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Abstract of the Dissertation

Vanishing Theorems for Quaternionic Kihler
Manifolds

by
Mark Thornber
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1989

In this thesis we give a corrected version of a Weitzenb&ck

formula originally due to Griffiths. We use this formula to es-

tablish vanishing of certain cohomology groups on the twistor
space of a compact quaternionic Kahler manifold with negative
scalar curvature. Specifically: if L is the line bundle associated
to the complex contact structure on such a twistor space, Z, we
show that H'(Z,0(L®")) = 0 for n > 1. Furthermore if.L has
a square root bundle, L%, we show that HY(Z,0(L%)) = 0. Fi-
nally we use these vanishing theorems to show that quaternionic

Kiéhler metrics with negative scalar curvature on a compact man-
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ifold have no one-parameter deformations through quaternionic

Kahler metrics.
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Chapter 1

Introduction

In this chapter we summarize some of the definitions and results coﬁcem-
ing quaternionic-Kahler manifolds and self-dual four-manifolds which will be
useful in what is to come. In some respects these theories parallel one another
so that in subsequent chdpters theorems we prove for quaternionic-Kahler
manifolds will be true for self-dual Einstein four-manifolds with 6111_\7 minor

modifications.

1.1 Self-Dual Einstein Four-Manifolds

_- { Using the decomposition S0(4) = SU(2) xz, SU(2) we may construct, at

1 least locally, on any Riemannian four-manifold, M , two C®-bundles, S, and

S_, in the following way. Let P be the frame bundle of M , this is a principal
o8




$0(4) bundle which we may locally lift to a principal SU(2) x SU(2) bundle,
P. Now let S, and S_ be the bundles associated to P by the standard
representations of the first and second factors of the fibre § U(2) x SU(2) on
C?. Note that these “spin-bundles” are quaternionic in the sense that they
possess antilinear involutions whose squares are —1, and their determinant
bundles-, A?Sy and A’S_, have canonical trivializations ¢ and & resi)ectively.
From this we see that CT*M =S, ® S_, and we may identify the metric on
M as

9=e®EcT(A’'SLQA’5.) C T(O*T*M). | (1.1)
So far this is standard for any riemannian four-manifold.)The case of self-
dual or anti-self-dual conformal curvature is interesting in that there is then
a natural complex three-manifold, Z, associated to M, constructed from
spaces of almost complex structures on 7'M. Let us therefore consider some
of the ways of producing these spaces. For details the reader is referred to (3],
[4], [16], {2], or any of the many other treatments available. We concentrate
on the role of S, and give three essentialiy equivalent constructions. All of

these take place at a point z € M.

1. Notice that ©®S,, acts on CT,M in the folIoWing way. Let lowercase

indices denote TM and use primed and unprimed uppercase indices for

S_ and §, respectively, then, if 8 € ©?S,., define B(v)4% = BApvEC
otk '




where indices are raised and lowered with e. If we restrict to the
real slices and only consider elements of (O* St» of length /2 we see
that these are almost complex structures compatible with the metric

and orientation. Thus we get a two-sphere of such almost complex

structures, S 5(R(O? Siz))-

- Given o € §;, we get a map CT,M = 51.®8*; — §*,, given by
contraction in the first slot with «. Restricting to the real slice, T, M,
gives an isomorphism T, M 2= §*_ if « # 0. The almost complex
structure produced in this way depends only on £he projective class
of o, so that the space P(S,,) again gives a two sphere of almost
complex structures at z, each of which is compatible ﬁdth the metric

and orientation on M.

. This is identical to method 1 but we may hide the role of spinors.
Notice that A?CT*M = (O?S; @ A*S_) D(A’S, ®O’S_). Using ¢
and € we may think of this as A*CT*M = * S, @ O*S_. On thelevel
of real slices this is exactly thg decomposition of A* T*M into self-dual
and anti-self-dual two-forms. That is A2 7T*M = /\_2|_€B A% where the
two spaces on the right of this equation are the +1 and —1 eigenspaces

of the Hodge star operator, * : A2T*M — A2T*M. Having said all

this ‘T@? now note tlhat, given a self-dual two-form wap, of length /2,

&




we get an almost complex structure J° bjr raising an index of w with
the metric g. Again we get a two-sphere of almost complex structures

compatible with the metric and orientation, this time it is S 2 AL)-

In all three cases above we get § 2_bundles over M which we choose to call
Z, since they are all equivalent. In the case of a four-manifold we see from
general principles that Z parametrizes all of the almost complex structures
compatible with the metric and orientation. The manifold Z carries a natural
almost complex structure described in the following way. At a point z € 2
use the connection on M to split the tangent space into a vertical space
tangent to the fibre and a horizontal space isomorphic to Ty, M, where 7 is
the projection, 7 : £ — M. The vertical space has a natural almost complex
structure, in one case it is a copy of CP; and in the other two it is a metric
two-sphere. On the horizontal space we put the almost complex structure
which‘ is z.

In considering the construction of the space Z it should not be too
surprising that the 'rela.tioﬁship between curvature and the decomposition
NTM = AL ® A% plays an important role in the integrability of the al-
most complex structure defined above. To_éumma,rize: the Riemann curva-

ture tensor can be interpreted as an operator R : A*TM — A2T'M so that,

with respect to the above decomposition, we may write R € G)%/\ﬁ_ B AL).
o




A B
As a matrix we have R = . This gives a complete decomposition

B* ¢
of R into irreducible components [18], R = (trA,B, A— ItrA, C— 1trC). We

may identify these components as; trAd = irC = i—R where R is the scalar
curvature, B is the trace-free Ricei tensor, and the last two components are
the self-dual and anti-self-dual parts of the Weyl curvature, usually denoted
by W, and W_, respectively. In general the Weyl curvature W is exactly-
that part of R which is invariant under conformal rescalings of the metric,

W is irreducible in dimensions bigger than four.

Definition 1.1.1 An oriented riemannian four-manifold is called self dual

if W_ = 0 and anti-self-dual if W, =0.

It should be noted that the isomorphism class of the almost complex
manifold Z depends only on the conformal class of the riemannian manifold
(M,g), so that it is natural to expect that integrability of Z is related to
the conformal class of g. In fact this is 50 and the important result is the

foﬂowing [3]:

Theorem 1.1.2 (Atiyah-Hitchin-Singer) The almost complex manifold

Z described above is integrable if and only if W, = 0.
o ‘




Remark 1.1.3 If W_ = 0 instead, then since reversing the orientation of
M has the effect of reversing the roles of S, and S_ and of W, and W_,
we see that an analogous almost complex structure on P(S_) is integrable
instead. Thus any half conformally flat four mﬁnifold, M, has an associated

complex manifold Z, usually called the fwistor space of M.

Since the twistor space will play an important pa.rt in our later results we
summarize some of the salient structures here. First note that the fibres of
the projection w : Z - M are holomorphically embedded P,’s, and that each
of these “twistor lines” has normal bundle v = O(1) @ o(1). Furtherﬁore ¥4
admits a real structure, that is: an antiholomorphic map, ¢ : Z — Z, such
that o = id, in this case o is given by the a,ntipodai map on the fibres. In
fact these two properties allow us to reconstruct the conformal class of M

via the following construction.

Theorem 1.1.4 Let Z be a complex manifold foliated by holomorphically
-embedded P1’s with normal bundles O(1) @ O(1) and suppose Z has a real
structure a',.with ne fized points, so that the leaves of this foliation are in-

variant under 0. Then we may construct a half conformally flat, conformal

riemannian manifold M, so that Z is the twistor space of M. If we begin

o8




with the twistor space of N this reconstructs N.

The details of this construction will be important to us later, however
since the construction in the case of a quaternionic-Kahler-manifold is very
similar and will be described in the next section we will be content with a very
brief sketch here. The main point is the deformation theory of Kodaira [12]
which asserts that, if Z admitsa holomorphically embedded P, with normal
bundle O(1) @ O(1) then in fact this is one of a complex four-dimensional
family of such curves. If A denotes this family we may construct local
bundles, S, and S_, over M and use these to define a complex conformal
riemannian metric  on M via equation 1.1. If we let M denote those curves
in the family M invariant under o, then since these foliate 2 we see that the
restriction of r to M gives a riemannian conformal structure. We may then
check that Z is the twistor space of M .

It is part of the general philosophy of, and motivation for twistor theory
that geometric objects on M are related to holomorphic objects on Z. An

example of this is the Ward correspondence [3]

Theorem 1.1.5 There is a bijection between bundles on M with self-dual

connection and holomorphic bundles on Z which are trivial along the fibres.

More generally there is a program, going under the name of the Penrose

{ransform, %hich relates cohomology of vector bundles on Z to solutions of
¢




geometric partial differential operators on M, see for example [9], [6].

The case of most interest to us is the structure on Z corresponding to an
Einstein metric in the conformal class of g on M. It turns out that this is a
complex contact structure described in the following way: Given an explicit
metric in the conformal class of ¢ let D be the corresponding horizontal
distribution, D C TZ. D is a distribution of complex hypérplanes transverse
to the vertical space V C TZ, so that L = TZ /D restricts to O(2) on each
fibre. Let & be the canonical projection § : TZ — L. The obstruction
to integrability of D is theﬁ 8 A 89 It turns out that if M is Einstein
with non-zero scalar curvature then 8 A 89 € HO(Z, O(x ® L®?%)) is never
zero so that D is a complex contact structure on Z. If M is Einstein with
scalar curvature zero then D is integrable and the leaves give a two-sphere
of complex structures on M so that M is in fact hyperkahler.

Accompanying this contact structure is a Kiihlér metric on Z constructed
by using the standard metric on the fibres and lifting the metric from the base
to D, In the case of positive scalar curvature this gives a positive definite
Kéhler metric on Z,if R is négative this metric is no longer Kahler however
mﬁltipiying by —1 in the fibre direction gives a metric of indefinite signatﬁre
which is Kahler. For details .of these constructions and thé proofs the reader

is referred to the excellent treatment in Besse [4].

+4




In the case of positive scalar curvature Hitchin showed [10], by classifying
those twistor spaces which admit a Kahler metric, thgt the only simply.
connected, self-dual, Einstein, four-manifolds with positive scalar curvature
are the round four-sphere, S*, and complex projective space, CP,, with the
Fubini-Study metric.

In the case of negative scalar curvature less is known [13]. Our re-
sults are concerned with the rigidity of such manifolds under deformations
through self-dual Einstein metrics. Since the techniqﬁes are also applicable
to quaternionic-Kéhler manifolds with negative scalar curvature and the re-
sults are, perhaps, a little more interesting in this case we now give a slightly

more detailed account of the theory of these spaces.

1.2  Quaternionic-Kahler manifolds

Our summary here is essentially that of Salamon [17], for the construction

of twistor spaces, and LeBrun [15] for the inverse construction.

Definition 1.2.1 A quaternionic-K#hler manifold, M, is an oriented 4n-
manifold, n > 1, whose holonomy group is contained in the subgroup Sp(n)Sp(1) C

50(4n), where Sp(n)Sp(1) = Sp(n) xz, Sp(1).

8
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To begin with’ we summarize the “E-H” formalism of Salamon. This
produces locally defined bundles, E and H, over M , which play the role
of the spin bundles in the four-dimensional case already discussed. More
precisely H will be a quaternionic line bundle and will play the role of S,
in that the twistor space will be P(H). To this end let P denote the frame
bundle of M ,rthis is a principal Sp(n)Sp(1)-bundle. Using P we may, given
a representation of Sp(n) x Sp(1), construct, at least locally, an associated
vector bundle V. To do this we choose a local lifting of P to a Sp(n) x
Sp(1) bundie, P, and use the usual associated bundle construction. Via
this construction we may consider the bundles E, and I associated to the
standard representations of Sp(n) and Sp(1) on C?*" and C? respectively.
These bundles are quaternionic in the sense that they possess anti-linear
structure maps v — © sa.tisfying b= —'v,.a,nd there are canonical sections
wg € AP H and wy € A* E with wi(h, k) = wrlh,h), wg(h, fa) >0if k£ 0,
aﬁd sitnilarly for E.

From the construction of E and H, we may identify CT*M = EQH.
Note that the quaternionic strucfures on F and H induce a real structure on
&Ilj.f subspace of (R E) @(®? H) when p + ¢ is even, so that we may think

of this as an identification of the underlying real spaces. Furtheremore we

ok
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may identify the Riemannian metric as
9=wp@uwg € (NEQ N’H) C T(O*T*M). (1.2)

If, by abuse of notation, we let % H denote the real vectors in the ob ject o.f

the same name, then there is an action of ©? H on TM in the following way.

Use lowercase roman indices for TM and primed and unprimed uppercase

indiceé for E and H respectively, so that e.g. v = v24' then we may write
. this action as

! t
wap 1 v°% = whev©, (1.3)

where wyp € O H and indices are raised and lowered with wg. It follows

from this that if I,J € ©Q* H, then as edomorphisms of TM we have
JK + KJ = _{J, K)1. - (1.4)

Where { , } is the inner product on ©? H induced by wgr. Using this we may

construct local bases of @® H, {I,J, K} satisfying the identities
P=Jj=-1, IJ=-JI=K. (1.5)

Fiom equation 1.4 we just choose I,J, K orthogona.l of length v/2. Thus
we may view the real three-dimensional bundle O H C End(TM) as a

coefficient bundle of imaginary quaternions acting on the tangent space at

each point as if by rigﬁt multiplication. Now we may set Z = § ‘/5(?&(@2 H)),
A, ' .
& S
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the set of real .vectors in O H of length v/2, in exact analogy with the first
method for constructing Z outlined in the previous section.

Similar analogies exist for the other methods of constructing Z, Wé men-
tion only the second since this will prove useful. In this method, given a
non-zero vector h € H, we get an isomorphism TM 22 R(H*Q E*) — E*,
given by contraction in the first slot with 4. This gives an almost complex

structure on TM which again depends only on the projective class of h, so

that Z = P(H) is a two-sphere bundle of almost complex structures over M.

There is a natural almost complex structure on 2 defined in the same
way as before, namely at z € Z we split 7,2 into horizontal and vertical
spaces ‘using the connection-from M, on the vertical space we put the almost
complex structure of the fibre S?, and on the horizontal space which is iso-
morphic to Tr(;)M where 7 is the projection, 7 : Z — M , we put the almost

~complex structure which the point z is.

Again the integrability of this almost complex structure is tied up with
the decomposition of the curvature tensor of M under the decomposition
tff*M = E @ H, however in this case the quaternionic structure forces the

curvature to be of the right type, we have:

Theorem 1.2.2 Any quaternionic-Kahler manifold is Einstein, and it’s Rie-

o
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mannian curvature has the form
R=1Ro+R:i (1.6)

where t is the scalar curvature, Ry is the curvature tensor of gquaternionic

projective space, and R, is a section of oX(0} H).
Careful analysis of the curvature of M then yields

Theorem 1.2.3 (Salamon) Let M be a quaternionic-Kdhler manifold, then

the associated almost complez manifold Z is integrable.

Since we have seen that quaternionic-Kihler manifolds are Finstein it is
natural to expect, by analogy with the preceding section,-that when ¢ #£ 0,
Z should possess a complex contact structure. Indeed let D C T'Z be the
horizontal distribﬁtion induced by the connection on M, this is transverse to
the vertical space L so that TZ/D 22 I, as before. Let 9 be the projection

map 6 : T2 —+ L then we have

Theorem 1.2.4 (Salamon) Let M be a quaternionic-Kahler mantfold of
dimension 4n, with scalar curvature t # 0, then the distribution of hy-

perplanes D defined above is a complez contact structure on M, that is

O A0 € HY(Z,0(k ® L&) is never zero.

As in the four-dimensional case there is an inverse construction for these

manifolds too. Namely, given a complex contact manifold, Z, of dimension

o
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2n+1, with a family of holomorphically embedded P, ’s whose normal bundles
are isomorphic to O(1)9?" it is possible to produce a complex riemannian
4n-manifold (M, r ) with holonomy a subgroﬁp of Sp(n, C)Sp(l,C) so that
Z is the twistor space of M. In addition, if Z posseses a real structure with
no fixed points which preserves the contact structure we may single out a real
slice of M and a metric of signature (n—1,1) on this slice with holonomy in
Sp(n—1,1)Sp(1) -Which has Z as its twistor spé.ce. This construction was first
carried out in detail by LeBrun [15], in the case of a hyperkahler manifold the
details were given earlier in [11]. Since we will need some properties of this
construction, in particular the extent to which we may recover ' from the
1-jets of the contact structure and real structures, the rest of this chapter is
devbted to a more detailed exposition of this inverse construction. Of course
this is based extensively on [15] and the reader is referred to this paper for
clarification and the proofs which we omit.

To begin, let Z be a complex contact manifold of dimension 2n + 1, sup-
pose that Z has a holomorphically embedded P, with normal bulndle O(1)%2n
which is transverse to the contact distribution on Z. The deformation theory
of Kodaira then guarantees the existence of a complex 4n-parameter family,
M, of such curves. An open subset of M will consist of curves transverse to

the contact distribution, redefine M to consist of Just these curves. There is

o
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a double-fibration as follows,

q r

Z M

In this fibration the fibre over each # € M is a P, and g(p(z)) is a
twistor line in Z which we will refer to as .. The bundles E and H on M
wiil be constructed by a local method, for general M they need not exist
globally. We will need the .Oth-direct image construction defined as follows:
for any sheaf § on F we produce a new sheaf p3S on M by the requirement
that the sections of p!S over a set U C M are to be the sections of & over
p~}(U). In the cases we are interested in, if F' is a vector bundle over F then
PYO(F) is a sheaf of sections of a vector bundle and the fibre of this bundle at ' |
a point m € M is the vector space HO(P,, O(F)) which is finite dimensional
since P, is compact. With this tool in hand, let L7 be a lo.cai square root of

the contact line bundlé Z on 2 , and let D be the contact distribution.

Definition 1.2.5
1. Define H by O(H) = p%(¢"O(L1)).

- 2. Define E by O(E) = p)(¢*O(D @ L~1)).

o
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Remark 1.2.6 These bundles are actually the duals of the bundles E and

H discussed earlier.

Lemma 1.2.7 TM=E®H.

Proof
' By assumption Dlp, is the normal bundle of P, hence H(P,, O(D)) = TM.

But H°(P,,O(D)) = E, ® H, so we are done. O

Definition 1.2.8 df is a well defined section of A*(D*) @ L = A*(D @ Li)*

so we set wg = df € A® E*.

Definition 1.2.9 We produce a connection Vg on E as follows. Let Q; be
the sections of (ker ¢,}) — F, and let d, : O(¢*(D ®L%)) — Qi(¢*(D ®L%))

be differentiation up the fibres of q. On F we have the exact sequence
0 — ¢*O(D) — p*Q! —>-Q; — 0

so that pJQ; = 0. Thus the Oth direct image of d, under p gives a connec-

tion, Vg : O(E) — QA(E).

ol




17

Lemma 1.2,10 Vgwg = 0 so the holonomy of Vg is a subgroup of Sp(n, C).

Proof

This is clear since d@ is closed. a

This constructs the bundle E with connection, the construction of H is
more elaborate.
Definition 1.2.11 For brevity set I, = ker p, and ) = g, (D), so that
L=TF/D. Let dp 1 O — O(L1) be differentiation up the fibres of p, then

the Wronskian

WOl x 0k} = © (1.7)

(31,82) = 8 & dp82 — S5 ® dpsl (1.8)

is independent of choice of local trivialization used to compute the deriva-

tives. Let wy € I'(M, O(A? H*)) be the direct image of W.

Definition 1.2.12 To define a connection, Vi, on Hlet § = 6:TF > I

be the canonical projection, and consider the operator

L:0D)x0(L) —» o) (1.9)

(,0) = B(uo])  (110)

"4
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which is a derivation in the second slot. Produce a new operator

L:0(D) x (L) - o), (1.11)

by requiring £ to be a derivation in the second slot and setting wﬁ(u,w) =
3£(u,w?®). Finally, if s is a section of H identified with 3 ¢ HY(O(L3)),
and if ¢ is a section of TM identified with p;'t € H(O(D)) via the rule
p(p;'t) = t we may at last define Vg : O(H) — QNH) via the rule

(Vas)(t) = £(p;'t, ).

Lemma 1.2.13 Vzwyg = 0 so that the holonomy of Vg is in Sp(1,C).

Proof

(Sketch) The point here is that F = P{H) and the distribution D on F is
Just the projectivization of the horizontal distfibution of VH.. Thus if we
identify the fibres of p over the ends of a curve, ¢, in M by lifting that curve
téngent to D and use this to identify Hyq) = H°(p~(c(0)), O(L7)) with
Hy, this gives us parallel transpdrt with respect to Vg . Now invariance of
the Wronskian under coordinate changes guarantees invariance of wy under

parallel transport. o

Remark 1.2.14 Since dfl = ¢*8 is non-zero we also see that the curvature

G
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of Vg is everywhere non-zero.

Definition 1.2.15 Now define a complex riemannian metric 1 on M by

the ruler = wg®wy and a connection, V, by V(e®h) = Vge®@h+e®Vyh.

Clearly Vr = 0 and the holonomy of V is a subgroup of Sp(n,C)Sp(1,C).

Proposition 1.2.16 V s torsion-free and so is the Levi-Civita connection

ofr.

Proof
The proof is in two parts, in the first we show that it suffices to do the
calculation at a point in the model space CP32nt1,in the second we carry this

out. For the first part we need a lemmas:

Lemma 1.2.17 Let P. be any curve of the family M. There is an isomor-
phism between the second infinitesimal neighbourhood of P, C Z and the

second infinitesimal neighbourhood of a line CPy C CPy,.1. Moreover this

can be chosen to send the 1-jet of the contact distribution to the 1-jet of the

unigque eontact distribution on CPopra.

Proof

(of lemma) This requires some careful analysis. The first neighbourhoods

i 4
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agree because we may use the contact distribution to write the tangent bun-
dle of Z restricted to a line as TZ|p_ = O(2) ® 2rO(1). For the second
neighbourhoods analysis, given in [15], reveals that the obstruction to ex-
tending the isomorphism lies in H'(CP1,0(2) ® ©*(2nO(—1))) but this is
ZETO. 0
The point of this lemma is that it now suffices to check in the case Z =
CP2n41 since by the lemma we may identify M with the corresponding space
for Z = CP3,y, to second order at ra, point in such a manner that the con-
nections agree to first order. |

Now when Z = CP»,,y wemaylet w € A*(C*+2) be any non-degenerate
two form, and 8 € T(CPy,.1,O(2)) be the corresponding contact structure,
defined by ) (W) = w(V, W). The space of lines to consider is GL(CPnt),
the space of planes in C2*+? on which the restriction of w is non-degenerate.
The construction is invariant un-der. Sp(n + 1,C) so the torsion is invari-
ant under the isotropy subgroup, Sp(n,C)Sp(1,C), and in particular un-
der Sp(1,C). If T = T,G5(C*+2), then as an Sp(1,C)-module T = 2nH
where H is the fundamental representation of S p(1,C). Now torsion lives
in T®/\.2 T, since TQA*T = 8n°H @ 2n’(n — 1) O* H and this has no 1-

dimensional component the torsion must vanish a

L 4
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To recap: starting with Zant1 we've produced a complex riemannian
manifold My, with holonomy in Sp(n,C)Sp(1,C). Since H has non-zero
curvature the holonomy is not in Sp(n,C) and for n > 2 M is complex
Finstein with non-zero scalar curvature. For n — 1 one may also show that
M is self-dual.

Finally we consider the role of real structures. Suppose o is an antiholo-
morphic involution of Z without fixed points and suppose further that o
- preserves the underlying real distribution of the contact structure . Thus
0.0 = 0. If P, is a twistor line then so is cr(IF"w) S0 o gives rise to an aﬁti-
holomorphic involution & : M — M.

Definition 1.2..18 M, will denote the fixed point set of 7, a real-analytic
4n-manifold.

Now given z € M, we have ¢ : P, — P_ an antiholomorphic involution. But
Hy = H'(P;,0(L%)) and B, = HY(P,, O(D ® L~%)), where Llp, = TP, in a
canonical way induced by 6. This gives rise to antilinear maps o,z : Hy — H,
and 0,5 : B, — E, with o2 = +1 and o2 = £1. Since TrQH is just J,
these signs must be the same. Further, P(H,) = P, ip a natural way which
implies that the projectivization of ¢,y is just o : P, — P.. This hz_is no
fixed points s;) o2g = —1 and therefore. olp = -1 aléo. Thjs.makes E and

H into quaternionic bundles. We get an Sp(1) structure on H via the inner

o
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product (hy,hy)g = wi(hy,o.ghy), and an Sp(l,n — 1) structure on E for

some /, depending on the signature of the corresponding object on E. Now
(h]_, hz)H(ely Cg)E =r (h]_ & 61,&*(h2 ® 62)) =7r (hl ® €1, hg ® 62) (112)

Thus o induces a Sp(l,n — {)Sp(1) structure on M, compatible with the

Levi-Civita connection.

To conclude we remark that if we began with Z the twistor space of M

then this construction rebuilds all of the information from M and, at least

locally, reconstructs M,
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Chapter 2

Preliminaries

2,1 Notation and Conventions

For tensor calculations we use the abstract index convention of Penrosé. An
excellent reference for this is [16]. In this formalism indices are used as
| placemarkers only and do not indicate components. Thus Ve is a vector
(with componentsVg,... V) a, is a 1-form, and o, V® denotes V) ete.
We will be working with a complex manifold Z y 50 a little more nota-
tion is appropriate. The complex structure, J, defines a splitting, CTZ =
70 @1;'0,1_ Thus, Greek indices will denote CTZ and barred or unbarred
Roman indices will denote 7%! and 710 respeqtive_ly, ie. T* =T T?,

It is a standard convention in the abstract index formalism that the order-

o
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ing of indices of different types is irrelevant (since eg. E*® FB = FE E*).
Unfortunately in the case of 7% and T%! this leads to coni;usion, since both
are subbundles of CT'Z and the types of symmetries we study (in the case
of hermitian metrics and kahler forms) use this fact. For example 9.5 and
95 usually denote tﬂe same tensor g in T, @ T;, but in our case g usually
means that part of g,5 in T5, which is not the same as se» Thus we will

distinguish carefully between T'; and T,

2.2 Hermitian Differential Geometry

In addition to [16] the presentation in this section is based on [7]. Let h
be an hermitian riemannian metric on TZ, ie. R(V,W) = h(JV,JW). This
gives rise to an hermitian inner product, g on CTZ via g(X,Y) = Ch(X,Y),
where Ch denotes the extension of h to CTZ via complex linearity. If V and
W are real vectors then V —{JV and W -+ iJW are typical elements of T1°
and T°! respectively. It’s eésy to see that g(V —iJV,W + {JW) = 0 and
thus 70 = (T%)L, Hence, if g(X,Y) = ga;gX“‘?'B, then g.,, = 0 = g and,

under the decomposition Top = Tar B T3 D T @ Tz, we have
o

Jap = 95 D Jap- 7 (2'1)
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Now
g(X, Y) = gaﬁXa?ﬁ (2'2)
= g5® 9a(X" O Xa)(Yb fas) YE) (2.3)
= gaEXa?s + gabXa?b. (2'4:)

Since g(X,Y) = g(¥, X) we see that
9ok = Gba = Gpa- - (2.5)
In our case g is the complexification of a real tensor and so g =g, Iie.
9k = s (2.6)

The Kihler form, or associated two form, w, is the complexification of

the real form A(JV, W), i.e. w(X,Y) = g(JX,Y). Thus,

WX @ XY oYY = gUX @IX T o7 (2.7)
= g(iX*®—iX YV o7 (2.8)
= g sX°Y® — iguaX°Y? (2.9)

From this, Wag = Wyp D wgp = ?:{ga.s 7] _gﬁb}: ie. Wob = Gab and Wap = —Fab

A‘@f%nnection on Z is an operator V : TZ — T*ZQ@7TZ sa,tisfyihg

V(hV) = dh ®V + AVV for all vector fields V and all smooth functions

h. In abstract indices this is an operator V, : 7% — T8, Given a coordinate
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system {zy,...,2,} on some open set U C Z, we get a local tensor field on

U, I'np”, defined by

Tog'VP =V, VY ~ D V7 (2.10)

where D, is the connection on U induced by the coordinate diﬁ'eomor—
phism with R". It is important to note that, with this definition, T' is
a tensor on U. Confusion may arise from the similarity of the formula
VoV? = D, V7 + L.g”V? to those found in classical texts. In our case
D,V? does not mean “diﬁ'efentiate the coordinates” fof in writing V7 we
have not yet chosen a frame for CT'Z with which to obtain coordinates.
There is a natural frame for CT'Z since we have coordinates, however if this
is not used then the expression D, V" means the following:.'ﬁrst transform
to the frame {-'93?1, ceey 5-2:, i%, . igz—n}, then diﬁ'erentia,te the components,

finally transform back to the original frame.

Definition 2.2.1 We denote by V the unique connection compatible with

the metric and complex structure on M, ie. V,gg, =0, ['5° = Ty, and all

other components of I" are zero.

Deﬁni&ion 2.2.2 Torsion is defined by Ti;* = I';;* — Ik = PANTPLS
&
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Remark 2.2.3 This definition of torsion gives the usual formula:

Teg"X°Y? = T(X,Y) = VY — V¢ X — [X, 7). (2.11)

We conclude this section with some definitions and observations which

will be relevant in the later computations.

Using the condition, I';® = T',;¢, and all other components of I’ are zero,

we compute
Vig;k = Digsz — Tii gy (2.12)

Then V,g5, = 0 implies that D;g;z = Tyl giz and thus

1
0w = Dywig = Dygye = Tpisi'oig = Eﬂjlm- (2.13)
Definition 2.2.4 Curvature is defined by:
VaVV7 —VgVoV7 = Rops" Ve + To g VsV (2.14)

Famga general connection, with non-vanishing torsion, many of the sym-

metries of the Riemann tensor are lost or retained in a weaker form. The

following are two symmetries which we will have cause to use,
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Lemma 2.2.5 1. Ropgys = Ricglvs = Roplys). Where square brackets in-

dicate the operation of skew symmetrization; i.e. if A is any tensor

then A[aﬁ] = %(Aa‘@ — Aﬁa)-
2. ’Rrabaﬂ!r - RaabJ = DbTa,zJ-

Proof

1. The first of these is clear from the definition. The second follows from

the observation that V,Vgg.s = 0.

2. This is an application of the Jacobi identity, [X,[Y, Z]] + [Y,[Z, X]] +
[Z,{X,Y]] = 0, to vector fields of the appropriate type. For details we
refer the reader to [7] or [16].
O
With our conventions the Ricei form of Z, ®z, which is the curvature of

the canonical bundle, takes the form (®2)a = Rae®. We may compute
@

L N
Rase® = D\T';.%, from which it follows that & z = 80log det(g) as usual. One

final .cugvature identity is appropriate at this point.
Lemma 2.2.6 If To:® = 0 then Rase® = R%z.

Proof

Since TEBE = 0, 1t follows from lemma 2.2.5 part 2 that R .5 = Raat. Now




29

two applications of part 1 of the same lemma yield the result, a

If ¢z, 724 15 a (0,n)-form with values in a holomorphic bundle E, we see

that
(0)ar.zca = Vibm.oma— Ty P gtz 714 (2.15)
n
= Viba.ma — Eﬂfiq@qﬁ;.mA (2.186)

This leads us to the following definition.

Definition 2.2.7 Define T : A(E) — A%"+(E) by,
n,
(T($)sr..mma = ‘2‘“T[ﬁq¢|qta...r;]A, (2.17)
and V:Q%(E) — QO E) by,

(Vo)ar.za = Vidir.zma. (2.18)

With this we have 8¢ = V§ — T(¢). If Z is compact and E is hermitian we

let § ®hote the adjoint of & with respect to the inner product on Q(E)

given by (¢,¢) = f, n!gS,T_"qAWT'"T;A. We may compute §¢ = Vigp — Tty

where

(?Tqﬂ)q"_,—; = Vg =2 (2.19)
nn—1), - ,
(THP))mmma = —(_z"lTj[z?q&lﬁlﬁ...m]A (2.20)
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Then an easy computation yields

89+ 96 = (V, V) — (Th,T) — (T, 5) —(T,8), (2.21)

where for operators A and B, (A,B) == AB + BA.
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Chapter 3

‘Technical Lemmas

3.1 A Weitzenbdck Formula

In this section we develop a Weitzenbéck formula and a Bochner style van-
ishing theorem. It should be noted that both of these are very similar to
those in (8], indeed it was in an attempt to use the results of [8] that these
formulas were computed. Due to the appearance of an extra term in our
form&g, and because of the need to ensure the accuracy of all the relevant
constants, we reproduce them in full. First, with the conventions of chapter

2, we have:

Lemma 3.1.1 Let Z be o complex hermitian manifold satisfying T® = 0,

and let L be a holomorphic line bundle over £ with an hermitian meéiric.
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Then of hg.:za 18 @ (0,n)-form on Z with values in L we have

(B8+35)¢ = Ap+nd($)—(ThT)p— (T',0)p— (1,8 (3.1)
n{n —1
-0 aryg), (32)
where A is the Laplacian on (0,n)-forms, & is the Ricci form of Z plus the
curvature of L and 0T is an operator which will be identified in the proof.
Proof
Recall, from (2.21), we have:
8§80+ 85 = (V,V#) — (T*,T) — (T*,5) — (T, 5). (3.3)
We compute:

(V¥ = —nVEV%um.mu — (n + ViV . 14 (3.4)
= ~VEVgm.ma + 2V Vi
Vb a - (35)
= —n(VEV%um.m4 — VIVidum.ma)
B VYo (3.6)
= —ViVibi.ma — nTE"Viebgm.ima — n’R'q[Hl;qSEIE«-a]A
~1n — V)R 5" baes.ima — 7 L) Blem.. i (3_-7)

where @1 denotes the curvature of L. Let us examine the terms in this last

expression one by one

§
H
|
I3
P
[
[
[
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1. —V?V sz 574 This is the Laplacian on (0,n)-forms, which we denote

by Ad.

2. quqécﬁam..ﬁ] 4. From the observations in chapter 2 this is the Ricei

form of Z contracted with ¢, “(‘I)Z)[ﬁ%lflﬁ"---ﬁ] A-

3. (®r)[°Plepz..iz14- This is the curvature form of L contracted with .
We group this with the previous term and denote the sum of these

curvature forms contracted with ¢ by &(4)

4 R *Plaeps..mia-  Using the identity R,gy? = 1D, Ty, and the fact
that ¢ is skew we may rewrite this as %DI‘TT[WE]gbI@F;_",—;] 4- We denote
this by 2(0T)(4).

5. T ™V |s¢gm..oma- Since T — P74 and T24° = 0, this term vanishes.

Adding these terms together we get the desired result. DO

Remark 3.1.2 This formula is very similar to the one found by Griffiths,
[8] with the exception of the additional term (8T')(¢), which does not appear
in his version.

The standard vanishing argument will now give us the following theorem:

Theorem 3.1.3 Let Z be a compact complez hermitian manifold satisfying

T =0, and let I be a holomorphic line bundle over Z with an hermitian
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metric. Then, if

n{2(9),4) - TN ~ @)1 - = Dorya, g >0 (as)
for ail (0,n)-forms on Z with values in L, we have H™Z,0(L)) = 0.

Proof

First note that by Hodge theory every element of H "(Z,0(L)) has a unique
harmonic representative so it suffices to show that any harmonic (0,n)-form
with values in L is zero. Suppose ¢ is such a form, by the previous lemma

we have that

0 = A¢+nd(¢)—(T1,T)¢ — (T1,8)¢ — (T,5)¢

2= Daryp). (39)

Now taking the inner product with ¢ and integrating over Z we get

0 = V4l +n(3(8), &)~ [T~ T (¢ - 2= (01)(9),4) (3.10)

If th&ggonditions of the theorem are satisfied then the right hand side of this

expression is positive unless ¢ is zero, thus ¢ must be zero as required. O

R
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3.2 Some Calculations

In this section we list a number of exterior algebra calculations which will
be useful in what is to come. Throughout we will have an hermitian metric

on a complex (2n + 1)-manifold, Z, whose associated two form is given, at a

point, by

2n+4-1
2%z Ndz +2 Y de A dz ). (3.11)

i
2 =2

W, =

Thus an orthonormal frame for the cotangent bundle at this point is given

by w1 = v2edz; and Wi = \/ﬁdz;,i > 1.
Definition 3.2.1 For convenience of notation let dz{i~#} denote the (2n+

1—k)form dz; A ... A J'z-: Aol A crf; A ... A dZppq, where carats indicate

that a term is t6 be omitted.

‘Lemma 3.2.2

B L ifi=
1. (dm)¥(dz)s =

L]
'_e_-_a'_;
=,
V
—

3—::-5- ifi:]. orj:l

2. (dz; A dz;)®(dz; A dz;) g =

otherwise

00 fr
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1_dzie} ifi=1and k£1
3. (dz A dfi)[ﬁa(dz{k})W[fs...d] =
Laz ifi1k
4. (dz:;e A dzk+1)ag(d2{i})a§[a...d] =
8n(2nl—1)=5 d_z—{tl’k'k-l-l} sz >1andi 7& l’k’k +1

Sn(zi;-&)di{"'k'k“} ifk>1andi=1
Proof

- 1. Since (dz;)*(d%)a = ||d%|)%, this is clear from the form of the metric.
2. If we expand
(dz; A dz;)®(dz A dz) g5 =

(df,; ® dzj — dfj ® dZ,;)éB (dz,- & dfj — dfj &® dzi)ﬁ‘g ) (3.12)

| =

then use part one, we get the desired result.

3. First note that if we expand the wedge product in the first slot we have;

dzt? = i(a,'zl ® dz(VF _ gz, @ dz¥F ...
9 2n

L4

+ooet (~1)Pdz @ 2P, (3.13)

where p=1+1if4 <k and p = 1 otherwise. The only term in this

expression which contributes is (—1)rdz; @ dzli*} 5o

—11)® ., ,
dz; A dz; EE dz{’“} 5lz... = ( 1) dz; 2d2,' A df{z’k} 3.14
[ [Blz...d} m
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L w2 ik} |
= £|]dz,|| dzVe, (3.15)
Using part one now gives the result.
4. Asin part three we expand;
; 21(2n — 2)! .
45 = HESD(dn ndz) @ a2t
+ (d2: A dzs) ® dzt?®i 4 .., (3.16)

This time the only term contributing is (d2 A dzpy,) ® dztikk+1} 5o

we have;

(dz,— A dz_i)ag(dfi A dzj)aﬁ == |]d’zk A dzk+1|[2d2{i,k.k+1}. (3.17)

1
n(2'n. - 1)

Now using part two will yield the desired conclusion.
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Chapter 4

Vanishing Theorems

4.1 Introduction

In this chapter we will calculate the operator

A(9) = 20(2(¢), ) — | T(DI* — T - n(2n ~ 1)((8T)(4), 4}, (4.1)

used in theorem 3.1.3, for (0, 2n)-forms with values in the contact Iiﬁe bun-
dle on the twistor space of HP} = Sp(n ~1,1)/Sp(n — 1)5p(1), the non-
c;gpa.ct dual of HP™, using a metric we will introduce. Following this we
will observe that the same calculation will give A($) on the twistor space
of any quaternionic-K#hler manifold with negative scalar curvature and use

these calculations to obtain some vanishing theorems to be used in the rigid-

ity results to come.
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First note that we may think of HPY as a certain upper half-space in

HP™. More precisely, using quaternionic homogeneous coordinates,

HPY = {{g] e HP" [go@0 — 1 — -~ —qnGn >0}, (4.2)

Note that the action of Sp(n, 1) leaves invariant the quadratic form used in
this definition. With this definition the twistor space of HP? is seen to be

CPi"“ , defined by

CPiﬂ+1 — {[Z] c CP2n+1 l 205 + 27 — ZaZy ~ - "z2n+1.z2;+1 - 0}. (4.3)

The twistor fibration « : CP2n+l _, HP? is then given by

i (20,000, 22041) — [20 + 217, .., Zon + Zant17)- (4.4)

The contact line bundle is O(2), and, as discussed in chapter 1, we get
.a,_n indefinite Kéhler-Einstein metric on the twistor space by using |s|? as a
Kéhler potential, where s is a section of O(1) and the norm is as dicussed in
chapter 1. In our case it is easier to find a the norm on O(—1), this must be
in®riant under the action of Sp(n,1) and therefore a multiple of

2 2 2 2n4-1 _
12" = 25 + 27 — ¥ zez;. (4.5)
k=2

Thus w = 1981log ||z||* is indefinite Kihler-Einstein. It’s restriction to the

fibres of « is positive definite and, when restricted to the horizontal spaces,

f
.
| i
‘
o
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it is the negative of the lift of the metric from the base. Because of the

symmetry of the situation we will only need to compute things at the point

[1,0, ...,0]. Here w has the form
W = i(dzl A d21 - dZZ A dfz — . — ngn+1 A d22n+1)' (4.6)

Note that w is normalized so that if § — {[#0, 21,0,...,0]} then

idz A dz 2idzdy )
froveny ————— T — - 4-
o= LT = h gy = (1)

To find the contact form we note that this too must be Sp(n,1)-invariant,
so that if (, ) denotes the inner product on C2**2 obtained by polarizing the
norm in equation 4.5, then we may define Ov(W) = (V,JW), where J is the
quaternionic structure on C2**+? = H™+1, This is a one form on C27+2 {0}, it
is clearly homogeneous of degree two so gives rise to a one form on CPﬁ_"H,
¥, via Y (W) = OV(W); which is invariant under Sp(n — 1,1) and has
the right horizontal space at [1,0, ...,0], and so must be thg right contact
structure. We compute

g . 7
J = v—zodzi + 21dzg + z3d2s — zadzy + ... + ZondZant1 — Zanq1d2a,. (4.8)
For our vanishing theorems we will need a positive definite metric. To this

end use the metric on L whose curvature is w, (as already noted ¢;(L) = [w]).

Then make the following definition




41

Definition 4.1.1 If ¥ is a (1,0)-form with values in L, we may write
¥ = Y,g,where E is a bundle index. We define (PAD) g = Yaedy”, so

that ¥A 9 is an ordinary (1,1)-form.

| We will work with the metric whose associated two form is
we = —w+ (1 +*WAD. ' (4.9)

Notice the introduction of a parameter, ¢, this will be adjusted later to give
positivity of the operator A. In local coordinates, if o is a local section of
O(1) near [1,0, ... ,0], then ¥ is represented by the 1-form 6, where B (W) =

O'[ZV}W[V](W)) = O'[V](G)J[V](W)) and we have:
SAT = —_9Ad. (4.10)

In particular if we choose ¢ = (1,2,...,22,41) then, since |o|* = 1, and

(o) = 0at [1,0,...,0], we can see § = —dzy, and 00 = 2327, dza Adzapyq

o, ... 00
If {w.,} is an orthonormal basis for the cotangent bundle then w, =

%Ewi A @;. In our case, at [1,0, ...,0] this has the form

2n+1
26%dzy NdZL +2 ) dz A dE ) (4.11)

=2

1
w€=—2*
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thus an orthonormal basis at [1,0, ...,0] is given by w; = V2edz, and w; =
\/fdz,-,i > 1, as noted in chapter 3.

If L denotes the contact bundle 0O(2), we want a va;nishing theorem for
HY(Z,0(L)), where Z is a compact quotient of CP%"*'. Since the ex-
tra effort is minimal we will consider sections of L®™. By Serre duality
HYZ,0(L®™)) = H™(Z, O(£®(L*)®™)), where « is the canonical bundle

of Z, so we will work with (0,2n)-forms with values in k®(L*)e™,

4.2 'Torsion

First we will compute T and then the quantities IT())|? and || T#(¢)||%. To

begin with

%Tabcgcd- = duw, | (4.12)
= Bwti(l+ e |—1]—49 AT (4.13)
. 23
= i(1+*) (8 = NONG+ =00 AD (4.14)
|of |of*
“Bhus at [1,0, ...,0] we have
Tu® = —4i(1+ €)Y dew A dagieys ® (d2F), (4.15)
k=1 )

where # denotes the operation of raising an index with the (positive-definite)

metric. First an important lemma:
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Lemma 4.2.1 For this example we have Ts* = 0.

Proof

This is clear from the form of T' above and the fact that the forms {dz,} 2

are orthogonal at 1,0, ...,0]. 0

Remark 4.2.2 Note that without this fact theorem 3.1.3 would not apply.

Thus
n 2ntl ~

T(4) = —4in(1+ ") 3" 3 (d1)a(dZan A dZgpss A ) S (L T ppe—
k=1 j=1

(4.16)
but this is zero since every term in the sum contains dZok A dZopiq A dz{l'l},
and all of these vanish since at least one of dZy, or dZs,, appears twice. We

have proved:
Lemma 4.2.3 With the conventions above ||T(¢)||? = 0.

The computation of T1(¢) is a lttle more tricky! To begin with, writing
2.

C = —4in(2n ~ 1)(1 + £?) for brevity,

L 2n4l n
T#(¢) = C kZ (Pr)a IZ(det Adzaiga A d2) P (de) g ey (417)
k=1 =1

so we must compufe (dzaaAdzypyq Adzl)al—’r;;(dz{k})mglﬁ_“m]. Observe that we

may .rewrite this as (dz;) A {(dzzl A dz21+1)‘_‘5(dz{k})&gg___m}, but the term
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in braces was computed in lemma 3.2.2,it iszeroif k =2l or k = 2/ + 1 and
otherwise we get a multiple of dz{»%2%+1}, Since we then wedge with dz,,
the only non-zero terms arise when % or 2/ or 2[ + 1 is 1, that is, k = 1, We

conclude

THg) = Oy 3 (d2) A {(dew A doggy) B g ) (418)
=1

= C¢, Zﬂ:(dzi)/\ {—(-27—11—_-—1)dz{1'2"2‘+1}} (4.19)
= j(i;_‘ﬂ Zdz{ﬂ 21?1} (4.20)
2
Therefore
i@ = G, > dstray (a.21)
”(;if?zw )
To conclude:
Lemma 4.2.4 With the conventions abovg
@) = "ot g (1.23)

i
4.3 The Operator 0T

We will also need to compute (87)(¢) at the point [1,0, ...,0]. We have

D[GT'[[EE]H] = 263&)5 (424)
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= 2i(1+enals( L g, -1
= 2i(1+4¢ )3{3 (]a-|4 ANOAE+ '0149/\39} (4.25)
= 2i(1+¢€%) {8[5 (le?) A A 9‘] (I l“a A 39)} (4.26)
= 2i(1+¢%) {85 (l_jl_“- AOAG+ " I486 A 89} (4.27)
= 2i(1+&°){-2wA8A0+ 90 A D8} . (4.28)
Thus
_ . 2n+41
D[G_Ti;EJ] = 4?:(1 + Ez) {— Z ((121 A de) (d21 A de)
k=2

+2 Z(dsz A d32k+1)w ® (dZZk A dfzk+1)5&} . (4.29)
k=1 .

Therefore, if we set C' = 44(1 -+ ¢?),

;
D*Thssy Blasps.mima =

2n+1 2n+41

=0 X D (#)aldz A dz)s {(dan A dea)(d2 ™) s =)
k=2 =1
n 2Zn4l
+2C )7 7 () a(dZo A dZg sy {(dzak A dzgpys) 42 oppr ) -
k=1 I=1

(4.30)

For the first of these sums note that, by lemma 3.2.2, we have

1

& (dz A d2 ) {(doa A dzi)(de ™), g = 8n(2n — 1)e?

dzt, (4.31)

unless [ = I or k when it is zero. Thus ! = 1 does not occur and, for every

other value of I, we get 2n — 1 terms all the same. The first sum is therefore

_41’( + 82 2n+1

Z ¢> dz1. (4.32)

" 8ne?




46

For the second sum we first consider the term when { = 1. Again from

lemma 3.2.2 we have

1
8n(2n — 1

\ (4.33)

(dfzé A dZak i1 )i {(dzzk A dzzk+1)as(dz{1})|a6|a...m]} = dz {1,
So we have n terms when [ = 1, each of which is the same. When ! # 1 we
get one less term since, for each value of [ there is a k so that dz; or dZap 11

is missing from dz{}. The second sum therefore becomes

8i(l+e )¢ FRO 8i(1 + &)(n —1) 2%1 oy

8(2n — 1) 8n(2n — 1) (4.34)

Putting this together we get

i(1 + £2) 1 14 e*)(n—1) z(l + %) 2ol ,
OT(¢) = Er-1) B e ( n(3n — 1) Ine? ) ; dudz)

(4.35)

The object we want is (n(2n — 1)8T(4), ). From the above we get

o (n(2n — 1)IT(4), 6) =

2n+1

n(1+ ) d= 2 4 (14 ¢2) ((n— - Zo- ) > I s
(4.36)

7 g2 g? gy ,
= 2 G (e-0- ) e

This gives us
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Lemma 4.3.1 With the conventions above

(n(zn - 1)8T(¢),gt5> =

(1 + 62)145 "+ (212':16 4) (25 (n—1)—(2n - 1)) 2“2”“ . (4.38)

4.4 Curvature

We want to compute (2n¢'(¢),¢), where & is the Ricei form of w, plus the

curvature of x plus the curvature of (L*)®™, Now w is Einstein so its Ricci

form is proportional to w, from the observations in the previous section it

must be —(n+1)w. Since we and w have the same volume form up to constant

multiples they must have the same Ricci form. In the previous section we

saw that w was chosen so that [3:w] = (L), so we choose a metric on I,

with curvature w. From this we see & = —(2n + 24 m)w. Thus, at [1,0,

0],

= —(2n +2 + m)(d21 A d?l — ng A d22 —

e — dz2ﬂ+1 A d2_2n+1) (439) ‘ g
#@ :;'.
Now if Prrima = it g dat® iy the notation of chapter 3, then ‘ |

2n+1 ) . |
(4 = 3 (du)a®r?(det Dotz (4.40) ! |

k=1 |

2n+t1 . :

= (2n+2+m) Z (be)a {~(dz A dzy)¥(dat I
2n+1

+ Z (dz A dzz)[— (dz{ })[&,—- } (4_41)
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(n+zem)d S gm0 1wl g
= +2+ Zt 4 ——dz .
n m = Zl k P 47
£k
(2n —1)e2~ "
= (2n+2 +m){ $1dzt + Z Tq& rdz*t Y (4.43)

Here we have made use of lemma 3.2.2 to get line 4.42. From this

@n8(6,9) = mian+2-4m) (1B jautops

2n((2n — 1)e? — 1) 2241 k}y12
# 20 st

(4.44)
Thus we have proved:

Lemma 4.4.1 With the cbnventz’ons above

(2n2(9),9) = LTI (jpp 4 LoD 1X

57 WE E |¢k|2) (4.45)

4.5 The Operator A

At last we put together all these calculations to compute A(¢) as in equation

4
@4.1. From our earlier results we see that A($) = Cy|¢ [*+C, St |2 where

2n+2+m)n n(l1+¢e?) n(l+4e?)?

Cy - T PRI (4.46)
= 22n+1 - s ildn+142m)e? —1 — 2¢%1, (4.47) .
and
2n+2+m (1+€%)

¢, = i (20~ 1)e® — 1} - AnTiot {2¢*(n 1) — (2n — 1)}
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(4.48)

1
= Srrrai(dn’+2nmt2n—m—1)e? — 3 —m + (2 — 2n)e*). (4.49)
£

To guarantee positivity of 4 it will suffice to find a value of £ which makes
{(4n+1+42m)e? —1-2¢*} and {(411,2—|—2nm—|—2n-m—1)sz~—3—m+(2—2n)s4}
simultaneously positive for all values of m and n. Having come this far we
note simply that, when ¢ = -2:’:, these expressions become 9n + 9—2"1 - Zsl and

9n? — 22 4 9%”—"’ — l—?iﬂ + 2 respectively, and that both of these are positive

' forn>1andm > % Thus we have proved the result we wanted, namely

Proposition 4.5.1 If ¢ is any (0,2n)-form on CPi""'l with values in the
bundle L®™m > %, and CPI™ is given the metric Jrom equation 4.6 with

e=32. Then A(qﬁ) >0 and A($) = 0 if and only if ¢ = 0.
With this we get immediately the vanishing theorem:

Theorem 4.5.2 Suppose Z is a compact manifold constructed as a quotient
M

of CP¥™*! by a discrete subgroup of Sp(n,1), and suppose L is the contact

line bundle on Z, then H(Z,0(L®™)) = 0 for all m > 1. Furthermore, if

L has a square root bundle L3 on Z, then HYZ,0(L3)) =0 also.

Proof

Just note that, since A(¢) > 0, by proposition 4.5.1, we may appeal to the-
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orem 3.1.3 for our result. i

4.6 The General Case of Negative Scalar Cur-
vature

In this section we will extend the estimates and vanishing theorems of the
previous sections to the most general case of the twistor space, Z, of a
quaternionic-Kahler manifold, M, with negative scalar curvature. The method
will be to use an observation, due to LeBrun, [15], that we can osculate to
second order the contact structure of such a manifold at a point, by that of
the standard model space CP2**! we will also show that we can simultane-
ously osculate the real structure to second order. This will be sufficient to
give fhe 1-jet of the metric at a point in M and hence the 1-jet of the metric
and contact forms on Z. Since our calculations only involve knowledge of the
first derivatives of these objects, (the metric is Einstein so the Ricci form is
a multiple of the associated two-fofm), we may choose _coordinates at a point
so that the requisite formulae are exactly those of the preceding chapter.

Remark 4.6.1 Of course the use of exponential charts allows us to make

any two metrics equivalent to second order at a point, and Darboux’s the-
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Oreml says any two contact structures are locally equivalent. The point is
that, in the case of a twistor Space, we may accomplish both simultaneously

since both are encoded in the complex structure of the manifold.

To begin with

Lemma 4.8.2 (LeBrun) Let £ be any twistor line in Z. There is an iso.
morphism between the second infinitesimal neighbourhood of £L C Z and the
- second infinitesimal neighbourhood of a twistor fine Py C CPi"“. Moreover,
this isomorphism sends the 1-jet of the contact distribution to the 1-jet of

the distributioﬁ on CP?,_“H..

Proof

This is éiven in [15]. The idea is that, by well known calculations, the sec-

ond neighbourhood of & line in a twistor space is standard. That is, isomor-

phic to the second neighbourhood of the zero-section in the normal bundle,
sg¢ 2nO(1). Now since the contact structure allows us to identify this bundle

as the contact distribution, D, we get a contact isomorphism on the level

of first neighbourhoods. LeBrun computes that the contact automorphisms

of the second neighbourhood which leave fixed the first neighbourhood are

given by the sheaf O(2) ® O(2n0(-1)), (ie. O(L) ® ©@*O(D*)). Since

o'(P,,002) O*(2rO(-1))) = 0 we see that this isomorphism may bé ex-
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tended to the second neighbourhood. O

We also want to show that we can extend this isomorphism to include
the real structures. To this end let oy be the real structure on the second
neighbourhood of & line in CPI** inducing the standard metric of negative
scalar curvature on HPZ, and let ¢, be the real structure induced by that
on Z. Note that o, induces another metric of scalar curvature —1 by the
construction outlined in chapter 1 so that the forms wg are both definite and
1;he metrics {, )y ® {, )g are either both positive definite or both negative
definite. Furthermore the fact that o; preserves the contact structure trans-
lates, in the case of the s;econd neighbourhood of the zero section in 2n0O(1)
to th;, a.ssel_'tion that oi(fibre) = fibre.

Consider d; = ailp,, these are two real structures on P, without fixed
poiﬁts. These arise exactly as the projectivization of quaternionic structures
on CZ?, NQW any two such are conjugate by a linear map which descends

to a biholomorphism of P, conjugating 61 and &3, By extending this to

any contact isomorphism on the second neighbourhood we may assume that

o1 and oy are the same on P, and induce the same 1-jet of a quaternionic

structure on H°(Py, O(1)).

Note that o0, is a biholomorphism of second neighbourhoods fixing P,
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and sending fibres to fibres. On the first neighbourhood this is an element

of Aut(2n0O(1)} but these are determined by their action on a single fibre.

Now o, and o, both induce quaternionic structures on H P, 0(D® L“%))

inducing definite metrics of the same sign via wg. It is easy to see that

two quaternionic structures on a vector space which induce a metric of the

same signature with resﬁect to a non-degenerate two forn; are conjugate via

a linear map, (just choose one which sends a pseudo-orthonormal basis with ‘?z

respect to the first metric to one which is pseudo-orthonormal with respect

to the second.) By tensoring with the identity in Aut(O(-1)) we get an

elément of Aut(2nO(1)) which conjugates ¢y, and o5.. Thus we may assume

that o; and o, agree to order two on P; and their one Jjets agree on the

fibres. Thus o0, is a contact isomorphism of the second neighbourhood

fixing the first neighbourhood. As computed by LeBrun these a,re. exactly

O(2) ® ©*(2nO(~1)). Now the “standard ” structure oy is actua.]lyrinduced
Qh@from one on CPynyq, namely (2o, ..., 22m41) — [—2,%,. .., — 22741, Z5n] and 1 |

this has second derivative equal to zero. Thus the second derivative of oy !

which is obtained from that of &; by an eleinent of O(2) ® O*(2nO(-1))

must also be zero. We have proved:

Lemma 4.6.3 Let £ be any twistor line in Z. There is an tsomorphism

between the second infinitesimal neighbourhood of L C Z and the second
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infinitesimal neighbourhood of a twistor line P, C CPi"“. Moreover, this
1somorphism can be chosen to send the 1.-jet of the contact distribution to
the 1-jet of the distribution on ‘CF"i_""H and the 2-jet of the real structure fo

the 2-jet of the real structure on CPntl,

We note that the construction from [15] outlined in chapter 1 allows us
to construect the 1-jet of the indefinite Kéhler metric at a point in Z from
the second infinitesimal neighbourhood of a twistor line through that point.
If we then choose coordinates near p € Z so that the 1-forms {dz. 32041 a4
P agree with the same forms at 1,0, ... 0] in CP2*1 then the indefinite
kéhler metric, w, will agree with that of (4.9), for CP¥*', and then if we
choose a local section, o, of L7 so that le|* = 1, and d(|o[*} -_—. 0 at p, then 3
the corresponding local representative, 6, for the contact form will satisfy
8 = —dz, and 56 ~ 2he1 d2op A dzgyy at P, in agreement with the formulas
in section 4.1 for the standard form at [1,0, ... ,0].

Bearing this in mind we define a new metric on £ via

ol 1 _
‘ W, = —w + Wﬁ A8, (4.50)
and note that this hag the same torsion and 97 operators at p as the metric

on CP"1 hag at [1,0, ...,0]. Similarly, the curvature of I* is ~w, and the

Ricei form, which is also the curvature of x, is —(n + 1)w since the volume

form for w, is a constant multiple of that for w. Therefore the operator A(¢)
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as in 4.1, is the same, in these coordinates as that for CPﬁ_”"+1 computed in
the previous section. Since we already noted that when ¢ = % this is positive

for n> 1 and m > 3, we have:

Theorem 4.6.4 Let M be a compact quaternionic-Kihler manifold of di-
mension {n with negative scalar curvature. In the case n =1 we take this
to mean a self-dual, Einstein §-manifold with negative scalar curvature. Let
Z be the twistor space of M, and let L denote the contact line bundle of Z.
Then HY(Z,0(L®™)) = 0 for all m > 1. Furthermore, if L has a square

root bundle, L%, then H(Z, O(L%)) = 0 also.

Proof
As noted in section 4.5, since A(¢) is positive we may immediately appeal

to theorem 3.1.3 for the result. |




56

Chapter 5
A Rigidity Theorem

5.1 Introduction

In this chapter we will use the vanishing theorem for H Y(Z,0(L)) given in

the previous chapter to prove that quaternionic Kghler metrics with negative

scalar curvature on a compact manifold have no ﬁon-trivial deformations

through quaternionic-Khler metrics. This was first proved by LeBrun [14] ' ’..
{

odin the case of Positive scalar curvature. The jdea is that such deformations of

a quaternionic-K#hler manifold wil] correspond to infinitesimal deformations

of the twistor space preserving the contact structure and that these ob jects

are exactly H'(Z,O(L)). More precisely:
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Proposition 5.1.1 (LeBrun) Let £ be a complez contact manifold with
contact distribution D C TZ; let L = TZ/D be the contact line bundle of

Z, and suppose that H'(Z,0(L)) = 0. Then any small complez contact

deformation of Z is trivial in the following sense: if 7 : Z — R is a smooth
proper map whose fibres Z, = n~1(t) are complez contact manifolds with
cqmple:n contact structure depending smoothly on t, and if Z = Zo, there |
z'sl a neighbourhood I of 0 € R such that #Y(I) = Z x I in a fibre-wise I
complex contact manner. Moreover, if H'(Z,, O(L,)) = 0 for allt € R, where ! |
Ly — 2, 15 the contact line bundle analogous to L — Z, then Z2ZxRin

a fibre-wise complez contact manner.

Proof
(Sketch) First note that by Darboux’s theorem {1] Z has a holomorphic atlas

in which the contact distribution is the orthogonal space of

0= ngn_H_ + Z zkdzﬂ% (51)
k=1

P | -
Notice that O(L) is isomorphic to the sheaf of holomorphic vector fields i

on Z preserving the contact structure, C, consisting of those vector fields

V for which LyO(D) C O(D). If 8z is the contact form this is given by

V = V_18 4, the inverse is given in local coordinates by solving

V_18=f, V_1df8 = —df mod 4, (5.2)

{
[
“
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where f8 is any given local section of O(L). Denote this inverse by p. Now
cover Z with charts (Us,¢5), which take open sets in Z, to open sets in
C?t1 x {t} and take D, to the orthogonal space of 8. Now the idea is to
proceed as in Kodaira-Spencer theory [12], we produce a cocyle, Vig(t) ¢
NU; N Ug, O(L:)) by differentiating the transition functions,

Vir(t) = (45 (0)e e dox(t) (53)

where ¢;(t)(z) = ¢1(z,t). Now set 01k (t) = pi' (Vig(t)).
Now since H'(Z,0(L)) = 0 we have HY(2,,0(L;)) = 0 in a neighbour-
hood I of 0 by upper semi-continuity of dimension. Thus we find sectjons

05(t) with 0,5 = 07 — 6x. Set Vi(t) = p:85(¢) and then on 8;(UsNUk) solve

the equation

dZ/dt = —¢3,V;, 2(2,0) =2 , (5.4)

The solutions give new coordinates (Z ,t} and by refining the cover we get
new transition functions which are independent of ¢.
wdl

Now notice that this gives rise to isomorphisms of 7~1(I,) with 2, x I,

for intervals I, covering I. Finally if (2, O(L:)) = 0 for all ¢ € R we may

take I = R. I
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5.2 The Theorem

Now we may prove the promised rigidity theorem, the proof is modelled
on that in [14] but we save ourselves a step because of the negative scalar

curvature.

Theorem 5.2.1 Let M be a compact An-manifold and let {g:} be a family
of quaternionic-Kihler metrics on M of fized volume, depending smoothly
ont € R. (In the case n = 1 we take quaternionic-Kihler to mean self-

dual-Einstein). If go has negative scalar curvature then there is a family of

diffeomorphisms {3, : M — M} depending smoothly on t such that Yi9: = go.

Proof
First note that we may assume all g: have negative scalar curvature. For, if
not, let R(%) be the (constant) scalar curvature of gt, and let I be the _largest
open interval containing 0 on which R(t) is negative. The theorem applied
to I yields that R is constant on I, and so by maximality I = R.

Now, under this assumption, let 7 : Z — R be the family whose fibres are
the twistor spaces, Z; of the manifolds (M, g). This is a family of complex
contact manifolds satisfying H(Z,,0(L,;)) = 0 for all ¢ € R, so that by

the previous proposition there is a diffeomorphism 1,5 : Zo X R — Z which

sends £y x {t} biholomorphically onto £, in & manner preserving the contact
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structure. Set qﬁ;(z) = qﬁ(z,t).

Let o, be the lreal structure of Z4, pull this back to Z, to get p, = Atmla'twﬁt.
Now p, is a family of real structures on Z, prgserving the contact structure so
®¢ = pspo is a family of contact transformations of Zy. The derivative of such
a family is a holomorphic vector field on Zo but, by the Penrose transform,
these are in one-to-one correspondence with conformal-Killing fields on M.
By a theorem of Bochner [5], if M has negative definite Ricci curvature then
there are no conformal-Kiliing fields on M. Thus ¢, is constant and since
$o = id we have that p, = py for all t.

The fibres of m, : Z, — M are precisely the o,-invariant elements of a
complex analytic family of curves so that 1; sends the fibres of mp to the

fibres of m,. Therefore there are diffeomorphisms v; : M — M , making the

diagram 7
ﬁn ZQ —{i—) Zt
P
M — M

commute. Since 1ﬁ¢ preserves contact and real structures, and since these
determine the metric up to an overall constant we have that ¥} g; = c,go for

some ¢, > 0. But since g, and gy have the same volume ¢, = 1 and the result

1s proved. ]
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Remark 5.2.2 As noted by LeBrun in the same paper, it should be pos-
sible to give a proof which a.v_oids mention of the twistor space. The space
H'(Z,0(L)) corresponds via the Penrose transform to a space of solutions
of a linear differential equation which should be interpreted as “linearized

quaternionic metrics modulo diffeomorphisms”, and the vanishing theorem

- of chapter 4 should correspond to a Bochner style vanishing theorem on M.

Unfortunately neither of these interpretations is very clear at this time.
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