that

0<w(B)<w(d).
We say A € Hy(M;Z) is w-simple if there does not exist a B € Hy(M;Z)
with 0 < w(B) < w(A). Thus if A is w-simple then M4(J) is compact for
all J € J(w).

Remark 2.2.5 If A is w-simple and if J is a smooth regular value for Py,
then M (A, J) xg S* is a smooth compact oriented manifold of dimension
 2(n+ ¢(4)) + 2 — 6, and the evaluation map

eva(J): My(A,J) x5 — M
(f,2) — f(2)

118 a smooth map.
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Remark 2.2.6 Theorem 2.2.4 remains true if one replace M4(.J) by
My(a) = My(A,a)/G = P;'()/C

where « is a subset of J(w}) which is compact in the C**-topology. More-
over, for {w; |0 <t < 1} a weak isotopy of symplectic forms and o = {J,}
a smooth path of almost-complex structures with J, € J(w,), if 4 is we-

simple then M4(e«) is also compact.

To see this last statement, we note that A is wy-simple for all £, and that
the condition for J to tame w, is open. One now applies the first statement
and uses the compactness of the path a. ,

Finally, in a 4-dimensional manifold one can obtain extra information
about pseudo-holomorphic spheres by looking at their intersections. For

the following two theorems we refer to {13).

Theorem 2.2.7 Two distinct J-holomorphic spheres C' and C' in an almost-

complez §-manifold (M, J) have only a finite number of intersection points,

and each point of intersection contributes a positive number to the algebraic
intersection number C' - C'. Moreover, a point of intersection contributes .

+ 1 if and only if the curves intersect transversally at that point. ‘

Theorem 2.2.8 A J-holomorphic sphere C in an almosi-complex 4-manifold
(M, J) is embedded if and only if

C)y=C-C+2

where ¢ = ¢, (T M, J).
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Chapter 3

Symplectic Structures on

Product Manifolds

‘3.1 Splitting Symplectic Structures

If (My,wi) and (Mz,w,) are symplectic manifolds then there is an obvious

symplectic form on the Cartesian product manifold AM; x M,,
def x
w1 D wg = Tiwy + Towe

where m, and w, are the projections of My x M, onto the first and second
factors. We say a symplectic form w on X = My x M, splits with respect
M, and M, if there exist symplectic forms w, on M; and wy on M), such
at w = wy Gws.

Given a manifold X written as a topological product X = M; x M,
1d w a symplectic form on X, we say w is compatible with the topological
ting if

splits in cohomology, meaning there exist classes

‘a€ H*(M;)and b€ H?*(M,) such that [w] = ¢ @ b; and
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w restricts symplectically to slices, meaning that w re-
stricts to some symplectic form on each submanifold of
type My X {p.} and of type {p;} x M.

Note that a split symplectic form on X = M; x M, is compatible with
the topological splitting. It is also clear that the converse need not hold;
e.g., consider oy @ o2 + dfiAdfs on §% x 5%, where f; and f, are functions
on the first and second factors respectively. However, if w is isotopic to a
split symplectic form then the cohomology condition certainly holds. The
purpose of this chapter is to study when a symplectic form compatible with
a topological splitting is isotopic to a split symplectic form. Our first result

is that on compact 4-manifolds this is always the case.

Theorem 3.1.1 Let 3y and T, be compact orientable surfaces and w a
symplectic form on Xy X By compatible with the topological splitting, with
[w] =a@®b. Then for any symplectic forms wy on Ty with [w1]) = a and w,

on By with jwy] = b, w i3 1sotopic to wy D w,.

proof:

Let w; be a symplectic form on ¥; with Jw;] = a and w, be a symplectic
form on ¥; with [wy] = b. Then [w] = |wi] @ [wy] = [w1  wy], s0 w and
wy & wy determine the same orientation on 3; x 3,. Also, there exists an
exact 2-form da on 3, x I, such that w = w; @ w, + do. Let

pt=w1@w2+tda OStS:l

50 pg = w1 Pwy, p1 = w and [p;] is constant in H3(Z, x ;). By Moser’s
Theorem it suffices to show that p; is nondegenerate (and so symplectic )
for all 0 <t < 1. This we do at each point of ©; x £;. The idea is that
since we are in dimension 4, the hypotheses on w give us lower bounds on

its coefficients.
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Let (p, q) € 2y xZy; by Darboux’s Theorem there exist local coordinates
(21, z2) about p € Iy and (z3,z4) about ¢ € L, such that

wi = dxy Adzy and wy = dirz A dz4.

Then (zy, z,, 23, 24) are local coordinates about (p,¢) € £; X I, and so

near (p,q)

w = w; Hw;y+da
= day Adaxy + degAdzy + fL dzyAdzg + fodziAdzs + fsdziAdzy
+ fadeoAdas + fs dzoAdzy + fo drandzy
= (14 fi)deiAdza + (1 + fo) dzsAdzs + fodzyAdxs + fadziAdey
+ fidayAdas + fs deyAdz,

for some functions fi,..., fs near (p,¢). Since w restricted to slices is

symplectic and
LU[EI x{a} = (1 + fi)dﬂ’il /\dl‘2|21 x{q}

the function 1 + f; never vanishes. Moreover, lelx o and wq determine
the same orientation on I, and so

1+ f>0. (3.1.1)
Similarly :

1+ fe>0. (3.1.2)

A simple calculation shows

W =21+ fi+ fo+ fifs+ fafs — fafs) deiAdeaAdzsnde,

and since w and wy § we determine the same orientation, we have

1+ h+fe+ fife+ fafa— fafs > 0. (3.1.3)
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Let A= fl -+ fe, and B = f1f6 + f3f4 - f2f5; then by (311) &Ild (312)
A>-2
and by (3.1.3)
B>-1-A

Finally, the same calculations show that near (p, ¢)

(pt)2 = (W 4wy + tda)?
To show nondegeneracy of p, at (p, ¢) it suffices to show the function (1 +
tA + t°B) is positive for all 0 < ¢ < 1. But

1+tA+#*B > 1+tA+t%(-1-A)

-2+ -1H4A
> 1—12 4+ (1 —tH)(-2)

Il

= 1—2t41¢
= (1-1)?
0 Vo<t<l

Andatt=114+tA+tB =1+ A+ B > 0 since p; = w is symplectic .
qed

Thus on a product of compact orientable surfaces a symplectic form
compatible with the topological splitting is determined, up to isotopy, by
its cohomology class. The main result of this chapter is that a symplectic
form compatible with a topological splitting need not be isotopic to a split

symplectic form.

Theorem 3.1.2 There exzists a symplectic form 7 on a product of closed
symplectic manifolds X' x X" such that 7y is compatible with the topological

splitting but is not tsotopic to any symplectic form split across X' and X".
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The proof of Theorem 3.1.2 is given in Section 3.3, by examining a specific
symplectic form constructed by McDuff on the 6-dimensional manifold
5% x §% x T2,

We should compare these results to splitting theorems in other geome-
tries. It is well-known that a Riemannian metric on a product manifold
need not be isometric to a split metric g; @ go; in fact, since curvature is
a local obstruction such splittings are very special. On the other hand, by
Moser’s Theorem for volume forms [15] every volume form £ on a prod-
uct of compact orientable manifolds M; x M, is isotopic to a split volume
form 718 A 735, where Q) and @, are volume forms on M; and M,, re-
spectively. To apply Moser’s Theorem one chooses ; and £, by scaling
volumes and choosing orientations so that [2] = [77Q; A 735$;]). Then since

the space of top-dimensional forms on a manifold is 1-dimensional

is a 1-parameter family of volume forms with constant cohomology class.

3.2 An Example of McDuff

In this section we explain an example, due to McDuff, of two symplectic
forms on 5% x 5% x T? that determine the same cohomology class (and
homotopy class of almost-complex structures) but that are not isotopic.
One of these forms is the standard one, and the other is the one used
to prove Theorem 3.1.2. Since this example has not appeared explicitly
in the literature we reproduce the complete proof. This construction was
motivated by an observation of Gromov [5] that there exists a symplectic
form p on $%x 5% such that there is a noncontractible loop in Diff($?x S?, p).

The example is also the basis for the construction in McDuff [10], and is in

fact a simpler version of that one.
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Let o7 = 04 both denote the standard symplectic form on S? and o3 the
standard symplectic form on T?, all of total area 1. Here we consider T? as
the usual quotient of the unit square {(s,1)|0 < s,¢ < 1}. Let

X=5"x8"xT?

and let
To=010 02D o3 (3.2.1)
be the standard symplectic form on X. Let 8 : X — X be the diffeomor-
phism
0(z,w,s,t) = (2,v%,.(w), s,t) (3.2.2)
where ., : §? — 5 is rotation of $? by angle 27¢ about the axis through

z, and let
= 9*1"0. (323)

These are the two symplectic forms we are interested in.
By checking on the generators of Hy(X;Z)

A = [SZX’UJ()XSUX'/JO]
B = [20x 5% x 89 x o]
¢ = [Zox’LUO XTZ]

1t is easy to see that 6* = Id on H(X). In particular
[70] = [11] = [o4] @ [02] B [o73].
The main goal of this section is to prove the following.
Theorem 3.2.1 (McDuff) 7 is not isotopic to .

We first want to construct two spaces I'y and I'; of rational pseudo-

holomorphic spheres in X associated to 7y and 7y, respectively. Let Jo be
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the standard (split, integrable) complex structure on X, so Jy € J(7) (i.e.,
Jo tames 7). Recall M, (A, Jy) is the space of parametrized Jy-holomorphic

A-curves. Also let
_ g1 98 a1
J1=6"Jo = (07 hoJyob, €T(n).

J1 1s also integrable, and 8 is a biholomorphism of the complex manifolds

(X, Jo) and (X, Jy).
Lemma 3.2.2 (i) The f € M,(A, Jy) are ezactly the maps
f(z) = (g(2), pt., pt., pt.) where g € PSL(2,C).
(i1) The f' € M,(A, J;) are ezactly the maps

f, = 8_1 o] f Where f e Mp(A: JO)’

proof:

Since Jo is split and integrable, the projections onto each factor $2,
§? and T? are holomorphic. If f € M,(4,Jo) then my o f : §2 — % is
holomorphic, and since f represents class A, m; o f represents a generator
of H3(S? Z) and so has degree 1. Thus m o f € PSL(2,C). Similarly 70 f
and 30 f are holomorphic and represent class 0 in H,(S% Z) and H,(T?; Z),
respectively, and so are constant.

To see (ii), if f is Jyp-holomorphic then

6,0 fooi=6"o0Jsofi=Jio0 0 f,

and so f' = 67! o f is Ji-holomorphic. Similarly, if f’ is Ji-holomorphic,
then f = 6o f' is Jy-holomorphic.

qed
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Corollary 3.2.3 Up to parametrization, there exists a unique Jo-holomor-
phic A-curve and a unigue Jy-holomorphic A-curve through cach point of
X.
We now claim that ¢ = ¢,(T'X, Jo) = ¢,(TX, J;) = 2[01] @ 2[0,] and so
¢(A) = 2. To see this, note that (TX, J5) splits as holomorphic line bundles
TX =TS*aTS* @ TT.

Then ¢i(TX, Jo) = e2(T'5%,2) B i (T'S%,8) ® e (TT?, 1) = 2[04] B 2[03]. And
since 6 is a biholomorphism of (X, Jo) and (X, J;) and is the identity on
HY(X), (TX, Jo) = &(TX, J;). Let G = PSL(2,C).

Proposition 3.2.4 J, and Jy are regular values for the projection Pa, for
each i = 0,1 My(A, J;) x5 5? is a smooth compact oriented 6-manifold, and
the evaluation maps
B'UA(J,') : MP(A, J,) Xa S$? — X
(f,2) — f(2)
are diffeomorphisms.
proof:

To see that Jy and J; are regular values, we apply Theorem 2.2.3. Since
(TX, Jo) splits as holomorphic line bundles and f € M,(A, Jy) has the form

f(2) = (g(2), pt., pt., pt.),
F(TX, 1) =TS* @ L, & Ly
where Ly and Lj are trivial holomorphic line bundles over $2. Now ¢;(L,) =

c1(Ls) = 0 while ¢,(T.5%)(S?) = 2. Thus Jy is regular. For f' € M,(4, Jy),
fr=0"0fwith f € M,(A,Jp), and so

(fYTX,h) = fHO)(TX,h)
= f*(sz JO)
= TS8*@® L, D Ly
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as above, and so J; is regular.

By our area normalizations, 7, and 7 evaluate on each of the gener-
ators of Hy(X;Z) to be 1. Then by the Compactness Theorem (Remark
2.2.5) My(A, Jo) xg 5% and M,(A, J1) xg S? are smooth compact oriented
6-manifolds, and the evaluation maps are smooth. By Corollary 3.2.3 these

maps are surjective,

We need to show the maps have full rank. There is a smooth section of
the fibration M,(4, Jo) x §? — M,(4, Jo) xg 52 with image

EO = {(fwl,sl,tnz)lwl € 821 s$1,t € Sla z € 82}

where fu, 5,4 € My(A4, Jy)is Fug o0, (2) = (2,w1,31,t1). Considering eva(Jq)
as defined on ¥,

evA(JG)(fwz 81,819 z) = (Z, Wy, 81, tl)

which clearly has full-rank. Similarly one considers eva(J;) as defined on

the image of the section
21 = {(fzul,sl,tj'.‘z) le € ‘921 Sljtl € Sl, zZ & 52}
Where f‘;-"l,sljtl e MP(A5 JD) ‘iS ':Ulg-'il i1 (2) = (Z, ¢Z,“tl(w1)? ‘817 tl)

qed

The above results can be repeated for the class B = [0 X 5% X g X 1]

to give the following, which we will use in Section 3.3.

Proposition 3.2.5 Jy and J; are regular values for the projection Pg, for

each i = 0,1 My(B, J;) xg 5% is a smooth compact oriented 6-manifold, and
the evaluation maps

B”UB(J,') : MP(B, Jz) Xa Sz — X

are diffeomorphisms.
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Using the diagonal action of G on $2 x 52, Proposition 3.2.4 shows that
My(4, Jo) xg (8 x §%) and M,(A, J,) xq (S? x §?) are smooth compact
oriented manifolds of dimension 8, and the evaluation maps

ey; = B'UA(J,') : MP(A, J,) Xa (Sz X 52) — X
(f,z,2") —— f(z)

are submersions for each ¢ = 0,1. Note that we evaluate on the first factor
of 5% x §2,
Fix distinguished points wy € §% and 54 € §' and let

Z = {(wg, wo, $0,u) ju € ST}

which is a smooth S* embedded in X. Then evy and ev, are transverse to
Z; let

To=evy}(Z) = §'x 8
Ty =ery(Z) = S xS

To see that 'y and Ty are each diffeomorphic to S* x 5%, consider evy as
defined on T x §% C M,(4, Jo) x S? x §2, where T is as in the proof of
Proposition 3.2.4. Then

e (Z) = {(fu, ) |u€ S", 2" € §*} = §! x §°
where f, € M,(A, Jo) is f.(2) = (2, w0, $0,). Similarly,
evy (Z) ={(f,,2)|lue S, 2 €82S x s

where f, € My(4,J1) is fi(z) = (2,%;-u(wo), 80,u). Ty and T are the
spaces of Jo- (resp. Ji-) holomorphic A-spheres which intersect Z. To

prove that 7, is not isotopic to 75, we will define an invariant on each of

these spaces of spheres, calculate these invariants are different, and finally
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argue that if 7, were isotopic to 1y the invariants must be equal, producing
a contradiction.

Consider the map g : Do — S* given as the composition
To— X — &
(£r2,2)— f(&)— m(f(z))
where now we evaluate f € M,(A,Jy) on the second factor of $% x S2,
and then project onto the second factor of X. By Lemma 3.2.2 each J5-
holomorphic A-sphere which intersects Z has constant second factor in
X, s0 ¢ = constant. Similarly consider ¢, : 'y —+ S$? given as the
composition
I‘l — X — 52
(f,2:2) — fi(2) — m(f(2)
again evaluating on the second factor of $% x §% and then projecting. Then
as a map from 5t x 52 to §*

or1(w,z) =, _(wy) ueS,zes (3.2.4)
We note that as maps from S! x $2 to S? both ¢y and ¢, are zero on
H,(S" x 5% Z). This is trivial for ¢, the constant map; for ¢, a generator
of Hy(S* x §%7) is [{0} x §%, and
(01):[{0} x 8%} = [{#hz,0(wo) |z € §?}] = [wo] = 0
since ¥,p = Id. In [10, Section 5], McDuff defines a generalized Hopf

invariant x(¢) for any map ¢ : S? X §? — 52 which is zero on H,(S" x
5%, Z) - such maps factor through S® — and shows x(¢) is an oriented
bordism invariant for bordisms (W, ®) with ®.(H2(W;Z)) = 0. Moreover,
she shows that the maps
S'x 5§ — §°
(t,z) — . (wp) r€ELZ
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have generalized Hopf invariant x = r. Thus x(o) = 0 and x(¢,) = —1,
and so there does not exist a compact oriented manifold W with boundary
oI -T'; and a map ® : W — 52 with fI>|Fu = o and <I’|F1 = ¢; and such
that @, is zero on Hy{(W;Z).

We now show that if 7y is isotopic to 7y then such a bordism must
exist; i.e., that x(¢q) = x(¥1). So suppose 7, 0 < t < 1, is a smooth 1-
parameter family of symplectic forms on X with constant cohomology class.
Then there exists a path o = {J,|0 < ¢t < 1} of smooth almost-complex
structures from Jy to Ji, where each J; € J(r;). By Theorem 2.2.2 we may
assume that & is transverse to the Fredholm projection operator P4. Let
M,(A,a) = Py'(a); then, as in Remark 2.2.5, M,(4, ) x¢ (5?2 x §%) is a
smooth oriented manifold of dimension 9. Moreover, since 4 is 7;-simple
for all ¢, by Remark 2.2.6 it is compact. Note this is where we use the
existence of the isotopy 7.

The boundary of M,(A4,a) xg (S* x 5?) is

My(A,Jo) X (8% x §%) I —M,(4,J1) xg (S* x §).
We may perturb (modulo the boundary) the evaluation map

evy = evgla): My(A4,0) xg($* x 8% — X
(f,2,2) — f(2)
to a map ev, transverse to Z, so that W = e, '(Z) is a smooth compact
oriented 4-manifold, with boundary 8W = ToII —Ty. Let & : W — $2 be
given as the composition
W— X — g
(f,2,2)— (") — m(f(z)

and so @]Fﬂ = g and ‘I),rl = (1.
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Lemma 3.2.6 &, =0 on Hy(W).

proof:

To do this, we show we can be a bit more careful in the construction
of W. The evaluation map ev, : My(4,a) xg (5% x §?) — X factors
through the fibration §* — M,(4, &) X5 (S* x S) — M,(4,a) xg 52,
where the fibers are the second factor of $? x §2. Thus we may choose our
perturbation ev, to be independent of the second factor of 52 x $2, so that
W = év,~'(Z) is an oriented bundle with fibers $2 over a compact oriented
surface-with-boundary W C M,(4, a) X S? and with structure group G.
Here the fibers correspond to the second factor of S? x $?, while a point
of W represents a parametrized Ji-holomorphic A-sphere which intersects
Z. By restricting to the components of W with nonempty boundary, if
necessary, H3(W) = 0.

By the Gysin sequence

— HAW) =5 HY(W) I H(W) 2% H3(W) —

we see that integration along the fiber 7, : HX(W) — H(W) is an iso-
morphism, and moreover H*(W) & H(W) ® H*(S?). Thus it suffices to
show 7.®8%[0;] € HYW) is zero, where [03) is the generator of H%(S?). Let
f € M,(A, ) be such that f intersects Z, so f represents a O-cycle of W.
Then

(Mm@l = (2*[oa])([f] ® [57]
= [o](2[f]® [57]))
= [02](4)
=0

ged




25

Thus (W, ®) is a bordism of the required type between (T'o, 90) and
(T'1,41), and so x(wo) = x{¢1). This is a contradiction, and completes the
proof of Theorem 3.2.1.

The key point of this proof is the area normalizations of the symplectic
form 7, which allows us to apply the Compactness Theorem (Remark 2.2.6)
to construct the (compact) cobordism W. If the area of 7, on any factor
of X is increased then the Compactness Theorem no longer applies in this
manner, and in fact these perturbed symplectic forms can be 1sotopic. The
following results are from [10, section 3].

For A > 1 consider the symplectic form (Aoy) @ o, on $2 x $2. Define
a loop of diffeomorphisms of S% x §2 by

0i(z,w) = (2, ¢, (w)) 0<t<.

Lemma 3.2.7 ([10, lemma 3.1]) For each X > 1, {6} is isotopic to a
loop of diffeomorphisms which preserve (Aoy) @ 5.

Now on X = 5% x §? x T? consider, for each A > 1, the symplectic forms
70 =(Ao)@o, Doy and = 0*(d). (3.2.5)
Proposition 3.2.8 For each A > 1, 73\ is isotopic to ;.

proof:

See [10, Corollary 3.2]. Let {#,} be a loop of ((Ao1) & 02 )-preserving
diffeomorphisms of 5% x S? which is isotopic to {6:}, and define a diffeo-
morphism §' of X by ¢'(z,w,s,t) = (0;(z,w),s,t). Then there is an exact
I-form @ on §? x $? such that 7 = (0" (73) = 70 + dtAa. Apply Moser’s
Theorem to the path 73 + r(diha), 0<r <1, togeta diffeomorphism 6
isotopic to 6 and such that 6" preserves 7. Then 7 = (8"y*73 is isotopic
to (6)*rg = .

qed
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Corollary 3.2.9 There is ¢ smooth path of symplectic forms joining ro and

Tt.

Note, however, no such path can have constant cohomology class. In any
event, there is a smooth path of almost-complex structures J; joining Jo
and Ji. Thus 75 and 7y define the same homotopy class of almost-complex

structures on TX.

3.3 Proof of Theorem 3.1.2

Let X' = 5% x S% and X" = T? and let 7; be the symplectic form on
X = X' x X" defined by equation (3.2.3).

Proposition 3.3.1 7y is compatible with the topological splitting X' x X".

proof:
Since [r1] = [01] @ [0] @ [03] and H¥(X) 2 HA(X') @ H*(X"), =, splits
in cohomology.

For slices of the form X' x (sp,19), consider the composition
X' x L x e gy g

with j(z,w) = (2,w, s0,%0). Then (m x m3) 06007 is a diffcomorphism from
X' to 5% x 52, Since Image (0 o j). C T(S* x §) G0,

Im=7"0(o1®0y) = 770 (1 X wy) (1 B o2)

and so j*r; is symplectic on X

For slices of the form (zy,w) x X", consider the composition
b

xdx L x
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with j(s,t) = (2o, wp, s,t). Then (80 j)(s,t) = (20,%,, (o), s,t) and so for
v € T X", (00 j)(v) = vy ® v where v; € £ and £ is a 1-dimensional
subspace of T(,, w,)X’. Then for v,w € T X"

(F*r)(v,w) = ((80f) m0)v,w)
= 1o(vy B v, w; Hw)
= oy(vy,wy) + o3(v, w)

= 0'3(7)11”)

where o;(v1,wq) = 0 since £ is 1-dimensional,

qed

To prove Theorem 3.1.2, we suppose there exist symplectic forms p on
X' and o on X" such that 7 is isotopic to p @ 0. Note we must have
[p) = [o1] @ [02] and [¢] = [03]. Thus we may assume 7 is isotopic to p@ o3.
Our original idea for this proof was to argue, using a result of Gromov’s
(c.f. Lemma 3.3.3) that p must be isotopic to a split symplectic form on X,
for then p @ o3 (and so 1) would be isotopic to 7y, contradicting Theorem
3.2.1. One can show that p is diffeomorphic to a split symplectic form, but
it is not clear this diffeomorphism is isotopic to the identity. Instead we
follow the outline of Section 3.2, and again define two spaces of pseudo-
holomorphic spheres associated to 7 and pPos, réspectively; and for maps
from these spaces get generalized Hopf invariants. Since 7y and p @ o2 are

assumed to be isotopic, these Hopf invariants must be equal; but we can

then calculate directly they are different, producing a contradiction.

Let J; = (hy).J1 where hy is the diffeomorphism of X (generated by the
isotopy) such that Ri(p @ o3) = 7. Then Jo € J(p @ 03}, and since J, is
diffeomorphic to Jy by a diffeomorphism which is the identity on Hy(X; Z),
by the proofs of Propositions 3.2.4 and 3.2.5 we have

i
i
i
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Lemma 3.3.2 J; is a regular value for Py and for Pg, and the evaluation

maps

eva(Ja) : My(A, L) xg 8 — X
E'UB(JQ) : MP(B1 Jz) X 32 — X

are diffeomorphismas.

In particular, both maps have degree 1.
Choose J; € J(p) an almost-complex structure on X’ and let Ji e
J(o3) be the standard complex structure on X” = T?; then

J=T0T € T(p® os)

is an almost-complex structure on X = X' x X”. If J ¢ J(p @ o3) is a

regular value for both P4 and Pp then by Theorem 2.2.2 and Remark 2.2.6
the evaluation maps

eva(J): Mp(A, J)xgS* — X
BUB(J):MP(B,J) X 52 — X

also have degree 1 since degree is a bordism invariant. Since regular values
are dense in J(p @ o3) it follows that these maps are surjective for any
J € J(p @ 03), and in particular for J = J;. Thus there exists a Ja-
holomorphic A-sphere and a Js-holomorphic B-sphere through each point
of X. Also note that since Jy is split each Ja-holomorphic A-curve and
B-curve is constant in the X"-factor. Thus each Js-holomorphic A-sphere

and B-sphere project onto a Ji-holomorphic A’-sphere and B’-sphere in X',
where

A =[S* x wo] € Hy(X'7)
B’ = [z x 5% € Hy(X"; 7).
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In particular there is a Jj-holomorphic A’-sphere and B’-sphere through
each point of X'. Since p(A") = p(B’) = 1, it follows by the Compactness
Theorem (Theorem 2.2.4) that regular values of Pa and Pg: are open and
dense in J(p), and so we may assume that J} is a regular value for both
Py and Pp. Thus My(A', J}) xg S? and M,(B',J}) g S? are compact
oriented manifolds of dimension 4. Since A’-B' = 1 and A" A’ = B'-B' = 0,
by Theorems 2.2.7 and 2.2.8 each Ji-holomorphic A’ -sphere and B’-sphere
is embedded, and each A4’-sphere and B’-sphere intersect transversally at
exactly one point. As observed by Gromov [5, 2.4.4!], in this situation one

can show that

Lemma 3.3.3 There exists a symplectomorphism F, from (X', p) 1o (S%x
52, (28} @ 0'2).

proof:
We first define a diffeomorphism F, : X/ —s 5% x 8% which takes the
Jy-holomorphic A’-spheres to §? x pt. and the Ji-holomorphic B’-spheres

to pt. x 52, as follows. The evaluation maps

EV 4 = (Z’UAr(Jé) : MP(A’, J‘-;) XG 32 — X'

evp = evp/(J3) : My(B', J}) xg 5% — X'
are surjective since there is an A’-sphere and a B'-sphere through each
point of X’; and since A’- A’ = B’. B’ = ( both maps have degree 1.
The argument of [12, lemma 3.5] shows they have full-rank, and so are
diffeomorphisms. If A is the diagonal in X’ x X’, then (evar % evp ) 1(A)
is a smooth submanifold of

(Mp(A',J5) X6 §%) x (Myp(B', T3) x¢ §7) =
(Mp(A', J5) x My(B', J3)) xaxa (5% x S%).

This last fibers over 5% x %, via projection. We claim that (ev 4 x evp )THA)

is a smooth section of this fibration. It projects onto and one-to-one 52 x S2
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since there is a Jj-holomorphic A~ and B’-curve through each point of
X' = A, and since these curves are unique up to parametrization. And it is
transverse to the fibers since the A’- and B'-spheres intersect transversally.
Thus we may define F} to be the composition

; diag

X' X x X s (My(A, T3) %6 ) x (My(B', T3) X 57)
= (M,(A', J5) x My(B', J3)) Xaxa (57 §7) — 5% x §°.

By construction Fy takes the Ji-holomorphic A’-spheres to $? x pt. and the
Ji-holomorphic B’-spheres to pt. x S%, and it is pseudo-holomorphic with
respect to J5 on X’ and : ® ¢ on S? x 52

Now (F;')*p is a symplectic form on §% x S% with [(F] " )*p] = [0} ® 03],
and moreover (Fy!)*p restricts symplectically to slices by construction of
Fy. Thus by Theorem 3.1.1 (F;!)*p is isotopic to o1 @Do2. So we may isotope
Fy to get a diffeomorphism F : X/ — §? x §? such that Fy (o1 @ 03) = p.
qed

Now define a diffeomorphism
F:X'xX" 5 X=8x8*xT"

y F(p,q) = (Fy(p),q), and let Jy = F*Jy. Then Jy is integrable, J; €
(p ® 03), and is split as J; = J; & J;. By construction F is a biholo-
orphism of (X’ x X”, J,) and (X, Jo). Arguing as in Proposition 3.2.4,
is a regular value for Py, M,(4, J1) xg S % is a smooth compact oriented

manifold, and the evaluation map
evA(.L,) : Mp(A, J4) X 52 — X' x X"
diffeomorphism. As before, we consider the evaluation map

€U4:Mp(A,J4) XaG (52 XSZ) g XIXX”
(f”, z, Z’) — f”(z)




This map is a submersion, and so transverse to Z; let
Ty=ev;(Z) =2 5" x §*

which is the space of pseudo-holomorphic spheres associated to p @ o3 we

are interested in. Also let ¢, : I'y — S? be given as the composition

Iy — X'xX"— §?
(fm ) P ()

where m, is projection onto the second factor of X’ = §2% x S2.

Since we are assuming 7, and p @ o3 are isotopic and J, and J are both
regular for P4, the same argument as at the end of the proof of Theorem
3.2.1 shows that ; and ¢4 are bordant via a bordism (W, ®) which is zero
on Hy(W;Z), and so

X(pa) = x(p1) = 1

where ¢; : T'y — §? is given by equation (3.2.4).
However, one can calculate directly that x(y4) = 0, producing the de-
sired contradiction to finish the proof of Theorem 3.1.2.

Lemma 3.3.4 x(p4) =0.

proof:
As in the proof of Proposition 3.2.4, we identify M,(A, J;) xg (5% x §?)
with
{(rr z,2) wy € 8%, 81,8, € 8%, 2,2/ € 57}

1,581,117

where f! (z) = F~'(z,w1, 81,%1). Then

w1,81,%1

La={(fl,2)|ue S 2 € S} =5 x §*

where fl(z) = F~'(z,wy, s¢, 1), and

©a(u, z') = WZ(F{I(Z’a wo)).
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Note that ¢, is independent of u. Moreover, for fixed u«, as a map from 2
to §? it represents class 0 in H,(S$% Z) since Fy ! takes [S? x pt.] to a sphere
of class A’, but we are projecting onto the second factor of X’. Thus ¢, is
homotopic to a constant map, and so x(¢4) = 0.

qed

This completes the proof of Theorem 3.1.2.




Chapter 4

Symplectic Structures on
Fiber Bundles

4.1 The Construction of Sternberg

Starting with two closed manifolds ' and B one can build more general
topological types of closed manifolds, other than the obvious product, by
constructing a fiber bundle E over B with fiber F' and structure group G.
H F and B are symplectic manifolds then in many cases the total space E
also possesses a symplectic structure.

Following Gotay et.al. [3] we say a differentiable fibration
n: B — B

is a symplectic fibration if the canonical fiber F' is a symplectic manifold

with symplectic form wp and if the structure group of the bundle preserves
wpg. Thus on each fiber 7~ Y(b) there is a well-defined symplectic form w,
and (771(b),ws) is identified with (F,wr) in a natural way. We say a closed
2-form § on E is compatible with a symplectic fibration if f restricts on
each fiber 77'(d) to be w,,.
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If wg is a symplectic form on E compatible with 7 then there is a
global cohomology class [wg] € H2(E) which restricts on each fiber to
the class [wp|] € H*(F). By a result of Thurston [18], if the base and
fiber are compact symplectic manifolds then the existence of such a global
class is sufficient to guarantee the existence of some symplectic form on E

compatible with the symplectic fibration.

Theorem 4.1.1 (Thurston) Suppose 7 : E — B is a symplectic fibra-
tion where the base B and the fiber F are compact symplectic manifolds.
If there exists a class b € H*(E) such that b restricts on each fiber to be
[wr] € H*(F) then there ezists a symplectic form on E compatible with «.

To prove this theorem, Thurston first uses a partition-of-unity argument to
show the existence of a closed 2-form 8 on E (in class b) compatible with
7. Note there are many such choices; e.g., if # is one such extension and
7 is any closed 2-form on the base B then 8 + n*v is another extension.
Using the compactness of E it is then not hard to show that there exists a
K, € R such that for all K > K,

B+ Kr*wg

is a nondegenerate, and so symplectic, form on E. The lower bound K,
depends on the choice of extension 8.

To understand which cohomology classes in H2(E) may be realized by
a symplectic form built by Thurston’s construction, one needs to under-
stand the choices of closed 2-forms compatible with the fibration and the
(non)degeneracy in nonvertical directions of such a choice; all these ques-
tions seem very difficult. Some aspects of these problems are discussed by
Weinstein [20,21], and Guillemin, Lerman and Sternberg [7]. In order to
get a better grip on the closed extension B one can use a technique first

given by Sternberg [17] which uses a choice of connection to construct such

an extension. Here are some details.
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Let G be a Lie group, P — B be a principal G-bundle, and (F,wr)
a symplectic manifold on which there is a strongly Hamiltonian action of
G {cf. Section 2.1) with moment map p: F — G¥ Let E = P xg F be
the associated bundle over B with fiber F and structure group G since
acts on F' by symplectomorphisms the fibration 7 : E — B is symplectic.
Let 7 be a G-valued i-form on P defining an Ehresmann connection on
P — B. If {(.,-} denotes the pairing of § and G", then using the natural
pull-backs, d{n, 4} + wp is a real-valued closed 2-form on P x F.

Theorem 4.1.2 (Sternberg) d{n, u) + wp descends to the quotient
E =P xg F to give a closed 9-form B on E which is compatible with the

fibration «.

This construction depends only on the choice of the connection on P — B.
~ The connection 7 defines a splitting of TE into vertical and horizontal sub-
bundles, which are orthogonal with respect to the extension B. Moreover,
B resticted to a horizontal space of TE pulls-back under the quotient map
to the 2-form (dn, u) restricted to a corresponding horizontal space of TP;
this is essentially the curvature of the connection 7. Thus if the connec-
tion 7 is fat (c.f. [21]) on the image of the momentum map u, then 8 is
nondegenerate on all of TE, and so is a symplectic form on E.

After existence, there is also the question of the uniqueness (up to iso-
topy) of the symplectic forms on E built by Thurston’s construction. (There
is also the more general question of uniqueness of a symplectic form on E
compatible with a symplectic fibration 7.) In particular, how does the iso-

topy class of such a symplectic form depend on the choice of the extension

B? An easy application of Moser’s Theorem is the following.
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Proposition 4.1.3 (Guillemin-Lerman-Sternberg [7])

Letm:E — B be a compact symplectic fibration over a compact symplectic
manifold (B,wp). Suppose B and ' are two closed cohomologous 2-forms
on E compatible with the symplectic fibration. Then there exists a K, € R
such that for all K > K,

B+ Krn*wg and B+ Kn*wg
are 1sotopic symplectic forms on E, both compatible with .

Note again that the bound K, depends on the choice of 8 and ', and
is a priori much larger than the bounds insuring the nondegeneracy of
B+ Kn*wg and 8’ + Krn*wg.

The main result of the remainder of this dissertation is that if one
only chooses K large enough so that 8 + Kr*wg and 8 + Kr*wp are
symplectic, we may get two symplectic forms on F which are cohomologous
and compatible with the symplectic fibration, but which are not 1sotopic.
The proof of the following theorem is the subjeét of Chapter 5.

Theorem 4.1.4 There exists a compact symplectic fibration 7 : E — X
over a compact symplectic manifold (X,wx) and two closed cohomologous
2-forms By and By on E such that

Bo+ 7wy and B+ 7wy

are symplectic forms on E, both compatible with the fibration 7, but which

are not isotopic.
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4.2 A Generalized Construction

In this section we generalize Sternberg’s construction by showing how a
family of connections on a principal bundle P — B parametrized by a
symplectic manifold (F,wr) may be used to construct a closed 2-form § on
the associated bundle E = P x g F compatible with the symplectic fibration
E — B. We will use this construction and a nondegeneracy result proven
in Section 4.3 to build the example claimed by Theorem 4.1.4.

Let G be a connected Lie group and n#p : P — B be a principal
G-bundle over B. Let (F,wp) be a symplectic manifold with a strongly
Hamiltonian (left) action of G on (Fywp), and let p : F — G* be the
equivariant moment map of this action. For each £ € G let £ denote
the induced symplectic vector field on F, and £p the fundamental vertical
vector field on P generated by right-multiplication on P by exp(—t£).

Let E = P xg F be the associated fiber bundle over B with fiber
F and structure group G, where the d1agonal action of G on P x F is

g-(p,2z) =(p-¢7', ¢ 2) and where

Q:PXxF-—E=PxgF

is the quotient map. Since G acts on F by symplectomorphisms we may
consider wr to be a symplectic form on each fiber of 7 : B —s B, and 7 is
a symplectic fibration.

Define a family of Ehresmann connections on P — B smoothly parame-
terized by F' to be a G-valued 1-form N on P x F satisfying

Vze Fu, - 2, N is a connection 1-form on P —s B (4.2.1)
where i, : P — P x F is the inclusion i,(p) = (p, z); and also satisfying
08TF Cker N (4.2.2)

using the natural splitting T(P x F) = TP ¢ TF.
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Via pull-back we consider wr as a closed 2-form on P x F and {t as a gi*
valued function on Px F, Then by the dual pairing of G and G " d(N, g twp

is a closed 2-form on P x F. Qur goal is to prove the following.

Theorem 4.2.1 If N is constant along the orbits of G on F, then there
exists a closed 2-form B on E with

QB = d(N, ) + wr (42.3)
and such that 8 is compatible with the symplectic fibration 7 : P — F.

The proof of this theorem mimics the proof of Sternberg’s result, with

a bit more care in the calculations. First, for each £€G let

fo = &p @ Ery

the £g are the vector fields on P x F generating the diagonal quotient action
of G. Also, we will say a vector v € T(P x F) is of type TP (respectively
type TF)if v € TP®0 (resp. 0@ TF) with respect to the natural splitting
T(PxF)=STP@TF.

Lemma 4.2.2 (i) N({g) = ¢
(1) i(€Q)dN = ad¢ N, where adg acts on values of N.

proof:

(i) is easy, for

N(éo) = N(&p @ &r) = N(Ep) + N(Er) = N(ép)

where the last equality holds since N vanishes on vectors of type TF. Then
since {p is of type TP and independent of z € F, N(&p) = n.(p) = £ by
(4.2.1).




For (ii), at each point (p,z) € P x F,

i(Q)AN = LegN —d(i(¢g)N)
= LeggN —d(£)
= Le N
= Lo N+ LeN
= LepN

= adEN

where £¢, N = 0 since N is constant along the orbits of ¢ on F, and the -
last equality holds since £p is of type TP.
qed

Lemma 4.2.3 i({o)(d(N,pu) +wp) =0

proof:

W&e)(d(N, p) +wp) =
((6Q)({(dN, i) — (N 4 dp) + wp) =
(#(€Q)dN, p) ~ (i(Q)N, du) + (N, i(q)dp) + i(€Q)wr =
(ade N, ) — (€, dpp) + (N, i(€p)du) + i(Ep)wp =
(adeN,p) + (N, adip) =
{adeN, ) — (adeN, 1) = 0

where (£,dp) = i(ép)wr, 1(ép)dy = adip, and (N,ad;p) = —{ad;N, y)
follow from differentiating (2.1.1), (2.1.2), and (2.1.3) repectively.
ged
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By the above lemma d(N, ) +wy vanishes on the vector fields g gener-
ating the diagonal quotient action on Px F. Since this form is closed, by the
Weyl identity L¢,(d(N, ) +wr) = 0 and so it is invariant under the diago-
nal quotient action. Thus there is a 2-form A on E with Q"B =d(N,ud+wr;
# must be closed since Q* is injective.

It remains to show that § is compatible with the symplectic fibration.
Let V = ker 7. be the vertical sub-bundle of TE. Recall each N = N
defines 2 horizontal sub-bundle kern, C TP,

Lemma 4.2.4 (7) Q*fTF :TF — V i3 an 1somorphism of bundles
over B.
(i) There exists a well-defined sub-bundle H of TE such
that TE =V @ H, defined by

HQ(p,z) = Q..(ker N(p,z) N TpP).

proof:

We have the commutative diagram

PxF @ - B
n| .|
B Id — B

Since TF and V have the same rank and by construction Q.(TF) C V,
to prove (i) it suffices to show ker Q,,|TF =ker Q. NTF = (. But this is
obvious since every £g has type TP @ TF.

For (ii), to see that H is well-defined we need to show that if Qp,z) =
Q(p', #') then Qu(ker N, , N T, P) = Qu(ker N .1y N T,y P). Since Q(p, z) =
Q(p', '), then (p,2") = g - (p, z) = (p-g~', ¢ z) for some g € G. By (4.2.1)




and since NV is constant along the orbits of G on F,
ker N(pr‘zr) NTyP = (R, x Lg)*(kerN(p,z) NnT,P).

Since Q o (Ry—1 x L)) = @, H is well-defined.
Now note that

THgpsy = mQu(ker Ny N T, P)
= (mp).(ker N,y N T, P)
= (rr)(kern)

Tern)B

and so H is horizontal in T'E.

qed

Lemma 4.2.5 8 is compatible with .

proof;
It suffices to show that Q*(4,) = wp. Let vy,v; € Vow,; by the
previous lemma there exist v{,v} € T,F with Q.v} = v, and @) = va.
Then

Blos,va) = (d(N,p) +wr)(v],v5)
= (N, p) vy, v) — (N 4 dp)(vy, 05) + wr(v], vh)

The second term vanishes since v; and vy are both of type TF. We may
extend v} and v; as vector fields on T(P x F) = TP @& TF in such a way
that they are purely of type TF and independent of the point in P; thus
[v],v3] is also of type T'F and so the first term also vanishes.

qed
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This completes the proof of Theorem 4.2.1.

There is also an interpretation of the restriction of the extension A to
the horizontal sub-bundle H of TE.
Lemma 4.2.6

Q*(ﬂa) = (dN, "u’)[kerNﬂTP

proof:
Let wy,wy € Hg,z); by Lemma 4.2.4 there are w!, w!, € ker NpayNT,P

with Q.w] = w; and Q.wy = w,. Then

Blwi,wa) = (dN, uh(w], wh) — (N 4 dp)(w}, w}h) + wr(w),})
| = (dN(w;aw;)) ﬂ)

where the second and third terms vanish by type.
qed

At a point (p,z) e Px F

(dN’ u)lkeer‘lTP = (dnzlkernz’g)

and dnzlker s is the curvature of the connection 1-form n, on P — B. Thus
ﬂlH is essentially the curvatures of the family of connections N. However,
in this case nondegeneracy on the horizontal sub-bundle # ¢ TE (fatness
of the family of connections) no longer immediately implies nondegeneracy
of the form # on all of TE. The problem is that the horizontal and vertical
sub-bundles of T'E are not necessarily orthogonal with respect to the form
B. In particular, if v € V and w € H then

Bow) = (AN, u)(o',w') = (N 4 du)(v', ) + (o, )
= {(dN(v, 0, p)

and it need not be true that this last term vanishes.
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4.3 A Result on Nondegeneracy

Here we consider the case of a principal U(1)-bundle #p : P — B and a
family of connection 1-forms {5, } on #p smoothly parametrized by the im-
ageof o : F' — G*, where p is the moment map for a strongly Hamiltonian
action of U(1) on a symplectic manifold (F,wr). Since U (1) is abelian y is
invariant under the action of U(1) of F. Define a 1-form N on P x F with
values in the Lie algebra of U(1) by

N(v) =q,((m)w) ve Tip,2)(P x F) (4.3.1)

where p = p(z) and 7, is projection of P X F onto the first factor. Then
N satisfies (4.2.1) and (4.2.2), and is constant along the orbits of G on F.
By Theorem 4.2.1 there exists a closed 2-form 8 on the associated bundle
E = P xyq) F compatible with 7, defined by equation (4.2.3).

Picking a basis for the Lie algebra of U(1), we consider each e and g
as real-valued. Since U(1) is abelian, for each fixed ¢, dn, is ny-horizontal
and thus the curvature 2-form of the connection 1-form ;. Moreover, each

dn, = mpy; where each % 1s a closed 2-form on B.

Proposition 4.3.1 Suppose there is a closed 2-form wp on B so that for
each value t € Im i, wg +t -, is a nondegenerate (and so symplectic )
form on B. Then B+ nm*wg is a symplectic form on E compatible with the
symplectic fibration 7 : E — B.

Note that here we have a condition which is checked on the base B. More-
over, there is some freedom in this condition, since the image of y can be
scaled by scaling the choice of basis for the Lie algebra of U(1); in addi-
tion  (the Hamiltonian function of this action) is well-defined only up to

a constant. The key idea of the proof is that since U(1) is 1-dimensional

there is only one term of type TP @ TF in Q*3, which we can control (see
Lemma 4.3.2).
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To begin the proof, recall that 8 on E = P Xg F' is defined by @*f =
d(N - p) + wp, where N and ¢ are considered as real-valued so the dual-
pairing is multiplication, Write

alN = dn, — 9, A dp
where dr,, is the exterior derivative of M. on P for a fixed value of y, 7, is
differentiation of (the coefficients of ) n, with respect to the parameter, and
the second term follows by the chain rule. Thus
QB = dN-p)+wp
= dN -pu—NAdu+wp
QB = pdn, — pr, Adp —n, Adp + wg (4.3.2)
consideriﬁg all forms and functions as on P x F.
Nondegeneracy is a pointwise condition, so it suffices to show that at
each point e = Q(p,z) € E
(B+7"wp)* #0
where dim B = 2k ,dim F = 2m and n = & + m.

Let vy,...,v5 be a basis for H, and vy41,...,vq, be a basis for Ve,
so together they form a basis for T.E. By Lemma 4.2.4 there is a ba-
sis vy,..., v} of kern, N I,P and a basis Vakg1s - - > Vg, of T,F such that

Qu(v))=v; Vi =1,....2n. Then
(B + m*wg)(vy, ... ) Van) =
(@B + Q@ Twp)(v],...,v5,) =
(e iy — i A — 1 A dpp + wp + whwp )" (V). vl ) =
(ndny — piju A dp + wp + Thwg)(v), ... ob )
since vy, ..., v}, are all in ker .. Now |
(udn, — prju A du+ wp 4 Thwp)" =
(wdn, +wr + 7pws) — n(pdn, + wp + Thwg)™ A T A dps




with no other terms since (1, A du)? = 0.
Lemma 4.3.2 (pdn, +wp + 7pwp)* " A1, A du(vy,...,vi ) =0.

proof:
First note that du(v) = 0 Vv € TP and 7,(v) =0 Vo € TF, where the i

second follows since 7, vanishes on vectors in TF and we have only differ-

entiated coefficients. Let K be the set of shuffle permutations of S(an_2)+2
(c£. [16]), so a permutation ¢ € K if and only if

o(l)<o(2)<---<o(2n—2) and o(2n—1) < o(2n)
Then

(mdn, + wp + mpwp)* ' An, Adp(vl, ..., vh ) =

Z(Ju‘ dn.u +wp + 71-}"J‘-‘)B)n_l ® 77.;-4 A dlu('u;s e '.'UIZn) =
ceK

2 (pdny +wp + Thwp) (0], v, 5) - 7 A dp(vh,_y,0h,)
ceK _ ’

Now 7, A dp(vy,_y,v5,) # 0 if and only if the set {v9,_1,v5,} consists of
exactly one vector of type TP and one vector of type TP. In this case the
set {v],...,v4, 5} consists of an odd number of vectors of type TP and an

odd number of vectors of type TF. Writing out

n—1 .
(pdn, +wr + W}":wg)"_l = Z const(pdn, + w}‘,wB)"—l*—J A wi,
J=0 |

and noting that (udp, + 7hwp)* 1~/ vanishes on vectors of type TF and

w}fp vanishes on vectors of type TP, it follows that
T A G(Van15020) # 0 <= (udn, + wp + Tpwp)" (v}, ..., v}, _,) = 0.

qged



Thus

(B+mwp) (v1,...,03.) = (pdn,+wp + mhwp)"(v),...,v))

= ) _const(pdn, + mpwp)" ™ Awh(v],...,v] )
i=0

Again, since (pdn, + Thwp)*/ vanishes on vectors of type TF and wf;";-

vanishes on vectors of type TP, the only nonzero term of this last is

(wdny + mpwp)* AWE(,. .., 05,) =

* ke o i me, .t /
(p dny + mpwr)*(vy, ... s V) WE(V3kg1s - Vo)
Since vypyq,- .., vy, is a basis for T,F and wy is symplectic
m ! !
""’F(%k-}-h oy V) # 0

Similarly, since v{,...,v} is a basis for the horizontal space kern. O T P,
¥ 1 2k P Nu p

then (7p).vy, ..., (7p).v} is a basis for T pmyP and so
(s +7pwp) (v, 0) = (3 + wB)H (7)), .., (mp)avl) # 0

since (¢, + wp) is nondegenerate by hypothesis. Thus (8 + 7*wg)" # 0.
This completes the proof of Proposition 4.3.1.
Note that for higher dimensional Lie groups dN and yu take values in G

and so the term (dN, 1) contributes more than one term of cross-type.
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Chapter 5

Proof of Theorem 4.1.4

5.1 The Construction

Let 01 = o3 both denote the standard symplectic form on $? and o3 the
standard symplectic form on 7?2, all of total area 1. Define two l-parameter
families of symplectic forms on X = $% x $? x T? as follows. For each
-1 <t <0 let

w = ((24t)o1) Do D os

wi = 6wy

where 8 is the diffeomorphism of X defined by equation (3.2.2). By The-
orem 3.2.1 w_; is not isotopic to w”;, and by Proposition 3.2.8 each wy 18
1sotopic to w; for £ > ~1. Change w! near t = 0 to obtain two smooth
I-parameter families of symplectic forms w, and w’ on X with fw,] = [wi]
for each —1 <t <0, w; = w} for ¢ near 0, and w_, not isotopic to w’ ,. We
will also consider

wx =wo = (201) B oz @ o3

to be a distinguished symplectic form on X.




Let wp : P — B be the principal U(1)-bundle over X with first Chern
class ¢; = [0,]. We use our families of symplectic forms to define two smooth
1-parameter families of Ehresmann connection 1-forms on P as follows. For
each —1 <t < 0let y; = o4, and so w; = wx +1y:. Since Pisa U(1)-bundle,
there exists a connection 1-form M = no on P such that dn, = 7%y, = Thpo,
where by picking a basis for the Lie algebra of U(1) we treat the n, as
real-valued. Similarly for each ~1 < ¢ < 0 define a closed 2-form v, on X
by w; = wx + tyi, which is well-defined at ¢ = 0 since W) = w, near t = 0.
Then [v;] = [v;] = [01] = ;(P), and so again there exist connection 1-forms
1, on P depending smoothly on ¢ such that dn, = 5.

Let FF = S? 2 CP, and let wy be the standard symplectic form on F of
total area 1. There is an action of U(1) = {e*™ |0 < s <1} on F given by

821”'.9 . [21,22] — [21, 6211'1'322]

where {2, z;] are homogeneous coordinates on CP,. This action is sym-
plectic and in fact strongly Hamiltonian since U(1) is abelian and F is
simply-connected. If £ = 27ri53; is the basis for the Lie algebra, then the
moment map (the Hamiltonian function generating £r) is

| |21/

lz1]|? + fl2]?

Note p is invariant under the action on F', and has a maximum of 0 at [0, 1]
and a minimum of —1 at (1, 0).

Since the U(1)-action on F is symplectic the associated bundle

#lz1, 2]y = —

E=PpP Xy F
is a symplectic fibration over X with each fiber naturally identified with
(F,wr). Now define two 1-parameter families of Ehresmann connections NV
and N’ on P, as in equation (4.3.1), by
N(v) = n,((m1).0)
N'(v) = q((m).v)

48
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for v € T(y,;)(P x F) where yt = p(z). By Theorem 4.2.1 there exist closed 2-

forms f and f' on E compatible with the symplectic fibration 7 : £ — X ,
where

QB = dpu-p)+wr
Q8 = dn, p)+wr

Here and in the following we are using the notation and conventions of Sec-

tion 4.3. By the construction of the connection 1-forms and by Proposition
4.3.1

wg = B4+ 71"wg

wy = B +rws
are symplectic forms on E compatible with 7.

To prove Theorem 4.1.4 we will show that [8] = [#] € H*(E), and (in
the next section) that wp and w); are not isotopic symplectic forms. In the
remainder of this section we prove some preliminary lemmas.

E.is identified in the obvious way with P(L @ C), the projectivization of
the rank-2 complex vector-bundle L ¢ C where L is the complex line-bundle
over X associated to P and C is the trivial line-bundle. There is a section
§ = 5o, of E = P(L @ C) with image

L =3 =[L,0]= QP x [1,0])

where [L,0] is the line in each fiber of L @ C determined by L and the zero
section of C. Since P(L @ C) 2 P(C & L*), ¥ has normal bundle

v = vy & ()" (L%)

where L* is the dual line bundle of L. If we consider L as a holomorphic

line-bundle over (X, J,), F inherits a holomorphic structure (sce below);
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then s is the rigid section of 7, meaning it has no nontrivial holomorphic
sections, since ¢;(v) = —(7r|E)*[0‘1].
By the Leray-Hirsch Theorem H%(E) & H*(X)@H*(F) and so Ho( E; Z)

is generated by the classes

A = s, A
B* = s.,B
¢ = sC
D* = [fiber]

where A, B, and C' are the classes generating H,(X;Z).
By Lemma 4.2.4 the families of connections N and N’ define horizontal
sub-bundles of TE, where

Hopyy = Qulkernue) ®0)
Hoypzy = Qulkerm, @ 0)

We first notice that H]E =H ’IE = T% as sub-bundles of TE. To see that
le = T¥ it suffices to show that H|z C TY. But

TY = QT(P x [1,0})) = Q.(TP & 0)

and
H[E = Qu(kern_1 ®0) C Q.(TP & 0)
since u([1,0]) = —1. Similarly H’IE =T3.

Lemma 5.1.1 wg,y, = Tw_ g,y and Wil = 7wl |

proof:
Let v,w € Typn,0) and pick v/, w’ € kern_; such that Q,v' = v and

G.w’ = w. Then calculating as in the proof of Proposition 4.3.1,

wr(v,w) = Qwg(v,w’)
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= (@*8+ Q@ 1wp)(v,w')

= (d(N-p),__, +wr + rpwp)(v',v)

= (=dn-1 + -1 Adp —na Adp +wp + Thwp) (v, w)
= (—dn- + 7pwg) (v, w')

where the second, third and fourth terms vanish since v’ and ' are of type
TP. Thus

we(v,w) = (=7py-1 +7pwp)(v,w)
= (W;’w-l)(t”:w')

= (7'w-1)(v,w).

: : ] _ LI
Similarly wEITE =7 w“"llTE'

qed

In particular, 8 and £’ are distinct closed 2-forms on E.
Proposition 5.1.2 [] = [f'] € H¥E).

proof:

We check this on the generators of Hy(E;Z). Since § and ' are com-
patible with the fibration =, Q*(ﬂ]v) = Q*(ﬁ’|v) = wp where V 1s the
vertical sub-bundle of TE. Thus [](D*) = [wr]([Fl) = [#](D*). By the
proof of the above lemma E|T2 = r*(—y_1) and ‘611"2 = 7m*(—7_,). Then
[B1(A*) = [B](s"A) = [-7-1}(4) = [-7L,])(4) = [#](4A"), and similarly on

the other generators.

ged
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Lemma 5.1.3 The splitting TEL: = VL‘: @ T'Y 4s orthogonal with respect to

both wg and wi,.

proof:
Let v € Vlz and w € T'%, and pick v' € ThoF and w' € kern_; with
Qu(v') = v and Q.(w') = w. Then as in Lemma 5.1.1

wg(v,w) = (—dn_y +19_y Adp —n_4 A dp + wp + Thwp }(v', w') = 0

where the first, fourth and fifth terms vanish by type, while the second and
third terms are zero since d“Jp g = 0 since g is a minimum at [1, 0].

ged

Thus we may identify VI!: with the (symplectic) normal bundle v of ¥ in
E. Since s*(v) & L~ s*(V‘E) = I

Finally, we define two almost-complex structures Jz and Ji on E, as
follows. Since ci1(L*) = ~[0y] € H3'(X), we may consider L* as a holo-
morphic line-bundle over X, and so using le make V’): into a holomorphic
line-bundle over I, where the complex structure on ¥ is ('rrjz)*Jo. Identify-
ing a neighborhood of ¥ in E with v = VIE, we get an integrable complex
structure Jg on a neighborhood of X such that J E]TE = (7r|z)*J0 and (J, E)IE
1s split with respect to V,E & TY. Now JE’TB tames w EITE since J; tames
w_y and JE’V tames wEIV at a point of ¥ since V is a complex line-bundle
and wg and Jg determine the same orientation on V'z' Thus by Lemma
5.1.3 Jg tames wg along ¥ and so in a neighborhood of &, We may then
extend Jg to an almost-complex structure on all of E such that Jg tames
w.

To define Jg, recall 6 : (X, Jo) — (X, J1) is a biholomorphism; then
(671)*(L*) is a holomorphic line-bundle over (X, Jy), and since # is the
identity on H*(X;7), 3*(V]E) = (671)*(L*). Pull-back the complex struc-

ture on (67')*(L*) by "'Tl}: to make Vl}: into a holomorphic line-bundle over
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(Z, (742)*.]1). Then arguing as above we build an almost-complex structure
g on E such that Jj; tames w, is integrable near I, Tilps = (7)™ Jy and
J HE is split with respect to VI): e T,

5.2 The Proof

By Lemma 5.1.1, wg and w}, restrict on T8 to look like 75 and 74, repec-
tively. This does not immediately imply that wp and w’; are not isotopic
via an isotopy of E. The idea of the proof is to repeat the arguments of
Section 3.2 by constructing spaces of pseudo-holomorphic spheres I" and IV
associated to wp and wy. The key step is to use the following lemma to
identify these spaces with the spaces I'g and I'y of Section 3.2; thus a (weak)
isotopy from wg to wf can be used to construct a bordism of (I, wo) and

(T4, 1), producing a contradiction.

Lemma 5.2.1 (i) The f € M,(A*, Jg) are ezactly the maps f = so f,
where fo € M,(A, Jo).

(1) The f' € M,(A*, J5) are ezactly the maps f = so fy
where f € M,(A, J;).

proof:

First note that A*- [¥] = ~1. To see this, recall that as complex line-
bundles » & (ﬂ'fz)*(L*). Then

A" [Z] = a(w)(47) = ei(L*)(4) = —[on](4) = ~1.

In particular, any f € M,(A*, Jg) must intersect .

Since s is Jo-Jg-holomorphic, f = so fy € M,(A*, Jr)if fo € M,(4, Jo).
Conversely, let f € M,(A*, Jg). We claim that Image f C T; one argues
as in [13]. Let p € Image f N %. Since Jp is integrable near ¥ we can pick

holomorphic coordinates (zy, 2y, 23, 24) centered at p so that & = {z; = 0}.
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Then f = (£, fay fa, fa) where each f; is a holomorphic map from C to C.
If p is not an isolated point of intersection then J1 = 0 near p; since Image f
is connected, Image f C . So we may assume all intersections of Image f
and ¥ are isolated. We will show each intersection point p contributes a
positive integer to the intersection number A* - [Z] (see Theorem 2.2.7),
contradicting the fact that A*. [Z] = —1.

Since f; is holomorphic there exists a k& = 1 such that

fi(z) = a2+ app 2"t 4

zk(a;c +appiz4...)

with ay # 0. Then for § > 0 very small, fs = (f; + 6, fa, fa, f1) is a small
perturbation of f near p which is holomorphic and intersects ¥ transversally
exactly k times near p. Moreover, all these intersections are positive since
fsand ¥ are J g-holomorphic.
Thus if f € M,(A*, JE) then Image f C ¥, and since ﬂ'lz is Jg-Jo-
holomorphic
7y o f € My(A, Jy)

But ﬂ]E is an inverse of s. The argument for (i1} is identical.

qed

Lemma 5.2.2 J; and Ji are regular values for the Fredholm projection

operator Py..

proof;
We apply Theorem 2.2.3. Let f € M,(A*Jg),s0 f = so fo where
Jo € My(A, Jy). Since TEjE splits holomorphically with respect to JE as
Ve ©TE and Image f C T,

JHTE,Jg) = 8"V, @ s*TE)
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= fil*®TX)
= folOTS*PL, oL,

where as in the proof of Proposition 3.2.4 L, and L3 are trivial line-bundles
over §%. Then ¢;(TS%)(S?) = 2 and ¢,(L,)(5?) = c1(L3)(S?) = 0, while

a(fiL)(S%) = foe(L)(S?) = f3(~[oa])(5%) = ~[o3}(4) = —1
and so Jg is regular, Similarly J; is regular.

qed

Since A* is simple for both wg and wg, by Remark 2.2.5
M,(A*, Jg) Xc (S* x §?) and My(A*, Jg) xg (5% x §7)
are smooth compact oriented 8-manifolds, and the evaluation maps

ey = ev(A*, JE) : MP(A*, JE) X (52 X 52) — K
ev’ = ev(A*, J) : M, (A%, J5) x¢ (8% x 5y — E

are smooth, where as before we evaluate on the first factor of $? x 52, More-
over, by Lemma 5.2.1 we may smoothly identify M, (A, JEg) xg (8% x §%)
and My(A*, Jp) X (5% x §%) with M,(4, Jo) xq (52 x 5%) and M,(A, J,) x¢
(8% x §%), respectively. Using these identifications

ev = s0evy and ev’' = soev

Thus by Proposition 3.2.4 and Lemma 5.2.1, ev and ev’ are submersions
dnto ¥ C E.
Let Z* = #~1(Z), which is a smooth submanifold of E of codimension 3

and which is transverse to X, where recall Z = {(wyq, wo, so, u) | ue S}
Then

I'=ev(2*) and I' = (ev')"(2%)
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are smooth compact oriented 3-manifolds. Using the identifications above

' & Ty s8x st
I" = M =s?x St

Define ¢ : T' — 5? as the composition
' —-F—>X_ §?

which is evaluation on the second factor of $2 x $2, followed by m, and
finally by projection of X = S? x $? x T? onto the second factor. Then

pRpy: =Ty — 52

and so the generalized Hopf invariant of ¢ is x(¢) = 0. Similarly define

@' : T" — 5% as the composition
I'—E—X— §2

and so

cp'gtpl:T'%Fl—-)S?

has x(¢’) = —1. Hence, as in Section 3.2, the maps ¢ and ¢’ cannot be
bordant.

Once again the point of the proof is now to show that if w g and W, are
isotopie then a bordism of (T, ¢) and (I, ") must exist. Solet p, 0 <t <1
be a (weak) isotopy from wg to wiy. Since Jg and J}; are regular values of
P« there is a smooth path of almost-complex structures o = {J:} from Jg

to Jg such that each J; tames p;, and such that the path « is transverse to

P4+. And since each p; evaluates on the generators of Hy(E;Z) to be 1, the
Compactness Theorem (Remark 2.2.6) holds, and so My(A*, o) xg (5% x §2)

1s a smooth compact oriented manifold of dimension 9.
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Consider ev, : M,(A* &) Xg (S* x §*) — E, evaluating on the first
factor of $? x 52 Then ev, is transverse along the boundary to Z*, and so

we may perturb ev, away from the boundary to a map
€Uy 1 My(A* a) X (S* x §*) — E

such that v, is transverse to Z*. Let W = ETE,“I(Z*), which is a smooth
compact oriented 4-manifold, with boundary OW = T'II —I". Define ¢ :

W — 5% as the composition
W-—FE—X—§°

where the first map is evaluation on the second factor of $2 x S2. Then ®
restricts on the boundary components of W to be ¢ and ¢, and by the proof
of Lemma 3.2.6 ®*(H?*(5%)) = 0. Thus (W, ®) is a bordism of ([',¢) and
(I, ") with ®.(H,(W;Z)) = 0, contradicting the fact that x(¢) # x(¢').
Thus wg cannot be isotopic to wh.

This completes the proof of Theorem 4.1.4.

Note that in constructing the cobordism W it is not necessary to show
that the curves in M,(A*, «) lie inside I, since we need only construct some

_appropriate bordism between I and I'.
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