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Abstract of the Dissertation

On twistor spaces of anti-self-dual hermitian
surfaces

by
Massimiliano Pontecorvo
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1989

We consider hermitian 4-dimensional manifolds (M, J,g) with

Weyl tensor W satisfying the conformally invariant condition
*W = —W, where * is the Hodge-star operator. An equiva-
lent way to state all this is to say that the twistor space Z of M
is a complex 3-dimensional manifold with a certain distinguished
divisor X.
In this work we study the interplay between the holomorphic
properties of Z and the confoﬁna.l structure of M.
Following C. Boyer, M belongs to one of two classes, which

we call Kihler type and non-K#hler type. The first class consists
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exactly of the complex surfaces equipped with a metric of zero
scalar curvature. We show that this distinction has a profound
influence on the complex structure of its twistor space Z. The
main results are:

If Kz denotes the canonical bundle of Z, then the divisor
line bundle [X] is isomorphic to K, P and only if M is of
Kéhler type. Using this result we are able to simplify the proof '
of a theorem of Poon which says that the algebraic dimension
of the twistor space of a surface of Kihler type is at most 1. In
contrast to this result we give the first example of a twistor space
of algebraic dimension 2. It is the twistor space of 2 Hopf surface.

When M is of Kéhler type, we also describe the close relation
between hoiomorphic vector fields on M and Z; we also show that
this reflects thelsubdivision between Ricci-flat and non Ricci-flat
surfaces of Kahler type.

Then, using new techniques of Donaldson and Friedman for
constructing twistor spaces, we prove that the connected sums
of any number of copies of the Hopf surface H and the complex
A .projective plane CP, admit self-dual-metrics.

We conclude by giving a detailed description of the construc-

tion of the twistor space of H#CP,.
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Chapter 1

Introduction

The aim of this chapter is to give the basic definitions and results which

will be needed later.

1.1 Half-conformally flat manifolds

Let (M, g) be an oriented riemannian manifold of even dimension 2n, and
consider the Hodge-star operator acting on forms of the middle dimension:
*: A"(M} — A"(M) with the property that x* = (—1)".

Now, since in general the Riemann curvature tensor can be interpreted
as an operator R : A*(M) — A*(M), the case n = 2 is of particular interest.
In this case in fact, ¥* = id. and we can write A?(M) = A (M) @ /\E(M)
where AL(M) = {n € A*(M)|*n = £n}. With respect to this decomposition

one writes R € O* (A (M) ® A2 (M)), where by © we denote the symmetric




A B

tensor product; as a matrix R =
B* C

Following [23], this gives a complete decomposition of R into irreducible
components: R = (tr4,B,4 — irA,C — HrC) e RS2 QS ) B S @ s*
where ST é,nd $” denote the m-th symmetric power of the +% and —%
spin bundle of M respectively. Recall that the irreducible representations of
S$0(4) are of the form $% ® §%. Also Sik always exist whether M is spin or
not.

From now on M will denote a four dimensional manifold.

The above decomposition has important geometric significance because
trdA = trC = %R, where R denotes the scalar curvature; furthermore, B is
the traceless Ricci tensor (B = Ric — R/4 - g) and the last two components,
usually denoted by W, and W_, are the self-dual and anti-self-dual parts of
the Weyl curvature tensor W,

In general, W is exactly the conformal invariant part of R and is irre-
ducible in dimension # 4. That is, a riemannian manifold of dimension > 4
is conformally flat if and only if W = 0; but it is only in dimension four that
W = -W.|_ + W_. (W = 0 for any three dimensional manifold, but not every
such manifold is conformally flat).

An oriented manifold (M,g) of dimension four is then caﬂed self-dual
if W_ = 0 and anti-self-dual if W, = 0. Reversing the orientation of M

takes W, to W_ (since it takes /\i to A?), so that one often uses the term




half-conformally flat to indicate a four dimensional manifold where either
W, =0,or W_=0.

When M is compact, this symmetry can also be described by the following
variational principle. In the theory of conformal gravitational Instantons, one

looks for metrics on M minimizing the conformally invariant functional
A= / W P2+ |w_|? |
o W+ W]

but, by Chern-Weil theory, the signature v of M can be expressed by:

1 2 2
o Jog 71 = |

therefore 4 > 127%|7| with equality if and only if M is half conformally flat.

This gives then an analogy with the theory of Yang-Mills Instantons and
in fact, in this context, a riemannian metric is Einstein if and only if the

bundle of self-dual 2-forms has a se_lf—dual curvature,

1.2 The Penrose‘construction

Another important way to characterize half-conformally flat four-manifolds is
by means of (the riemannian version of ) the twistor theory of Roger Penrose.
This was introduced in [2].

Let (M,g) be an oriented four dimensional riemannian manifold. Tts
twistor space Z, a six dimensional manifold, is a fiber-bundle over M , with

fiber $2. It can be defined in the following equivalent ways:




1.2.1 1. Z is the bundle of self-dual 2-forms of unit length: 7 = S(/\i)

2. Z is the bundle of orthogonal complex structures inducing the positive

orientation: Z = {J € O(TM)|J? = —1,J > 0)}

3. Z is the projectivized positive spin bundle: Z = P(S,)

To see this, recali. first that an almost complex structure J on a vector
space always induces a natural orientation by considering bases of the form
{e1,Je1, €3, Jeo }; when this orientation agrees with the given one on M, we
say that J > 0. Also, J is orthogonal, or equivalently g is hermitian, when
g(JX,JY) = ¢(X,Y). The equivalence of the first two definitions is then
given by associating to J its fundamental 2-form w(X, JY) := g(X,Y), [17].

Concerning the third definition, we have to show how a projective spinor
defines an almost complex structure. At any pointp € M let ¢ € S; be fixed;
Clifford multiplication gives a real isomorphism A; — $_ by taking a - ag.
This defines a complex structure on A; by identifying it with the complex
vector space S_. Of course, multiplying ¢ by a scalar does not change this
complex structure, and all complex structures can be defined in this way, 12,

p429).

Now we want to describe a natural almost complex structure on the
twistor space Z by using the descriptions above.
Let ¢ : Z — M be the twistor map. At each point 2z € Z, we split the

tangent space T,Z into the vertical space V = kert,, and the horizontal




space F given by the Levi-Civita connection: namely Z = P(S,). As we can

write CTM = S, @S_, the covariant derivative on S, and S_ is given by

Vx(¢@¢) =(Vxd) ®¢¥ + ¢ ®(Vx¢).

Now that at each point z € Z we have T'Z = V @ E, we define a complex
structure J = J; @ J; by letting J; be the natural complex structure of the
metric 2-sphere $-1(#(z)) to which V is tangent; while E, being isomorphic
to Ty M ,‘is given the tautolpgical almost complex structure J;, defined by
z itself,

The first thing to notice is that the six dimensional almost complex man-
ifold (Z, J) is constructed from the four dimensional manifold (M, g), but its

isomorphism class only depends on the conformal class of the metric g.

1.2.2 /2] If ¢' is locally conformal to g with twistor space (Z',J'), then Z

and Z' are isomorphic almost complez manifolds.

It is then natural to ask when is J integrable, and to expect the answer to be
in terms of the conformal class of the metric ¢ on M. In fact the cornerstone

of the subject is the following
Theorem 1.2.3 (Atiyah-Hitchin-Singer)

J is 'Entegrable if and only if W, =0

Remark 1.2.4 If W_ = 0 instead, then an analogous almost complex strue-
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ture on P(S_) is integrable. In other words & half-conformally flat four-

manifold has an integrable twistor space.

Remark 1.2.5 Since J = J1 @ J, an easy consequence is that the fibers

of the twistor projection are all complex submanifolds of Z, isomorphic to

CP,.

1.3 The twistor space as a complex manifold

From now on, we suppose that our oriented four-manifold M has a half.
conformally-flat metric (i.e. either W_ = 0 or W, =0).

Then, if M denotes the manifold M with opposite orientation, the twistor
space % of either M or M' is a three-dimensional complex manifold. As
already noted, the fibers of the twistor map are holomorphic rational curves

in Z, which are called the “real” twistor lines. As an immediate consequence:

1.3.1

1. Z admits an antiholomorphic bijection ¢ : Z — Z, called the real

structure, and defined to be the antipodal map on each S2_fiber, so that

o =id. (o is antiholomorphic because oJ; = —J1 and 0 J, = ~J, ).




2. For any twistor line | ¢ Z; 1 = CPy, and its normal bundle v &~
OQ1)D O(1), [2). Where by O(n) we denote the (sheaf of sections of

the) holomorphic line bundle of Chern class +n over CP,.

The importance of these two properties lies in the following reverse con-

struction:

1.3.2 If T is a complez manzfold with a “real structure o” as above, and
foliated by holomorphically embedded CPy s which are invariant under o, and

with normal bundle vep, e = O(1) @ O(1), then T is a twistor space.

The reason is that by a theorem of Kodaira [13], HY(CPy,0(1) & (’)(1)) =0
implies that these holomorphic rational curves are pért of a complex analytic
family F of submanifolds of T'. F g parametrized by a smooth complex
manifold A" whose tangent space T, X is naturally isomorphic to H o, v),
where I, = CPy is the corresponding curve in Z,

Now, h°(1,,v) = dimc H°(CPy, O(1) @ O(1)) = 4 simply says that X has

complex dimension equal to four. So that one has a double fibration
F
SN
T X

where for each z € X g(p~'(z)) is a twistor line in T. Furthermore,

since HY(CPy,0(1) @ O(1)) & H(CP1,0@ 0)® H(CP;, (1)), there is




a naturally defined complex conformal structure on H%(CP,, O(1)ep O(1)),
given by defining the null cone to be the set of simple tensor products. This
gives X a natural complex conformal structure. Then the map o acts on X
as a conjugation, and its fixed-point set X” = X is a real four-manifold_with

conformal structure, which can be shown to be half-conformally flat, [16].

Examples

1.3.3 The standard metric on 5* is conformally flat so that its twistor space

Z 1s integrable; in fact Z = CP3. The real structure o is given by
[ZO,ZI&ZZ’ZL’»] = [_Z)za ’"‘73,_2_2]

while the twistor map t s
[Zo, Z1, Z, Z3) — [(Zo + 217,22 + Z53].

Here we have used homogeneous coordinates and the identification of §* with

HPy, [1]. A fiber of ¢ is then a linearly embedded CP; which of course has
normal bundle O(1) @ O(1).

1.3.4 The twistor space of CP, is also integrable because W_ = 0, and i
is in fact the flag manifold Fy, whose points are pairs (p,l) € CP, x CP,*
such that p is a point of CP; contained in the line | C CP,. The twistor map

is then, 1 : (p,1) = P, where P denotes the unique complez line through the

origin in C%, perpendicular to p and contained in I.



A theorem of Hitchin [12] then states that these are the only two compact
twistor spaces which are K#hler (in fact projective algebraic). Tt is then
interesting to investigate “how far is a twistor space from being algebraic”

1

for example, by looking at its algebraic dimension, [20,21, next ch.].

1.4 The Penrose correspondence

We would now like to briefly describe some aspects of the correspondence

between holomorphi(-: objects on the twistor space Z and conformal properties
of (M,g). This general philosophy, which is fundamental in twistor theory,
goes under the name of Penrose correspondence.

To start, we notice that by the conformal invariance of the twistor con-
struction, each biholomorphism f of Z corresponds to a conformal isometry
of M. It is a one to one correspondence, because if f induces the identity on
M, f has to fix each real twistor line; but from the definition of J we then
see that f is holomorphic only if it is the identity.

Similarly,

1.4.1 Holomorphic vector fields on Z, ezactly corré.spond to conformal kil

ling vector fields on M.

Recall that a vector field is said to be conformal Killing if its flow consists

of conformal isometries.
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Next, we want to show how complex deformations of Z give rise to half-
conformally flat deformations of (M, g). Let d: G — A be a complex defor-
mation of Z, over a small neighborhood of the origin in C, with Z = d_41(0).
Let Z; = d_;(t). As H'(CP,,0(1)® O(1)) = 0, every twistor line in Z is
“stable under deformations” [14], and so Z, contains a family of CP,’s, which
also have normal bundle O(1) @ O(1).

In fact, H'(CPy, End(O(1)@® ©(1))) = 0 says that O(1) e O(1) is also
stable. Finally there is a conjugation 7 on A, with fixed point set D of real
dimension 1, such thai; Z; has a “real structure” for each t € D, [8, Lemma
2.11]. Therefore, for each t € D, Z, is a twistor space, corresponding to a

half-conformally flat deformation of g. To summarize:

1.4.2 Any half-conformally flat small deformation of (M,g) is the “real

part” of a small complez deformation of Z.

When M is compact, the powerful theory of Kodaira and Spencer can then

be used to study half-conformally flat deformations.

Consider now a real vector bundle E over an (anti-)self-dual manifold M.
We can construct a complex vector bundle F on Z , by simply complexifying
E and then pulling it back to Z. A connection on E is said to be (anti-
Jself-dual if its curvature is an (anti-)self-dual 2-form on M. This sets up an

important correspondence:



Theorem 1.4.3 [2] The above gives a bijection between bundles E on M
with (anti- )self-dual connection, and holomorphic bundles F on Z whiéh are

trivial along the fiber..

When one wants to consider the spin bundles of 3 , 1t is important to fix
an orientation; in what follows we will then assume M to be anti-self-dual.

Suppose for a moment that M is spin, so that Z = P(S;). Then as S,
is a rank-two complex vector bundle, the complex manifold P(S+) admits a
“tautological” holomorphic line bundle 7 = {(z,v) € Z x SJv € z}. The
restriction of 7 to each real twistor line is of course = OCPl(‘l) and 7 is
sometimes denoted by H~1, or Oz(~1) or simply O(—1). The holomorphic
line bundles Oz(m) are always globally defined if m is even; the topological
obstruction to the global existence of Oz(—1)iswy(M) € H*(M,Z,), so that

M has to be spin in this case. An important point is that

1.4.4 [2] The bundles Oz(m) are completely determined by the complez

structure of Z: in fact Oy(—2) = K3.

In particular, the canonical line bundle of Z always admits a preferred holo-
morphic square root, and Z is always spin. Also, a fourth root of K exists if
and only if M is spin.

Then, as an important instance of the Penrose correspondence, we men-

tion the following relation, due to Hitchin [11], between the holomorphic
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cohomology of Oz(m) and solutions to certain partial differential equations
on M.

To state this, recall that ST and $™ indicate the m-th symmetric powers
of thé spin bundles on M. Of course, m is even when M is not spin. One

then considers covariant differentiation
ViD(ST)-T(ST@CI*"M)=T(ST®5; ®S_)
which, .together with the orthogonal decomposition [2]
SPT®S:®S_ =(ST'®S.)® (ST ®S_)
gives, by projection, the Dirac operator
Dp :D(ST) > T(ST'@S_)
and the twistor operator | : ;
D :T(ST) - T(STT' ®S_)

Is important o notice [2], that

Remark 1.4.5 The operator D, above is just the restriction of exterior

differentiation d to the self-dual 2-forms.

Theorem 1.4.6 (Hitchin) [11] If M is compact, for any m > 0

KerD,, = HY2,0(m)) and KerD,, 2 HY(Z,0(~m — 2)
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Of course the same holds when M is self-dual, after interchanging the roles
~of the two spin bundles.
Now it is important to notice that on a half-conformally flat manifold, the
Dirac and twistor operators both have a Weitzenbock decomposition which
only involves the scalar curvature R. In fact there are universal positive

constants a and b such that, [11]

e

DpDpn=V'V+aR and D.D, =V'V-bR
Corollary.1.4.7 Let M be compact, with twistor space Z, then
1. H%(Z,0(m)) =0 for all m > 0,ifR< O
2. HY(Z,0(m)) =0 for allm < —2,ifR>0

3. H°(Z,0(m)) = HY(Z,O(—m — 2)) & space of parallel sections of §™
forallm>0,ifR=0

This corollary is then particularly useful because [22] one can always

choose a metric of constant scalar curvature in the given conformal class.

To conclude we prove a useful equality relating the Betti numbers of M/

with the Hodge numbers of Z.

Notation For any compact manifold X » we will denote by 5(X) its i-th
Betti number. If X is complex, for any ccherent sheaf of @ x-modules S on

X, we set h*(X,8) to be the complex dimension of H(X,S). By ©x or
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simply © we will denote the sheaf of holomorphic vector fields on X. While
if Y C X is a complex subvariety, @xy will denote the subsheaf of vectors

which are tangent to Y, along Y.

Proposition 1.4.8 Let M be half-conformally-flat and compact. Then,
b2 (M) if M is anti-self-dual
r(Z,0) = b(M) and K(Z,0)=
b2(M) if M is self-dual
Proof:  Let us start by proving the second equality. By Serre duality
k*(Z,0) = h*(Z,K), but when M is anti-self-dual, by 1.4.6, RY(Z,K) =
dim Ker(D,) = b2 (M), 1.4.

To prdve the first part of the proposition, notice that 1.4.3 gives a bi-
jection between line bundles E on M with flat connection, and holomorphic
line bundles F on Z, which are trivial along the fibers and horizontally flat;
ie. c1(F) =0, 2.1. Now, fof any compact complex manifold Z the following

sequence is exact

0 — HY(2,7) — H'(7,0) > HY(z,07) ", H%(Z,7)

It follows that Ker ¢; = I'm b = HYZ,0) [ H\(2,2). Therefore,
h'(Z,0) = dimg (HY(Z,0) | H(Z,27)) = dime Ker ¢

= dimp {flat line bundles on M} = dimp Hom(m(M),R) = b'(M) o



15

Chapter 2

Anti-self-dual hermitian

surfaces

In what follows M will denote & compact real four-dimensional manifold,
with a hermitian metric A satisfying the anti-self-dual equation, W, = 0, for
its conformally invariant Weyl tensor W. According to the work of Boyer

[B2], such a complex surface belongs to one of the following two types:

1. Kdhler type: b, (M) is even, and in the same conformal class of A there

is a Kahler metric of zero scalar curvature.

2. non-Kdihler type: b (M )is odd, and k is locally conformally Kihler s h
is also conformal to a hermitian metric of non-negative scalar curvature

which is strictly positive almost everywhere.

All known examples of surfaces of Kihler type are the following:
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o Flat tori and K3 surfaces with a Yau metric. These are the hyperkiahler

surfaces and are the universal coverings of:

o The other Ricci-flat Kahler surfaces, i.e. the hyperelliptic and the Fn-

riques surfaces.

o 5,%CP;, where S, is a compact Riemann surface of genus g2 2witha
metric of constant scalar curvature —1, and CP; is the Riemann sphere
with constant curvature +1. Or, more generally, any flat S2-bundle

over S,, g > 2.

The reason why these are hermitian anti-self-dual manifolds is that they

have a Kihler metric of zero scalar curvature.

For surfaces of non-Kéhler type there is just one known example:

o The Hopf surfaces with their standard conformally flat metric. As
a complex manifold a Hopf surface M is defined to bé any quotient
(C*\ 0} /T, where T' C GL(2,C) is a discrete subgroup isomorphic to
Z@Z,. When T C U(2) x R*, M has a conformally flat metric and

therefore is an anti-self-dual complex surface.
Since m(M)=I@1Z,, b,(M) = 1.

Notice that the complex projective plane CP, with its standard orien-
tation and metric is self-dual and Kahler , while the same manifold with

orientation reversed, CP;, does not even admit an almost complex structure;
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otherwise ¢ would be equal to 2x + 37 = 3, which implies that the first

Chern class ¢; cannot be represented by an integral 2-form.

Th-e tecniques used by Boyer are those of differential and algebraic ge-
ometry, applied to M. We will instead also consider the twistor space Z of
M. Since (M, h) is anti-self-dual, Z is a complex three-dimensional manifold
whose complex structure only depends on the conformal class of A. In what
follows we will discuss some holomorphic properties of Z and show some

relevant differences between the Kéhler and non-Kihler types.

2.1 The twistor space

Let t : Z — M denote the twistor fibration and suppose M is hermitian and
anti-self-dual. Two things are clear from the definition 1.2.1 of the almost
complex structure of Z: first, ¢ is never a holomorphic map; .second, the
complex structure J of M defines a cross section J : M — Z, whose image,
denoted by X, is a complex hypersurface of Z biholomorphic to M. Similarly
~J : M — Z defines a hypersurface ©. The “real structure” o of Z switches
the two hypersurfaces identifying one with the other in an antiholomorphic
fashion. If X denotes the divisor 4 in Z, we can consider the holomorphic
line bundle [X]; since o(X) = (¥ + _E_) =2+ 3 = X, [X] is called a
“real” bundle. In what follows c1(E) will denote the first Chern class of

the complex vector bundle E and Ky the canonical bundle of the complex




18

thanifold N.
For any compact hermitian anti-self-dual surface, the following holds.
Remark 2.1.1 [P3] |
(X)) = ex(K7)

Proof: By the Leray-Hirsch theorem [H2] we can write ¢;([X]) =a-1+4b.k
where  is the cohomology class of a twistor line, k € t*(H%(M,R)) and a, b ¢
R. Then [H2], ¢;(Kz) = —4! and we only have to show that a([X]) = 2L
Now the real structure o : Z — Z induces an automorphism o* of H *(Z,R)
such that o*(¢,([X])) = a-I—b-k; but [X] “reai” implies 0*(¢, ([ X)) = e1([X])
and therefore b = 0. Counting intersections with a twistor line, we get a = 2.

0

Now if H'(Z, 0) = 0, the Chern class map ¢, : H'(Z, O%) — H*Z,1) is
injective and the above implies [X] & K ;%. Since for every half-conformally
flat manifold M, '(Z, O) = b;(M), M has to be of Kihler type‘in this case.

But in fact this holds for any surface of Kahler type:

Theorem 2.1.2 If M is of Kikler type, compact or not, then

Proof: The proof is in two steps. We first define a holomorphic section
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& € HZ, K"%) by using the K#hler form w of M; then we show that
X = {&=0}.

In the course of the proof we will often use the following: Z = P(S.,); the
symplectic form defines a linear isomorphism e : S+ — S} and the hermitian
form an antilinear isomorphism 4 : §, — S, so that if 5 € S+ ,7 will denote
its image and we will write p ® 77 € S2 .

Step 1 Recall that A} (M) = S2, then the Kahler form w of M is a section
of §%. Now according to [11, sec. 2] any section ¥ € S2 tautologically defines
a complex valued function on §,\0 which is a homogeneous polynomial of de-
gree 2 on each fiber; this in turns gives a section ¢ € NZ,0(2)) =T(Z,K-% ).
And furthermore 4 is a holomorphic section, i.e. 9 € H(Z, O(K_%)), if and
only if 4 satisfies the twistor equation Dy = 0. 1t is clear from the definition
of the operators D,, and D,, that every parallel section of S;”_‘ is a solution to
both the Dirac and twistor equations (in fact, by the Weitzenbsck formulas,
these are the only solutions when M is compact and R = 0). Therefore since
w is parallel, » € H%(Z, K~%) is holomorphic.

Step 2 Since M is hermitian we have two slections pand @ : M — Z repre-
senting the almost complex structures J and 7. Let w € ANL(M) = $2 be the
Kahler form. According to [AHS sec.1], at each point p € M, w = $®¢ where
# €S, and § € S, represents ¢ and ¥ respectively. Now let o € Z = P(S,)
be a twistor at p. By using the isomorphism ¢ : S+ — §% it makes sense to

solve the equation ¢(a) = 0. Since ¢ is given by the symplectic form and S,
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has complex dimension 2, the only solution is @ = . Similarly for ¢ and we
have shown that &(a) = 0if and only if @ = ¢ or a = P that is X = {& = 0}.

O

Using the theorem we can then recover some results of Poon in a more

straightforward manner. In what follows we also refer to [P3].

Corollary 2.1.3 When M is of Kihler type and compact, the normal bundle

of X in Z is isomorphic to the anticanonical bundle:

vx gz = K3, similarly vez 2 K5' and vsz = %1.

Proof: The adjunction formulas [GH] state that vyx/z & [X lix and Ky 2
(Kz{X])x therefore vyx/z = K;fx and Ky = (Kz ®KE%)|X o EIX as

wanted. The rest clearly follows from X = X 11 % i

The above theorem says that the line bundle K~ has global holomorphic
sections and this easily implies that K~% has global holomorphic sections
for each m > 0. In fact we next show that these are the omnly line bundles,

with Chern class 'l, to have global holomorphic sections:

Corollary 2.1.4 Let M be compact and of Kéihler type. If L — Z is any

holomorphic line bundle such that ¢;(L) = ¢1(K~%), for some m > 0, then

HYZ,L)#0+= LK %
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Proof: [P3] we can write L = FK-% where ¢1(F) = 0. We consider three
different cases.

Case 1 M is not Ricci flat: then ci{FxKx™) = ci(Kx™) # 0, therefore by
an important theorem of Yau [25], 1, HYX,FixK3™) = 0 for any m. By
the long exact sequence induced by

m—1

(1.m) 0—-FK"7 5 FK-% — FixK3™ — 0

we have H°(Z, FK‘m_::‘l) = H%Z,FK-7%) for any m # 0 and so is enough

to show that HO(Z,FK"‘;‘) = 0; in fact
(1.1) 0= F— FK% 5 FyKy -0

shows that H°(Z, FK~%) = H%(Z,F) = 0 by [P1, lemma 2.1].

Case 2 M is hyperkihler , suppose 0 # H(X,FxK;™) = HYX,Fx)
then by Yau’s theorem Lix is trivial, as M is hyperkihler its twistor space
fibers holomorphically over CP1; the fibers being isometric to M with differ-
ent complex structures. Therefore L has to be trivial along each fiber and
so L = w*@cpl(k), but ¢y(L) =0=> k=0 and [, = Oz. Also in this case
K% = ™ Ocp, (Zm), so that A%(Z, FK-%) = 2m 4 1.

Case 3 the only other possibility is that M is finitely covered by a hyper-

kihler surface. Let p' : M — M be this covering, and p : Z' — Z be the
corresponding covering of their twistor spaces. Let d 1 be the degree of

the coverings. Suppose now that FK~% has a global holomorphic section

'Warning: proposition 4 in [25] is false, counterexample: CP; x 8. See also 3.1.14
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with zero divisor Y C Z. Then P (FK~%) also has a section and let V" c 2z
be its zero divisor. By the previous case p*F = @y 50 that L84 — Oz and
Y' is the real maﬁifold M with some complex structure compatible with the
metric . Since py+ : Y' — YV is a covering map, Y is just the manifold M
with a possibly different complex structure compatible with the metric and
orientation, this gives M a Kahler structure, but since b5 (M) = 1, this must

be the original Kahler structure and ¥ is equal to X, so that I, = K-%. O

Now for any holomorphic line bundle F over a compact complex manifold
N one can set [24]
Definition 2.1.5 The F — dimension E(N,F)of Nis —o
if R°(N, F™) = 0 for any m > 0, or the non-negative integer satisfying
am*MF) < RO(N,F™) < bm*™F) for m sufficiently large, and some con-

stants a, b.

So that k(N, F) gives the rate of grdw of A°(N, F™) as m — +co.

In particular, k(N, K ) is called the Kodaira dimension of N,

Then one can also show [U] that for any holomorphic line bundle F,
k(N,F) < a(N) < dim(N ) where a(N) denotes the algebraic dimension of
N. This is defined to be the degree of transcendency of the field of meromor-
phic functions on N, denoted by M(N), over C. Clearly a(N) = dim(N)

when N is algebraic. Furthermore [U], there exist a pro Jective manifold V
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and a holomorphic map g : N — V inducing an isomorphism between M(N)
and M(V). This also implies that a(N) = k(N, F), where F = g (H), H
being a very ample line bundle on V,
So that, in some sense, a( V) measures how far js N from being algebraic,
When one considers a twistor space t : Z — M ag a complex manifold,
it is interesting to investigate its algebraic dimension a(Z) then, because of

the following, [12]:

Theorem 2.1.6 (Hitchin) If Z is 4 compact Kéhler (in fact algebraic)
twistor space then M is either 5% or CP,, with its standard conformal strue.

ture,

To this respect Poon has also found some very interesting relations between
a(Z) and the geometry of M, [P2, P3]. Now let Z be a twistor space and
let o(Z) = (2, 5), we can construct a real bundle §F and easily show that

k(Z,8) =k(Z, SS). As a consequence

Proposition 2.1.7 [P2,3] [DF] For any compact twistor space Z,

a(Z) = k(Z, F) for some “real” holomorphic line bundle F.

Theorem 2.1.8 (Poon) If M s of Kéhler type but not Ricci-flat, then

a(Z)=0. If M is Ricei-flat, a(Z) = 1,

Proof: By the last corollary, a(Z) = k(Z,K‘%) in this case. If M is not

Ricci-flat, the proof of the same corollary shows that rZ,K ~%)is constant

in m, so that a(Z) = 0.
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If M is Ricci-flat instead, its universal covering M is hyperkihler and
RN(Z,K-%) = R Z,K~5) = h%(CPy1,0(md)) = md + 1

1

so that k(Z,K~2) = k(Z,K~7) =1 O

The situation for surfaces of non Kahler type is different and in the fol-
lowing chapter we will give the first example of a twistor space with algebraic
dimension equal to two. It is the twistor space of a Hopf surface. To explain

why this can happen we have the following general

Theorem 2.1.9 If M isa compact anti-self-dual complezx surface of non
Kahler type, then

X]=K;?QF
where F is a non trivial holomorphic line bundle of zero Chern class.

3
Proof: The proof is by contradiction. By 2.1, suppose [X] & K,* and

consider the exact sequence of sheaves on Z, given by restriction
0“‘903(1{%)—)03—)0)(—)0

Since we can assume that M has positive scalar curvature almost every-
where, H'(Z,K%) = 0 , by a vanishing theorem of Hitchin [11]. On the
other hand H%(Z, K %) = 0 for any twistor space, by a different vanishing
theorem [H2]. The resulting long exact sequence would then imply that

H%(2,0) = H°(X,0) which is impossible because X has two connected




components. a

2.2 Holomorphic vector fields

In this section we assume that M is compact and of Kihler type and ana-

lyze the close relation between the Lie algebras of holomorphic vector fields
of M and Z, which we denote by H(M, ©) and H%(Z, ).

We will prove:
Theorem 2.2.1 If M is Ricei-flat
H%(Z,0) = H(M, ©)%?

which is also isomorphic to the complexrification of the Lie algebra of real

parallel vector fields on M; so that
h(Z,8) = bi(M) = 2h°(M, ©)
Theorem 2.2.2 If M is not Ricci-flat
H%(Z,0) = H(M,0)

To explain this, recall that in the general case, by the Ward correspon-

dence, H°(Z, ©) is the complexification of the Lie algebra of conformal Killing

~vector fields on M. This in turn is closely related to H °(M,®) when M is
Kéhler .

To prove the above theorems we will use the following : [B]



Theorem 2.2.3 (Bochner) On a compact riemannian manifold (N, g)
with Ric <0, every Killing vector field is parallel.

Simiiarly if g is Kihler, then every holomorphic vector field is parallel.

Theorem 2.2.4 (Lichnerowicz) On a compact Kdihler manifold of con-

stant scalar curvaiture

H(M,0) = a@h

where a is the abelian Lie algebra of all parallel holomorphic vector fields and

h is the complezification of a Lie algebra consisting of Killing vector fields.

Recall that on a pseudo-riemannian manifold a (conformal) Killing vector
field is one which generates a flow of (conformal) isometries.

If Ly denotes the Lie derivative with respect to V, then Ly g = fg for
some function f, if and only if V is conformal Killing.

While £yg = 0 if and only if V is Killing. So that every parallel vector
field is also Killing.

Finally [B], V is real holomorphic if and only if £yJ = 0, i.e. if it is the
real part of a (complex) holomorphic vector field.

By V we will denote the covariant derivative of the Levi-Civita connec-

tion.

Lemma 2.2.5 If M is a compact Kéhler surface every conformal vector field

15 real holomorphic and in fact Killing.




Proof: Suppose Lyg = fg for some function f; we start by showing that =

Lyw = 0 where w denotes the Kahler form. In fact let ¢; be the flow of V.
For each ¢, ¢, is a conformal isometry homotopic to the identity. Since w
is a self-dual closed 2-form, it is also harmonic, and it is easy to check that
the Hodge-star operator * : A™ — A", én a manifold of real dimension 2n,
is invariant under & conformal rescaling of the metric; so that piw is again
harmonic. But [pjw] = [w] .E Hjp(M) and so by Hodge theory, p*w = w, i.e.
Lyw =0,

Now the complex structure J = g~ o w as an endomorphism of the tangent

bundle, therefore
LyJ =(Lyg ™) ow+ g o(Lyw) = fglow= f7
on the other hand J? = —id implies that
0= Ly(—id) = Ly J* = J(Ly ) + (Ly J)T = —2f
ie. f=0,Lyg=0 and LyJ =0 3
It has come to my attention that a more general theorem of Lichnerowicz
appears in [B].

Lemma 2.2.6 [B] If M is a compact Kéhler manifold and V and JV are

both Killing vector fields, they must be parallel.
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Proof: It is straightforward to check that, on any riemannian manifold, a

vector field W is Kil]_ing if and only if
0 =(Lwg)(4, B) = g(VaW,B) + g(4, Vs W)
And on Kéhler manifold, W is holomorphic if and only if
0=(LwJ)A =JV W _V;, W

Therefore if V and JV are Killing, and ¢ is Kihler , using the above state-

ments, we have
9(VaJV,B) = g(JVAV,B)= —g(V.V,IB)=
g(A.,VJBV) = g(A, VBJV) = —g(VAJV, B)

therefore VoJV = 0 and JV is parallel. But JVV = VJV = 0 so that

VV =0 also, because J is an isomorphism. (1

On a riemannian manifold, the metric defines an isomorphism between
vector flelds and 1-forms, if V is any vector field and « a 1-form, we will use

the following notation:
V' =g(V,) of = g7 (e, )

- Lemma 2.2.7 On any riemannian manifold, V is parallel if and only if V*

is a parallel 1-form.
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Proof: For any vector fields A, B
(Vag(V,-))B = Ag(V, B) — g(V,V4B) = g(V.V, B)

0
Proof of 2.2.1: by Bochner theorem and 2.2.5 we have that HY%(Z,0)is the
complexification of the Lie algebra of parallel vector fields. Now recall the

Weitzenbéch decomposition of 1-forms:
A=dd"+d'd=V"V + Ric

it says that on a Ricci-flat riemannian manifold o 1-form is harmonic if and

only if is parallel. Using 2.2.7 we then have:
h°(Z,0) = dimp(Lie algebra of parallel vector fields) = ;(M)

and we are left to prove that 2h°(M, @) = b,(M). By Bochner theorem every
holomorphic vector field is parallel, so the dual (0,1)— form is parallel; since
M is Kéhler , A = 200 = 95"+ 5 and a (0,1)— form is parallel if and only

if is harmonic; we conclude that

W(M,0) = (M, 0") = by (1)

Proof of 2.2.2: Suppose M has no parallel vector fields, then by Lich-

nerowicz theorem and 2.2.5, H°(M, ©) is the complexification of the Lie
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algebra of all conformal Killing vector fields on M = F %(Z,0), and we have
proved the result. Therefore is enough to show that M admits no parallel
holomorphic vector fields. |

To show this is true, we first reduce to the case of a minimal model:
suppose M is not minimal (i.e. it contains a holomorphically embedded,
irreducible rational curve C' with self-intersection = -1). Then if Our,c de-
notes the sheaf of holomorphic vector fields on A which are tangent to
C, along C, we have an exact sequence 0 — O — O — voym - 0.
As H(C,veym) = H(CP;,O(—1)) = 0, it follows that every holomorphic
tangent vector on M is tangent to C , along C. Since C = CP;, every holo-
morphic vector field vanishes somewhere. (In fact a direct image argument
shows that it has to vanish identically, along C).

If M is minimal, however, and the total scalar curvature is non-negative,
Yau [Y1] has shown that M & CP, or else is a CP;- bundle over a Riemann
surface S,. This says that x{(M) # 0, and therefore has no parallel vector
fields, unless M is a CP;-bundle over a torus; in this case however
e}(M) = 2x + 37 = 0. On the other hand, by Chern-Weil theory [B1],
¢} = 2x+3r = |, »—|B(?, when M is anti-self-dual with zero scalar curvature;

so that c}(M ) cannot be zero unless M is Ricci-flat, |

Notice that the result of 2.2.2 holds for any half-conformally flat com-

pact Kihler surface with no parallel holomorphic vector field, e.g. CP,, or
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Chapter 3

Two interesting examples

3.1 Kabhler type

The following is a class of examples of Kahler compact surfaces M,, with zero
scalar curvature. If denotes a compact Riemann surface of genus g > 2
then M, = Sg X CPy; the two Riemann surfaces are given their standard
metrics of constant curvature and opposite values; it is then clear that M,
is Kéhler of zero scalar curvature, and therefore anti-self-dual. In fact since
the signature is zero, M, is conformally flat.

We explicitly describe the twistor space Zg4 of M, and directly show the

following:
1. Z, contains two disjoint complex hypersurfaces Y, and ig.

2. If K denotes the canonical line bundle of Z, with canonical divisor
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|K| then, for any p > 0 , the divisor —E|K| is linearly equivalent to

P(Eg + E—y)-

3. Furthermore H%(Z,,0(K~%)) = 1, p > 0. And the Lie algebra

H®(Z,,0) of holomorphic vector fields on the twistor space is isomor-

phic to the Lie algebra of holomorphic vector fields on A7,.

These three properties are meant to illustrate some of the general facts de-
scribed in chapter 2: recall from there that when M is a compact anti-self-

dual 4-manifold then:
1. holds if and only if M is hermitian
2. holds if and only if M is of Kihler type

3. holds if and only if M is of Kihler type but not Ricci flat.

We start by considering the universal cover M of M, . This is the riemannian
product M = H x CPy, where H={(¢, p) € R?|p > 0} is the upper half-plane
with the metric of curvature —1 : g,Hzglf(dtz + dp?), and CP, = 82 is givén
the metric of curvature +1: g_, = sin® pd§? 4 dy?,

We now consider the natural inclusion

12 Hx CP; — R*

(t,p,%,8) — (t,psin p cos §, psin psin 8, p cos )
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then

1. 2 is a conformal isometry: the metric on M is

;lg(dtz + dp*) g, :"%f(dtz + dp® + P9, )=;15-(ﬁat metric on R*).
2. the image of 2 is R* \ [ where [ is the line (,0,0,0) in R*,

In fact it is useful to think of 7 as a map into $* = R*U oo and then of
5* as the quaternionic projective line HP,= (H*\{0}) /~ where H denotes
the non-commutative field of quaternions and (go, ) ~ (o, @) if and only
if g0 = qdo and ¢, = ¢§ for some g € H, notice that we have used left
multiplication here to define HP,.

Since M, is the quotient of M by a discrete subgroup I' C PSL(2,R)
acting on H by fractional linear transformations, we will consider next the
action ¢ of PSL(2,R) on M C HP; by conformal isometries and its induced

holomorphic action @ on Z C CP;. All of these actions are considered as right

a c
actions. For example when € GL(2,H) acts on HP, by a fractional
b d

linear transformation, the map is given by: [go,q:] — [goa + ¢1, goc + q1d),
and this action realizes PU(2,H) := U(2,H)/+ Id. as the group of conformal
isometries of 5*. This is the quaternionic analogous of PS L(2,C) being the
group of conformal transformations of $2 = CP;; and the group U(2,H) is
defined to be the subgroup of GL(2,H) whose elements have determinant of
(quaternionic) norm equal to one, [1].

In fact a direct computation shows that the action ¢ above is the restric-




tion to SL(2,R) C SL(2,H) of the action by fractional linear transforma.

tions:

a c
Proposition 3.1.1 For any v = € SL(2,R) the following dia-

b d

gram is commutative:

@
HXCPl — HXCP;[

I I

HPl —m— HP]

[

where ¢ : (z,8) (;‘;I;’,s).

‘Now as the inclusion M C HP, = $%is a conformal isometry, the twistor
space Z of M is an open set in CP; (the twistor space of 5*); and the twistor
space Zg of My == M/T is the quotient Z/I". We will then need to look at the
Holomorphic action ® on HP4, via the twistor projection ¥ : CP3 — HP; . As
explained in [A] this map can be nicely written in homogeneous coordinates
as t 1 [Z,, 21, 73, B3] v [Zo + Z15, Zy + Z3j3]. By the non-commutativity of
the quaternions it is interesting to consider both the left and right action of
GL(2,H).0n HP; by fractional linear transformations. The left one lifts to
a non holomorphic action on CPj, but it still has a very important element,
namelj‘ left multiplication by j acts trivially on HP;but it lifts to the “real”

structure of CP;,
L [ZU:Zla Zz, Z3] b [_-2-1170: _73!.22]

The right action instead lifts to an holomorphic action:

35
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Proposition 3.1.2

The conformal isometry of HPy, ¢ — (gc + d)~(ga + b), given by

a ¢
EPU(Z,H), a=a+pj,b=9+6, c=¢e+¢&j 7d=7]+9j
b d

lifts to the bikolomorphism of CPy given by

( a B € f\
B @ &=
€ GL(4,C)
vy & n @
\ ¢ 7 87
Both matrices are acting on the right.
a ¢
Proof: In homogeneous coordinates on HP,, the map 1s given
b d

by: [g0, 1] = [goe + g1b, goc + ¢:1d] and one gets the result by identifying H

with the subalgebra of M(2,C) generated by
1 0 t 0 0 1 0 3

.

=1, =1, =7, =k,overR. O
01 0 —i -1 0

e,
[on-}

Remark 3.1.3 To describe the twistor space Z, and some of its properties
we will need the obvious equivalence between objects on Z,, such as holo-
mophic sections of vector bundles, and the corresponding I-invariant objects
on Z. Now the key to the study of holomorphic sections of bundles on Z

is that, in some cases, they extend to global sections on all of CP5. To this
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respect we start by observing the following: let U be any (compact or not)
half-conformally flat manifold with twistor space W. If U is spin, let H
denote the holomorphic line bundle on W such that its restriction to each
twistor line has Chern class +1; then H~* = K is the canonical line bundle
of W and H depends only on the complex structure of W. If U/ is not spin we
have to consider H? instead. Going back to our situation, notice that when
W is an open set of CP;, H = OCP3(1)IW' We now look at holomorphic

sections of its powers.

Proposition 3.1.4 If W is an open neighborhood of a line in CPs, then any

holomorphic section of H™ on W, extends to all of CP;, i.e.

0 ifn<0
HY(W,H") & H°(CP3, O(n))
O"C* fn>0

Proof: When n = 0 one can either appeal to a theorem in [H2] which says
that twistor spaces only have constant holomorphic functions, whether they
are compact or not; or argue as follows: through every point p € W, the set
of tangent vectors to projective lines contained in W and passing through p,
spans the tangent space T,W. As any holomorphic function f on W is con-
stant along these compact lines, the differential df = 0. Now let n # .0. Since
H™ = OCP3(n)IW , @ holomorphic section is represented by a homogeneous
holomorphic function of degree n, defined on an open subset of C?, as any

first partial derivative of f is holomorphic and homogeneous of degree n —1,
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when n > 0, all n — th partial derivatives of f are homogeneous of degree 0
and therefore represent holomorphic functions on W which are constant. It
follows that f is a homogeneous polynomial of degree n and can therefore
be extended to all of C*. When n < 0, 22 . f(Z) and Z7 - f(Z) are both

homogeneous of degree 0, and therefore constant = f=0 O

Corollary 3.1.5 H°(Z,, H"} = HXCP3,0(n)), where HR denotes the

[-invariant holomorphic sections.

In order to explicitly find these invariant sections we will need the follow-
ing basic facts about ' C SL(2,R), when H/T = S, is a compact Riemann

surface of genus g > 2. [M].

1. As an abstract group I’ 2

71(Sg) = {A1, By,..., Ay, By| A, B AT B - AgBg AT B = 1},

2. The limit set of T', defined as A(I") = {lim,_,o n(z)|z € H,v, € T} is

the real axis R C C, union co.

3. Every element v € T’ is hyperbolic, i.e. conjﬁga.te to a dilation of the

a 0
form with @ > 1. In particular v has two distinct fixed

0 a1

oints, on R U o0, and since no two elements can have a common fixed
p b )

point, the set Fiz(I') is infinite numerable and in fact dense in A(T).

i
|
i
i
i
;
;
;
4
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4. For any limit point » € A(T), the orbit 6, = {7(r)|y € T'} is dense in

A(T).

As before we will consider three different actions of the group I'; the one
on the upper half plane 7, whose limit set is A(T) = RU o0 = 3(H); the
action ¢ on $* whose limit set we denote by C:= HP\ Im ¢ = {{rq,q]: r €
R}U{[1,0]} = 1U {oo} = S'; and the action & on CP; whose limit set is
a priori only contained in ¢7}(C) := D, Notice that D being the union of
all the twistor lines above C is a compact subset of CP3, homeomorphic to

St x 52,

Lemma 3.1.6 IfV is a T'-invariant hypersurface in CP3, V contains the set

D, which is also the limit set of the action ®.

Proof: Let us denote by L, C D, the twistor line t=1(s) for s € C. First we
notice that to prove the lemma is enough to show that V' contains just one
of the twistor lines L, in D, for some element r € F :— Fizg(T). In fact
suppose there is a line L, C V, then y(L,) C V for any v € T, but since v
acts by biholomorphisms v(L,) = Ly so that V O Uyep Ly(r). By property
4 above ; V then contains a dense set of lines in D , and since V is closed, it
contains I,

To complete the proof it remains to show that V contains an entire twistor

line in D. This is more clear if we assume for a moment that I' contains

R 0
an elment § = with A > 1, i.e. an elment which has 0¢c R

0 A
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as its unstable fixed point and oo as its stable fixed point. In this case
we will show ¥ D L, or V D Iy Let P = [Wo, W1,0,0] be any point
in Lo, then lim, [ Zo, Z1, Z2, Zs)6™ = limyo[h"Zo, h" 21, h~"Z3, ™" Z5] =
imy, o[ Zo, Z1, h™2" 2, A2 23] = [Z4, Z1,0, 0] this shows that for a point Q €
CP3, lim,,,, 6"(Q) = P if and only if Q belongs to Ap := {W1Zy —Wy2Z, =
0 : Zy # 0} = C?, that is \p is the projective plane Hp — {WiZy — Wo2,}
minus the projective line Ly = {Zp = Z; = 0} = ¢~(0). Since V is an hyper-

surface in CPy, VN Hp # 0, for any P so that VN ~p = 0 for some P € L,

' R 0
implies Lo C V. This completes the proof if § = € I'. But the

0 A
same proof will work with the two fixed points of any elment of T, playing

the role of 0 amd co. ]

Remark 3.1.7 One easily checks that thé quadric Q := {ZZ3— Z,Z, = 0}

in CP;y contains D, is SL(2, R)-invariant and “real”, i.e. o(Q) = Q. . "‘

Corollary 3.1.8 The quadric Q is the only D-invariant irreducible hyper.

surface of CP3. :

Proof: IfV is any I'-invariant irreducible hypersurface,Y N Q C D; since D
has real dimension 3 and VN Q must be a complex hypersurface, V = Q (as

sets). m]



Corollary 3.1.9

if p>0 is even
HY(Z, KT)= P
0 otherwise

Proof: We know that a section 7 is in fact a I-invariant global section on
CP3: 7 € H°(CP3,0(p)) and of course 7 = 0 if p < 0. When p >0, let
A denote the zero divisor of 7, A is a -invariant hypersurface of degree p,

therefore .
0 ifp=0

B
1%

CP; ifpis odd

£Q ifpiseven

Now if p is even and 7' # 7 is another section, then since the zero divisor
of 7 and 7’ coincide, the meromorphic function 7/7' is actually holomorphic

and therefore constant. |

We can now visualize the surfaces &, and 3, in Zg given by the complex
structure of M: consider the I-invariant quadric Q@ = {2,7; — 2,7, = 0}
and its intersection with the twistor space Z C CP3 of M. We will check
that Z N @ is the disjoint union of two surfaces I and I in Z , with the
property that Il = o(II) and that each twistor line above M meets Z N Q
in two antipodal points, one of Wh_ich lies in II and the other in II. So that

ea.ch of Il and 11 is exactly a copy of M inside Z. To see this, we consider
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the Segre’ embedding

S:CP1XCP1%CP3

given by

([XO: Xl]: [Ym Yl]) = [XOYO, XoY1, XiYs, X1Y1]

then ¢t~1(D) = {([1,0], [Yo, Y1])} U {([r, 1], [¥s, ¥a])]r € R} which shows that
Q\ D is the image of two disjoint hemispheres, H* and ™, cross with CP,
; 50 that Il = H* x CPy and TT = H x CP,. I is biholomorphic to M while
I is antibiholomorphic to M. Now the action by v € T' on ¢, pulls back
via the Segre’ imbedding to an action of the same elment v on the first CP,
factor, by a fractional linear trasformation. This action of T is then seen to
be properly discontinuous on each hemisphere H* and ‘H~; passing to the
quotient we get the two hypersurfaces £, = II/T' = Ht /T x CP; 2 59 x CP,

and T, = TI/T =5, x CP; in Zg.
Corollary 3.1.10 For any ¢ > 0, K;:lz >g.%Y%.

Proof: By construction a section of K E:/ ? vanishes on X [1X to order q. O

3.1.1 Holomorphic vector fields

Proposition 3.1.11 Let W and W, be two open sets of CPs, each contain-
ing a projective line; then if h : Wy — W, is a biholomorphism h eztends to

a biholomorphism of all of CPs3; that is h € PGL(4,C).
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Proof: W, and W, are twistor spaces of two open sets in 5S4, say U,
and U, respectively. Consider the holomorphic line bundles Hy, and Hy,,
by remark 3.1, h*Hw, = Hw, that is R Ocp,(Vw, = OCP;(l)IWI and
Hy, = OCP3(1)|WH1: = 1,2 ; this implies that if Z; is a homogeneous coor-
dinate on W, C CP;, then h1(Z;) = Y3_o ai; Z; where Z; are homogeneous
coordinates onW; C CPj and a;; are constants. Therefore h~! € PGL(4,C).

d

Proposition 3.1.12 Let W be a neighborhood of a projective line in CP3.
Then any holomorphic vector fields on W extends to all of CP3.

That is HO(W,©) 2 M(4,C)/{\[: A € C}.

Proof: On any open set U of CP;, the Euler sequence for the sheaf ©
of holomorphic tangent vectors : 0 — O — O(1)® - @ — 0, is an ex-
act sequence of Op-modules. By taking global homogeneous coordinates it
is a split-exact sequence, over U, of complex vector spaces. In particular
HO(W,0) = HO(W,0(1)®*)/H(W, ). And, by proposition 3.1.4 we have

done. ]

As a corollary we recover:

Theorem 3.1.13 (Liouville’s theorem in dimension {). Any conformal iso-
metry between two open subsets of §*, endowed with a conformally flat met-

ric, eztends to a conformal isometry of S*. Also any conformal Killing vector
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field on an open subset, extends to a conformal Killing vector field on all of

5,
Proposition 3.1.14 H°(Z,,0) = H(M,,0) = H(CP;, 0) = C°.

Proof: By the previous proposition a holomorphic vector field on Z4 is
exactly a T-invariant vector field V on CP;. We will show HYCP3,0)
H°(CP,0). To find all such V’s, notice that since the quadric @ is I-
invariant, V has to be tangent to @, along Q. That is if F = ZoZy — 72,2,
is the defining function of @, dF(V) = uF, 4 € C. A vector field on
CP; is written as V = f:j=0 a;;Z;(8/0Z;) and is identified with the ele-
ment (a;;) € M(4,C)/AI so that dF(V) = Zs(T2, a0 ;) — Zo(33, anZ;) —

Z1(Xiio @iaZi) + Zo(Th g aisZs) = (20 s — Z17Z3), p € C; that is

( Qoo Qo1 Qo2 0 \
Q10 Q11 0 Qg2
Vol , € M(4,C)/AI
app 0 p—ay Qg1

\ 0 ayp a1 #— ago }

Now we impose the condition that V' commutes with every element v € T

(0,000\
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using the fact that I' has at least three free generators, is easy to see that

this forces a9y = a9 = 0, g = agy = a1; so that V is of the form

\

(aon agy O 0

gp ain 0 O
€ M(4,C)/AI

0 0 dgp <Gy

\ 0 0 Qi1 a1 )
Which js isomorphic to the Lie algebra H°(CPy, ©). O

Corollary 3.1.15 The group of bikolomorphisms of Z, is isomorphic to

PGI(2,C).

Proof: A biholomorphism A of Z, is an element of PGL(4,C) which com-
mutes with every element of T' =

age agp O 0 \
ap ai; 0 1]

0 0 g doy

\00 0.10(111}

3.1.2 A word on deformations

We now want to briefly look at small deformations of the product metric

of the preceding example; we will be interested of course in conformally flat
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metrics. One way to get new conformally flat metrics is by considering a
representation p : (S, x CPy) = m(S,;) — PU(2,HP,) of the fundamental
group of S, x CP; into the group of conformal isometries of an open set
N = H x CPy in 8% If we denote by A the image of p then the manifold
N, = N/A is conformally flat. If we consider instead a representation p :
m31(Sg) — SO(3) , into the group of isometries of CPy, the quotient N § =
N/A'is Kahler of zero scalar curvature. In fact all such metrics are given in
this way [BdB]. Next we will show that for generic deformations, the twistor

spaces of these manifolds have no holomorphic vector fields.

Lemma 3.1.16 Let v,7n,V € M(n,C); suppose that V commutes with both
v and 7, then v,7n have to satisfy the following condition: v(A) C A and

n(A) C A. Where A is the eigenspace of any eigenvalue A of A.

Proof: For any v € A; A(yv) = v(Av) = A(yv) and A(nv) = o(4v) = A\(mw)

[

Remark 3.1.17 The above condition is non trivial if A # AI. Therefore

two generic elements of M (n,C) both commute with AI only.

Reasoning as in the last section we then have:

Proposition 3.1.18 If W is the twistor space of a generic conformally flat

deformation N, then H(W,0) = 0.
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Corollary 3.1.19 If N' is a generic deformation with o Kéhler metric of

zero scalar curvature, then HY(N',©) = 0. See also [BdB].

We conclude by mentioning a topic for future research:

It is clear from the above discussion that not all conformally flat defor-
mations of the product metric S, x CP, a.re.Kﬁ,hler of zéro scalar curvature.
This could be compared with the following hypothetical situation: suppose
for a moment that (as it has been conjectured) (Y3, ) is the manifold given
by blowing up k£ points on CP,, with a Kihler metric g of zero scalar cur-
vature (notice that by the condition ¢} < 0, k has to be at least 10) and
consider small deformations of go = g through half-conformally flat metrics
gi. Then Wé have the following: g, must be a Kahler metric of zero scalar

curvature, if and only if & = 10.



3.2 A twistor space of algebraic dimension
two

Consider the complement of the origin in the complex plane, C? := (C? \{0}),
with coordinates z = (21, 2;) and hermitian metric £ = [|2]]7%(dz1 ® dz; +
dz; ® dz;). Fixed a real number |A| # 0,1, the infinite cyclic group of
holomorphic isometries A := {z = A" : n € Z} C GL(2,C) acts properly
discontinuosly and without fixed points on C2. We can then consider the
quotient manifold M := C2/A with the induced metric b. M is a cornplex
surface homeomorphic to S x §3, called a Hopf surface. As (C%,h) and
(M, h) are both conformally flat, let W and Z be their respective twistor
spaces.

To describe W, we think of C as (5*\{0, c0}). Since % is also conformally
ﬁat, their twistor spaces coincide, and W is the open set (CPs \{Lo, ‘UL });
where Lo and L, are the twistor lines above 0 and oo, in S*.

As A acts on HP;= S* by conformal isometries: ¢ - A5gA¥ = Angq
when A is real, it also acts on CP; by biholomorphisms {[Zo, Z1, Zay 23} —
A2 24,23 21, A" % 23, A% Z,] = [A\" 2o, A" Z4, 2o, Z3).

A acts freely on W, and Z = W/A is the twistor space of M,
Proposition 3.2.1 Z admits a holomorphic fibration p : Z — CP, x CP,

Proof: Consider the holomorphic map # : (CP3\ {LoULy}) — CPy x CPy

given by [Zy, Z1, Zy, Zs) = ([Zo, Z1), [Za, Zs3)); is clear that § commutes with




the action of A, and so descends to p: Z — CP; x CP,.
Notice then that 5 is a regular map, with fiber
77H{([Xo, X1], [Yo, Z1]) = [aXo,aXy,bY,b2,] = [$X0, $X1,Y0, Z1] & (C\ 0),
also denoted by C,, where a,b € C,. Passing to the quotient by A, we get
the compact holomorphic fiber bundle p : Z — CP; x CP; with fiber the

compact Riemann surface of genus 1, given by C./ (z ~ Az) n;

We now want to analyze the fibration p more closely: let us denote by F
and F3 the two factors in the base space CP; x CPy, and start by considering
the fibration p : W — F, x Fy. Let then; : F} x F; — F, denote the canonical
frojections, ¢ = 1,2; and $; the compositions 7; o 5. As u € F; varies, p1(u)
describes the set of all hyperplanes in CP; passing through the line L, and
we notice that each of these hyperplanes meets the line I, in exactly one

point. It follows that f;'(v) = C2 for each u € F,. Similarly Pz i(v) = C2

It is also useful to notice that, as every twistor line L meets any hyperplane

through L, or L, in exactly one point, we have that pri(uyNL = {1pt.}
and f; '(v) N L = {1pt.}, for each twistor line L , u € F, , v € Fy,

Passing to the quotient by the action of A we consider now the fibration
p: 4 — FyxF,. Let p; = mop, ¢ = 1,2; we look at the fibers: if u € F} we set
Hy:=pi'(u) 2 C/ (2~ Az) and if v € F, H® := P2 (v) 2 CY/ (2 ~ A712).

From the previous discussion we then get the following:

Proposition 3.2.2 The twistor space Z is foliated by two families of Hopf
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surfaces {H“}ueCP]_ and {Hv}ueCPy each leaf being biholomorphic to M.
Furthermore every two leaves H, and H® intersect in the elliptic curve
p(u,v), and cach twistor line L intersects any of H, and H* in ezactly one

point.

We denote the elliptic curves p~'(u,v) by E¥. Also notice that when
A € R, the real structure o : [Zy, 23, Z3, Z5] — [Z,, ~Z1, Z3,—Z3) of CPy,

commutes with the action of A, and we get an induced real structure on Z.

3.2.1 The holomorphic tangent bundle

Let F : C? — C? be a biholomorphism, F(z) = (fi(2), fo(z)). Since f,
and f, are holomorphic functions, they extend to all of C?, by Hartog’s
theorem. Now F descends to a biholomorphism of M = C? /A if and only
if F(Az) = AF(z). Fo?z' = 1,2, this forces fi(Az) = Afi(z), so that each
derivative aizjfi satisfies a%,—fi('\z) = Ag’%fi(z). That is, é—%f,- is a well defined
holomorphic function on M, and therefore constant. It follows that fi(z)isa
linear function of z, and in fact since F(0) = lim,_,o F(Az) = Alim,_,q F(z) =
AF(0), we get F(0) = 0; therefore F € GL(2,C).

In an analogous way, every holomorphic vector field on M can be written

uniquely as agozoz2- + 01207 + 10212 + @112, 2. We have proved:
. Bz 8z 829 8z1
Proposition 3.2.3

Aut(M) = GL(2,C) and H°(M,0)=gl(2,C) ~C*
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We will be interested in computing the cohomology of the tangent bundle
of Z. Since the techniques are similar, we start with computing H(M, ©).
This is done by introducing a short exact sequence of sheaves. First notice

that M has a “tautological” meromorphic function f : M — CPy, given by

[(21, 22)] > [21, 23], and induced by the Hopf fibration on CP,.

Proposition 3.2.4 0 » Oy — Oy — F(TCPy) — 0 is an ezact sequence

of vector bundles on M.

Proof: Since f is a fiber bundle map, with elliptic curves as fibers, @y —

fY{TCP;) — 0 is exact. But kerf, = span of (Zﬂ‘éz—o + zlgg;) = Oy O

Nowif g : X — Y is a continuos map of topological spaces, and § is
a sheaf on X, by ¢.;5 we will denote the 1 — th direct image sheaf on Y,
i=0,1,2,... |
Ocp, #i=0,1

Proposition 3.2.5 f,;0, =~
0 otherwise

Proof: As every fiber is a compact elliptic curve E, the statement is clear

for 1 # 1.
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For each open set U ¢ CPy, when i = 1:

(FfaOu)(U) := HY(fHU),On) = H\(U x E, O) =
by Kunneth formula,

(H(U,0)® H'(E, 0))®(H'(U,0)® H(E,0) =
by choosing U to be Stein,

HYU,0)® HY(E, )

by Serre duality,

Oy ®(H'(E,01))" = (Ou ®(H(E,0))* = Opp (U) & Op. (U).

O
Corollary 3.2.6
L C ifi=0,1
H(M,0) =
0 =2 |
Proof: By a theorem of Leray, there is a spectral sequence :
ERf = HPM(M,0) , with
C ifp=0andg=0,1
B3 = HP(CP;, £,0) =
& 0 otherwise
Therefore EY = E®%, and the result follows. o

Corollary 3.2.7

: C* ifi=0,1
HY(M, f*TCP,) =

0 otheruwise




Proof: First we notice that, by the projection formuld,

TCP, ifi=0,1
f*qf*TCP1 == TCPI ® f*qo =

0 otherwise

And again, by the Leray’s spectral sequence, we have the result. O

As a consequence of all this, we then have:

Proposition 3.2.8

) ct* i=0,1
HY(M,0,)
0 otherwise

We now pass to consider the tangent bundle of Z.

Proposition 3.2.9

: C’ {=0,1
HYZ,03) =
0 otherwise

Proof: The proof goes exactly as in the case of M. First, the fiber bundle

map p: Z — CP; x CPy, gives an exact sequence

00— 0z - p'T'(CP; x CP;) - 0 (3.1)
I o
because Ker p* = { I =id e M(2,C),a € C} = Oy,
6 af

Again, Serre duality on he fibers gives:

Ocp. .cp, wheni=0,1
POz & et (3.2)
0 t>2
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so that the Leray’s spectral sequence implies:

‘ C ifi=0,1 . C® ifi=0,1
HY(Z,0) = and H(Z,p*T(CP, x CP,) =
0 i>2 0 i>2
(3.3)

Finally, the global holomorphic vector fields on Z are:

4 0
HD(Z,G):{ :A,BEM(ZC)}/.’CIECT
0 B
The rest then easily follows from 3.1 m;

As a corollary of the proof we then have:
Proposition 3.2.10 The algebraic dimension of Z is equal to 2.

Proof: The holomorphic fibration p : Z — CP; x CP;, shows that the
algebraic dimension a(Z) of Z, is at least 2. The only other possibility then,
is a(z) = 3, sce section 2.1. But in this case Z would be a Moischézon space.
All such spaces though,.can be blown up to algebraic manifolds [24], in par-
ticular they have Hodge symmetry: A?(Z,Q9) = A%(Z, ). This is then a
contradiction, because by 3.3 above, h!'(Z,0) = 1; while R°(Z,0') = 0 for

any twistor space [12]. 0




3.3 Structural differences

We then nbtice tha,i;, the twistor space of the Hopf manifold above, is the first
example of a twistor space with algebraic dimension 2, [20,21,8]. Furthermore
it is the twistor space of a hermitian anti-self-dual surface. As it was shown
by Poon [21], a(z) < 1 when such a surface is of Kahler type. This result is
then another instance of the difference in character, between anti-self-dual
surfaces of Kihler and non-Kéhler type.

Indeed, in marked contrast with the general results on the twistor space of
a manifold of Kéhler type, see sections 2.1, 2.2, if we let p : Z — CP; x CP;,
and denote the holomorphic line bundle p*(OCPGCPl {(m,n)), by Oz(m,n),

then:

[

3.3.1 [X|2 K,

1
Proof: From equation 3.1, we have that K;? = Oz(1,1), on the other hand

-1
2

is clear that [X] = 0(2,0). Therefore, [X] = K;? ® Oz(1,—1) and in fact

one can also check that ¢;(0z(1,—1)) = 0, by intersecting with any twistor

line. ' ]

Of course, by 2.1.9, the above holds for any surface of non-Kihler type.
3.3.2 The normal bundle vy, % K3*

Proof: Since X is a fiber, vy is trivial; but Kg' = —2[E], where E is the

irreducible divisor of ¥. ]




Recall ndw, that k(Z, L} denotes the Kodaira d1mensmnofthe holomor-

phic line bundle L over Z; then

3.3.3 a(Z) = k(Z,K;7) # KZ,[X))

Proof: By 3.2, h“(Z,K;%) = h%(CPy x CP1,O0(m,m)) = (m +1)2Wh11e

h%(Z,[X]™) = h°(CPy x CPy,0(2m,0)) = 2m + 1

The projection py : Z — CPy on the first factor, comes from the hy- |

perhermitian structure of the Hopf surface, [6]. The same is true for the
twistor space of a hyperkahler surface, i.e. a torus or a K3 surface; in the
hyperkéahler case, the canonical bundle Kz is the the pull back of OCP1 (—4);

we show this is not valid in the hyperhermitian case:
3.3.4 Kz = 03(—2,—2) % OZ(—4,0) = P;(OCP1(_4))

Proof: A direct consequence. of equation 3.1. O

finally,

3.3.5 h%(Z,03) = 7, and therefore is different from both RO(M,Op) = 4
and 2R%(M, ©yy).

56
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Chapter 4

Construction of a twistor space

We will denote by M = S x 5% the Hopf surface described before: M =
Ci/(z~Xz) , NeR, X#0,+1

An interesting consequence of H%(Z,©7) = 0in 3.2.9 is, as we will explain
later, that the topological manifold A #CP,, admits an anti-self-dual metric.
(Here we have denoted by # , the connected sum; and by CP, the manifold
CP, with orientation reversed). This follows from the general theory of
Donaldson and Friedman, which we are going to describe next, together

with the twistor space of M#CP,.

4.1 Singular twistor space

Following the general construction in [8], we want to investigate the twistor

space of M#CP,. This is constructed by first forming a 3-dimensional,



singular complex space Z in the following way.

Let Z; be the twistor space Z; of M(= S x §%), with a twistor line
blown up. Notice here, that since S x 50(4) acts transitively on M by
isometries., Aut(Z;) acts transitively on the family of all twistor lines in it,
and therefore the holomorphic structure of Z; is independent of the choice
of a particular line. Now, the twistor space Z, of CP,, thought of as an anti-
self-dual manifold, is the flag manifold F , . We then let Z, be the blow up
along a twistor line, and since CP, is homogeneous, it doesn’t matter again,
which line we choose.

Observe then, that if T'is any twistor space and L any twistor line in it,
its normal bundle is vz = O(1)® O(1). When T is blown up along L, we

get a manifold T with exceptional divisor
E =P(0(1)® O(1)) = P(O & 0) = CP; x CP,
1.e. a 2-quadric. The normal bundle of E in T is, [9]

ver = Ocp,cp,(—1,1)

To summarize, each of our manifolds, Z, and Z,, contains a copy of
a 2-quadric, @ and Q; respectively, with normal bundle ve, = 0(-1,1),
1=1,2.

Finally, Z is defined to be the union of Z; and Z, undef a biholomorphic
map f : @ — @, which identifies the two quadrics, by also re-versing the

two CPy-factors. Z = Z, Ug Zz, where @ = @ & @, under f.
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Z is then a singular complex space with a normal crossing singularity,
along @, satisfying Friedman’s d-semistable condition: vq := v, ®vg, = Oy,
of having trivial normal bundle, {8].

A twistor space of the connected sum M#CP, is then constructed by

“smoothing out” Z.

4,1.1 Smooth deformations

. To describe how this is done, we brieﬂy outline the general theory developed
in [8].

Let V = Vi Uw V; be a complex space, as the one constructed before, with
only normal crossing singularities, along the hypersurface W; and satisfying

the d-semistable condition 14 ® 13 = Oy, Then,

Definition 4.1.1 A smooth deformation of V), is a complex analytic family
d:F — A, with smooth total space F, over an open set A in C", contain-
ing the origin, such that d~*(0) = V, and d-(¢) = V, is a smooth complex

manifold, for each ¢ outside of a complex hypersurface A’ C A,

To explain this, let us consider the situation locally. A normal crossing
singularity is of the form 232, = 0 in C**'; and its deformations are given by
7123 = (25, .0, Z341). The map d will then look like d(z, ..., zp41, T2, voln) =

(z122,13,..., 1), with smooth fibers, when #; # 0. i.e. A’ = {t, = 0}.




Going back to the global situation, the relevant exact cohomol'.o.gy'f se-

quence, for studying smoothings of V, is, [8]:

0— H'(V,70) = Ty — H'(W,11Q1,) — HY(V,10) = T2 - HI(VV,V1®V2)
(4.1)

Let us explain the notation: 77 is the sheaf of derivations of the structure
sheaf, Oy. Whi1¢ the groups T3 := Ezt'(w},Oy), represent infinitesimal
complex deformations of V, for ¢ = 1; with obstructions lying in TZ. That
is, there is a Kodaira-Spencer map ¢ : 1} — TZ, defined on a neighborhood
of the origin in T, such that ¢=1(0) is the base of a versal deformation
of V. If the two conditions T} # 0 and T = 0 are satisfied, V has a
smooth deformation, as above, with dim A = dim T%., Furthermore the
term H*(V,73) in 4.1, represents locally trivial deformations; while the map

Ty — H®(W,11 @ v;) measures the change in the singularity, 8].

Remark 4.1.2 In the cases we are interested in, HY(W,11 @ 15) & € (i.e.
W is connected), and HY(W,1, ® ;) =2 C = 0. So that one way to assure
that Ty 5 0 and T2 = 0, and therefore that smoothings exist, is to show

that H2(V,2) = 0.

i
5
4
i




4.1.2 Some exact sequences

We now proceed, following [8], to give some general propositions which are
useful to study the cohomology of 75.

Let us start by considering the sheaf @y of holomorphic functions on
V = Vi Uw V2. We denote by V' = V; Il V, the normalization of V. The map

g: V' — V is then, simply the identification of W; and W,.
Proposition 4.1.3 /8/

0—= 0Oy = q,0p — Oy — 0
is an ezact sequence of sheaves on V.

Proof: First notice that this is alocal statement that only needs to be proved
around the singularity W. Locally a normal crossing singularity looks like
7122 = 0 in C™'. So, for some polycilinder D in C™, let ‘D'ﬂ V={z123 =
0},DﬂV,-:{zizﬂ},izlﬂ,DﬂW:{zlzzzz0}. Then

Oy is defined to be Op/ < 22z, >; where by < z1z; > we denote the

ideal generated by z;2,. We now define the ring R = {(fi,f2) : f; €

Ov,,1=1,2 and Jiw = faw}; and to complete the proof we have to show
Ov = R. For this purpose define the ring homomorphism % : Op — R
by f(21,22, 00y 2n41) (£(0, 22, ey Zat1), (21,0, w3 Zny1)). The first thing
to show is that % is onto; but for any (f,f,) € R, is easy to see that
F(21y 00y 2ng1) 1= Filz2, ooy 2a41) + fal21, 25, ceos Zng1) — f1(0, 23, vuey Zny1), satis-

fies ¥ (f) = (f1, fz)- What is left to show, is that Ker P =< z12; >. To do
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this we use the following weak form of the Nullenstellensatz, [9]: if & € Oenis
is irreducible and f € On+1 is zero where h is zero; then, h divides f. So let
f € Ker ¢,ie. f=0when z =0 or z = 0; since z; and z, are irreducible,
[ = zizek; ie. f €< 212, > and therefore Ker v C< 22z, >. The other

inclusion being trivial, the proof is now complete. O

As a consequence, consider the sheaf of derivations of @y, denoted by
7y; it is the sheaf of germs of pairs (Y;,Y;) such that: Y, is a holomorphic
vector field on Vj, which is tangent to W;, along W;, j = 1,2. Furthermore

Y1 =Y, under the map ¢: V' — V which identifies W; and W;. This shows:

Proposition 4.1.4 There exists a “Mayer-Vietoris” ezact sequence, [8]
0> 1) ~ ¢.Opwnw, — by — 0

Proposition 4.1.5 {8] Let S be any coherent sheaf on V', then for any 1,
H'(V,q.5) = H(V,5) © H(V,5)

Proof: By the Leray spectral sequence, is enough to prove that the .sheaves
¢ = 0on V, for j > 1. This is clear because if U is a small open set in
V,withUnW : @, then ¢ }(U) = U, which we can assume to be like a
small ball in C"; therefore (¢,;8)U := H¥(U,8) = 0 when j > 1, by Car-
tan’s theorem B. The other possibility si that U N W £ 0, in which case

¢ '(U) = U, Il U, which we can assume to be Stein again, and the same




argument applies.

4.1.3 Cohomology of a blow up manifold

In the general case of twistor spaces, and also in the other case we will need
to consider, the manifolds V; and V, are both blow ups. To study their
cohomology, we consider the following general situation.

Let b : M —>- M denote the blow up of a complex manifold M along
a complex submanifold N, with exceptional divisor the hypersurface F =
b~*(N). We will then use the following notations: m = dim M = dim M,
n = dim N, so that m —n > 2. Now bz : E — N is a fiber bundle with fiber
FZCP,,r =m—n-—1. By O(l) we will then denote (’)CPT(I) = Op(l).

Finally v will be the normal bundle v, /57> of any fiber. We stari by proving:
Lemma 4.1.6 v = Ocp (-1) ®(O¢p, )"
Proof: v fits into the exact sequence

0 — vp/B = ¥ = (vt — 0

But, from the (local} definition of blowing up, it is easy to see that
(vEm)F = Ocp (-1). On the other hand, vpyg is trivial of rank n, because

F'is the fiber of a holomorphic bundle. Therefore

0—~+O$”—»v—>(’3(—1)—+0




is an exact sequence of vector bundles on CP,.

But since H'(CP,,0(1) ® 0®") = 0, the sequence must split and we have

the result. |

For any £ > 0 we will denote by S*(v~1), the k-th symmetric tensor

power of v 1,
Lemma 4.1.7 H(F,$*(v ")) =0 for alli > 1 and k > 0.

Proof: S*(v7') = S*(O(1)@ 0% =
Ok) B[Ok — 1) ® O] @ - -- B[S*~1(0°") @ O(1)] B S4(0O®") =
O(R)DO(k — 1)%%-1 ... @ O(1)04 @ O

for some 1 < ap 3 <.+ < g4 < ag. The result is now clear. O

We can now look at the direct images of the sheaf @ e
Proposition 4.1.8 5,00, = Oy, and b, Oy =0, for alli > 1

Proof: Tet U C M be a small Stein ball. f U N N — @, we can just
apply Cartan’s theorem B, to prove the assersion, because HUY = U.
Otherwise, (b )U = Ouv\w = Oy by Riemann’s extension theorem, since
codim N > 2.

What is left to prove is that for any p € IV, the stalk 8, := (54iOpz)p = 0.
To see this we fix p, and let F = 57(p). Then if T denotes its ideal sheaf, we

can consider Oy /T**'; this is a sheaf supported on F, and called the k-th




order formal neighborhood of F in M. Then one has the exact sequence:
0— O(S*v™Y) — Oy /TF o Owp/T* >0

By 4.1.7, (O /T*") = H{(Op/T*) forall i > 1, k > 0. Since O /T! =
Or = Og¢p,, this implies that H*(Op /T*) =0 for all i > 1, k > 0. Now,
we apply Grothendieck’s theorem on formal functions, [10]: it says that if
8; is the completion of the stalk S;, then &; & lim,_ H¥(O/T*); therefore
S; =0 by the above. But now, by a theorem of Grauert, b,;0 i is coherent,

because b is proper, therefore §; = §; = 0 0O

We then lock at the tangent bundle of M.
Proposition 4.1.9 b*g(@M) = b*Q(GM,E) = ®M,N

Proof: It is enough to show that for any open set U Cc M , Which meets
N, HO(b~1(U),05) = H(b-Y(U), Oy p) = H(U,@p,n. To prove the first
equality we notice that from the definition of the normal bundle vy, there is

an exact sequence of sheaves on M:
0—>®M.E—>@M—>VE—>O

and we only have to show that H(b™'(U),vg) = H(bY(U N N),vg) = 0.
This is clear, because b™'(U N N) is foliated by the fibers of b, and VE|p =
OCP,(“l)' It follows that every section of vz has to vanish on each fiber,

and therefore identically.




Now the second equality easily follows beca,use any holomorphl

field on 51(U) obviously defines a holomorphic vector field on U\N, wh1ch IS i

tangent to N, and can again be extended to all of N, because codim N > 2 a 3o

Proposition 4.1.10 The direct image sheaves b,;(© ) and b4i(O g )

all vanish, when ¢ > 1.

Proof: Followig the proof of 4.1.8, we only have to show that
lim,_ HY(©y/ T*@y) = 0 for all ¢ > 1. In fact, we start by considering the

exact sequence
0— S* )@ O, — O/ 'Oy — 04/ T'O 4 — 0
and we want to show that,
for each kyi>1,  HY(F,S*v7')@ 0y, )=0 (4.2)

We can indeed identify © #1)p» DY looking at the following exact sequence of

vector bundles on F = CP,:
0-—>TCPT—>®M|F —v -0

is then easy to check, using 4.1.6 and the Euler sequence for TCP, [9], that
HY (F,v' @ ©j11,) = 0 s0 that the sequence splits and ®M|p =TCP,@v.
Now, from 4.1.7 and the Euler sequence again, is clear that equation 4.2

holds. This implies that for any ¢ > 1, H"(GM/ 1"‘+1®M) = H"(@ﬂ/ I"G)M)




all k. But H(@g/ I1'0,) = H(F, ©51,) = 0 for all ¢ > 1, and the the first
part of the proposition follows. The proof of the remaining part is analogous,

but easier, 0

As a direct consequence of the Leray spectral sequence and all of the

above, we have proved:

Theorem 4.1.11 [8] Ifb: M — M denotes the blow up of a complex mani-
fold M along a complex submanifold N, with ezceptional divisor E = b-1(N),

then for any ¢ > 0

Hi(M,O) = H"(M,O) and Ht‘(M?@M) = Hi(M:GM,E) = Hi(M:(')M,N)

4.2 Application to twistor spaces

In the particular case when V = Z, Ug Z, is a singular twistor space, with
Z; the twistor space of a compact self-dual manifold X; ; 2==1,2, a "smooth
deformation”, d : Z — A with d~(0) = Z, can be given a "real structure”,
(extending the natural one on Z) and is then called a standard deformation

in [8]. If D C A is the fixed locus of the real structure on A, then the main

result of [8] is:

Theorem 4.2.1 (Donaldson-Friedrhan) Ifd:Z — A is a standard de-

formation with d™1(0) = Z as above, then for each small t, in the real sub-

manifold D of A and not contained in the complez hypersurface A' = {t; =




0}, the complez 3-manifold Z, = d~'(t) is the twistor space of a self-dual

melric on X #X,.

We now return to our particular twistor space Z = 7, Ug Z., to a,pply;éﬁfl-e_.
of the general theory we illustrated. Recall then that Z; is the twistor spaé.é;iio' :
the Hopf surface with its standard conformally flat metric, M = C2 Sz~ )\z) o

-and Z; is the twistor space of CP;. By definition, Z, is also the twistor sp.a,ce::'E
of the anti-self-dual manifold CP,. We now consider smoothings of Z: in the "

general case of twistor spaces, remark 4.1.1, together with the results on
sections 4.1.2, 4.1.3 give the following: (we will go over the details of a very

similar calculations later).

Theorem 4.2.2 [8] If H(©3z,) = 0, for i = 1,2 then Z = Z,UqZ, admits

a "standard deformation” and therefore X, # X, has a self-dual metric.

As a corollary we have:

Proposition 4.2.3 The compact four-dimensional manifold M#CP, ad-
mits self-dual metrics, where M is a Hopf surface. While the manifold

M#HCP, admits anti-self-dual metrics.

Proof: If Z, is the twistor space of M, we have shown that H*(0z) =0,
3.2.9. While it is well known that the twistor space of CP, is the flag mani-
fold F1; and H*(®p,,} = 0 also. This shows that M#CP, is self-dual. But

now M is conformally flat, so it is also anti-self-dual as CP, 1s. o



Proposition 4.2.4 For any natural numbers p and q the manifold

(#ic1 M)(#3=1CP2)

admz’ts-self-dual melrics, while

(#ia M) (#],CP2)

admits anti-self-dual metrics.

Proof: [8] Asin the last theorem, let Z = Z; Ug Zybea singular twistor space
with H?(@;) =0, i = 1,2. Then one proves (see 4.4.3) that H2(72) = 0, un-
der these hypothesis; and by remark 4.1.1 there is a ”standard deformation”
d:Z — A with d=1(0) = Z. If © 3 denotes the sheaf of sections of the tangent
bundle of Z, we indicate by (©z), the tangent sheaf of the fiber Z;. In par-
ticular when ¢ = 0,(®z)o = 73. By Grauert’s semicontinuity theorem then,
0 = h?(17) > h*((©3z),); it follows that if Z, is a twistor space of X, #X,,then

R (©3,) = h*(©z) = h%(@z,) = 0. And the theorem can be applied again. O

4.3 The hermitian condition

Now that we have shown that M#CP, admits an anti-self-dual metric, we

can ask the following question: does the complex surface N = M #CP;y (ie. a

Hopf surface with a point blown up) admit a hermitian anti-self-dual metric?




To answer this question we look for a holomorphic smooth hypersurfa'ce-_-":.f:_'- e

(or effective divisor) S in the twistor space Z;, with the property that the
restriction to S of the twistor map Z; — S, gives a biholomorphism S=N.

For this purpose let b : 7; — Z; be the blowing down map to the twistor
space Z; of M. Then from the proof of 3.2.2, the map
pob: Z; — CP; x CP; is regular, and since each twistor line in Zy meets every
element of the families {Hu}ueCF’l and {H”}vecpl in exactly one point,
the complex 3-manifold Z; is foliated by two families of Hopf surfaces with
a point blown up: {qu}uGCPI and {ET”}”ECH:»1 where H, = (p; 0 b))~ (u)
and H* = (p, o b)~(v). Furthermore, for any u and v, H, and H® are
biholomorphic, because H, and H* are, and Aut(M) acts transitively on H,
and H"*.

Because of this, let now ¥; denote any element of {H.} or {H"}; we
notice that since &; = (piod)~!(u), ¢ =1 or 2, we have that

th/Z; = [il]lﬁl = th'

Proposition 4.3.1

- C i=0,1
Ht(El’Vf:l/Zl) &
1>2

Proof: First apply 4.1.11 and then recall 3.2.6. O

We then proceed by looking at Z,. As we said before the twistor space Z,

of CP; is the flag manifold Fy; = {([z], [w]) € CP, x CP,* : 230 zjw; = 0}




71

whose points correspond to pairs (I, 7) with ! a complex line in C* contained
in the complex hyperplahe 7. We start by noticing a hypersurface &, C Z,

given by the equation {z, = 0}.
Proposition 4.3.2 I; is biholomorphic to CP, with a point blown up.

Proof: ¥, is the smooth complex hypersurface of codimension two, con-
tained in CP; X CP;, given by {20 = zyw; + z2w; = 0}. But z, = 0 is just
the inclusion CP; x CP, — CP, x CP,, so that %, is biholomorphic to the
hypersurface {z;w; + z,wy = 0} C CP; x CP, which is by definition the blow

up of CP; at the point [1,0,0]. O

Now the twistor map ¢ : Fy, — CP, is given by [2], ¢ : (I,x) — X where
I is the unique complex line in , perpendicular to I. Notice that ¢ is not

holomorphic.

Proposition 4.3.3 X, contains a unique twistor line, L, 1= t=([1,0,0]),
and it meets any other twistor line in ezactly one point. Furthermore if B C

Yy denotes the exceptional divisor, LyNE = 0 and in factvp, s, = OCP1(1)'

Proof: A point ! = [vy,v;,v,] in CP,isa complex line in C® and its preimage
is the set of pairs ¢71(I)={(all complex lines k C C? which are perpendicular
to I, hyperplane spanned by k and [)} ={all lines contained in the hyper-
plane perpendicular to [} 2 CP;. Now the statements of the proposition can

be easily checked by writing the corresponding equations in homogeneous




coordinates [z] and [w].

Remark 4.3.4 A consequence of this is that CP, admits a complex strue-

ture in the complement of a point, ([1,6,0]).

Remark 4.3.5 rrI‘he real structure ¢ of Fi, = Z, is o : (I,7) — (7, 1)
where for example, 7 is the complex line perpendicular to 7. In coordinates
o : ([2], [w]) = ([®],[Z]). So that o takes £ to &y = {wo = 0}. The hypersur-
face {wozy = 0} is "real” and it either meets a twistor line in two antipodal

points or it contains it: Ly = {2y = wy = 0}.

Now let Z; be the blow up of Z; along L,. Z, contains a hypersurface 3,
which is the proper transform of I, that is Xy = b~1(3;) where b: Z, — Z,
is the blowing down map. However L, C ¥, has codimension 1, therefore
blg, : 8~ T, isa biholomorphism. We denote by Q, the quadric b~ L,).
Then @, N5, = b~g, (L2) & L,. Also Viyfen = Viym, = Op,(1). While
Vg, = OCP1 (2) of course,

We now construct the singular twistor space Z = 21UQZZ.

Let Q; C Z; be the exceptional quadric, ¢ = 1,2 and let f: Q; — Q; be

a biholomorphism as deseribed before; then the twistor line L, C @, is sent




to a line I; C @, which is the exceptional divisor of &, C Z,

interchanges the two factors of the quadric. So that the singular twistor space

Z contains a singular hypersurface 3 = 5, U tE; which is smooth everywhere

except along the line I := [, o L, where it has a normal crossing.

4.4 Smoothings of the hypersurface &

In this section we show that ¥ can be smoothed out and that any of its
smooth deformations is biholomorphic to a Hopf surface with a point blown
up, which is the kind of surface we want. This is proved by means of the

génera.l theory outlined in section 4.1.1, and some theorems of Kodaira on

compact coinplex surfaces.

First notice that the normal bundle of [, in ¥ is trivial:

T s @ Vs, = OCp, (-1) 8 Ocp (1) = Ocp

so that ¥ satisfies the d-semistable condition and we can consider the exact

cohomology sequence, cfr. sequence 4.1:
0— Hl('rg) ~ Ty — HY(L,0) — H* (1) - T2 HYL,0)=0
to analyze the terms of this sequence, recall that
0— 79— GOz 1 — i*@; 5 0

is an exact sequence for the sheaf of derivations of @g, where we denoted by

2’ the normalization &, I3, of X, and L' = L, [[ L,. By 4.1.5 we then have

because f S




to look at the cohomology of O3, ;. § = 1,2. And by 4.111: Hi(0g, )%

Hj(bO*@)f}i,L.') for any j; ? : 152.'.. .
Proposition 4.4.1
7 C* j=0
H(31,0g,5,)2{C* j=1

0 j>2
Proof: By the last proposition we have to compute the cohomology of Oy, ,:

the sheaf of holomorphic vector fields on T, = M , which vanish at a point

p- This fits into the exact sequence
0—Ox,, =0y, > T,5 =0

where T,%; is the “skyscraper” sheaf given by the tangent space at p, so
that H(T,5:) = C* and H¥(T,%:) = 0 for i > 1. Now H(Osg,,) is the

Lie algebra of the group of automorphisms of 2, fixing p, this is given by

1l ¢
matrices of the form € GL(2,C), so that H%(@y, ) = C%. The
: 0 d
proposition then follows from 3.2.8, and the exact sequence above. O

Proposition 4.4.2
- C' j=0
H-”(Ez,eﬁz,Lz) =
0 j>0

Proof: First recall that £, is the blow up of CP; at a point p not in the line

L,, and that vLCP, & OCP1' Therefore we have

Hj(iz’ @fh,Lz) = Hj(cpz’ chz»bzm)



and two exact sequences:
0— G)CPQ,LQ — @CP2 — OCP1 — 0

0— 922,132;? - 622.152 - TPCP2 —0
Now, the automorphisms of CP, fixing a line are

a b ¢
{] d e f | €GLB3,C)}/A

0 0 g

so that H°(@g, ; ) = C?® and similarly H%(®y, ;,,) & C*. The result then
C* i=0

follows by recalling H 1'(@sz) o ‘ O
0

=,

Corollary 4.4.3

Hi(ry={ct j=1
0 j5>2
Proof: From 4.1.4 we get an exact sequence

0— H(rg) — H©g, ;)& H(Oy_; ) —

— H(O1) - H'(r5) —» HY(@g, ) — 0

now, it is easy to see that the map %@y, ) — H%(O1) is onto, by looking
at a similar map HO(@)CF“z,L) — H°(©y) where L < CP, is a linear embed-

ded CPy. Then recall that H °(01) = C® and apply the last two propositions




to get the thesis.

Corollary 4.4.4 For the Ezt groups of & we have:

_ Ct i=1
Ty =
0 =2
Proof: A direct consequence of the the exact sequence 4,1 O

As a consequence of this, see remark 4.1.1, we have a “smooth deforma-
tion” d : £ — A of I, with smooth total space £ over a neighborhood of
the origin in C°; furthermore there is a complex hypersurface A’ C A such
that d~'(t) is smooth for ¢ ¢ A'. By restricting this deformation to a smooth
complex curve I' C A with the properties that 0 € T and T is transverse
to A, we get a sm;)oth deformation ¢ : D — T such that ¢ 1(0) = ¥ and
c™!(t) = Iy is a smooth compact complex surface for any t.

With the next tﬁro propositions we will then prove, using two theorems of
Kodaira, that such a %, is always biholomorphic equivalent to a Hopf surface

with a point blow up.

Proposition 4.4.5 For any smooth deformation ¢ : D — I' as above and

for any t # 0, the surface 3, is homeomorphic to (S* x S3)HCP,.

Proof: This is a consequence of a construction of Kodaira. In [15], he shows

that in our situation, which he calls a singular surface with an ordinary dou-

ble curve of the first kind, every smoothing %; of & = £,U. 5, is topologically




obtained as follows. Consider first L ¢ 5, and let U be the manifoldIWi:tH:;' S

boundary, gotten by removing from X, a tubular neighborhood of L (nameiy
the bundle of normal vectors of length < €). Since v, /5 = Ocp (1)( 1), the
boundary 8U is homeomorphlc to §% in our case, and U is homeomorphic
to X4, with a ball B; removed. So that 831 = 8U =2 §%; the reason for this
is that topologically we can think of £, as being constructed by removing
B, from X; and replace it by a neighborhood of the zero section of the line
bundle OCPl(_1)°

Applying the same transformation to &,, yields a manifold V with bound-
ary 8V = 5% where V is homeomorphic to CP, with a ball B, removed, so
that 8B, = 8V. The smooth surface I, is then given by identifying U and V
by means of an orientation reversing diffeomorphism 8 « 8V. Therefore

Z: 2 (5T x §%)#CPsy, topologically. ]

Proposition 4.4.6 With the same hypothesis as before, T, is biholomorphic

to a Hopf surface with a point blown up.

Proof: We start by recalling a different theorem of Kodaira, {14]. Let N
be a compact complex submanifold of a (non necessarily compact) complex
manifold M, such that H*(vy/ar) = 0. Then N is stable in M ,1.e. N survives

in any deformation of M.

We will use this theorem to show that ¥; contains a (—1) — curve, i.e. a

copy of CP; with self-intersection (—1). With this in mind, let M C X be




First 431, vg, 5, = Og, so that (vg,/5 )z = Oz = Ogp,. To show the

corresponding statement for 3,, recall that, as for any proper transform,

[£2] = 8'[%] © [Q]™; therefore vy, /5 )i = [£:]r = 5[Ba)z ® [Q]F} by the

o~

adjunction formula; since of course [Q][}} =~ (’)Cpl(—l) we only need to show
that (b*[Zs])p = Ocp, (1); but b : Y, > My isa Biholomorphism, so that
(0*[Z2])iz = [Ea]jz. Now, by embedding everything in CP, x CP,, is easy to

see that [X,]p = Os,(1,0)|z = O1(1) as wanted. a

Corollary 4.5.2

_ 0 fori=0,2
H‘(E,V}:/z) o
C i=1

Proof: We will use the long exact sequence given by the last proposition,
From proposition 4.1.5 H'(q,vz/z:) = Hi(”ﬁalz":)@ﬂi(yﬁz/%)' Recall, 4.3.1,
that

. , i=0,1
H'(vg, 7,) = H(Os,) =

0 otherwise
To compute the cohomology of V4,12, Instead, we use the exact sequence

0 — g, — b'vg, — (b%vg, )L — 0 (4.3)

gotten by restricting to £, the isomorphism [Ba] = 0[] @ [@]7'. Now

Hi(b*vg,) = Hi(vg,) by 4.1.11; but from the last proof, vy, = [Ba}ig, =




Os,(1,0), which cohomology can easily be computed by using the 'é.rhbédd'mg
of ¥, into CP; x CP,. This indeed yields

_ C? ifi=0
H(b*vg,) &
0 ifi#0 ’
Since we already know that (b*vg, )L = Ocpl(l), the last ingredient we need

is the observation that the restriction map
H0(22! OEz(L O)) - HU(L, Oﬂz(la 0))

is an isomorphism; this can be easily checked by embedding everything in

CP;, X CP,. As a consequence, the exact sequence from 4.3 :
0~ H%vs,) — H'(bvg,) — H((b'vs,)i) — H'(vg,) — 0

implies that H*(vg )} = 0 for any i.
We are now in a position to use the long exact sequence from the last

proposition:
0— HU(V;:) — Ho(Vﬁl) - HO(OL) — Hl(yz) — Hl(ugl) — 0

and the proof is now complete because the restriction map H U(vgl) —

H®(Op) is obviously an isomorphism of C. O

The fact that H'(3,vg/z) # 0, says that there might be obstructions to
the “survival” of & when Z is deformed to a smooth twistor space Zy, [14].

Because of this, we try a different approach, which, by the way, will not work

either,




We consider & C Z'tob
ing line bundle [X] over Z USlngthelast corollary we i_:a‘n'é'as:.ily (',.0.11.1.p11‘|:.e

its cohomology; but we first need: =

Proposition 4.5.3
_ C wheni=0,1
H(Z,0)
0 fori>2

Proof: From proposition 4.1.3, the sequence
0— Oz = .00z — 1,009 — 0 (4.4)

is exact, while H7(i,00g) = 0 unless j = 0, and H{(Ogz) = H"(Ozl) I
H(Oy) = H(Ogz) ® H(Ogz) , by 4.1.11. Finally, by the twistor corre-
spondence, hl(OZz) = bl(CF’z) = y hz(OZz) = b;“(CPz) =0 » and the

proposition follows from 4.4 m]

Proposition 4.5.4
C

-,
It
=

H{(Z,F)={C? i=1
0 i>2

i particular x(Z,F) = -1

Proof: Since F = [¥], Fiz = vy and we have an exact sequence of sheaves

0—>OZ—>F—>V2/Z—+O




whose induced long exact sequence éé,s:ily'impl_i

One can also define a “real” line bundle FF on Z, by letting F bé the
line bundle associated to the divisor T := o(X), where ¢ is the real structure
of Z. First HY(Z,F) = H'(Z,F), because 0*F = F'; then we use the exact

sequence

0 F o F—F——r(FF)w—}O
_where, since XNY =0 , (FF)D;; = Fiz = vgyz , we have Ho((F-F)[E =0;

the resulting exact sequence easily implies

Proposition 4.5.5

HY(Z,FF)={C® i=1

0  otherwise
in particular x(Z,FF) = -2

We now pass to the problem of extending a holomorphic line bundle on
Z, to the total space of a deformation. By corollary 4.4.4, using a reasoning
analougus to that of section 4.1.1, we can consider a “smooth deformation”

of Z, that is a family d: Z — A with the following properties: |

1. Ais a smooth, simply connected neighborhood of the origin in C
2. Z is a smooth complex four dimensional manifold

3. d71(0) = Z and for every t € A, d7%(0) = Z, is a smooth complex

three dimensional manifold




4. 7, is a twistor space ofM#CF’z,for an;

A
The following proposition is useful for extending a 1.i1'1e. B‘undle on Z,to 2.

Proposition 4.5.6 For any familyd: Z — A as above,
. H°(0a) fori=0,1
H(Z ,0)x
0 > 2
Proof: By the Leray spectral sequence is enough to prove that
Oa when ¢=0,1
dOg =
0 when ¢ > 2
To show this we use a theorem of Grauert [10, p288] which says that d,,0 #
is locally free when h4(Z., O) is constant in {. We shoved in 4.5.3 that
1 ¢=0,1
hq(Zo, O) = so that X(Zg, O) =0
0 g>2
By Grauert’s semi-continuity theorem then, h*(Z,,0) = 0 for any ¢ > 2
and x(Z;,0) = 0, for any t. Since Z, is compact, h%(Z;, ©) = 1, forcing
h'(Z;,0) = 1 for all T. We conclude that the Hodge numbers h%(Z,,©) are
constant in ¢, while d,,0 7 is locally free fo rank 1 when g=0,1and it is 0

for ¢ > 2. Since A is simply connected, we have the assertion. o

Corollary 4.5.7 Every holomorphic line bundle on Z eztends to a holomor-

phic line bundle on 2 . But not in a unigque way.




Proof: Since Z is defined by the global equation d = 0, the ideal sheaf
is trivial: Zz = O z . Then, it follows from the exact sequence |

O—ale(?:g ——:——)O}——>O

that the following sequence is also exact
0 HY(Z,07)— H(Z,0% ) H'(2,03) - HYZ ,0z)

and by the previous proposition the restriction : Pie(Z ) — Pic(Z) is onto

but not injective. 0

This result then assures -that the divisor line bundle F' = [¥] on Z, extends
to a non-unique line bundle F on Z . The problem of finding a hermitian
anti-self-dual metric on the blow up of M, is then reduced to finding a
holomorphic section of F, because this would imply that h®(Z,, Fiz,) # 0,

for any twistor space Z; and any 0 < ¢ < e.

Unfortunately this last statement can not be proved by using just

Grauert’s semicontinuity theorem, because x(Z, F) = —1.

Another application of the last corollary is the following: we can ex-
tend the real line bundle FF to a line bundle FF on Z . If we then re-
strict to a twistor space Z;, the holomorphic line bundle 7z, is “real” and
has Chern class equal to 3¢1(Z,). The Riemann-Roch formula then gives:

x(Zt,f?jz,) = —2 , which agrees with 4.5.5.
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