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Abstract of the Dissertation
Homotopy groups of cycle spaces
by
Paulo Lima Filho
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1989

In our thesis we study new invariants for projective algebraic
varieties, introduced by B. Lawson, developed by E. Friedlander
and B. Mazur, and called Lawson homology afterwards. Those
invariants are obtained from the homotopy of the space of cycles’
supported in the varieties. Our central result is an “excision type
theorem”. More concrefely, we have: “If (X, X') and (Y,Y") are
relatively isomorphic pairs of algebraic varieties, then they have
isomorphic relative Lawson homology”. We also prove that the
“cycle map” is a natural transformation from Lawson homology
to singular homology. The combination of excision, natural cycle

maps and long exact sequences for Lawson homology, yields the
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including products of projec-

We also

computation of several examples,

tive spaces, hyperquadrics and generalized flag varieties.

ive closure of ample

compute the Lawson homology of the project

vector bundles.




Preface

In his foundational paper [23], B. Lawson established a remarkable ho-

motopy equivalence:
¥: Cpo(X) — Cor1(EX),

between the space of algebraic p-cycles on a projective algebraic variety. X
and the space of (p+1)-cycles on the projective cone ¥X over X. This
theorem is called “the Compléx Suspension Theorem”. It was implicit in
his considerations and results, and more explicit in his subsequent paper
with M.-L. Michelsohn [24], that the homotopy groups of such cycle spaces
provide an interesting invariant for the variety X. The techniques used in his
Paper are a bea,utiful combination of complex geometry, geometric measure
theory and homotopy theory. Despite that, Lawson devised the algebraic
character of ihe results just proven, and E. Friedlander [11] and {12] took
up, successfully, the difficult task of extending Lawson’s results to a broader
algebraic context. In his paper [11], Friedlander introduces the terminology

“Lawson homology” for the bigraded groups

LoHipap(X) % m(Ca( X)),




and describes some of their functorial properties./ Concomitantly, E. Fried-
lander and B. Mazur [14] explored further those invariants, providing the

bigraded Lawson homology with operations and filtrations. In particular,

the polynomial ring in two variables Z[h,s]. The action of the generator
8 € Zlh,s] on Lawson homology sends L,H;,;,(X) into L,_; H;;5,(X), and

its p-fold composition yields a map
872 LpHiyop(X) — LoHiyp(X) = Hip,(X; 7).

We call this map the “generalized cycle map”,

Taking into consideration the neﬁborn character of the theory, we pro-
vide in Chapter 1 a detailed account of the results mentioned above. Essen-
tially, all the basic results needed subsequently are presented in this chapter.

It is a natural question to raise, when developing a homology-like theory
for a category of topological spaces), which of the Eilenberg-Steenrod axioms
it satisfies. ‘'We will pursue this categorical framework for presenting the
results contained in this work.

In Cha‘pter. 2 we give two possible definitions for the relative Lawson
homology LPH;;QP(X ,lY) of a pair X C Y of algebraic sets. One of the
definitions, despite its simplicity, just works for algebraic sets over the com-
i}lex numbers. The other definition uses certain machinery from homotropy
theory, and has the advantage that almost from its mere definition we can
derive the existence of long exact sequences for the Lawson homology of a

pair. The equivalence of the two approaches is shown in 2.1, using a re-

they showed it to carry the natural structure of a bigraded module over




sult (2.1.7,personal communication) of B. Lawson. For sake of completeness
and also for future references we have also included a proof of this result in
Chapter 2, §1.

Before we go further in this categorical approach, we make a detour, in
§2 of Chapter 2, to analyze a particular feature of the theory, namely the
“generalized. cycle map”. It is again a general philosophy, see [18}, that a
homology (or cohomology) theory derived from algebraic cycles on algebraic
varieties should carry a “cycle map”, which should be a natural transfor-
mation into ordinary homology (or cohomology). By ordinary we mean any
canonical theory - €.g. singular homology, Cech cohomology, étale homology
ete. - which suits the context. This occurs, for example, with the classical
Chow groups of algebraic cycles modulo algebraic equivalence.

Recall that we do have a “géneralized cycle map” s* thained by iter-
ating the s-map p-times. However, it is not a priori clear that this cycle
map is a natural transformation, for the s-map iiself seems to depend on
-the pélarization of X. Here occurs one of these frequent and interesting
phenomena where the unified character of Mathematics is manifest. We first
have a canonical map e from the (naive) cycle spaces ¢,(X) into the space
Zyp(X) of integral cycles with the flat-norm topology (see 2.2). Then, there

is a beautiful isomorphism
A 'n‘.;(Zk(X)) —% HH_k(X;Z)
between the homotopy groups of the space of integral cycles in X onto the

singular homology of X, established by F. Almgren in his Ph.D. Thesis, [2].
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In §2 of Chapter 2 we prove the following:

Theorem 2.2.3 : For an algebraic set X, the map Ao e, coincides with
the “generalized cycle map n g®) ¢ LHipp(X) — Hiy0p(X, 1), where A s

Almgren’s isomorphism and e, ts the map induced by e on homotopy.

In particular one obtains the desired functorial properties, cf Corollary
2.2.

In Chapter 3 we go back to the categorical track and prove the main
computational tool of the Thesis, namely the “excision type result”. In §1

we define the notion of relatively isomorphic pairs of algebraic sets. Namely,

we say that two pairs X'cXandY' CY of algebraic sets are relatively

isomorphic if the quasipro jective sets X \ X' and Y\Y' are jsomorphic. Then

we prove our major result:

Theorem 3.1.7 : Let (X,X') and (Y,Y') be relatively isomorphic pairs of
algebraic sets. Then, any given relative isomorphism ¥ : (X,X") & (Y,Y")

induces an isomorphism of topological groups:
¥, : 6,(X, X)) = G¥, V),

for allp 2 0.

The combination of exact sequences, cycle maps and excision, enables

us to compute Lawson homology in several basic cases, as, for example,

viil




products of projective spaces or hyperquadrics.
In §3 we study the pro jectivization of vector bundles and prove the fol-

lowing result, which has close resemblance with Bott periodicity:
Theorem 3.3.1: Let F — X be a very ample vector bundle over a projective
algebraic variety. Then, the following homotopy equivalence holds:

ép(P(E* @ 1x)) = é?(x) X C’p—l(P(E*))s
for allp 2 1.

Corollary 3.3 : For any algebraic vector bundle over a projective variety

i
. X there exists an integer Mo > 0 such that for m > mo we have:

&,(P(B ® HO™)) = G,(X) Cos(P(E))

for all p, where H is the hyperplane bundle over X.

In the fourth and last chapter we make a brief investigationon a question

" that arises naturally from the examples computed in §2 of Chapter 3:

For which spaces X is the cycle map s® 1 Hi 0 (X;5Z) an isomorphism for
all p and 1 ¢ The class of spaces which have this property will be called the
class £. In §2 of Chapter 4 we show that this class is closed under “cellular
algebraic extensions” (see Definition 4.2). In particular we show that the
spaces having a cellular decomposition in the sense of Fulton [15] belong to

the class £. These properties show that the class £ is richly endowed, for




it contains, for example, the generalized flag varieties G/P and products of
them, where G is a semi-simple linear algebraic group and P is a parabolic
subgroup. This is shown is §3. In particular one obtains that the compact
hermitian symmetric spaces belong to the class L.

Let us make a final philosophical remark. The examples computed in
this thesis corroborate (the necessity of ) the existence of a “dual” cohomology
~ theory (with respect to some natural pairing) carrying a well behaved cycle
map, and fitting into the context of motivic cohomology. In this context, the
examples above will be computed by general principles, see [18]. Such dual
theory is being developed by Lawson and Friedlander.

We finally say that we have tried to use the simplest terminology we

could, so as to avoid unnecessary technicalities.




To my son
Fernando.
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computation of several examples, including products of projec-
tive spaces, hyperquadrics and generalized flag varieties. We also
compute the Lawson homology of the projective closure of ample

vector bundles.
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In his foundational paper [23], B. Lawson established a remarkable ho-

motopy equivalence:
L1 Co(X) — Gy (BX),

between the space of algebraic p-cycles on a projective algebraic va,riety. X
and the space of (p+1)-cycles on the projective cone ¥X over X. This
theorem is called “the Complex Suspension Theorem”. It was implicit in
his considerations and results, and more explicit in his subsequent paper
with M.-L. Michelsohn [24], that the homotopy groups of such cycle spaces
provide an interesting invariant for the variety X. The techniques used in his
paper are a beautiful combination of complex geometry, geometric measure
theory and homotopy theory. Despite that, Lawson devised the algebraic
character of the results just proven, and E. Fﬂedlandf;r [11] and [12] took
up, successfully, the difficult task of extending Lawson’s results to a broader
~ algebraic context. In his paper [11], Friedlander introduces the terminology

“Lawson homology” for the bigraded groups

LyHiy9,(X) Ef wi(Cp(X)),




and describes some of their functorial properties. Concomitantly, E. Fried-
lander and B. Mazur {14] explored further those invariants, providing the
bigraded Lawson homology with operations and filtrations. In particular,
they showed it to carry the natural structure of a bigraded module over

the polynomial ring in two variables Z[h,s]. The action of the generator

3 € Z[h,s] on Lawson homology sends LoH; 5p(X) into L1 H;p2,(X), and

its p-fold composition yields a map
s? LPH£+2P(X) — L0H5+2P(X) = Hi+2p(X; Z).

We call this map the “generalized cycle map”.
Taking into consideration the newborn character of the theory, we pro-
vide in Chapter 1 a detailed account of the results mentioned above. Essen-

tially, all the basic results needed subsequently are presented in this chapter.

It is a natural question to raise, when developing a homology-like theory ‘
for a category of topological spaces), which of the Eilenberg-Steenrod axioms
it satisfies. We will pursue this categorical framework for presenting the
results contained in this work.

In Chapter 2 we give two p‘ossibie definitions for the relative Lawson |
homology L,H;,2,(X,Y) of a pair X C Y of algebraic sets. One of the i
‘definitions, despite its simplicity, just works for algebraic sets over the com-
:._plex numbers. The other definition uses certain machinery from homotopy |
'_'t_heory, and has the advantage that almost from its mere definition we can |
:-.'c.l"_erive the existence of long exact sequences for the Lawson homology of a

pair. The equivalence of the two approaches is shown in 2.1, using a re-




sult (2.1.7,personal communication) of B. Lawson. For sake of completeness
and also for future references we have also included a proof of this result in
Chapter 2, §1.

Before we go further in this categorical approach, we make a detour, in
§2 of Chapter 2, to analyze a particular feature of the theory, namely the
“generalized cycle map”. It is again a general philosophy, see [18], that a
homology (or cchomology) theory derived from algebraic cycles on algebraic
varieties should carry a “cycle map”, which should be a natural transfor-
mation into ordinary homology (or cohomology). By ordinary we mean any
canonical theory - e.g. singular homology, Cech cohomology, étale homology
etc. - which suits the context. This occurs, for example, with the classical
Chow groups of algebraic ¢ycles modulo algebraic equivalence.

Recall that.we cio have a “generalized cycle map” s? obtained by iter-
aling the s-map p-times. However, it is not « priori clear that this cycle
map is a natural transformation, for the s-map itself seems to depend on
the polarization of X. Here occurs one of these frequent and interesting
phenomena where the unified character of Mathemﬁtics is manifest. We first
have a canonical map e from the (naive) cycle spaces ¢,(X) into the space
Zyp(X) of integral cycles with the flat-norm topology (see 2.2). Then, there

is a beautiful isomorphism
A: m(Zk(X)) — Hi+k(X;Z)

‘:é__tWeen the homotopy groups of the space of integral cycles in X onto the

ingular homology of X, established by F. Almgren in his Ph.D. Thesis, {2].




In §2 of Chapter 2 we prove the following:

Theorem 2.2.3 : For en algebraic set X, the map Ao e, coincides with
the “generalized cyecle map” s® . LoHi5p(X) — Hip(X,7), where A is

Almgren’s isomorphism and e, is the map induced by e on homaotopy.

In particular one obtains the desired functorial properties, cf Corollary
2.2,

In Chapter 3 we go back to the categorical track and pfove the main
computational tool of the Thesis, namely the “excision type result”., In 81

we define the notion of relatively isomorphic pairs of algebraic sets. Namely,

i
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we say that two pairs X' C X and Y' C Y of algebraic sets are relatively i
isomorphic if the quasiprojective sets X\ X' and ¥ \Y" are isomorphic. Then ;

we prove our major result:

Theorem 3.1.7 : Let (X, X") and (Y,Y") be relatively isomorphic pairs of
| algebraic sets. Then, any given relative isornorphism U : (X, X") = (YY)

induces an isomorphism of topological groups:
T, : C(X,X") 5 6, (Y, Y,
.'f_or all p > 0. |

The combination of exact sequences, cycle maps and excision, enables

s:to compute Lawson homology in several basic cases, as, for example,




products of projective spaces or hyperquadrics.

In §3 we study the projectivization of vector bundles and prove the fol-

lowing result, which has close resemblance with Bott periodicity:

Theorem 3.3.1: Let E — X be a very ample vector bundle over a projective

algebraic variety. Then, the following homotopy equivalence holds:
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for all p > 1.
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for all p, where H is the hyperplane bundle over X.
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all p and i ? The class of spaces which have this property will be called the
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it contains, for example, the generalized flag varieties G/P and products of
them, where G is a semi-simple linear algebraic group and P is a parabolic
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Chapter 1

An overview

1.1 Background material

Here we provide basic definitions. We work over the complex numbers,

‘and the deﬁhitions and results presented will be restricted to this category,

‘unless otherwise stated. We refer to [23], [16], [28] and [17] as the main
asic references.

| In our treatment an algebraic set X is always a closed algebraic subset
f some projective space P¥, provided with an embedding j : X — PV,

\n élgebra.ic set X is a variety if it is irreducible.

efinition 1.1.1 An (effective) algebraic cycle of dimension p in the pro-




jective space PN is a finite formal sum o = 35 n\V, where the ny’s are

positive integers and the Vi'’s are (irreducible) subvarieties of dimension

p in Py, We call those cycles simply p-cycles. Recall that the degree

deg(V) of an srreducible subvariety V C PN of dimension p is the number

of points in the intersection of V with a generic N —p dimenstonal linear

subspace of PN, For a p-cycle o = L maVa in PY we define its degree as

deg(a) = 2oa nadeg(Vy). The suppbrt of o is the algebraic subset Uy Vi of

pV.

It is a standard fact that the set of p-cycles of a fixed degree din P¥ can

be given the structure of an algebraic set, which we denote by Cp,d(PN ).

See [30] and [29] for details. In case j : X <= PN is an algebraic subset

of PV, the subset C,a(X,j) C C,.o(PY) consisting of those cycles whose

“support is contained in X has a structure of algebraic set which makes it an

algebraic subset of C,a(PY). The set C,.a(X,j)is called the Chow bunch of

(eﬁective} p-cycles of degree d on X. The algebraic structure of C,a(X,7)

dépends on the embedding j : X — P¥. See [29] and [11].

Yefinition 1.1.2 The set

C,(X,3) = 11 CalX,) = 10} LIKLL Coal X0}

d>0




of all effective P-cycles in X, together with an 1solated point 0 (¢

the cycle of
degree zero”) is an abelign topological monoid when taken with the natural

(disjoint union) topology.. We cqll Co(X,7) the Chow monoid of effective
p-cycles in X,

The Chow monoid Co(X,7) can also be written as

CP(XJJI): Lj Ca(p:X)

where 4, = (c (x
of C (X

»7)) is the discrete monoid of connected components

17)- Tt is shown that A, is also the monoid of effec

tive p-cycles mod-
ulo effective algebraic equivalence, cf [11]. The
of A, is the classica] Chow group of p-cycles mod

See [11]

(naive) group completion

ulo algebraic equivalence,

for a proof of this fact and [15] for further information about the

classical Chow groups.

per of Lawson {23). Afterwards, while setting a systematic treatment to the

§ﬁb Ject, Friedlander, in [11], called those invariants Lawson homology.

Up to this point, all that was sajd carries over to the cage of varieties

er algebraically closed fields of arbitrary characteristic P. In order to

é
s
1
3
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proceed we need to use certain functors which are commonplace in alge-
braic topology and algebraic geometry. Using Friedlander’s terminology we
first apply a “topologizing” functor to the components of C,(X,j). This
gives a topological space with multiplication. Then we apply a “homotopy
theoretic group-completion” functor following the previous one and obtain

the desired “cycle space”. More precisely:

Definition 1.1.3 Let (—)*" be the functor

o algebraic sets topological
() -

over C _ spaces
which takes an algebraic set over C to its undérlying set with the analytic

toﬁology. Let

abelian topological abelian topological
B -

monoids monoids

be the “classifying space” functor or “delooping” funclor as in [26]. For an

algebraic variety X over C, we define the space of p-cycles in X, C,(X), as

Co(X) 2 QB(C,(X,5)™) = B | [[(Cou(X,5))* | ,

d>0

for some embedding j : X — PV,



In other words, C,(X) is the space of loops on the classifying space of
the Chow monoid of p-cycles on X. As the notation indicates, the homeo-
mprphism type of C,(X) is independent of the embedding j : X — P¥, cf.
[11].

Remark 1.1.4

1. Wé recall here that, for any abelian topological monoid M, its clas-
sifying space BM is again an abelian topological monoid, which is
(k + 1)-connected if M is k-connected. (See [26]). Hence, the space
2BM of loops in BM carries a natural structure of abelian topo-

logical monoid, given by the pointwise addition of loops. There is |

a canonical morphism of topological monoids (continuous homomor-
phism)

1: M —-QOBM

whose effect in homology is to “group complete” the action of the
monoid m,M on the Pontrjagin ring H,(M;Z). In particular, if M
is a group-like monoid‘(i.e., translations are homotopy equivalences,
and hence mM is a group) then i is a homology equivalence. Since
topological monoids (H-spaces in general) are simple spaces, in the
sense that the fundamental group acts trivially on the higher homo-

topy groups, standard techniques in homotopy theory show that 7 is




a homotopy equivalence if and only if it is a homology equivalence.

2. Since 2BM is already group-like (for mQBM = m,BM is a group),

the above comments show that
h.eq. h.eq. h.eq.
QBM = QB(QBM) = Q*B*M =~ Q°B3*M....

It follows that QBM is an infinite loop space, and in being so, it
carries lots of interesting properties as those, for example, described
in [25] and [1]. The functor QB(—) is the “homotopy theoretic group

completion” functor. See [33], [4], [27] and [26] for further properties

of this functor

3. As a particular case of item 1, we obtain a canonical morphism of
topological monoids
an de_f \an ] ‘\van
Co(X,3)™ — G(X) = QB(C(X,5)™) = QB([[(Cpu(X,5))*™)
d>0
group-completing the action of the monoid A, wf mo(Cp(X, 7)) on the

Pontrjagin ring H(Cy(X,5)™,2).

- Since we will always be working with algebraic varieties over C, we

omit the notation (—)* whenever no confusion is likely to arise.

;_Taken with the analytic topology, the algebraic sets de(.X,J) are

:ﬁmte CW-complexes. If ¥ C X is a closed algebraic subset, then




Cypa(X,5) can be triangulated so that C,, Y, ') has the structure of
a subcomplex of C,4(X,7), where j' is the composition j' = j 04 of

the inclusion ¢ : ¥ < X with the embedding j : X — PNV,

In the case of varieties over a field of characteristic p, there is an analo-

gous definition where the “topologization” functor is defined via étale topol-

-ogy. See [11] and [3] for details.

At this point we are able to define the desired invariants, Those invari-
ants were introduced and denoted Lawson homology by E. Friedlander in

[11], after the work of B. Lawson [23].
Definition 1.1.5 Let X be an algebraic set and choose p to be an integer,
.0 <p < dim(X). Define the Lawson homology L H; 2,(X) of X by

Lo Hipap(X) < mi(Cy(X)).

e€mark 1.1.6 Notice that Co{X,j)} is equal to [is0 SPUX), where

4(X) is the d-fold symmetric product of X. We will see in the alternative




description of the cycle spaces below, that

- h.eq. '
Eox) 2 sp=(x),

with SP*(X) being the infinite symmetric product of X. Therefore the

Dold-Thom theorem gives an isomorphism

LoH: = Hy(X, 7).

Alternative description of the cycle spaces

and of Lawson homology

Write C,(X,7) = Heea, Calp, X) and choose one element z, € C,, o(X)
for each a € A,. Translation by the elements z, are algebraic embeddings
of C,(X, ) into itself, sending C, 5(X) into Csats(X). In this way we can

consider A, as an indexing category for C.(X,7), with

Mor(Cypa(X), Cpa(X)) = A€ Ay : A= B,

A Cpa(X) — C,p(X)

Obtained by sending o € C,a(X) to o + 2, € Cpg(X). The following

ram commutes up to homotopy, cf. [11]:




A

3l e

Cp.a+u(X ) T’ Cp,a+A+p(X )

which allows one to construct a homotopy limit called “Friedlander com.-
pletion” by tzawson [23], as follows: (cf. [11])

Choose a sequence A = {ay,ay,...,a,,.. .} of elements in A, so that
each @« € A, appears infinitely then in A. Now, using the sequence of
maps {a, : Cp(X,5) — C,(X,7)} one can form the mapping telescope.

Tel(C,(X,7)) and obtain the following (cf. Friedlander [11]):

Proposition 1.1.7 Letj: X <= PV gnd A = {ant2y, an € A, be as

above. Then the canonical map
i:Cp(X,5) = C,(X) = QB(C,(X,5)™)

factors up to homotopy through a homology equivalence, and therefore, a

:i'homotopy equivalence
T: Tel(Cp(X,5),A) — C,(X).

e observe that the proposition asserts the existence of a homology equiv-
lence between Tel(Cy(X,7),A) and C,(X). The last conclusion follows
after one proves that Tel(Cy(X,7),A) is a simple space, together with the

tuments of Remark 1.1.4 .
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In view of the above result we can use Tel(Cy(X,7),A) as another
definition of C,(X). We point out here that the homotopy equivalence of
the proposition is only valid for varieties defined over the complex numbers.

Also, the Lawson homology can be alternatively defined as

LpHiyop(X) = mi(Tel(Cp(X, ), A)) = lim 7;(Cyp o (X))

aCA

We conclude this section with a last remark:
Remark 1.1.8 As abelian topological monoids, the cycle spaces Cp(X)
are products of Eilenberg-MacLane spaces, (33]. Therefore they are deter-
mined, up to homotopy, by the Lawson h(;mology. In other words, we have

a homotopy equivalence

' CP(X) = HK(LpHi+2P(X)si)'

1.2 Basic Results

Here we describe the results obtained by Lawson [23], Friedlander [11],
awson and Michelson [24] and Friedlander and Mazur [14] which will be

eded later on. For sake of brevity and clearness of exposition we are
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altering the chronological order of the results presented, observing that the
work of Lawson [23] was the precursor of all that follows.

Definition 1.2.1 Let X = [[, X, and ¥ = HpYs be disjoint unions of
algeb.mz'c sets (not necessarily finite unions) taken with the disjoint union
topology (of the Zariski topology of their components). We say that a con-
tinuous map f : X - Y 45 ¢ morphism of X inlo'Y if the restriction
of f to any component X, is a morphism of algebraic sets. A broper
morphism f : X — Y is a birrational, bicontinuous morphism if it is a
set theoretic bijection and for every y € Y the induced map on residue
fields C{y)} — C(f7*(y)) s an isomorphism. A rational continuous map
F+X =Y is a correspondence, i.e., a pair {9:Z2>X,h:2Z2->Y}in
which g is a birational, bicontinuous morphism. Here we follow Friedlan-

der’s [11] terminology closely,

We see that a birational, bicontinuous morphism f: X — Y, with X
nd Y as in the definition above, induces birational equivalences (in the
ense of [17]) between the irreducible components of X and Y. Further-
more, taking X and Y with the analytic topology, we see that f induces
1 homeomorphism between (X)* and (Y)**, whose restriction to an ir-
ducible component of X is a homeomorphism onto a corresponding com-

nent of Y. Observe that a rational continuous map f: X — Y induces
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a continuous map f: (X)** — ().
With the notions just introduced, it now makes sense to talk about
rational continuous maps between Chow monoids. The first “functorial”

property of the Lawson homology comes from the following proposition, «f.

[11].
Proposition 1.2.2 Let j : X — P¥, j'. ¥V « PM 44 7" W s PL e

algebraic sets.

a) For any morphism f: X — Y ancf integer 0 < p < dimX, there evists
b
a retional continuous map
f# 1 Cp(X,5) — C,(Y, ")
defined by
£#(miVe) = X madea(Vif f(V) £(V2).

The map fu is a morphism of abelian topological monoids in the an-

alytic topology and induces a morphism f, on Lawson homology for

all1>0

fo i LpHippy(X) — LpHipap(Y).

b) For any flat morphism J W — X of relative dimension r > 0, and

any integer p, 0 < p < dimX, there ezists a rational continuous map

f# : C;p(X:j) - Cp+r(Waj")
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which is a morphism of topological monoids in the analytic topology.

Furthermore, the map f* induces a morphism on Lawson homology,

for alli > 0:

f7 i LpHipap(X) — L(p+r)Hi+2(p+r)(W)'

Remark 1.2.3

1. Recall that for a morphism of algebraic sets J:X =Y, and for a
subvariety V C X, deg(V/f(V)) is defined as

0, ' if dimV > dimf(V)

[C(V): C(F(V))], if dimV = dimf(V),

deg(V/f(V)) =

where C(V); C(f(V)) are the functions fields of V and f (V') respec-

tively. In other words, deg(V/f(V)) is the number of sheets of V as

a branched covering of f(V).

. A flat morphism f : W — X of relative dimension r is a morphism

satisfying:

(a) ¥ U C W, U' C X are affine open scts such that fU) C
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U’, then the induced map f* on the ring of regular functions
f*: €{U'] — C[U] makes C[U] into a flat C{U’]-module.
(b) For any subvariety V' C X and any irreducible component V of

f71(V') one has dimV = dimV’ + ».

Examples of flat morphisms of relative dimension = are: the projection
of a vector or.projective bundle of rank r to its base; the projection of a
cartesian product X x Y to its first factor, where ¥ is a pure-dimensional
algebraic set. See [17] and [15] for examples and further properties.
From 1.2.2 one obtains that Lawson homoiogy is a covariant functor

from the category of algebraic sets and morphisms to the category of bhi-

efinition 1.2.4 Leti: X < P¥ gnd j : ¥V s PM e algebraic sets,

mbed PN qnd PM linearly in PYTM4L o5 two disjoint linear subspaces.
éﬁ_ﬁe the complex join i#j : X#Y s PNM+1 of X and Y as the alge-

zc subset of PNTMH1 phtained as the union of all projective lines joining

nis of X to points of Y in PN*MYL Iy the particular case where Y is
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a point P® € P+ not lying in PV, the complez join P'#X of P° ¢ PVH
with X C PN C P s called the complex.suSPension of X and is denoted

YX. The m-fold complex suspension of X, ¥mX, is

T (2X)...)).

"
m—times

Observe that the complex suspension can also be seen as the Thom space of
the hyperplane bundle O(l) over X, and its structure as an algebraic set

does not depend on the point P° € PNV+1\ PV,

It is easy to see that if V is a subvariety of X <y pN having dimension
p and degree d, and if W is a subvariety of Y N PM with dimension ¢ and
degree € (in other words, V € C,4(X,i) and W & C_.(Y,)), then the join
V#W is a subvariety of X#Y having dimension p+ ¢+ 1 and degree d - ¢,
o VHW € Cpy i ae X#Y, i#5).
| Notice that the m-fold suspension ¥™X of X can also be viewed as
e join P™~14#X of P™~! with X. From the above we conclude that the
-fold suspension takes irreducible cycles in C, 4(X, 1) to irreducible cycles
Cp+m,d($mX » £7). Actually the join operation can be extended linearly

he cycle spaces as follows: (cf. Friedlander [11])

'ﬁ::bsition 1.2.5 Leti: X — PN, 5:Y < PM pe algebraic sets. The
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the external join induces a rational continuous map

Cr,d(Xa":) X Cs,e(Yaj)"__’ Cr+a+1.d-e(X#Y: 1#3)
for any r < dimX,s < dimY, d and e. Up to birational, bicontinuous

equivalence, this pairing is independent of the embeddings i and j. These

rational continuous maps induce a bi-additive rational continuous map
# . Cr(.X,Z) x C,(Y;j) e C,.+,+1(X#Y, ?:#J)

which sends C.(X,i)x {0} and {0} x C.(Y,7) to {0} € Crrsr1 (XY, i#7).

If we consider P™! as a cycle in Crno11(P™ 1, 4id) we obtain an algebraic

map
X : Cp(X,5) — Cotm(ET™X, TM)
which is defined in such a way that it sends a cycle ¢ = 3, n\V, in

Cpa(X,j) to ¥o = T, (™) = T, m(P™14V,). The map induced

~on the cycle spaces {by functoriality)

bl Co{X) — ptm (LX)

s remarkably well behaved and satisfies the following theorem, which is the

Oi_lndation stone of the theory, provén by Lawson in [23]

‘heorem 1.2.6 (The Complex Suspension Theorem) The m-fold com-

les suspension Y™ : Co(X) = Copm(T™X) is @ homotopy equivalence for ev-

integer p, with 0 < p < dimX and every positive integer m.
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Equivalently:

Corollary 1.2.7 The m-fold complex suspension L™ induces an isomor-
phism
P LyHiynp(X) — Liprm)yHip2(p4m) (LX)

for every 1 > 0.

This powerful theorem was later extended by Friedlander {11] to a
broader algebraic context. Furthermore, as shown by Friedlander and
Mazur {14], it enables one to provide the Lawson homology with lots of
extra sfructure, as we briefly outline below.

The cycle spaces of the complex projective space Pt are completely

“determined by the Complex Suspension Theorem. Namely

Co(PH) 2 Co(P?) 2 K(Z,2) x ... x K(Z,2(t - p)),

or all 0 < p < dimX, the later equivalence being a consequence of the

old-Thom theorem. Equivalently, one has the isomorphisms

Ly Hiy3p(P*) & LoH (P2, 7) = H(P'?, 7).

Let us introduce a bit of notation before we proceed.

finition 1.2.8 For an algebraic set j : X — P™, and integers i > 0, p,
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define LyH;y5,(%°X) as
LpHit5p(¥7X) = lim Lioro) Hirators) (XX),

where the limit is taken with respect to the maps induced by the complez

suspension. Actually one has

Lsy(X), ifp>0

LUHi(E"pLX)a ifp < 0, |
by the Complezr Suspension Theorem (1.2.6). It follows from the Thom

LpHi+2p(z'°°X) =

isomorphism theorem that Lolip2p(¥°X) = H; 1p)(X,Z) for p < 0 and
i—[p| > 0.

Now as a corollary of 1.2.5 and functoriality of the group completion,

‘one sees that the join operation descends to the smash product of the cycle : |

_spaces involved. In other words, the Join # induces a pairing of infinite

;lb‘op spaces:

# CP(X) AC(Y) — p+a+1(X#Y) (1.1)

and therefore a pairing in Lawson homology:

LpHi12p(X) ® Ly Hjppy(Y) — LiptoryHirjra(prsey( X #Y). (1.2)

pecializing to the case X = Pt*? gpe gets a pairing

Hi2p(PPY @ L Hjp0 (V) — Lptar1yHirjpo(prarn(PTPHY),
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Since PHPHY = Y47+l the complex suspension theorem (1.2.6) implies i

that the above pairing is equivalent to

LOHz'(Pt) & LsHj+2.:(¥l°oY) — L(,_t)Hi+j+2(,_t)(2wY). (1.4)

Definition 1.2.9 Define the bigraded group R*™ to be

R D LHuP) = @ mu(Co(PY).

0<i<t 0<i<t

Proposition 1.2.10 (Friedlander-Mazur,[11]) The bigraded group R*"

" inherits the structure of a graded ring from the pairing

LgHzi(Pt) ® Lgng(Pp) —r Llﬂ-z(,:+j)+2(Pt#Pp) = LQH2(5+;,‘)(P£+?).

As graded ring, R*™ is a pof nomzal algebra over Z on two generators
. y
R = [k, s],

where h e .L{)HQ(PI) and s € L()Hz(Pl).

Using the pairing 1.4 one obtains the following

orollary 1.2.11 Let j : X — PV be an algebraic set. The bigraded
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group @, ; L, H; ,,(¥°X) is a graded module over R, with action by the
generators h,s ¢ Ro" talaz’ﬁg the form
bt LpHiyap(3°X) — Ly y Hiygp o($7X)

81 Lpliyzp(Y7X) — p-1Hi12p(B7X).

In the next remark we briefly explain how the generators h and s act
on @i,p LpHi+2p($°°X )
Remark 1.2.12 The generator & € LoHo(P') = Ho(P',7) is taken to be
the class of a point P° in P!, and the generator s € LoH,(P') 2 H,(P!,7)

is the fundamental class of P!.
The action of h € LoH,(P)
ht LpHisap(Y7X) — Lip_1yHyy2p-1)( 2X)
comes from the map
hpo : Cp(X) = Cp_y (X)
induced by the pairing 1.1 of infinite loop spaces
Co(P?) A Co(X) — Copr (B2X) = Co1(X),

erived from Proposition 1.2.5. In other words, A turns out to be equal

 hpo, : T(Co( X)) = m(Cp_y(X). The tmap hpo : Co(X) = Cpr(X) is es-
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sentially given by taking a “cycle” in C,(X) and “joining” it to the point
P? € P!, obtaining a cycle Yo in Cor1(P1#X) = Cp11(¥2X) and then apply-
ing the Complex Suspension Theorem 1.2.6: C,,;(¥2X) = Cp1(X). An-
other way of defining hpo is to consider the map i, : Co(X) — C(XX)
induced by the inclusiqn t: X — ¥X and then compose it with the iso-
morphism C,(¥X) = C,_1(X).

The action of s € LoH,{(P?)
g LpHi+2P($mX) - L(p—l)H£+2(p-1)($°°X)
is induced by the pairing 1.1
Co(PY) A Cp(X) = Copa (P X) = Coua (B2X) = €, 1(X)

- restricted to

S A Co(X) — Cpa(X),

{ PO(O') ecC _1(X).

efinition 1.2.13 The p-fold composition of s for p > 0,

¥ 1 LyHigop(X) — LoHip2p(¥7X) = Hipp(X,7)
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is called the (generalized) cycle map. It can be seen, (cf. [11]) that in the
case 1 = 0, this is the classical cycle map, see [15], which takes p-cycles

modulo algebraic equivalence (=2 L,H,,(X)) to Hop(X; 7).

In the next chapter we will provide another description of this general-

ized cycle map, as well as discuss some of its properties.
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Chapter 2
The relative theory

2.1 Relative Lawson homology

We start by introducing ancther ob ject in the theory, which arises naturally
when working over the complex numbers, namely, the (topological) najve
group-completion of the Chow monoid. More precisely:

Definition 2.1.1 For an algebraic set 31 X — PV et é;,(X) denote the

free abelian group generated by the p-dimensional subvarieties of X. Endow

o(X) with the topology induced by the quotient map:




This makes C;,(X) into an abelian topological group.

Remark 2.1.2 Observe that there is a natural embedding

1:C(X,5) — é;,(X ) given by ¢ — o — o, where o is the identity element
of the monoid C,(X, j). This embedding provides C;,(X ) with the following
“universal property”: For any morphism f : C,(X,j) — G of topological
monoids from C,(X, ) to an abelian topological group, there exists a mor-
phism f : é;,(X ) = G of topological groups making the following diagram

commute:

CP(Xin) - ép(X)

Shy

To see this, take any continuous hﬁmomorphism f:C(X,5) - G,
ere G is a topblogical group, and consider the composition of the map
: éXG — G, sending (g, k) to g—fz;, with fx f: Gx@ — GxG. Ttis easy
___sgé that § o (f x f) factors through p, yielding a group homomorphism

_ﬂp(X ) — G, which is automatically continuous, since p is a proclusion.

24
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Recall, from (23] that there is an embedding C,(X, ;) — 2,,(X), where
Z2p(X) is the group of integral 2p-cycles in X with the flat-norm topol-
ogy. The universal property mentioned in the remark above factors this
embedding through an embedding é;(X ) o Z5(X ) In particular one sees
that €,(X) is Hausdorff. Since C,(X,7) is compactly generated and lo-
cally compact, Theorem 4.3 of [32] implies that Co(X,7) X C,(X,5) is also
compactly generated. This fact and the Hausdorff i)roperty of C,(X) make
fp(X ) compactly generated with the topology given by p, as observed in

2.6 of [32]. More precisely, one can see that C(X ) has the “weak” topology

generated by the compact subsets

def
Fop = p(CpalX) x Cpp(X)),

where Cp,o(X) and C, 5(X ) are connected components of the Chow monoid
Co(X,7), and p is the quotient map 2.1. For more details about the basics

on the topology of C;,(X), look at Lemma 3.1.4.

Notice that there is a natural morphism (in the homotopy category)
from the cycle space Cp(X) into the group é;,(X ), defined as follows:
By functoriality of the topological bar construction, (cf. [26]), the inclu-

gﬁ map i : Cp(X,j) — C(X ) induces a morphism of classifying monoids

B(i) : B(Cy(X,j)) — B(C,(X)),
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which, in turn, induces a morphism
71 QB(Cy(X,5)™) — QB(C,(X)).

The first monoid is, by definition, the cycle space C,(X) and the second one
(which is actually a group) is homotopy equivalent to (:’;,(X ), according to

Remark 1.1.4 . An important feature of this group is the following result

proven by Friedlander and Lawson [13]
Theorem 2.1.3 The natural map

11 Cp(X) - ép(X)
is a homotopy equivalence.

In particular one sees that there is a homotopy equivalence between
the identity component of C,{X) and that of C”I,(X ). Also this provides an

alternative definition for Lawson homology, namely, we may define

Lo Hiiap(X)  m(Cy(X), ). (2.2)

At this stage we are able to define the relative Lawson homology, which
\n be done in two different ways:

Definition 2.1.4

LetY C X be a closed algebraic subset of the algebraic set j : X —» PV,

Naturally, C;,(Y) 18 a closed subgroup of the topological group C;,(X).
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Define the (relative) Lawson homology of the pair (X,Y) as
def 5 5 1

Lo Hypop(X,Y) = Wi(cp(X)/cp(Y))r _ 3

where C,(X)/C(Y) denotes the quotient topological group.

Notice that this definition only works for a.lgebra.ic sets over C. A
modified definition which has its counterpart for fields of arbitrary |

characteristic is as follows:

(b} For an algebraic subset Y C X, consider the monoid (see Remark

1.1.4) C,(Y) as a transformation monoid acting on Co(X) by trans-

lations, Let

Co( X, Y) ) B(CP(X)’ cp(Y): *)

be the homotopy quotient of C,(X) ana’-Cp(Y) obtained via the triple

bar construction, as in [26]. Define the relative Lawson homology of

the pair (X,Y) as

LyHiyn(X,Y) E m(B(C,(X), Co(Y), %)).

From this second definition one easily obtains the following

Proposition 2.1.5 There ezists a long ezact sequence for the Lawson ho-

mology of a: pair of algebraic sets (X,Y). Namely, the following sequence
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s exact:

v LpH1455(X,Y) s LpH;13,(Y) o LoHiyop(X) — ...

Proof )

The proposition is a consequence of the following lemma:

Lemma 2.1.6 The sequence of maps

Co(Y) = Cp(X) — (X, Y)
5 @ quasifibration,

Proof

. By definition, C,(Y') = QB(C,(Y,5')*"), where j' is the composition ¥ «— |
X <y pr, Since B(C,(Y,;')) is connected, we can consider Co(Y) as a !
_group-like transformation monoid (see [33]) acting on C,(X) and on itself

by translations. (Actually we just need a group-like H-space, which is 1

Sﬁitable for the l-adic theory). It follows from Proposition 7.9 of [26] that

we have a quasifibration sequence

Co(Y) 2 Co(X) 5 B(Co(X),Co(Y),%) S B(C,(Y)),

here i is the map induced by the inclusion, and + sends o € C.(X) to

0,%| € B(Cp(X),C,(Y),*). The lemma now follows from the definitions.
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The unifying element in the two approaches is the following result proven

by Lawson [21]

Proposition 2.1.7 For a pair of algebraic sets (X,Y) the quotient map
C(X) — Cp(X)/Co(Y) admits a local cross-section. In particular one has

a principal fibration:

6P(Y) 5 ép(X) - C;,(X,Y) = ép(X)/ép(Y)'

Coroliary 2.1.8 The natural maps
Co(X) = Co(X) and Cy(Y) — C,(Y)

induce an equivalence of quasifibrations:

Co(Y) — G(X) —— C(X,Y)

l ! !

EP(Y) _— EP(X) — ép(X,Y)°
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By functoriality of the bar construction one has a map of quasifibrations

Co(Y) — G(X) —— B(Cy(X),C(Y),%)

! ! l

CY) —— GX) — BEX).E(¥)w, '
induced by the maps C,(X) — C,(X) and C,(Y) — €,(Y). Since those maps
are homotopy equivalences so is B(Co(X),Co(Y), ) — B(Co(X),C,(Y), %),
cf. Proposition 7.3(ii) of [26]. Therefore we have an equivalence of quasifi-
brations. On the other hand, the quotient map C,(X) — C,(X,Y) induces
a map

B(Co(X),ColY), ) — Co(X)/Cp(Y)

compatible with the inclusion C;,(X )— B ((:’;,(X ),C,(Y), %), and therefore
we have another map of quasifibrations:

6P(Y) i ép(X) — ép(X’Y)

ép(Y) - ép(X) - B(ép(X),ép(Y)?*)'

The same argument as before shows that B(C,(X),C,(Y),*) — C,(X,Y) is

i homotopy equivalence. This proves the corollary. O

After the previous discussion we use both definitions of Lawson homol-

nterchangeably, whichever is more convenient in the context it is being

ed.
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As a final remark we observe that a given morphism of pairs
f:(X,Y)— (X',Y"), ie., an algebraic map f : X - X' taking Y into

Y’, induces, by functoriality, maps

fu: B(CP(X)arcp(Y)’*) - B(CP(X’)! Co(Y), *)
and
fo: G(X,Y) - G (X, 7).

In particular f induces a morphism of long exact sequences in Lawson

homology.

2.2 More about the cycle map

In this section we show that the action of s € R®® on Lawson homology (as

described in Section 1.2) extends to an action on the relative Lawson homol-
ogy, inducing a morphism of long exact sequences for pairs. We also analyze
in more detail the “generalized cycle map” s? : LyHiy9,(X) — LoHpppi(X). | |
However, before we proceed we need the following remark, from [23].

Remark 2.2.1 Consider a pair of algebraic sets ¥ ¢ X , X 2, pA,
inice the suspension | r : C,(X,5) - Co1(¥X,¥7) restricts to |

Co(Y,5") = Cppa(TY, E5"), it therefore induces a morphism of pairs of
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monoids

2 : (CP(ij): Cp(Yaj’)) - (Cp+1($X’ 23.7): Cp+1($Yu 2.7’))

By functoriality of the triple bar construction, c¢f. [26], ¥ induces a mor-

phism of relative cycle spaces

2 : CP(X:Y) - cp+1($Xr 2Y)

and hence a morphism on relative Lawson homology:

% : Lp-Hi+2p(X:Y) - L(P+1)Hi+2(P+1)($X’ X"Y)

The later fits into a morphism of long exact sequences:

con LpHigpp(X) —— LpHi12p(X,Y) —— LpHiia, 1(Y)

l ! l

s Loty Hivaoa)(BX) —— Loy Hiyaorn)(BX, 5Y) —— Ly Hoprina(IY)

Using the five lemma and the complex suspension Theorem 1.2.6 one
concludes that the map ¥i: Cp(X,Y) — Cppe(PX, TY) is actually a homo-

. topy equivalence,

In a similar fashion to the above remark, let us consider a
pair of a.lgebfaic sets ¥ C X < PN, Observe that the join map
#x : Co(PY) x Co(X) — p+1(P1#X), of Section 1.2, restricts to the join

fty 1 Co(PY) x Cp(Y) — Cp11(P'#Y). Those are morphisms of topological

|
|
i
I
|
|
L




monoids, which make, for every z ¢ Co(P1), the map

#xe  C(X) = Cpa(P#X)

a‘H:ﬁ#G‘

equivariant with respect to the actions of Co(Y) and Cppy (PI4Y) on C,(X)
and Cp 1 (P'#X), respectively. It follows, cf. [26] §7, that the maps #x,,

for z € Co(P'), induce maps
#x.x0 t B(Cp(X),Co(Y), %) — B(Cp+1kP1#X),Cp+1(P1#Y),;"),
and therefore a map
#xy : Co(P') X C(X,Y) — C,(P#X, PI4Y).

Since #x descends to the smash product Co(P1) A Cy(X), so it does in the

level of simplicial bar construction, and therefore we obtain (after geometric

- realization) a map

Hxy : Co(PYY A C(X,Y) = Co(PAX, Py,

The above mentioned invariance of #y, together with the cominutativity
f the diagram
#
Co(P) ACy(X) ~— Cppa(P1#X)
idm‘T 7 Iz‘dm‘

CoP) AC,(Y) —=+ Cppa(PHY)

33
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shows that we actually have a morphism of quasifibrations
Co(PHYAC(Y) —— C(PYAC(X) —— Co(PYAC(X,Y)

|#r [#x |#xw

CoulPHY) ——  GPI#X)  —— Cou(P'#X,PIAY).

As in Chapter 1, one can use the map #x v to define naturally a map
from m;(Co(X,Y)) to mipa(Copr(P1#X,PH4Y)). The latter group is iso-
morphic to m;2(Co_1(X,Y)) = L, 1Hyppi(X,Y) via the double complex
suspension Y% according to Remark 2.2.1 . The final output of all this is

the relative s-map
SX,Y H LPHi‘l'zP(X? Y) — Lp—l H2p+i(X1 Y)
Summarizing, we have the following Proposition-definition:

Proposition 2.2.2 LetY C X <5 PY be a pair of algebraic sets. The join

perations

#x : Co(P) A Cp(X) = Coa(PT#X)

#y : Co(PY) A C(Y) = Cpa(PHY)

duce a “relative” join operation

C#xy i C(PYACX,Y) - c;+1(P1#X,P1_#Y),
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which fits into a morphism of quasifibrations
(P AC(Y) —— CPYACX) ——  Co(PY) A C(X,Y)
|#v |#x |#xr
CuilPHHY) ——  GPEX)  ——s Cop(PHX, PIAY),

Naturally, one can define a relative $-map
sxy i LpHiyop(X, Y)— Ly 1Mo (X, Y)

and obtain a morphism of long ezact sequences, for the Lawson homology

of a pair:

---LpHi+2p(Y) e LpHi+2p(X) - LpHi+2p(XvY) -

| l l

v dpo1Higgp(Y) ——o Ly \Hiyop(X) —— Ly Hiypp(X,Y) ——s

Let us go back to Remark 1.2.12 . There we explain how the generators
h and s of R® act on Lawson homology, in particular we discuss the s
map. The discussion was made in terms of the homotopy-theoretic group-
“completion. The same arguments can be carried out, when working over C,
n terms of the naive group completion of the Chow monoid C,(X,7), taken
with the quotient topology, as in Section 2.1. This will shed more light in

he complex case and yield another interpretation of the “generalized cycle

More concretely, let X <, P¥ be an algebraic set and let C,(X) be

he najve group completion of the Chow monoid C.(X,5) taken with the
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quotient topology, an in 2.1, Recall that the rational continuous map
# : Co(P1,4d) X Cy(X,7) = Cppy(P#X,i45)

of Proposition 1.2.5 is biadditive. Therefore, it yields a morphism of topo-

logical groups
£ GoP) x E,X) = Gy (PHA),

by the universal property of the naive group completion shown in Remark

2.1.2 . As before this map descends to
#: Co(P) A C(X) = Copa(PU#X).
In his paper [2], F. Almgren established a remarkable isomorphism
A 1i(25(X),0) = Hiynpl X, Z),

where X is any compact, Lipschitz, neighborhood retract in some R¥ and

2p(X) is the space of integral cycles with the flat-norm topology. See
9], [20], [2] for further definitions. On the other hand, as observed in
Lemark 2.1.2, in case X s PN i an algebraic set, there is an embedding

X )< Z3p(X). Composing A with the map e,, induced by e in homotopy,

ields a map

Ao [ Tl',(ép(.X)) = LPH""FZP('X) —3% H,j_’_zp(X, Z).
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Theorem 2.2.3 For an algebraic set X, the above map Ao e, coincides
with the “generalized cycle map” s? : L, H;\ o, (X) — irap(X, Z).
Proof

We use induction on the dimension of the cycles. For cycles of dimen-
sion zero, Cy(Y) = Z,(Y) for any algebraic set ¥. Furthermore, the cycle
map from m;(Co(Y)) = m(Zo(Y)) into Hy(Y;7) is actually the Dold-Thom
isomorphism [8], as pointed out in [14] and [2].

Let us assume, now, that for any algebraic set ¥ the éycle map
st Lo Hipa, (V) — irer (Y5 Z)

.is equal to the composition Ao e,, where € is the inclusion (i.(Y) — Z5.(Y)

A m(Z3.(Y)) = Hyyoo(Y 7)

is Almgren’s isomorphism, for all 7, » < ry and any 7 > 0.

In order to conclude the proof, we need to show the following three
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steps:

Step 1 The complex suspension map actually extends to a continuous ho-

momorphism
Y:L(Y) — Lt 2(FY)
~for all k > 0, where I;(Y') denotes the group of integral currents taken
with the flat norm topology. This homomorphism commutes with
the boundary operator, giving a map of chain complexes, between
the complexes of integral currents of X and ¥X, respectively. In
particular, it gives a morphism of topological groups
L1 Z20(Y) = 25,1,5(¥Y)

extending ¥: C,(Y) — s (TY).

Step 2 The homomorphism ¥, induced in homotopy by ¥ : Z, (V) —

Z3p+2(2Y) corresponds to the Thom isomorphism via Almgren’s iso-

morphism. In other words, the following diagram commutes:

. E‘
T(22(Y) —— m(Zp42(YY)
Al lA
|_
H;y 0 (Y;Z) ~— Hipar2(¥Y; Z) |
Diag. 1

where 7 : H;, (V;7) — i+2042(¥Y5Z) is the Thom isomorphism.
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Step 3 The join map # : 50(P1) A é,(Y) — é,+1(P1#Y) extends to a map
#: Zo(PY) A 25:(Y) — Zappa(PI#Y),
which naturally induces a homomo_rph_ism
ot Th(22:(Y)) = mepo(Zor2(PHHY)).

Identifying P'#£Y with ¥, we get a commutative diagram

(22, (Y)) Hi2r(Y)
J Ty
#* Hk+2r+j2($y)
'T'x,y

Thra( 2242 () T Hiyzra(XY)

Diag. 2

where the A’s are Almgren’s maps and the 's are Thom’s morphisms.

Let us complete our induction argument before we proceed to the proof

of the three steps above. Recall that the map
82 7(Croa(X)) = miga(C (X)) i
the composition of

Hy 1 Crpr (X)) — 7ri+2(5,0+2(P1#X))
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with the inverses of the isomorphisms

Yu 7‘—1'+2(€1‘o (X)) - 7"i+2(éro+1($X))
and
o : Tir2(Croy1 (X)) — mig2(Croia (12X)).

Gathering all the above information together one obtains the following

situation: (sec Diag. 3 below)

By induction, the composition A4, o e, (in the bottom line of the di-
agram) is simply the cycle map s™ : Loy Hiyat00(X) = itz (X Z).

- By definition, s™+! : Lryt1Hiya100(X) — i+242r0(X; Z) is equal to the

composition 8™ o s and hence:

sTtl =g 5 = A 06 0 () To(Xa)to#,
=Aio(F1) T oero(F) o

= T o—rz‘loAao#ioq

Ay 0 eq.
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— m(Coa(X)) =P m(Zg4a(X))
i l #. . l e 4
ir2(Cro42(EX)) = 7i19( 2000 4a(FX))  —22 Hiypppo o P2X)
: Ay
~ €y r 212 ./4.2 T 2
Tiya(Crp 1 (¥X)) —= Tir2(Zarg12(BX)) 2 Hipgrpra(PX)
R
- 7r,'_|_2(C,.0(X)) — 7"i+2(zzru(X)) —3 H'+2r0+2(X) R

z

g™

Diag. 3
Now we proceed to prove Steps 1, 2 and 3 above in order to conclude

the proof of the theorem.

Proof of Step 1.

Assertion : Let X «» P" be an algebraic set. We extend the ‘complez join’

map of 1.2.5 to a continuous homomorphism
#: L(PY) x I(X) — rrrr2(PH#X),

where I,(—) denotes the space of integral currents with the flat norm topol-

ogy. This map satisfies the following properties:
o There is a constant -y, . such that

M{o#7) < Yer M(7)M(7), (2.3)

where M denotes the mass norm,and

Oo#t) = (8o)#r + (—1) o#(07).
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In particular the join of two cycles still is a cycle. Observe that taking

o = P% C P! one obtaijns:

Corollary: The complex suspension ¥ gives a map
¥: (X)) — Lips(2X)
‘satisfying:
o There is a constant Vi such that for every o € Ik(X) we have

M(¥o) < mM(o), (2.5)

and

8(20) = (~1)"Y(00). (26)
_".I‘herefore, Y. yields a chain map
¥ L(X) = L,(¥X)

£ degree 2 between the complexes of integral currents of X and Y.X, re-

We just need to verify the above assertions for the case X — P", for (cf.

we can find a constant p so that

Men(T') < Mx(T) < pMp~(T),
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for any integral current 7'.

Now, consider the projective bundle E = P(x*H @ mH) & P x P,
where 7, and 7, are the canonical projections and the H’s are hyperplanes
the bundles. The total space E can also be obtained by blowing-up Pr"+1
along two disjoint linear subspaces, P* and P". Let b: E — P™"*1 denote
the blow-down map.

One can see clearly that if V and W are subvarieties of P* and P~
respectively, then b(p~'(V x W)) = VH#W C P+ where VAW is the
projecfive join of V with W.

Now we claim that the bundle map p provides a pull back map
_‘p# 2Ik(Pr X Pn) — Ik+2(E)

satisfying

p* 08T = 8o p*T (2.7)

M(p*T) < axM(T) (2.8)

or T' € I(P™ x P"), where a; is a constant depending on k.

‘With this in hand, define
# 1 L(P7) x L(P") — Ip+k+2(Pr+n+1)

(o,7) — b#(p#(a X 7)).
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Here o x 7 denotes the cartesian product of currents, as in [9], §4.1.8. .

We then have
M(a#t) = Mbs(p*(o x 7)) < MWHH2Y(p#(0 x 7))
< g MoxT) < APHEYEg M (oYM (),
where ) = Lip(b) is-the Lipschitz constant of b, and c is obtained as in [9]
§4.1.8.. Setting v, = M?***t1g,c we have the desired inéquality:

M{o#7) < YoM (o) M(T).

The identity for the boundary of the join of two currents follows from

equation 2.7 above and the corresponding identity for the product of cur-

rents, cf. [9] §4.1.8 .

To prove the claim above, we just observe that it follows from the com-
pactness of the spaces involved, the local triviality of the bundle and the

?

corresponding properties for the trivial bundle. See Brothers (7] for more

details,

DIGRESSION:

. Here we make a brief incursion into some of the ideas in Almgren’s pa-

ver [2], preserving his notation as much as possible. First of all, a definition:
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Definition: » For each n =0, 1,2, ..., let I(1,n) be the cell complex of the
unit interval I = [0,1] whose 1l-cells are the subintervals
[0,1-277],{1.27",2.27"], .., [(2" — 1) - 277,1], and whose 0-cells are the
endpoints, [0], [1-27"],[2-27"],..., [1]. One has the usual boundary homor-
phism
d:I(1,n) — I(1,n)
d([a,b]} = [b] —[a] for each 1-cellla, B]

d([a]}) =0 for each 0-cell[a].

o For each m = 1,2,3,... and each n = 0,1,2,...

I(m,n) = Z(1,n) ® ... @ I(1,n) (m times)

is a cell complex on I™, where o = ...y € I(m,n) is a p-cell and
dim{a) = p if and only if for each : — L...om, a; is a cell in I(1,n)
and 331, dim(a;) = p. Correspondingly, T (m,n), is the direct summand of

I(m,n) generated by cells of dimension p. The boundary homomorphism

d is given on each cell by

d(a):d(a1®-..®ai-..®am):Z(—l)"'(i)al®...®da,;...®a

i=1
o(i) = Edim(aj).
i<i
A cell Bis a face of a cell o if and only if for each i = 1,...,m, either B; = a;

or fB; is an endpoint of o;. The vertez set of o consists of all 0-dimensional

faces of a.
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With this notation in hand, let us recall some standard facts in Geo-

metric Measure Theory. The following result can be found in (10] §6.1:

o For each CLNR (compact Lipschitz neighborhhod retract) A € R™
there are numbers v > 0 and 13 < co such that, if T € Z(A), k > 0,

and M(T) < v}, then there exists S € Iy1)(A) with
85 =T and M(S) < 3 M(T)'*i. (2.9)

If T and § are as in 2.9, then § is called an M -isoperimetric choice for T,

Due to compactness properties of integral currents with the flat norm and
semicontinuity of the mass-norm one can make an isoperimetric choice §,

for T' as above, with the following additional property:

M(S) = inf{M(Q) : Q € Li11(4) and 8Q = T} (2.10)

An isoperimetric choice with this additional property is called a mass min-
imizing choice.
As an easy corollary of the above result we obtain the following: (cf. [2]

§1.13)

® For each CLNR A and each positive integer p, there is a number
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v = v(p, A) > 0 such that if T; € I(A), k>0, fori =1,2,...,P, and
P
S oT;=0 (2.11)
=0
sup{M(T}):i=1,2,...,pt <V (2.12)
then, there is S € Ixp1(A) which is an M-isoperimetric choice for
(Y2, T;) (there is even a mass minimizing isoperimetric choice) with

M(S) < sup{M(T;):1= 1,2,...,0} -

Recall that the flat norm Fa(T) of an integral current T € I{(A), for a
CLNR A is defined as
Fu(T) = inf{M(T +0S5)+ M(S): S € La(A))  (2.18)
As an outcome of the above results we also obtain the following corollary
o For each CLNR A there is a number v§ > 0 such that if T € Zi(A)

and Fu(T) < v, then

Fy(T) = inf{AM(Q) : Q € Iia(4) 9Q =T (2.14)

Furthermore, for some S € Iiyi(4), 85 =T and M(8) = Fu(T). I

S is as above it is called a FA-isopqmmetric choice for T'.

‘Combining all the results above we obtain the following Theorem which

ne of the main tools of Almgren’s constructions in [2].
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Theorem 2.2.4 For any CLNR A there exists a positive number vy with

the following property: Let

f:I(m,0)0 — Zi(A)

be any homomorphism satisfying:

Fa(f(a), F(B)) <va

whenever a and B are 0-cells in the vertez sel of some m-cell in T(m,0).

Then one can find a chain map
&%+ I(m, 0) — L{4) (2.15)

of degree k, such that

1. ¢|I(-m,0)a = f;

9. For each 1-cell o € I(m, 0), $h(e) is an F'y-isoperimetric choice for

$h(do);
9. For each p-cell @ € I{m,0),p > 1 ¢’ is an M -isoperimetric choice

for ¢f(da) as in 2.11 (with p 2 2™);

— sup{Fa(f{a), F(B)) : « and 8 are 0-cells lying in the vertex set
p-cell o € I(m,0),p > 1,

4. IO

of some m-cell in I(m,0)}, then for each

M($h(e)) < 0O,
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where p > 1 1s a constant salisfying

Ega(T) < Fa(T) < pFan(T)
for ol T € I(A);

5. If ¢' is another chain map satisfying (1), (2), (3) and (4), then ¢' is

chain homotopic with ¢,.

Remark 2.2.5 In his original construction, Almgren used F, and M-
minimizing isoperimetric choices. However one can see that any choice

satisfying the first four conditions of the theorem above actually yields the

chain homotopy of item 5. in the Theorem.

NOW, let us establish the link between what was said and what we are
ming at:
Given a continuous map f : I — Z,(X), and a constant A > 0, define

(A) > 0 (using a standard argument with the Lebesgue number of a

e cover of A) so that

Fx(f(a), f(B)) < A

ever dist(a,f) < 27V, Now, given f, A and Ny(}) as above, sub-

de I™ so-as to obtain the complex Z(m,n), as in Definition above, with
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n > N¢(A). In particular
Fx(f(e), f(8)) < A

for o, 3 being 0-cells of same m-cell € in T, (m,n). Therefore, for A suitably

chosen, we can apply Theorem 2.2.4 to fio (€ = I™), and in doing so we

get chain maps of degree k:
;f" : I(m,n), — wt+1(X)

for n > Ng(A). Observe that two such maps satisfying conditions (1),

(2), (3) and (4) are chain homotopic. This construction has the following

properties:

P1. Given £, f': (Im,I.m) — (2Z4(X),0), homotopic maps, then 4™ and

qb;’” are chain homotopic maps.

P2, There is a sequence of chain maps and chain homotopies connecting

the various ¢4", for n > N¢(v), with v as in Theorem 2.2.4.

These two properties allow one to (well-)define the Almgren map:

efinition 2.2.86 Define

A Z [E 5 ()] € Him(X;32)

ere ¢% is any X" with n > N¢(v), and the o;’s are the m-cells of
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The construction actually shows that we do have a well-defined homology

class.

Proof of Step 2 (Analysis of the complex suspension)
: i

Our purpose is to prove the commutativity of Diag. 1 above. As we

in Step 1, the complex suspension ¥ gives a chain map of degree 2

tegral currents of X and LX, respectively. It

saw

between the complexes of in

is clear that the map induced in homology by this chain map is the Thom

[0] € He(X), we have that [Yo] = 7([o]),

isomorphism, i.e., for a class

where T denotes the Thom isomorphism. : 5

Now, choose a representative f: (I’",i’m) — Zi(X) for a class [f] €

Tm( Z6(X)), and let ¥f denote the corresponding representative for ABAE

Let

o Let ot, v?, v* and v be the constants vk, vk, vy and vxas in 2.9,

|
214 and 2.11, respectively, where v = y(N(m) + 2, X) with N(m) i

being the total pumber of cells in Z(m,0). Let p be as in Theorem

2.2.4, item 4.

o Let v, o2, v, v/ and p’ be the analogous constants for ¥X.

.o Let v be so that
M(%o) < 1M(),

for ¢ € Li(X).
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Finally, choose § > 0 satisfying:

6 < min{l,vX, sz}, (2.16)
§-(Lt ) <o (217) |
maw{p,p'}(l + Ypther + N(m))5 < Vraa p=10,...,m. (2'18)

where vy and Vyx are as in Theorem 2.2.4.

Now, fixing any n > maz{N(8), Ngs ()}, we obtain Almgren’s chain

maps

$% : I(myn) > L4(X)

and

B35 + T(myn) = Lyya(BX) |

of degrees k and k + 2, respectively. Define: |

© = sup{Fx(f() - £(B)) : @, B € I(m,n)o},

O = sup{Fex(¥f(a) — BF(B)) : &, f € T(m,m)a}.

uppose, for convenience, that the chain maps above also satisfy M- and

‘-minimizing conditions, as in Almgren’s original constructions. From now

~we omit the subscripts from the chain maps.

Define a new chain map

¥ Z(myn) = Lppra(ZX)
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of degree k+2, as the composition Yo g/,

This chain map has the following

broperties:
a. If o is a 0-cell in Z(m,n), then

V(@) = E(4/(a))
= (@) =(Tf)(a)
= ¢2f(a) ’

since ¢ffI gy = f by definition.

b, If & is a 1-cell i Z(m,n), then

(@)= 60%og(a)

= Fo#(dn) = Pp(ay - ay)
= Afer~ ) = Pf(ar) = F(an)
= $¥(da)

= 9¢¥(a),

" where we write do == ay — @ with ay and g, O-cells in Z(m,n). Also

M) = M(3g(a))

S MenM(pf(a)) = Yer1Fx (f(oy) — flao))

Tr+10

(A

Ye41 6‘:
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where the second equality comes from the Fy-minimizing choice for

¢’ when restricted to the 1-cells of 7. (m,n), and the last inequality

comes from the choice of n > Ny(8).

c. Let o now be a p-cell in Z(m,n) with p > 1, and recall that ¢ (a) was
chosen so as to satisfy the conditions of Theorem 2.2.4. In particular,

we have the inequality M(¢f(a)) < p®, and hence
M(¥(a)) = M(Y$!(a))
< Ve (87(a)) < p4ep®
< Yo+k PO

Now, let us define, inductively, homomorphisms K; : 7 (m,n); — Lipya(BX )

as follows:

For ¢ = 0 let K, be the zero homomorphism.

Let o be a I-cell in I(m,n);. From item b. above, we have that !
8U(a) = 8%, Also |

M(¥ () — W(a)) S M(¢%(e)) + M(¥(a))

< M($P (@) + yerM(64(a)) \

= sz(zf(al) - 2f(ao)) + ‘}’k+1Fx(O[1 — ao) | ‘
< 6+ "}’k_,_lts .
= (14 1rg1)8

<' VI3
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Our hypothesis on § assures the existence of an M-minimizing isoperimetric

choice S € I 4(¥X) for ¥ (a) — ¥(e) satisfying the conditions of 2.11.
Define Ky(a) = § and notice that

gﬁxf—‘p:aOKl-f-KoOd
and
M(Ky(e)) < sup{M(¢¥(a)), M(¥(a)},
the latter inequality coming from 2.11.

Suppose, inductively, that we have defined homomorphisms K, for

P < po, satisfying 5
$ -V =00K,+ K, ;0d »
and
M(Kp(a)) < sup{M($%(a)), M(¥(a)},

on p-cells. Let & be a (po + 1)-cell in Z(m, n) and set T = ¢¥/(a) — ¥(a) —
K,,(da). Now, observe that da — 2., where the a;’s are py-cells not

exceeding N(m) in number. Hence we have
g ,

MKy, (da)) < 35 M (i) < N(m) maz{ MKy ()}

It is immediate from its construction that T — 0, and, |

M(T) < M($*(e)) + M((e)) + M(K,, (dex))




< PO + b4 21© + N(m) maz{M(K,(a;))}
< 00"+ %50 444100 + N(m) maz{p®, p'0'}
< maz{p, P'H1 + vy 1441 + N(m))§ < o,

Our choice of § again implies that we can make an isoperimetric choice
5 € Tiypy+4(EX) for T, as in 2.11, and define Kp11(a) = S. We now see
that the maps K, provide a chain homotopy between ¥ and ©. Finally,
let {a;} be the m-cells of Z(m,n). Since ¢*f and ¥ are chain homotopie,

-we have equality of homology classes:

[ )] = [67(3] o).

However, by definition, the first class is

A 67 ()] = 7[30 ¢7(e)] = 7 0 Alf),

)

and the second one is

(6P )] = A(RA) = Ao Y1),

This concludes the proof of Step 2. o

Proof of Step 3.

Choose f : (I’“,}m) — Z,,(X) representing a class [f]in 7,,(Zx(X)), and |

\
: am+4-2 . H
let #4f . (Imt2 ) = Zra(PHHX ) be the corresponding representative
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for #.1f] in Tt2(Zrp2(P'#X). Choose n > maz{N(8), Nys(8)}, for &
suitably chosen. Asin Step 2., let

¢’ 1 I(m,n) = I, 4(X)
and
¢*: T(m + 2,n) = Lyrs2(PTX)
be the associated Almgren’s chain maps. Define a new chain map
g I(m + 2, n) e d *+k+2(P1#X)

by sending a p-cell o = AR B ® Oy © Ay to

Y(a) = ¢/ (o' #a",

H
where o' = o ®...Q a,, o

= Omi1 ® Qpyg, and we are identifying

. . o2
X +1@ 2 With an integral cycle of dimension d, supported in P! = J?2 /I

Our map ¥ satisfies the following properties:

a. We have
0¥(a) = 0(¢’(a)#a")
= (¢ (o))" + ¢ (o) (8"
= U(da)

in other words, ¥ is a chain map,
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b. Let & = o' @ a" be a 0-cell, and hence a” is identified with a point

P° € P!, Therefore:

Y(a)= ¢/()#a" = ¢ (a)f#P°
= f(a)#P° #f(o' @ a")
= ¢*(a).

c. If ais a 1-cell, then either &' or a” is a point, and hence, either
0o = —a' ® (8a")

or

da = (0a') @ .

Therefore, in the first case we have:

(o @ ") = ¢ (da)Fa”
= (f(e}) — f(ah))Ha”
= fo)#a” ~ flog)#a” g
= #7(e, ® a") — #f(ch ® o)
= #f(de’ ® ")

I (o' ® o).




Similarly, in the second case:

0¥ (' ® ") = ¢f(a)Ftda"
= ¢ (ol — af
= f(a)ftay — f(a)ftal
=#f(a'® af) - #f(! ® o)
=M Ba)
— 0¢* (o @ o).

Therefore, 0¥(a) = 9¢#7(a) for all 1-chains. _ '

Furthermore, we obtain inequalities, e.g., in the first case:

M(¥(a) - $*/(a)) < M(¥()) + M($*(a))
< M(# (o) a") 1 'O
= M(Z¢* (o) + o0
<yM($*(a')) + o0
= 7F($*/(da)) 4 p'®’
<00 +p'0"
<(vp+p)8.

In the second case we obtain similar inequality.
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d. For p-cells o = o' ® o, we first note that we may bound, a priori,

the mass M(a") in P! by a constant, say C, since the currents o

correspond to canonical subdivisions of the unjt square. Now, given

a p-cell, p > 1, we have:
M(¥(e) - $*/(a)) < M(T(a)) + M(#/(a))

< M(¢# (a")#a") + p'®’
< yM($H (o)) M(a") + p'O’
<4CpO 4 o'’
< (vCp 4+ p')6.

- With the above properties in hand, after a suitable choice of d, we can
construct a chain homotopy between ¥ and $*f in the same way we did

in Step 2.

Finally, let {a;; = o/ ® of} be the m-cells of I{m+2,n). By definition,

i

(2 )] = [ 6# () 3 o

= [#(3 e #P"] = [E04#(T )
= o r[$* (Y ap)]

=7 o7 o Alf],
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and this concludes the proof of Step 3. .

Corollary 2.2.7 et fiX >Y bea morphism of algebraic sets. Then

the morphisms induced by f on Lawson homology and on singular homology,
commute with the “generalized cycle maps” s, % of X and YV respectively.

In other words, for every v and i > 0, the following diagram commutes:

fa
LpHi+2p(X) —_ I’pHiHP(Y)

bd P
x| |2

LoHiy2p(X) 5 LoHig(Y).

Proof

The corollary follows from the corresponding property for continuous maps

between CLNR’s (compact Lipschitz neighborhood retracts) and the Alm-

gren’s map, cf. {2]. O

Remark 2.2.8 The above corollary is simply the statement that the

singular homology. The same techniques used above can also prove the




62

naturality of the relative cycle map 2.2.2 with respect to morphisms of

pairs f: (X, X') (Y,Y").
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Chapter 3

Excision

3.1 An “excision type” result

Here we present a result relating relative isomorphisms of pairs of algebraic

sets and the relative T,awson homology. This will turn out to be one of the

‘main computational tools of the present work,

sDeﬁ_nition 3.1.1 A4 relative isomorphism ¥ : (X, X)) & (Y,Y") between

ective sets X\ X' and Y \Y'. We say that two pairs of algebraic sets are

éla.tively isomorphic if there is a relative isomorphism between them.

Observe that in case X and ¥ are irreducible sets, this notion coincides
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with the usual notion of birational equivalence, with a little extra informa.

tion.

Remark 3.1.2 Given a relative isomorphism of pairs W : (X, X"

(Y,Y"), consider the subset T — {(z,9(z)):z2e X \ X'} of X X V. Let

-I‘_betheclosureofl"inXxY,andletf:f‘_-—>X, g :T — Y be the re-

strictions to T of the pro jections onto the first and second factors of X x ¥,

respectively. Define T' ¢ T to be T \ I Then we see that the relative

isomorphism of pairs ¥ ; (X, x) & (Y,Y"} fits into a “correspondence of

pairs”

(F,T)
(X, X") v (Y, ¥

- with actual morphisms of pairs f : (F,f’) — (X,X') and ¢ : (T,T‘_’) —

—

Y,Y") realizing relative isomorphisms between (T,T'} and (X, X", (Y, 7"

espectively.

. efinition 3.1.3 et (X, X'W\be a pair of algebraic sets, X' ¢ X — PV,

Ve adopt the following notation:




65

o T,q4(X,X') “ s € Cpa(X,5) : 0 has no component in X'}

To.n(X, X') Y Upep Tpa( X, X7);

Tp(Xs X’) £ Up TP,SD(X’X,)5

. def .
CP:SD(-X:J) = Ung_Cp.d(X?J);

de . . . .
K:D(X) = Cp,SD(X;J) x Cp,SD(XaJ) - Cp(X,J) X Cp(XaJ)-

Notice that Y,(X,X’) is a submonoid of C.(X,7) and that Cp<p(X,7) is

an algebraic set. Using the canonical projections p : CP(X,j)‘x Cp(X,5) —

C(X) and 7 : Cp(X) — ~p(X)/C~p(X') = 6 (X, X") we finally define the

sets:

Ko(X) ¥ p(kp(X)) c &,(X);

Tosn(X, X) E p(T,,0p(X, X') X T, ep(X, X)) Co(X);

To(X, X") E Up Tpen(X, X);

Qo(X, X") ¥ n(Kp(X)).

Here, the sets {ICD(X)}}’J":l and {QD(X,X’)}J?J‘"=1 form a filtering family

of compact subsets of C,(X) and Co(X, X' ), respectively. Also notice that
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T,(X, X") is the subgroup of C (X ) obtained by (naively) group-completing
T.(X,X"). Summarizing we have the following commutative diagram:

TosolX X)X Tpn(X,X') ——  Kp(X) —— C,(X,5) x C,(X, )

l L l '

TPSD(X’X') - ‘%D(X) I ép(X)

I =
Qp(X, X"} —— C(X,X"),

where the horizontal arrows are inclusions and the vertical ones are proclu-

"siomns.

From the above picture we draw the following
Lemma 3.1.4 Let (X, X'} be a pair of dlgebraic sets. Then:

(a) The topology of Co(X,7) %X Cp(X, ) is the weak topology induced by the

filtering family of compact sets Ki(X) C Ky(X) . LKp(X)cC....

The same holds for ép(X) and 5P(X,X') with respect to the families
Ki(X) € Ky(X) C ... and Qi(X,X") C Qx(X,X") C ..., respec-

tively.

(b) The composition TP(X,X') — C)(X) — ép(X,X’) is an abstract group

isomorphism which takes Tp<p(X, X") onto Qp(X, X).

By definition C,(X,5) = Haso Cpa(X,7) has the disjoint union topol-

of the algebraic sets Cpa(X,7), with their analytic topology. Since
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Co<n(X,7) is the disjoint union of the compact sets Coa(X,5), d < D,
it is clear that the intersection of g subset F of Co(d, 7) with Co<n(X, 5)
is closed if and only if its intersection with each C, 4(X, J) is closed for
all d < D. Hence the weak topology given by the filtrat

C...of Cu(X,5) coiﬁcides with its standard topology. From
this we conclude that Co(X,7) x C.(X,7) has the topology given by the
filtration by the Kp(X)’s.

Now, since p : ¢, (x, 7) X Cp(X,5) — (X)) is, by definition, a pro-
clusion and (X ) is Hausdorff (see Remark 2.1.2) we know that C(X )
has compactly generated topology. Let F be a subset of C,(X ) with the
property that F N Kp(X) is closed for all D. Therefore PH(F N Kp(X))
is closed, which is equivalent to Y FN IED(X)) NKp(X) being closed for

all D, D', In particular

closed in Co(X), in
other words, that the topology of &,(X ) is generated by the filtration given
Y Ki(X) c Ry(X) ...

A similar proof applies to C,(x, X ).

(b) Both maps T.(x, X) > C,(X) and C(X) —» (Z,(X,X’) are homo-
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morphisms of groups, hence so is theip composition, furthermore, the first
map is an inclusion. Recall that the kernel of Co(X) — Co(X,X") is C,(X")
which, in turn, intersects (the image of) TP(X yX') only at the identity of
the group, since the elements of T,(X,x ) have no components contained
in X'. This makes the map TP(X,X’) — é;,(X,X’) injective.

Now, choose an element [o] ¢ C(X,X ). It has a representative ¢ €
(:’;,(X) with no components contained in X', in other words, o € T.(X, X",

which shows that the map is also surjective.

The last assertion follows from the definition of the objects involved. [

The following proposition is the essential tool for the main result of this
Chapter:
Proposition 3.1.5 Given o morphism of algebraic pairs f (X, X") —
(Y,Y") which induces a relative isomorphism between (X, X') and (Y,Y"),
we have that the induced morphism fy 1 C,(X,5) — C,(Y,%) of Chow

. monoids restricts to a homomorphism of submonoids

o T X, XT) = T(Y, YY),

F (Tpca(V,Y)) € T, cn(X, X7),
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Proof

Take a p-dimensional subvariety V C X not contained in X'. Since fi, .,
X\ X' 2 Y\ Y’ is an isomorphism, we see that f (V) is a p-dimensional
subvariety of ¥ not contained in Y’. Also we have that deg(V/f(V)) =1,

since fj,,, restricts to an isomorphism between V' \ (V N X') and JiUARY

(F(V)NY'). Therefore
F4(V) % deg(V/F(V)) - F(V) = F(V) c T,(Y, 7).

Extending the result by linearity to all of T,(X,X') we obtain the first

assertion of the Proposition.

In order to prove the remaining part of the Proposition we need the

following technical

Lemma 3.1.6 Given f : (X,X') — (Y,Y') as in the Proposition 3.1.5,

there can not exist a sequence {V,}3, of p-dimensional subvarieties of X

satisfying:

(a) limsup deg(V,) = 03

(b) degfs(Va) < M, for some constant M, for all n;

(c) Vo ¢ X', for all n.

Let us finish the proof of the Proposition 3.1.5 before we prove the

Lemma. Assume the Lemma is true and suppose the Proposition does not
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hold. In other words, there exists d > 0 such that

FE (Tp.calY,Y")) € T, cal X, X7)

for all n > 0. This allows us to select & sequence of p-cycles {¢,}2., con-

tained in Y,(X, X") satisfying:

dego, >n and deg fao, <d,

for all n. Write 7, = ¥l ki V™, where the V;™’s are irreducible subvarieties

of X not contained in X'. As we pointed out at the beginning of the proof,
we have deg(V*/ (V")) = 1, and hence

Falon) = Zk' ~deg(V/£(V)) - f(V”)~ZIcz - FV).

i=1

Suppose that deg(V*) < B for all n and 1 < ¢ £ 1,, where B is some

constant. In this case one has

n<degao _th' <deg(V™) < Zk" - B

=1

r all n. On the other hand, by hypothesis

M > degfy(o,) = Zki deg(f(V")) > Z
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which is a contradiction. Therefore no such constant B can exist. In other

words

limsup deg(V;") = oo

and degfg(V") < degfg(on) € M, which contradicts the Lemma, and the

Proposition is proven. . ]

Let us proceed to the proof of the lemma:

Proof (of Lemma 3.1.6) It suffices to assume that X and Y are irreducible,
for if {V,,} is an infinite sequence of irreducible subvarieties of X (not con-
tained in X'} we can extract a subsequence {V...} so that all Vs are
contained in a unique irreducible component X; of X. Define Xi=XnX'
and observe that f(X;) must be contained in an irreducible component
Y, of Y. Define ¥y = ¥; NY", in doing so we obtain a morphism of pairs
f: (X1, X)) — (¥3,Y7). Since fl,, 18 an isomorphism of quasiprojective
sets, its restriction to X;\.X] C X\ X' establishes an isomorphism between
X, \ X! and Y1 \ Y7, because the restriction of (ﬁx\x,)‘1 to Y3 \ Y] sends
Y; \ Y; into some irreducible quasipro jective subvariety of X \ X' which
the, turns out to be X \ X}. Therefore f : (X1, X1) — (Y1,Y]) is a relative
isomorphism and the sequence {V,,;} satisfies the hypothesis of the lemma
with X, and ¥; irreducible.

We now use induction to prove the lemma with X and ¥’ irreducible.
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For p = 0 it is immediate, since a 0-dimensional variety is a point which

has degree 1 always.

Consider the case p = 1. Take a sequence of irreducible curves V,, C
X satisfying the hypothesis of the lemma. We may assume deg V,, >
‘n. Observe that the set V “Yy.nXis finite (or empty), since V, is

irreducible. Now use the following facts (see e.g. [16], page 174)

e The generic hyperplane intersection of an irreducible subvariety of PY

of dimension > 2 is irreducible.

» The generic hyperplane intersects the curve V;, transversally and misses

the finite subset V,, C' V,,,

to obtain (by Baire category arguments) a hyperplane H C PY satisfying:
(a) H is transversal to V,, for all ng
(b) HNV, = HnNnV,NnX'"=9, for all n;

(c) H N X is irreducible and is not contained in X'.

Now, we first observe that (by definition), the cardinality of the inter-

section of V,, with H is its degree, and hence,

BHNV,) Y deg(V) 2,
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by hypothesis. On the other hand, since H N X is irreducible and not
contained in X', we have

fe(HN X) = f(HNX),

as observed at the beginning of the proof of the Proposition 3.1.5. Call
D= fHNnX)CY c PM, As a subvariety of PM D) is a set-theoretic

intersection of a finite number of (irreducible) hypersurfaces Hy,..., Hy C

PM . Consequently,
FHNV) = (ENXAV,)C HHNX)N V) = Dn f(Va).

Since f(V,) ¢ D, there must be one hypersurface H;, (among Hy,..., Hy)

not containing f(V,). From this we get:

#FDONFVR) SH#HyNFVR) < S0 i(Hyy, f(Va); )

w€H; N f(Va)

= deg(Hj,) - deg(f(Va) < sup{deg(H;)} - deg(f(Vn),

where i(H;,, f(V,.);z) denotes the multiplicity of the intersection of Hj,
~and f(V,) along ®. Again by hypothesis deg fz(V,,) = deg f(V,,) < M, and
#f(V. N H) = #(V, N H), and hence:

n < deg(Vo N H) = #F(Va N H) < #(D N f(Va)) < S - M,

where S = sup{deg(H;)}. This is s contradiction.’




74

Suppose, by induction, that the lemma js true for subvarieties of dimen-
sion <p—1, p>2 Let {V,} bea sequence of p-dimensional subvarieties
satisfying the hypothesis of the lemma, and suppose that degV,, > n. Us-

ing the same general position arguments as before we can choose a generic

hyperplane H C P¥ so that:
(a’) H NV, is an irreducible (p-1)-dimensional subvariety of PV;
() HnV, ¢ X';

(¢’) HN X is also irreducible and H 1 X 7 X'.

Define D = fu(H N X) = f(H n X), and let Hy, H,,... H, be irreducible
hypersurfaces in P whose set theoretic intersection is D. Since
f(VanH) C f(Vo)N f(H N X) =f(Va)ND=fV)nH.N...NH,

and f(V, N H) is irreducible, we know that Ff(Va N H) is an irreducible
component of the intersection f(V,)n H;,, for some j, such that V) ¢

Hj,. Write f(V,)n H;, =, Z,, Z, irreducible. Therefore
deg f(Va 1 H) < Y iy, f(Vi); 2,) - deg 7,

= deg H;, - degf(V,) < sup deg H;} . M.
E i

However deg(V. N H) = degV,, > n, which contradicts the induction hy-

othesis, and proves the lemma. t
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We now prove the MAIN result of the Chapter, essentially as a corollary

of the previous results.

Theorem 3.1.7 Let (X, X') and (Y,Y"') be relatively isomorphic pairs of

algebraic sets. Then, any given relative isomorphism ¥ : (X, X') « (Y, Y’)

induces an isomorphism of topological groups:
0, : Cp(X, X') =5 E(Y, YY),
for allp >0,

Proof

Consider the correspondence of pairs described in Remark 3.1.9:

(T,T)

( X, X') --—(Y, Y’)

B_uilt from the relative isomorphism ¥. Here we have two morphisms of pairs
and g which induce relative isomorphisms between (T, -I_") and (X, X"),
Y,y ) respectively. Therefore, it suffices to show the theorem when ¥ is

actually a morphism of pairs, for we can take gx © 71 as the definition of
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Observe that a morphism of pairs ¥ : (X,X") - (Y,Y") induces, natu-

rally a morphism of topological groups:
Co(X, X"y = (Y, 1),

To see this, consider initially the natural morphism ¥, : @,(X) — :,(Y)
induced by ¥. Since ¥(X') C Y, then ‘I’*(é‘p(X’)) C (:';,(Y'). Hence,

we

have the following commutative diagram of (abstract abelian) groups and

" homomorphisms:
GX) o G
m| R
CAX)/CX) —— G(V)/E (),
by the universal property of quotients in the category of groups. The con-
tinuity of ¥, follows from the corresponding universal properfy for proclu-
' sions, in the category of topological spaces.
Let us assume, from now on, that ¥ is a relative isomorphism. In
- Proposition 3.1.5 we saw that Py takes T,(X, X') into T,(Y, Y"), and hence
iI’* : fp(X )= C (Y) restricts to a group homomorphism ¥, : To(X, X ) —
(Y Y’ ), since T,(X, X’ ), (respectively T,(Y,Y" )), is the group comple-
ion of T,(X,X"), (respectively Y,(Y, Y').

We claim that ¥, ; T?(X,X’) — TP(Y, Y’) is a group isomorphism.

‘roof of claim
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Surjectivity: Let V be irreducible subvariety in T,.(Y, Y’ ). We see that
V\Y'is an irreducible, p-dimensional quasipro Jjective subvariety of Y\ Y'.
Define W = f=3(V' \ Y"), it is easily shown that ¥(W) = V aund that
deg(W/¥(W)) = 1, since ¥ : W\ X' - V \ ¥’ is an isomorphism of
quasiprojeétive varieties. Therefore ¥,(W) = ¥(W) = V. For a generic

cycle o =30, naV,, define Wy, as before, so that ¥ (Wy) =V, and hence

T W) = 3 0, (W) = > W =o,
. p Y

i.e., ¥, is surjective.

Injectivity: Suppose ¥,(c) = 0. Write ¢ = oy — g5, with both oy and
oy effective cycles, that is, o1 = 2;21 maW, and o, = > p—1 MW, with
Ma, g > 0 and {W,}, {Ws} the distinct irreducible components of 71, Og
respectively. Since ¥,(s) = 0 we then have V. (o1) = ¥,(03), which implies
- that r = s and there is an index permutation so that oy = 37 _, m,W, and
0y = Y ma WA, and (W) = T, (W2). Now both ¥=1(T(W, \ Y"))
and U~ (¥(W2\Y")) are Zariski open subsets of W, and W2 respectively.
Furthermore, they are equal, since U(W,) = ¥, (W,) = T (W) = T(WD).
By irreducibility we obtain that W, = W2, for all a = 1,...,7, and hence

= 03, which shows that ¢ = 0 and ¥, is injective.
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Summarizing we have the following commutative diagram:

~ !I,* ~
Co(X) ——=2 C,(Y)
7 ji..‘fp(y, Yf) Yy

Co(X, X') -—Lan C (v, 1)

T,(X,X)

The claim above shows that Y, (x.x» 18 an isomorphism and the Lemma
F AR b .

)
3.1.4(b) shows that both TX|gx.xny 20 TYls v,y 8T€ isomorphisms. By the
commutatlivity of the diagram we obtain that ¥, is an (continuous) isomor-
phism.

In Lemma 3.1.4 we have shown further that WX(TP,Sd(X: X)) = Qq4(X,X")

and Wy('i‘p,sd(l’, Y")) = Qu(Y,Y’). By Proposition 3.1.5 we know that for

every d > 0 there exists D > 0 such that

U (Lo Y,Y")) € Tpen(X, X,
and hence )
(T, YY) € 1o (X, X0).

Consequently

T QuY,Y")) = (ny 0o ¥, 07y )7 Qu(Y,Y"))

1
It px,20)

= mx (7 (77 (Qu(Y, Y'))) = mx (U7 (T pea(Y, ¥))
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C 7x(Tpen(X, X") = Qp(X, X").

Now let F' be a closed subset of C(X,X '), and, given d > 0 choose

D > 0 as above so that
LF) 1 Qu(Y,Y") = W,(F 0, (QuY, ¥')) 1 Qu(¥, ¥')

= T.(F N Qp(X,X") N QuY, Y.
Since Q@p(X, X') is compact and F is closed in ¢.(X, X'), then FnQp(X,X")
is compact and hence ¥, (F N @p(X,X") is cor;upact. From this we con-
 clude that ¥,(F) N Qu(Y, Y") is closed, for all d. Therefore T, (F) is closed,
by Lemma 8.1.4(a). This last conclusion shows that U, is a closed map, and

hence a homeomorphism, that is, an isomorphism of topological groups. [

Corollary 3.1.8 If (X,X') and (Y, Y') are relatively isomorphic pairs - i

then they have isomorphic Lawson homology, that is:

(X,X) & (V,Y") 5 LHip0(X,X') = Lo Hiyop(Y,Y),

for all p and 1.

corollary 3.1.8 Let (X, X'} and (Y,Y') be relatively isomorphic
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If the relative cycle map

SPX,X' : LpHi_i_gp(X,X') — -Hi-I—Zp(X)X’)

is an isomorphism, for fized p > 1, and i, then so is si',,y, (in the same
bidegree), and vice-versa,

Proof

Suppose there is a morphism of pairs f : (X, X') — (Y,Y") realizing

the relative isomorphism. From 2.2.8 we know that there is a commutative
diagram:
LpHi+2p(X7X,) _f:“*’ LpHi+2p(Y: Y’)
";,x"" j"’ji",v'
Hyypop( X, X7) _}:’—’ (Y, Y),.
It follows from the above theorem that the top row is an isomorphism. Now,

_since X' and Y are algebraic subsets of X and Y respectively, the pairs

(X, X') and (Y,Y") are NDR-pairs (because we can give a CW-complex

structure to X and Y so that X’ and ¥ are closed subcomplexes, see (33]).

herefore H,(X,X") (respectively H,(X,X ’}) is isomorphic to the reduced
mology H¥(X/X') (respectively H¥(Y/Y")). Since f : (X, X") — (v, Y
a relative isomorphism, it induces a homeomorphism f: X/X' — Y/vy!

d. the result follows from the comrmutative diagram above.
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Now, suppose (X, X ') and (¥,Y7) are arbitrary relatively isomorphic

pairs. Consider the correspondence

(T,T)

/N

(X D, ¢ EES— — Y')

described in Remark 3.1.2, and look at the commutative diagram:
L Hiyg(V,Y") 2, Hiy2p(Y,Y)
g.f g]“g.
Ll OF 2, (T T)
v 7|

Sx.x? .
Ly Hiynp(X, X') —" Hypp(X, X)

Although S5 1s not necessarily an isomorphism, chasing the diagram cor-

rectly shows that Sy,y is an isomorphism. O

3.2 Some examples

Here we use the previous results to compute the Lawson homology of prod-

ucts of projective spaces P x P™ and of hyperquadrics Q,,.
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Example 1: Products of projective spaces.

We will show, by induction, that the cycle map spaypm 1 L H; 5 (P® %
P™) — Hiyap(P™ X P™) is an isomorphism for all n, m.

The induction is on the sum N = n 4+ m. For N = 1 we have that
P™x P™ = P, In this case the result follows from the Dold-Thom theorem,
since Co(P!) = SP2(P) and C;(P!) & Z. See [23] for details.

Suppose the result is true for any product P* x P* with = +s< N -1,
and take P™ x P™ such that n 4+ m = N, N >2

Embed P* x P™ into PP tm+n yig the Segre embedding j : P* x P™ —s
prmimin This is the embedding provided by the complete linear sys-
tem associated to the divisor D = H, + H,, where H, = P»-1 x pm
and Hy = P™ x P™! are two effective generators of Div(P™ x P™), and
P! = {pt} when n < 1. Observe that H; N I, = P! x P™~1 and that D
is the divisor obtained by a hyperplane section of P* x P™ in prmtmtn
Remark 3.2.1 Since D = H, + H; has no weights on its irreducible
components, we use D to denote both the divisor and the algebraic set

D = H, U H,, indistinctly. Also we assume n <m, p>1.

First of all, let us compute the cycle spaces C;(D) associated to the
algebraic set D. Notice that the inclusion i s (Hy, Hy N Hp) (D,Hg)

induces a relative isomorphism.




83

Here we point out that Hy = Pr~1xpr g, = pryx pm-1 414 HiNH; =
P*! x P™~! satisfy the induction hypothesis, and hence their cycle maps
establish an isomorphism between Lawson and singular homologies. From

Proposition 2.2.2 we obtain a map of exact sequences:

o LpHipap(Hi) —— LyHiop(Hy, HiNHy) ——  LH: 44,
El-’irl l";rl,HlnH;, EJ"’gﬁ nHy
...H{_{_gp(ﬂl) Em— Hi-l—Zp(HI’ H] ﬂHz) —— i—1+2p(H1 ﬂHz) —

which implies that St #inH, i an isomorphism, by the five lemma. Since

i: (Hy, Hy N Hy) (D, H,) is a relative isomorphism, this shows that
SPD,H;; : LpHi+Zp(D:H2) - Hi+2p(D:H2) (3'1)

is also an isomorphism, according to Corollary 3.1.9 .

Now, the cycle map between the long exact sequences for Lawson and

singular homologies of the pair (D, H,}, together with 3.1 and the five

lemma shows that
$p : LpHiy2p(D) — Hiya,(D)

is an isomorphism, for all i and -

Let us go back to P x P™, We know that
PEXPT\ D= C" x C™ = CvHm o2 prim |\ prdm-1,
Again we have an isomorphism

SgﬂxiF’m,D P Lol (P x P™, D) = irap(P" X_Pm:D)
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from Corollary 3.1.9, due to the corresponding property for the pair (Pm+m, prim-1),

Now we finally use the cycle map 2.2.2 of exact sequences for the pair

(P* x P™, D):
o -LpHi+2p(D) - ‘TJPJFL'+ZP(IFIm x Pm) - LpHi+2p(Pn X Pm:D) T
ElSD 15;“me . g‘[s;"x?m,D

.. .H{_[__gp(D) —_— HH_gp(Pn X Pm) —_— H.;+2p(Pn X Pm,D) . —_—
and the five lemma again completes the proof.

Example 2: Hyperquadries Q,, C P+,

Let @, C P™! be a smooth quadric, that is, a quadric of rank n+1
(and dimension n), and let H be a hyperplane in P"+! which is tangent to

Qn at some point py, € Q... Recall the following facts:

1. The intersection H N Q,, is a singular quadric of rank n-1 in H , and
hence it is isomorphic to the complex suspension ¥Q,_, = po#t Q2
where Q,_, is the intersection H N &, N H', with O’ being any

hyperplane in P! pot containing pg.

2. With po, H and H' chosen as before, consider the projection

P\ po — H', away from py. Let p:Q, \ (Q.NH) - H’ be the
restriction of 7 to @, \ (@, N H). A standard argument shows that p
is, actually, an isomorphism onto H'\ (H N H') = P~ \ P*1 From

now on, denote Q, N H by Z)Qn.-




From Theorem 3.1.7 we have

ép(Qm Z:Qn—Z) = ép(Pns Pn_l) = K(Za 2(” - p)),

and by Corollary 3.1.9 we conclude that

SZn:y:Qn-z . LpHi-HZp(Qn: 2Qn-2) — Hi-l-ﬂp(gn, zgn—!!)

is an isomorphism for all p=1,22>0. Recall, from the proof of Proposition

2.2.3, that we have the following commutative diagram:

‘,Qu—Z

LPHi+2p(Qn—2) —* i+2p(gn—2)

:_"ilx Elr
Loty Hiyopr1)(EQnn) —— irpr2(EQn_2),

where 7 is the Thom isomorphism.

Now, let us use induction on the dimension of the quadrics., For

n =1, @ 2 P! and the result is already known to be true for this case.

Also,forn =2, Q, ™ pt P, which also has already been studied before,

~ Assume the result is true for all quadrics Q,, r < n - 1, for some fixed

7 2 3. In other words, the cycle map

Sg, LPHi‘l‘.zP(QF) - i+21‘(Q")

S an isomorphism for all 5 20 p21,r<np- 1, for some fixed n >

. From the above dia.gra.ni and by the induction hypothesis, 89, , 1s an

somorphism, and hence 5%0,._, also is an isomorphism, Now, assemble
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everything together in the long exact sequences (in Lawson and singular

homologies) for the pair ( @n-2,¥Qn_2). Since sgg, , and 31;2“,252“._2 are

both isomorphisms so is sg_ by the five lemma.

Remark 3.2.2 We can rephrase the above result by saying that there is

a homotopy équiva,lence

Co(Qn) 2 Cp(Qn2) X K(Z,2(n — p)),

forallp>1, n>2,

Remark 3.2.3 We remind here that a singular quadric Q* ¢ P, of
rank k, is isomorphic to the iterated complex suspension ¥"*Q, where
Q& is a smooth hyperquadric contained in a linear subspace PF+1 C pril,

Therefore, the complex suspension theorem asserts that

Co(Q8) 2 G (),

which, combined with the above results yields I

G, (Qk = ép+k—n(gk—2) x K(Z, 2(n - P))
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3.3 On the pro Jective closure of vector bun-

dles

Let E 5 X bea holombrphic (actually algebraic) vector bundle of rank »

over a projective variety X. Recall the following definitions and facts:

e.g. [16], [17] or [19])

(see, |

1. The projectivization of E, denoted P(E),
P(E) 2

is the projective bundle

X over X, whose fiber P(E), is the projective space P(E,)

of lines in E,, where I, is the fiber of E ™ X over €X.

2. There is a tautological line bundle {x — P(E) obtained as a subbun-

dle of p*F,by taking as fiber over [v] € P(E) the line v C Eyy) that

v| represents. Notice that its dual, g, restricts to the hyperplane
P

bundle H — P(E,) on each fiber of the projective bundle P(E). See

.

E,*E 2y

5

pE E

(E)

diagram:

3. The projective closure of F is the projective bundle P(E®1x) 2 X

over X, where 1y is the trivial line bundle over X. Recall that, since
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E®1x carries two canonical subbundles 0@ 1y and E@ 0, we have a
zero section X =P(0 @ 1x) &2, P(E®1x) and a “section” at infinity

P(E)=P(E®0) 3 P(E @ 1x). Furthermore, the composition
P(E) SP(E@1y) 5 X.

is the projective bundle P(E) S Xx.

4. The fiber P(E® 1x), is the projective space P(E, @ C) and it can be
seen as the complex suspension YP(E,). This easily shows that the

set P(E®1x)\s0(X) is the total space of the line bundle ¢z — P(E).

5. Analogously, P(E @ 1x) \ P(E) can be seen to be the total space of
the bundle £ — X.
6. We define a vector bundle £ — X to be “very ample” if the line

bundle £éz. — P(E*) provides a projective embedding
P(E") = P(L(P(E"), é5-)").

7. Our last definition is that of a Grauert-positive vector bundle & — X.

It is a vector bundle where we can blow-down the zero-section of its

dual E* — X. In other words, the topological quotient space E*/X

admits a structure of analytic space (or algebraic, depending on the

context). It can be seen, sce [31], that a very ample (even ample)

bundle is also Grauert-positive.
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Now we are in a position to state the following result:

Theorem 3.3.1 Let E — X be q vé.ry. ample vector bundle over a projec-

tive algebraic variety. Then, the following homotopy equivalence holds:

Co(P(E” ® 1x)) = E,(X) x ,_4(P(E*)),
for allp > 1.

Proof

Let X < P(E* @ 1x) be the zero-section of the projective bundle P(E* @
1x). Denote by W 5 P(E* ® 1x) the blow-up of P(E* @ 1x) along X.
Recall (from the remarks at the beginning of the section) that P(E*® l.x) \
P(E*) — X is the vector bundle E*, where P(E*) is the “section” at infinity;
this easily shows that the normal’ cone Negrg1)X of X CP(E* o 1x)is
E*, (see [17] or [19]). Therefore, the exceptional divisor in the blow-up W
is given by P(Np(z-91,)X) = P(E*) and the normal cone to the exceptional
P(E*)is the ta.utoiogical line bundle ¢}.. Actually, it can be seen that W is
the projective closure P(¢4. @ 1x) of thé tautological bundle ¢5. — P(E*),
and that the exceptional divisor is the zero section P(E*) & P(E* ®1x)

with normal bundle P(¢}. @ 14)\ s, = e, where s, is the “section” at

infinity.
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The advantage of this point of view is that it provides us with a flat

map f: W — P(E*) and hence we have the following situation

/\

P(E* &b 1)()

where p is the blow-down map.

Now, observe that the map of pairs 5 : (W,P(E*)) — (IF”(E" ® 1x), X)

is a relative isomorphism, with P(E*) and X being the zero sections of

P({%- @ 1x) and P(E* & 1x), respectively. It follows from Theorem 3.1.7

that p induces an isomorphism of topological groups

Pyt ép(W? P(E")) — ép(P(E* ® 1x), X). (3.2)
Notice also that, since £ — X is very ample, it is Grauert-positive and

we can blow-down the zero-section of E* — X, Therefore we can blowdown

the zero section of the projective closure P(E*®1x) — X of E*, obtaining

a variety ¥ and a sequence of blow-downs

=Pp 01x) ZP(E 014) 4 Y, (3.3)
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Recall that £z« — P(E*) corresponds to the hyperplane bundle H of an

embedding of P(£*) into a projective 'spa,ce P¥. Therefore we have that

and that the composition of blow-downs W “ry corresponds actually
to the blow-down of W to the Thom space Y of the hyperplane bundle
H = £g. — P(E*). In other words, Y is the complex suspension ¥P(E")
of P(E*) for the projective embedding of P(E*) induced by {ps. It follows

that d induces a relative isomorphism
d: (P(E*®1%),X) — (Y, v0),

where 3 is the image under the blow-down of the zero-section, and there-

fore, from Theorem 3.1.7 we have an isomorphism of topological groups
2. : CP(E" ® 1x), X) = Co(¥,30).

Observe that (:';,(Y, yo) = C,(Y) for p > 1.

At this point we go back to the projective bundle W 4, P(E*) in the
diagram above. As we saw in Remark 1.2.3, fis a flat morphism of relative
dimension 1, and hence it induces, by Proposition 1.2.2, a morphism of

topological groups
e ép—l(P(E*)) - ~p(W)' (3-4)




Summarizing, we have the following commutative diagram
Cp1(P(E"))
f b

~

Ps

'

C,(PP(E*))

3

ép(P(E* D 1)-'))

I

inl T2

*

C,(W, 3P (E*)) — j E(P(E* @ 1x),X)—§~é;(2P(E*),yo)

*

where 71,7y, 73 are the quotient maps.
Define a morphism of topological groups by

¥ : €, (P(E)) % Cp(X) — Co(P(E* ® 1x)))

(o,7) — ps o f*(0) + s0.(7),
where so: X — P(E*® 1x) is the zero section. Our aim is to show that ¥
is a homotopy equivalence, or equivalently, that ¥ induces isomorphism in

Lawson homology
v, : L(p—i)HiH(p—l)(P(E*)) ® LpHit2p(X) = LyHin(P(E* @ ix)).

Note that since C,(P(E*®1x)) is a topological group, we may take as addi-

tive structure for its homotopy groups the one given by pointwise addition
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of representatives, (see [33]). In particular one sees that the homomorphism
U, is given by
‘]?*(C!,ﬂ) =Ds0 f*(a) + 30-(ﬁ);

where o € Lip-1yHira-1)(P(E*)), B € LyH;y2p(X), and p,, f* and So,

are the homomorphisms in Lawson homology induced by P, f and sg

respectively, See Proposition 1.2.2.

Consider the long exact sequence in Lawson homology for the pair

(P(E* & iX):X):
see T LpHi+2P(X) = LPHHZP(P(E*@lxn = LPHi+2p(P(E* Slx),X)— ..
and define homomorphisms .

P LPHH'ZP(P(E* ® ]-X):X) - LpHi+2p(P(E* ®1x))

for all 7, by
(pd_ifp*of'ox:lo‘rr:;loz*.

(See the dia,g.ra.m above). Since

M. 09 =(m,op)of o¥lonslod,
=Po(m o f o¥ton;?)od,
=P, 0(7;0d; ") o4,
= id,
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it follows that the long exact sequence breaks into short exact sequences for

which ¢ is a splitting homomorphism. Therefore we obtain an isomorphism
T: LpHi+2p(P(E‘ ©1x),X)® LpH;y5p(X) — LoHy2p(P(E* @ 1x))

(a,8) — () + s0.(8).

If we compose 7' with the isomorphism
T2 Loy Hi o) (P(E*))D Ly Hiy (X ) — LoHiy2p(P(E" @ 1x), X)@L, Hipop(X)

(0,7) = (&, o 75, 0 %i(a), 7)
we get

Tol(e,7) =¢ 03:1 © 73, 0 Yu(o) + s0,(7)
= (peo S o B om0 L) 0 T om0 Fulr) 4 a0 ()

=Peo fH(0) + s0,(7)

d;f \I’*(J, T):

and the theorem follows. ' O

Corollary 3.3.2 For any algebraic vector bundle over projective va-

riety X there exists an integer my > 0 such that for m > mgy we have:

CP(B & Ho™)) 2 6,(X) x &y (P ()




for all p, where H is the hyperplane bundle over X.
Proof

Let E* be the dual of E. Since H is a positive line bundle, it follows (see
[31]) that B* @ H®™ g very ample for rn > my, for some m,. Apply the

theorem to the vector bundle E* @ F®™. [4 says that

G(P((B” @ ™) 1)) = 6,(X) x Cor(P((E" ® HO™)')).

However, observing that

P((E*® H®*™) g 1x) =P((E® H*®*™) g 1x)=P(E o H®™)

and that
P((E* ® H®™)*) = P(E® 0em) = P(E},

we obtain the corollary. |




Chapter 4

A very spec1alclass

4.1 A model

As we ha.ve seen in the previous chapter, the “cycle map” s? : L, H; ,,(X) —
H;ys,(X) is an isomorphism, for all p, i > 0, for some spaces X such as
X =P"x P™ or Q,,. This motivates the following definition:

Definition 4.1.1 We say that an algebraic variety X lies in the class £
if the cycle map

8P Dy Higgp(X) — Hipop(X)

18 an isomorphism for all p, i > 0.

Before we make a further investigation of the class £, let us first intro-
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duce some canonical spaces which will be useful in our future computations.

Definition 4.1.2 Given a sequence of integers 1 < n, Sm<n<... <

Ny, choose g fag of affine spaces Vo C W, C VaC...C Vi, where each V; is

isomorphic to C™. This yields a “projective flag” P(V3) C P)C...C

P(Vk). Now, embed P(V,

) linearly in a projective space P(V) of dimension

ne+ 1 and choose k + 1 distinet points po,...,py in P(V)\P(V,). Define

the space P(ny,... y1k) to be the union

k
P(no,...,ni) = | pitP(V)).
=0

These spaces will be our canonical models.

Observe that Png,...,np) can also be described as follows: In the

projective space P™+ choose & linear subspace L of dimension m, — 1, and

let P(L) be the pencil of hyperplanes generated by L. Choose k+1 distinct

hyperplanes H,,... vy in P(L). In each H; choose, inductively, a linear

subspace P™ such that its intersection with the base locus I of P(L) has

dimension n; — 1 and P™ N L =pri-1n L. Then P(ng,... y 1) is the union

of those Pni’g,

Proposition 4.1.3 Given 1 Sne<n <ny<... < g, let P(n,,.. M) =

?:g P™, be a “standard model” as above. Then:

|
|




(a) P(ngy...,n )\ L is isomorpﬁicif.i:fd; ]_[,C"*
(b) The relative cycle map: |
8?1 Ly H; 0 (Plna, ... ;n;);_L)__"g Hipop(P(no,. .., ny), L)
i$ an isomorphism for all p > 1,4 2 0.

Proof

(a) This is clear from the construction.

(b) We use induction on the sum . + k.

Forni+k = 1 wehave that & = 0 and 7o = 1. Therefore P(no,...,n;) = |
P! and L = P°. The result is already known to be true in this case.
Assutne the result is true for n, + & < N and choose a sequence 1 <
No < m < my < ... < ny so that g +k = N + 1. There is a canonical

P(ng,...,n4_,) embedded in P(ng,...,np_q, nt) and the mere definition of

the ob jects involved gives an isomorphism

P(no,...,nk_l,nk)\P(np,...,nk_l)EP”’“\LEC"". | |
As shown in Corollary 2.1, this implies that the relative cycle map
sP: LoHipap(P(ng,.. ., n), P(ng, ... s Mp—1)) — Hiy25(P(no,... y k), Png, . .. s Tk—1)) P

is an isomorphism, for all p 2 1,2 > 0. The morphism of long exact

sequences induced by the cycle maps together with the induction hypothe-
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sis and the corresponding result for pro jéctive spaces complete the proof. O

Let us establish a notation here '
Definition 4.1.4 Given an algebraie pair (X,Y), we say that X is an

“algebraic cellular extension” of Y of type (no, ... ), with1 <., < ny,

and denote it by X — P(Ying,...,m), if

X\¥ Zem].. . [cm

In other words, the pairs (X,Y) and (P(no,...,n4),L) are relatively iso-

morphic.

Corollary 4.1.5 IfX = P(Y;no,...,nz) for a pair (X,Y) then the
cycle map s% : L,Hpp (X) — i+20(X) 45 an isomorphism iof and only if

80 is the map sy : L H;,,,(Y) — ir2p(Y). _ ' i

|
Proof
Obvious from Corollary 3.1.9 and the above Proposition, plus standard ex-

act sequence arguments. (
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4.2 The class (

As an immediate outcome of the observations in the previous section, we
show that the class £ contains a considerable amount of elements,

We take the following definition essentially from [15], Example 1.9.1:
Definition 4.2.1 Let (X, Y) be an algebraic pair. We say that X is an al-
gebraic cellular extension of Y if X has a filtration X — XoDXn1D...D
XoDX_ 1 =Y by closed (algebmz'c) subsets, with each X; \ X;_1 a disjoint
union of quasiprojective varieties Us; isomorphic to affine spaces C™i, for
¢ 2 0. In case Y = 0, we recover Fulton’s definition of an algebraic set with
a cellular decomposition. After ordering the ni; s for every i > 0 so that
Ny < Ny < ..ung,, we can re-state the definition by saying that for every
pair (Xi, X;_1) in the filtration we have that X; = P(X; 13n, ... 2Tk, ), for

all 0 < i < n, according to Definition 4.1.4 .

Although it is a.Bnple consequence of Corollary 4.1.5, we state the next

result as a theorem for the broad class of examples arising from it.

Theorem 4.2.2 If X is an algebraic cellular extension of Y, then X Iies
in the class £ if and only if so does Y. In particular one sees that the class

L 13 closed under algebraic cellular extensions.
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Proof

Once again we use induction. This time on the height n of the filtration.
Forn=0, X =X,> X_y =Y, we see that X — P(Y;nm,...,'ngko),
i.e., X is an extension of ¥ of type (noy,... sy okg )y and the result is simply
Corollary 4.1.5 .

Assume the result is true for filirations of height n — 1 and let (X, Y)
have a filtration of height n, n 2 1. From the definition we know that
X=X, = P(Xn—1;. Mniy-«+y Pk, ), therefore X lies in the class £ if and
only if so does X,,_;, again by 4.1. Now, by the induction hypothesis, X,,_;

is in the class £ if and only if Y does. This proves the theorem. o

Corollary 4.2.3 If X is an algebraic set with q cellular decomposition in
the sense of Fulton [15], (i.e., X is an algebraic cellular extension of B),

then 1t lies in the class L.

Remark 4.2.4 Let X and X’ both have cellular decompositions X =
X DX 1D...0X DX, =0and X' = X!, 5 X! | 2...02X,D

X7, =0, with X;\ X,_, £ II, C* and X} \ X, ~ I, C™i+, It is easy to
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see that the filiration e

XxY:(XxY)mM:(XxY)mJM3...3(X><Y)03(X><Y)_1=9

provides a cellular decomposition for X x YV, with (X xY),\ (X xY),_, &

Hi-f—j:t‘r,.((:n"r X an") = Hi-I-j:t Cn‘f+nj'

. In particular we obtain that the

[t

product X X Y also lies in the class £.

4.3 Last example: Generalized Flag Vari-

eties G/P

We start by recalling some standard facts on the theory of linear algebraic

groups. Let us introduce the usual (and lengthy) list of notations we use

throughout this section:
* G : semisimple linear algebraic group, defined over C;
* B : fixed Borel subgroup of G;

® B*: unipotent radical of B;

T : fixed maximal torus of G, TCB;

g : Lic algebra of G;
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o h: Lie algebra of T}

h* : space dual to h; AN

A C h* : root system of h in g;

Ay : set of positive roots;

A =-Ay;

X C Ay : system of simple roots;

W : Weyl group of G. We may face W either as the quotient N(T)/T,
where N(T') is the normalizer of T in G, or as the (finite) group
generated by the set-{o, : h* — h* : 4 ¢ A}, where o, is the
reflection across the hyperplane perpendicular to - (with respect to

the Killing form, for example).

o l(w): length of an element w € W relative to the set of generators
{oa;, @ € T} of W, i.e., the least number of factors iﬁ the decompo-
sition

W= Oy tenrOq,, 0 X,

One such decomposition with r = I(w) is called reduced.

* wp € W : unique element of maximal length.




104

We use the same letter w to denote either the element w & N(T)cG.

This makes sense of the following deﬁn\ition:

o Bu¥f weB*wy! : is the subgroup of G “opposite” to B*. Recall that

BYnB*=T.
Finally, for any w € W we define

o H(w) “ BinwBrwL.

Parabolic subgroups of G

Here we say that a subgroup P of G is parabolic if in contains a Borel
subgroup B C G. Let us recall some facts about the structure of parabolic
subgroups P C G, sce [6]:

Let S be any subset of %, and let Ag be the subset of AL consisting of

linear combinations of elements of §. Denote by G5 the subgroups
Ny={exptE_,:tc C}, ye AgU —Ag,

where E_, is the standard element of g in the (—y)-root-space. Let Ng be

the subgroup of B generated by the Ny’s withy € AL\ Ag. Then Gy is a

reductive group normalizing Ng and Ps f GsNs is a parabolic subgroups

of G containing B,
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It is a standard fact that every parabolic subgroup P C G is conjugate
to one of the subgroups Ps. So, we may assume, in what follows, that
P — Pg for some fixed subset § C X. Let Ws be the Weyl subgroup of Gs,
i.e., the subgroup of W generated by the reflections o, with « € 5.

Recall 'that the space G/P of orbits in G for the action of P on the
right is a ﬁon-singuiar projective variety and that G — G/P is a smooth
principal fibration under the group P.

Now, we finally have the following decomposition of G/P under the

action of B: (cf. [6] or [5])

(a) G/P = UuwewBwg, where 0 € G/P is the image of P in G/P;

(b) Two orbits Bwio and Bwso are identical if wi Wy 1 ¢ Wy, and other-
wise are disjoint;

(c) Define W} = {w € W:wS C Ay. Then each coset of W/Ws has a
unique element of W. Furthermore, each w € Ws is charactemzed
by the fact that its length is less than that of any other element in

the coset wWs;

(d) If w € W}, then the mapping

H(w) — G/P
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\

(see list at beginning of this section for definition of H(w)) is an

isomorphism of H(w) with a subvariety Xp(w) C @;

(e) H(w) is a unipotent group isomorphic as variety to an affine space of

dimension I(w);

(f) Define the “Schubert varieties” X p(w) as the closure of Xp(w)in G/ P,

Then, using the partial ordering in Ws induced by that in W, cf. [6],

~we have that

X—p(’w) = L[ XP('LIJ').

w'Swr w',w€W§.

As a consequence of all this we have the following

Proposition 4.3.1 (Example) Let G bea semisimple algebraic group
and let P be a parabolic subgroup of G. Then G/P admits a cellu-
lar decomposition in the sense of Definition {.2.1, and therefore G/ P

belongs to the class L. In other words, the cycle map

7 Ly Hip0p(G/P) — i+2p(G/P)
18 an isomorphism for all Pt >0,

Proof

Assume w.lo.g. that P = Ps for some § C X, and let W} be the
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- set of minimal representatives for the coset space W/Ws. For every

0 < j < dimG/P, define the algebraic subsets A{.,-of G/P by

def —_—
X.‘i = UwEWé—,I(w)SjXP(w)'

Define X, = Ve, itwy=1(X p(w) \ Xp(w)),\ and observe that X, con-

sists of at most a finite number of points,

Claim: The filiration G/P =X; D X D DX DXy = 4,

with d = dimG/ P, gives a cellular decomposition for @ /P.

This claim (as well as the proposition) is a trivial consequence of the
structure of the Schubert varieties Tp(w). Observe that
Xi\ X C Xp(w),
wEWgI(w)=j
Since X p(w) = Hw’EW;.,w'.Sw Xp(w') and w' < w = l(w') < I{w) we
have that |

ts0

Xi\X;a= ] Xe(w) = CII... 1]

weEWL w)=j -
SWsillw)=s H{weWLi(w)=5)
Therefore G/ P admits an algebraic cellular decomposition and hence

belongs to the class £ by Corollary 4.2.3 . a

Corollary 4.3.2 Any hermitian compact symmetric space lies in
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the class L.

Proof

Any hermitian compact symmetric space can be written as a prod-
uct of G/P’, with G compact and P parabolic (in fact, maximal
parabolic). The corollary now follows from the above Proposition

and Remark 4.2.4 . \ O
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