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Abstract of the Dissertation

Pseudodifferential Operators on

Nilpotent Lie Groups with Dilations
by
Lawrence Wayne Polin
Doctor of Philosophy
in
Department of Mathematics

State University of New York

at Stony Brook
1989

In this thesis we will be concerned with polynomial
group laws onIR" which respect weighted dilations. The
kernel of a pseudodifferential operator is a translate
of what is called a core. Our main result is that if
compactly supported cores glu(x) and gzu(x) have
asymptotic expansions inTQﬁééihomogeneous distributions
of increasing order, then the composition of their
associated pseudodifferential 6perators has an asymptotic
expansion whose terms may be written as a certain

adopted convolution of the terms in the original

expansions,
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Notations and Abbreviationsg

v+ru: group addition (it will also be denoted by wvu).
AB: f{a-.b/a € A, b ¢ B}

A T {a_l/a € A}

R™Mo: . R"\{0} = {x e R"/x # 0}

iff . if and only if

w.r.t.: with respect to

ETS: FEnough to show

WLOG: Without lost of generality

A ¢ ¢ B: A has compact closure which is a subset

of the interior of B.
£f e Lo: [fldx < =, wye > 0.
|x(>e

Xj,Yj,Uj etc.: As will be explained later, left
invariant vector fields w.r.t. X,¥,4

respectively.

fdx: Not only for use of Liebesgue integral, but
also as an abuse of notation when working

with distributions.
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Preface

Consider the usual Euclidean addition on R".
Given pseudodifferential operators P,Q with properly
supported symbols Sps SQ, the thn-Nirenberg formula
gives an asymptotic expansion for the symbol s of

QP
the composition QP as

sl ol

g ol

Dng'u(g)DﬁéPfﬁ(g).' (0.1)

Taking the inverse fourier transform, we formally

expect a type of asymptotic expansion

e
Z—l—l—l—(#“" } #D%¥

LoV - (_uyQY
a1 SQ,u uSP,u’ where # s(x) = {-x)"s{x}.

o

In this thesis we produce a comparable result in
consideration of more general addition laws, gu's
with a type of asymptotic expansion in quasihomo-
geneous distributions, and by use of a type of
generalized form of convolution.

It would seem appropriate to state some of the
history behind this dissertation.

. Although (0.1) is called the Kohn-Nirenberg
formula [Kl, the original idea of yDO's (i.e.
pseﬁdodifferential operators) was in essence due
to Mikhlin [Mi] and Calderon and Zymund [Cal. This
bit of history is impértant since Mikhlin, Calderon

and Zymund used
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(KE) (x) = (K 4£) (x) “(0.2)

which is a convolution of a kernel and a function.

Kohn and Nirenberg had the idea of introducing
symbbls and £he fourier transform into the definition
of yD0's instead of (0.2). This has the appealing
effect of converting convolution into multiplication;
but this ceses to be given when working with nilpotent
groups (i.e. when convolutoin fig is defined
fE(xy gty ay) .

One should note that a crucial paper in the origin
of VD0's was written by Hormander [H].

The idea of using operators of the form (0.2) on
groups, when doing analysis, 1is due to Folland and
Stein [FS]. Dynin [D] then sketched a DO calculus
for H" (i.e. the Heisenberg group), and other groups,
using symbols of various kinds. Melin [Me] also
had a sort of calculus on groups.

Taylor [T] adopted (0.2) as his definition of a

Do on.Hn, then quickly switched gears and developed
a "symbolic calculus." Beals and Greiner [Be],rlast
year, published a book detailing a calculus of DO
onIHn, again using symbols. Cummins [Cu] discussed
3-step nilpotent Lie groups, using (0.2).

Analytic YDO's on R were developed by Boutet

de Monvel and Kree [Bol. Using (0.2), Geller [G]
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discovered the product rule on Hn, and developed
an analytic calculus onIH".

This year, Nagel, Rosay, Stein, and Wainger
[NR] (and unpublished work) have invented "Non-
Isotropic Smoothiﬁg Operators" which extended the
ideas implicit in (0.2) beyond groups. Again, the
idea is to construct. a calculus using just kernels.
But in their situation, one can't hope for exact
formulas,

For readers familiar with the general literature
(e.g. Nagel and Stein [R])}, skimming Chaptérs 1,2,4
is encouraged. For those comfortable with Geller

[G], the same may be done with Chapter 3.
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1. Homogeneous Functions and Rhomk Distributiénsf:

Purpose of this chapter:

We "review" basic facts concerning weighted homo-

geneous distributions,

The notation and definitions which precede (1.16)

are taken from Geller [G].
Consider the weight a = (al,...,an) where the ai's

are positive rationals.

(1.1) Define Q as Zai.

a a
{1.2) Define dilation Drx as (r lxl,...,r nxn),

Vxermn,Vr > 0,
(1.3) Define Drf(x) as f(Drx), v functions £ : R" » €.
(1.4) Define (f,qg) = [f(x), g(x)dx, ¥ functions f,g.
(1.5) Define (F,g) as functional F acting on g.
Notice (f(Dr(xi),g(x)) = (£(x),x % (D, (x))) which
suggests...
(1.6)  Define prfgxy_ag_;f?f(bi/£ix{i $é§gi§g AT

Hence (£(D x),g(x)) = (D'f,9) = (£,D_g).

Considering distribution F,

(1.7) Define (DrF,g) as (F,Drg).




(1.8) Define (D, F,g) as (F,D%g),

Consider complex number k.

(1.9) Define "f homogeneous function of degree k"

iff D'F = o Ke, yr s g,

(1.10) Define "p homogeneous distribution of degree k"

iff DrF rkF, ¥r > 0.

Note: Since we can multiply ai's (and k) by the least
common multiple of {ai}, we have WLOG a,'s being

positive integers.

(1.11) Define |x| as “homogeneous norm function”
meaning a homogeneous function of degree 1,
smooth away from 0, such that x| 2 0 vx

with [x| = 0 iff x = ¢,

: n
A
. = v A
(1.12) . Example: If A I a. and ai .

i=1 *t i
' 1/
then we could define lxl = (Jx, Y 2A.
Note: fDrxf = r|x] but |cx| is usually not |c||[x|.
(1.13) Define =l as  § (x,)% 1/ _meaning the usual

=1 o
Euclidean norm;fﬁeénihg example (1.12) with

a= (1,1,...,1}).

Note: x| = 0(/x]) as x + 0 while [x| = 0 (] x|} )

as flxf > «.




Consider the Mmultiindex g ¢ (Zﬁ)n where

Z = {0,1,2,3,.. .1,

(1.14) Define (8] = a.g.
(1.15) Define ||g|| = IBi.

Having stateqd our first round of definitions, we

state the following triviaj propositions:

(1.16) Proposition: If f is C® npear Drx then

3E(f(Drx)) - rlBl(BBf)(Drx).

(1.17) Proposition: If £ is homogeneous distribution

degree k and C® on RN\
then 38f is homogeneous degree k - IB]

while xBf is homogeneous'degree k + ,Bf.

Consider the mapIRn +* M' : gy H—gu where M' is the

continuous linear functionals on M = C% Ci, or §.

(1.18) Define "gu is a C» distribution" iff (gu,m)
is C* ¥9 e M meaning iff 3:(gu,$) exists

Ya e (271 yy e M vo € M.

(1.19) Proposition: If gﬁ is a ¢= distribution; Rn”'_Dl

g4

£ , EREE NI £ -
then augu is also, and-(augu,@) = n(gn,fp)

¥y € Cc'

Proof: au,; gu is itself in D1 (w.r.t. x) by Banach-
]

Steinhaus Theorem, see Peterson [pj.



(1.20) Define F(g)(£) and §(£) as both meaning

the fourier transform of g, meaning

(QH)-n/zfg(x)e_ix‘gdx.

(1.21) Dpefine F-l(g)(x) and §(x) as both meaning

the inverse fourier transform of g, meaning

(2m) ™2 g gy et iX-Egr

Definitions (1.20) and (1.21) are from Taylor [T]
as well as the following principle: "the author will
be found guilty of lapses in the text regarding factors

of powers of 2m, which may be omitted from many formulas.

(1.22) Define Dj as %Bj where 12 = =]

{1.23) Proposition: If 9, is a distribution:

n

IR" +*8' and C® in u then ja is also.

(1.24) "Ku € Rhomk" as “Ku is a reqular homogeneous
C® distribution of degree k" iff u H‘Ku is
a map R" + $', such that K, (x) is C* in

Rr" x (Rn\{)), and DrgeK = rkSEK , ¥ > 0,
| R T uu

Note: We have the implicit condition that Ku is C®

distribution.

It . is trivial to show...




(1.25) Proposition: 1If K, € Rhom, then

k

B B
BXKU ; Rhomk_IBI, X Ku € RhOmk+IB{,

and BﬁKu € Rhomk.

Consider for a moment a={l,1,...,1}. While we
know that Anlill must be in Rhom, , , it cannot simply
be clE!lnzn which is not in LY .

. loc
of "what do elements of Rhomk look like?" and "what

Hence the questions

are their basic properties?"
Answering the former is done in the next chapter

on the A-transform. Answering the latter question begins

immediately.

(1.26) Proposition: If K, € Rhomk, and

G (x) is = Ku(x) when x # 0 while = 0

£

when x = ¢ then auGu is €® in R" x (Rn\O)

and homogeneous degree k.
The remaining propositions of this chapter are, in

effect, results from Nagel and Stein [N]. "In effect"

meaning we include our parameter u in K. .. ... = -

(1.27) Pproposition: |x|“e Ll _iff Re k> -0

while |x|® e L} iff Re k < =Q." In other

words, Q is fheﬁ“bfitical ihdek}“f{f;*

(1.28) Proposition: 9 measure ¢ on the unit sphere
{x e R"/| x| = 1}; v functions f(y) homogeneous

degree k and define on 0 ¢ a < |y|<b g =



(1.29)

b
we have S o flyddy = ([ f(x)do(x)) (fJrE*Qlgyy .
0<|y]|<b |x]=1 a
1 rk+Q]:, k # -Q
b k+Q—l K+Q
where (r dr =
n

[log(b/a), k = -Q.

Proposition: Given 0 « f [f|d0 < <,
|x]=1

f homogeneous degree K,

1 ,
we have f ¢ Lloc iff Re k > ~Q

while f e L.  iff Re k < -Q.

As a result of these we have:

(1.30)

Proposition: Consider fn #F 0 a.e. w.r.t., x.

. 1 . e
fu(x}rls a Lloc function (w.r.t. x), is C
in R" x ®™\0),

and D 8£f (x)
rnn

rkai(x), ¥x # 0, ¥r > 0

iff £ ¢ Rhomk where Re k > -Q,.

Realizing that the dot product of Drx and y = the

dot product of x and Dry, we have...

(1.31)

(1.32)

(1.33)

B A AN o
Proposition: 6??1:_D£F and DrF'='DrF, ¥YF € Sl

Propositioh:' If'f homogeneous degree k on
R™0 and f é'Ll then £ is homogeneous degree -Q-k.

Proposition: If F homogeneous distribution of

degree k then B ois homogeneous distribution of

degree =-Q-k.




{1.34)

(1.35)

Example: The delta function is homogeﬁéOUS
of degree -0~k = -k while the constant

function is of degree 0.

Lemma: If N ig ga bounded neighborhood of 0{
K, € thmk, and ¢ ¢ Cg.with 9 =1 onN

then [(l~¢)Ku]A is ¢* on R" x (R™\0).

. N\
Proposition: 1If Ku £ Rhomk then Ku € Rhom*Q_k.
See Nagel and Stein [N] P.9.




2. A-transform and Quasihomogeneous DistributidﬁéfKK.

Background: Consider L{D)u = f, or in other wdr&s,

(L(E)G(E))v = f. Formally, the solution u is

1 ) 1 )v
L(E) L(E) L(E)

sense, then it would be the "fundamental solution of

f) ( Vg, If ( can be made to make

L(D)." The function L(£) is said to be the "symbol"

for L(D). Consider L(f} to be homogeneous.

For example, the symbol of the Laplacian A is

”5“2. For n > 2,

)V

) € Rhom -p When a = (1,...,1),

i u2

is a rotation-~invariant element of Rhom2 n'

while (

2
Ilgic
namely ’n P—— which is the well-known fundamental solu~

Izl

tion of the Laplacian.

Notice that the symbol of AP is “E”2p whose re-

ciprocal is not LI (nor a distribution) when p n/y

loc

Hence we must take a fourier transform that is in some

Sense more general than that used on distributions.
Of course, this new fourier transform should agree with

the old on Rhomk>_Q.

One approach is. to somehow transform the homogeneous
function % into a dlstrlbutlon and then apply the
distributional fourier-tfahéform; The easiest way to

1 Sl 1 7
- - t
remove the non L1OC neas of I{z) would be to use a

principal-value-style deletion of Taylor series terms

at 0.




Purpose of this chapter:

1
L(g)

to present a basic study of Rhomk. The material in

We will use such a deletion of terms of

this chapter is standard; see e.q. Geller (G]

(2.1) Define M(f) = { £f(x)do(x)
xi=1
{(2.2) Define 8% as 2% where § is "the delta function."

Consider Gu(x) : anpxaRn“n + € where Gu{x) is Cx
. n o n r. .2 - K d
in IR (R"°\N0) and where D anGu(x) r anGn(x),
¥X ¢ Rn\O, ¥r > 0.

(2.3) Define AG as the "A transform of g" meaning

41
[ 6 () lp(g) - 3% (0) 514t
1 v la]sN @

€] <
/ M(E—G(g)) |
G (E)olE)dE + g%
61520 Elele)ag élé Tal v &g -
| o] #-0-k
0
(2.4) Define remainder RN as [o(g) - ’ a“¢(0) éT].

o] N
We will now develop the framework to understand RN'

& o . o _ +
Consider multiindices q,B8 and M ¢ Z

(2.5) Define "g < B8" as a; $ Bjvi = 1 to n.
{2.6) Define "o < B" as aq < B where i 3 a; < Bi‘

(2.7)  Define 1, as (0,...,0,1,0,...,0) where the 1
appears as the jth component.




(2.8) Define I(M) as {a e @1 %/|a} 2 M and

i3 |a - 1j| < M}.

(2.9) Lemma: ¥|/B| 2 MaEyeI(M) ¥ y £ B.

Proof: WLOG. Assume 81,82 = 0,

Consider as we let b = 1,...,8l that-|8 - blll =

!Bi - bal strictly decreases to |B - Blllf = |B| - Blal‘

Consider as we let b = 1""’82' that
|8 - 8,1, - bl,| (which < [8 - B;1,[) also strictly
decreases.

Finally, note that |B - ijljl =|0] =0z< M.,
Hence there exists some first point at which such a
process has |B - ) 8,1, - bl, being sM.

RESTTOE R | j
i<j
Let gt =g - J .1, - bl,.
IR B | j
i<j
Let v =gt if |gl] = m
' _ ol . 1
and let y = 8" + 1j if |B°f < M.
y will be in I(M) as desired and clearly vy < B. =
(2.10) Proposition: If f is C*® on V which is any

open convex neighborhood of D then

0. a
£(v) = ) v o £00) | I v%g (v)

|o¢l<M ol aeI (M) &

where the g,'s are C® on V, M ¢ 7 .
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Proof: By the usual Taylor's theorem,

fiv) = F Eﬁi%%gl— + ¥ vaé(v)
lalfsom ¢! | 8l =gms1
where the fB's are C® on V,
If la] < M then |a| < oM while
if 18]l = oM + 1 then |B| > M.
Hence,
(VN0 OO
fv) = (] TLWO),y s T I
la|<m  * o flalfsom * || Blf=qm+1
| o] 2M
Of the three parts of the sum, the last two is by
(2.09) sums of objects of the form vagu as desired. =

Of course we may replace "|a| < M" and "a € I(M)"

with "|a] € N" and "a ¢ L(N+1)." We could then derive..

(2.11) Corollary: If f is C® on neighborhood of
- _ QL0
le] s c, then Ry(e) = [£(5) - [ &2 £l
lafsn %
at 0. 1In fact,: 

'|N+l

dies 0(|v|¥*1)
Ry(8) = g(&) & |
sup lg() s T X sup [a%E(E)
fefse ™ aleN+l *T [g]sc
el se(w+2)
R an(pB(g))
Proof: f,(§) of (2.10) is ——pr—

on line {t&/t ¢ [0,11} c{v/|v| < ¢}, hence giving the

with;]:f 

where pg(g) is

desired bound on |g

B

(v)).



(2.12) Define A t: R +2Z : pv A(p) the greatest

integer less than or equal to pP.

(2.13) Proposition: If N 2 A(-Q-Re k) then A is

a functional on S. Except for that condition,

N is arbitrary.

Proof: Recall k is the degree of G and recall that

N+l) 1

Ry dies 0(]|f] loc’

N

we need (Re k) + (N+1) + Q > 0. Thus for AG to be a

functional on S, N should be greater than -0-Re k-1,

. Hence for RN(g)G(g) to be in L

Hence if we assume N is an integer, N should be

greater than or equal to A(-Q-Re k).

Now éonsider any |al ¥ |af > -Q-Re k. Then
N
G(g)%T € Lioc and
J Gl) % (0)5%5) S M(gEG(E))aacP(O) =0
lg]s1 &9 RO o HA0 ol :

Thus, WLOG, we can think of N = A(-Q-Re k). =

n

(2.14) Proposition: If G_(x) : R x r" 5, G, (x)

is Cw onBRnxGRn\O), and

r £ _ k.2 n n
D auGu(x) = r auGu(x), vn e R, ¥yx ¢ R \0, yr > 0
then Ay is €= on®” x @®™0), #ba, = SR
u

and AG € Sl vu ¢ R",

12
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Proof: Consider the first third of the AG sum.
Consider ¢; converging to 0 in S. 1In light of (2.11),
consider the corresponding g;-
; ' 1 o
Then sup|g.(£)] < ) T sup |3%p. (g) ]
lgls1 7t falls@v+2) &5 Jejr
which are going to 0 as i + . Of course, sup Igi(g)f
. <1

is less than 1 for i large.,

N+1 N+llf

Hence 16e) [€]™ g, (e} | s |G(e) |g]

Co s 1 N+1
is in Ly . and (G(g) |g]

gi(g)) + 0, £ # 0.
Thus by Lebesgue Dominated Convergence Theorem,

the first part of the sum Age; converges to 0 in R.

By simpler arguments, we Bee all of AG@i converges
to 0 in IR whenever ¢; converges to 0 in S. The other

results are also trivial. -

In the trivial case of Q + Re k > 0 (i.e., N can
be taken as negative), AG is simply G- A reascnable

quesiton then is when else is AG homogeneous? First,

(2.15) Define "dilation difference of f" as rkf - ptr.

(2.16) Lemma: <rkAG - DrAG,¢>

. ,
= ¥ ) M(éTG(E))log r3%p(0) .
|a|=-0Q-k )

Now pick g ¢ S 3 @ = 0 near 0.
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Then by the definition of AG' <AG,¢> = <G, ¢>.

Hence if AG is a homogeneous distribution and G is
not identically 0 on B™0 then they must be of same
Kp

degree, namely k. Hence r G - DrAG must equal 0,

in the sense of distributions. Hence, ...

(2.17) Proposition: AG homogeneous degree k

iff M(g"‘sn(g)) =0, ya ) |al= -0-k, yn e R".

‘Note: This would include the trivial result: if

Q + Re k¥ > 0 then AG £ Rhom

K
(2.18) Define "M = 0" asg meaning M(g“aﬁcj(g)) = 0,
v2 e (Z)", vu e R", va 9 la| = -g-k.

Combining the last two propositions, we have...

(2.19) Proposition: Consider G, (x) : R x R o T,
Gu(x) is C° on R" « (R™0) and
DraﬁG (x} = rkazG (x), Yu e R", wx siRn\D, Yr > 0,
uu uou

Then AG € Rhom, if M = 0.

k
(2.20)° Define P,R to be homogeneous polynomials

with coefficients C' in u.

In keeping with our comments on L(D) at the start
of the chapter, "P(9)" is P with derivatives Bj in

place of Xj’

{2.21) Proposition: Rhomk = {AG/M = 0}

+ {P(3) 8/P degree -Q-k}.
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Proof: Rhom, contains {AG/M = 0} by (2.19) and

contains P(3)§ by (1.25).

Pick T ¢ Rhomk. Let G, = T, x # 0. Note that

T - AG is supported at the origin and hence is a finite

sum of caéa.

By (1.26), the dilation difference of T = 0.
The dilation difference of anda grows polynomially.
Thus, the sum of (2.16) is =0, veo.

Hence M = 0, as desired. =

(2.22) Corollary: If -Q-k X Z"* then Rhom, = {AG/M =0},

For the following results, see Geller [G].

(2.23) Proposition: If T is in {AG} + {R(3) 8/R degree —Q—k}

Then T is in Rhom_Q_k + {P(£) log|f|/P degree -Q-k}.

If M ¢ for Gu' then T is simply in Rhom_

It

Q-k°
To complete our description of such objects...

(2.24) Define Kk as Rhomk for k ¢ G:\Z+ and as

Rhom, + [P(x)1og|v|/P(x) degree k] for k ¢ % .

(2.25) Define JJ as Rhomj for -j-Q ¢ E\Zf and as

{AG/G degree j} + {Ru(a)é/R(x) degree -j-0Q}.

7k

(2.26) Proposition: If k + j = -Q then K< = JJ,

(2.27) Proposition: If K, ¢ kK

then B%K € Kk_,8|,xBK e Kk+l8!
u u
ﬁK £ Kk

and o a

-




3. Poincaré Lemma for Kk

Purpose of this chapter:

To explain the method of assembling a Ku from what

|
i
i
|
|
,

could be thought_of as derivatives of Ku

First we should explain what happens when

(3.1) Proposition: If f e §°', m e Zf, D?f = 0,

¥j = 1 to n,then f(x) = Z -caxa
& 5<myj

In addition, if fn is a C® distribution then

the ca's are C® functions of u.

Proof: Use the fourier transform with the following:

(3.2) Proposition: If ge S', me @, and x? = 0,
¥] = 1 to n, then g(x) = ) c. 8%,
@ 5<m,¥J

In addition, if 9, is a C® distribution then

the ca's are C® functions of u.
A useful result of (3.1) is:

(3.3) Proposition: Consider homogeneous K € S'.

K is in Rhomk and has C® extension to origin

iff K is polynbmial away from 0.
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(3.4) Lemma: Consider a fixed i ¢ {1,...,n},
ke me %, anda ¢ @Y. If u.a s Re k

and Re k < ma, then m/i fu (where (m/j)i = mﬁij).

Proof: Assume p.a £ Re k and m/i § u.

A
oy
o

~

Then since all aj > 0, (m/i)-a £ y-a

Then ma, £ Re k contradicting Re k < ma, . a2

(3.5) Poincaré Lemma: Consider k ¢ € and m ¢ Z ,

such that Re k - ma, < 0, ¥j = 1 to n.
k-ma, J

If K. ¢ K J (which is Rhom

ju k—maj)’ vj =1ton

and D?Kt = D?Ka, Vi,j‘= 1l to n then there exists
ak e Kk such that DmKu:=Ka, ¥j = 1 to n.

S -
Proof: K- is in Rhom—Q-k+maj'

P
Now since -Q-(Re k—maj) > =0, K7 may be considered as

”
J
degree maj, so loosely speaking Eﬁr is homogeneous (on
X -

a function on R" and = 0 at 0. Notice x? is homogeneous

J
R™M\0) of degree -Q-k. There is the probliem that xj

could be 0 while -Q-Re k could belgegative. To
remove the prqblem, dgf%ne fu gs f%— whenlxj # 0 and
]
0 when x = 0. The function f is well defined since
x. and Xj # 0 then xTﬁ? is equal to x?ﬁi, giving us




We see that fn is C® on R™ x Rn\oz homogéﬁééﬁs-

degree -Q-k and is equal to 0 at the origin.

Define K = (A.)V & KK
u f
HaH
where (Af,m) = f fu(x)[w(X) - ) E;Q_Q%QL_]
x|s1 u-asRe k e
+ ] xexax + ) c,8"o.

x|>1 u-a<Re k

The p-a

A

Re k is, of courée, equivalent to the expected

-Q-Re k + p.a £ -Q.

. m _ i v o_ m v oo, .
Since DK, APi(A) (xiAf) » it will be enough
m ~ gl m, _ i
to prove xiAf Ku to show DiKu Ku'

m N m
We have (xiAf,m) = (Af,xi@)

u
= | f(x) [xTo- ' M (M) 2
Ix|s1 ¥ u-aéRe k |0 19
+ f(x)x?w(x)dx + ) CU§J(XT¢)-
|x]>1 U -a<Re k

But notice that
Sa](xm ) is 0 if ml, ¥ «
0" ® i .
But by the lemma, we know mli X u.

Thus (XTAf,U) f(x)[x?w—O] + f fx?y + ZO

TaN

1

/
% |

- m
= (Xifr H) .

So as distributions XTAf = x.f.




oy

i . Lo
Hence we must show x?f = K" as distributions

Since both are 0 at the origin,

-~
encugh to show x?f = K' for x # 0.

it is certainly-

Assuming x # 0, there is a j such that x. # 0.

”~ s J '
xTKJ xTK?! ~ '
Then x"f is which, from before is —l— = k', 2
t Xj _ X7

J

= T



4. Polynomial Group Laws and Vector Fields. ' -

Purpose of this chapter:

We will consider groups (R",-.} where any résult
of group addition z = X-y has each component zs being
a polynomial in gl,...,xn,yl,...,yn and where Dr is

an automorphism, meaning Dr(x,y) = Drx.Dry, ¥r > 0,

X,¥ € RrR".

Note: By our definition of Dr' we have Drsz = D(rs)x

but usually not = Dr+sx’

(4.1) Proposition: Identity e must be {0,...,0).

(4.2) Proposition: Reorder components (and addition)

of each element of the group so that a. < a

K K+1

for K =1 ton -1,
If w = x.y then the jth component of w is

a B
W, = X, + y. + C. X ¥
I TR E NP PR 8

laf.lB|<aj

where cjﬂﬁ s are ?e§; pumbe?s.
(4.3) Corol l'arz.'_.:_ ~ Pick '_;;.;'_fixe'a_.-'y. in R"

det (2E¥y o ger(2lyx)y -

1

(4.4) ©Proposition: Dr(y_l) = (Dry)_

"= (Jyl then [p_y7Y

(4.5) Corollary: If |y = C|Dry|“



(4.6)

{4.7)

Proposition: For j = 1 to n, there eXIétsféf_

homogeneous degree a; polynomial, p, such that

wl = (py (W), ... p (w).

- r
In fact, pj(w) = -w, + r%=a drw where dr

ri'<a,
1 3

is a universal polynomial in CjuB (of 4.2) only.

w'_l

_ (_q3N
Corolliary. det| - 1= (-1)".

S50 fortunately, whenever we replace the variable

of integration w with w_l, we have the absolute value

of the determinant (of the Jacobian being simply 1.

(4.8)

Proof

Then

(4.9)

Triangle Inequaiity: dC ¢ (0,*), Yu, v aIRn,

ru-Vl £ C(|u|+|v|).

Let C = su Iz-w
2Tl <1
Let B = |u| + {VJ.

[uev| = IDBDi(u°V)[

A
= B|Di(u)oDl(V)|

B B
< BC = C(ju|+|v]). -
Corollary: VYr > 0 3@ € 0§3 ¢ = 1 near 0
and supp @(x-y_l)fi'supp ply) = 8,

¥ Y

vx 3 x| z r.

Unfortunately Biw(x-y) # (8u¢)(x-y),

so we will need...




(4.10) Proposition: Consider fix,y) =

B branaYB(3r¢)(X'Y)
I =
]u +1B

, +
where m and M are in 7% .

—§~f(x,y) will be of a similar form, meaning

ayj
fix,y) = ) A rog®Y" (3%) (x, 1)
A\ | cfl sM+1 to
fa|+|B}s(m+1)0

(4.11) Corollary: Let S = |[y.

3;¢(x,y) = 7 'Aran yB(Br@)(x,y).

fr]§S
+|B]| <80

|a

(4.12) Define: fw(_a)'as the "left translation

of £ by w" meaning f(wo__ ).

(4.13) Define: fow(~) as the "right translation

of £ by w" meaning £(__ow).

Hence (fu)v(_) = fV(UO_) = f(LIoVo___)

= £ (_ ) while

. o o e e

e () = Sy = £ )
= S .

tf
va;u
(4.14) Define X as a "left (translation) invariant

vector field" iff Xf(w) = Xfw(O), ¥w, Yf.

(4.15) Define Y as a "right (translation) invariant

vector field" 1iff Yf(w) = Ywa(O), ¥w, ¥f.
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Hence Xf{u.v) = Xfuov(O) = Xfu(voD) = Xfu(v)

while Yf(u.v) = YfRro(O) = YfRV(D-u) = Yvafu) .

(4.16) Proposition: Uniqueness of invariant vector
d

field agreeing with Y at 0. Consider
n 5 J
Xoloo= 7 c_(w)y=2~ with ¢ in C®, X, is
Jw =1 ™ axm X=w m J

m

a left or right invariant vector field with

) 5 a(w-x}m
(X.£) (0) = (=2-£) (0) iff c_(w) = '
1" axj m axj %=0
a(x-w)m
¥Ym=1 to n or '¥m = 1 to n,
AX.
Jj x=0

respectively.

3(w-x)m g {x-w)
Note: % and % are both =0 when aj > am
] ] :
and =1 when j = m. Actually Xj would = sg— +
| ]
3

+ . Ea cm(W)EET'

m” % ]

Consider X =J b, (w)—> .
J 8X.1o_
jlx=w

(4.17) Define X as a "homogeneous order k vector

field" iff X(Drf)‘x = Kxe) ¥f C® near

D
r

X and Drx.

A few completely‘trivial_results of this definition

are:

N T



(4.18)

(4.19)

(4.20)

{4.21)

(4.22)

(4.23)

(4.24)

24

Proposition: If X and Y are homogeneous

vector fields of order kl and k2 respectively,

then XY is a homogeneous vector field of order

ki + k

1 2°

Proposition: 88 is an order |RB] vector field.

Proposition: If X homogeneous order k vector

field and f homogeneous degree k1 and C® on

R0 then Xf is homogeneous degree kl - k.

Corollary: X = Zb-(X)gﬁ" is a homogeneous
J Xj X=W

order k vector field iff bj(w) are homogeneous
degree aj - k.

Define Uj as the left and U? as the right

invariant vector field agreeing with 35— at 0.
3

Proposition Uj and U? are order aj vector
fields.

Cya J
H = —— + . RS,
Propositicn g = E a i v,

].
5,nUn WReFe oy,

and'—ﬁ— = U, + Z P

.and
av. J . ]
i T ap >ajy:

r

Py, m

are explicitly computable homogeneous
polynomlals'of degree aj - ay and a, - aj
respectively. The same result holds for Uﬁ's.

Proposition: The product rule holds.

Consider a differentiable function f and a

B R
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distribution g. Then Um(fg) = {Uhf)g + f(Umg).

The same result holds for Ui's

Consider polynomial p which is not necessarily

homogeneous.

(4.25) Define "m is the degree of polynomial p" as
meaning m is the least non-negative integer

such that p(Drx) = 0(r") as r + o VX.

(4.25) Proposition: For i = 1 and 2, consider

= 3 , .
Xi = bi 3vi where bi is a polynomial of degree

sai - di where di is a positive integer.

_ a_ _ d
Then [xl,le_— <y S;I c, 532 where n
are polynomials of degree éam - d1 - d2.

Such reasoning gives us a rough estimate of order

of nilpotency...

(4.27) Proposition: The Lie Algebra (formed by
~linear combinations of Uj) is nilpotent of

ordér 0.




5. Convolutions and Pseudodifferential Operatdféfﬁbo

Purpose of this chapter:

Pseudodifferential operators can be viewed as con-
volution operators whose kernels are translates of
"cores." In this chapter we form the core from the
composition of two such operators.

1

Consider G ¢ E°, ¢ € C®, and u e R". Now abusing

notation...

(5.1) Define (G*9) (u) = (G(uw V), (w))
= (Gw ), oww) = (G(w),o(w Tu)).

Consider o € (Z?)n.

vl . e
(5.2) Define U as meaning some ordered composition
of left invariant vectors where Ul appears

ul times, U2 appears a, times, etc.

(5.3) Define UR% in the same way with respect to

R UR

Ul,..., n’

(5.4} Proposition: {(G*¥®) (u) is C= and in fact

o) (W] = [6* (%) ] (u)

while R (ere) (] = [ (UR%G)*9] (u).

Likewise (G(W),@(uw*l)) is C° and

v (6 (w),o(uw 1)) = ((UR%G) (w),9 (uw 1))

while URa(G(w),@(uw*l

(84 -_
) = (G(w), (W% (uw )y .
The same results are obtained if C®, El are replaced

by S, St or cﬁ,sl.

I —



Note:

Of course, since we do not require théﬁ}the

group be abelian, (G*g) (u) = (G(w),¢(w-lu)) is

usually not (G(w),e(uw 1))

(5.5) Define ™ : h(x) * h(x 1)

{5.6) Proposition: Consider K ¢ Sl.

__*K has an adjoint __*ﬁ.

Consider K 1
distribution...

. A,
(5.7) Define K2*Kl 2 @ e (Kz,w*Kl).

By duality we can now say

i

. aR aR
(5.8) Pr09051t10nf U (KZ*Kl} (U K2)*Kl

and v® (K Kz*(UuKl).

I

2*K1)

{(5.9) Define Fw as the fourier transform with w as

the dual variable (e.g. ¢ ™'Y jis in the

integral and y is the variable of integration) .

Consider open X STR” and 05 6 £ 0 S 1. From

Folland [F}], we consider symbol class Sg,ﬁ(X)

AL
1A

= {a e c(0R™) /ua,B, VA SS x,

Ta

gc ) sup'DBDgAtg;éj{ ;*¢(1q|q])m~oHaH+6HBm.
xch!' X T _ e

The distributionélrkernél of a(x,D) is K(x,y) =
ci{x,x-y) = Fii_y)a(x,XQY) where x - y means regqular

Euclidean subtraction. Notice that K(x,y) is C® in

x and y away. from (x-y) = 0.

l,K2 € E°. We have as a well defined




(5.10) Define "Euclidean core of a" as c(u;WYfé_

F;la(u,w).

Consider that a(u,%) is sl in £. Or in other

words, a : U W Sl. Then since F(Sl) = gl we have

c : U~ 31.
More completely...

(5.11) Proposition: Consider Euclidean core c(u,w).

c : U+ Sl, c{u,w) is C° as a function in
U € Uand w eIRn\O, and (c{u,x),p(x)) is

C*® in u, Yo ¢ S,

We will now expand our concept of cores. Consider

Y]
an open set U s R,

1

(5.12) Dpefine "gu(x) is a core" as meaning 9y ° U - S
such that 9, (x) is smooth on ¥ x ®R"™\0) and

such that (gu,Q) is C® in u, vo ¢ §.

Consider h ¢ 31. Consider the largest open set V

such that (h,9) = 0 for all ¢ € S 3 ¢ = 0 on R™MV.
(5.13) Define "supp ﬁﬁ'aéfthe'ﬁSUPPOft for h"
meanihgftﬁéfcrb§Uré?éfiV;%
Consider cOfé"éﬁ(kf with compact support contained
in open set X. SiﬁCé'Tgﬁ;¢) is C® in u, y9 € S, it is
thus C® in u, Yo € Cz.°'By a result of the Banach

Steinhaus Theorem (see e.g. Petersen [P]), the limit

(of difference qﬁotients) 3%7(g ) 1is itself a map
J
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1 C
from U to E. Hence aggu ) H,ag(gu,w) is itself

a core.

Consider compact set U, Consider an open

neighborhood X of 0.

(5.14) Define "G ¢ YDO(U,X)" as meaning "G is a
pseudodifferential operator with respect
to a polynomial group law," meaning 3 bounded
open U 2 U, d core 9, 3 supp 9y £ X, Yuedu

and G(¢) = Igu(uv‘l)w(v)dv.

Note: (p) is in Cm(ﬁ).

et s e s

BT

Since compact U is contained within open %, there
exists another open bounded set Ul and its closure

vl such that |
| | v suls uls G,
Scmetimes the U in generic proposition
A will be thought of  (but not stated
as) ;T in the proof of Proposition B in which Propdsi—
tion A is being applied. Likéwise;”sbﬁéthing will
often be éh@%n:about U}7fépﬁéfjfﬂéh ﬁ;fa:éiétinction
which won't.m;ftériéiﬁqé 5§£5.ébntaiﬁ U; .HaVing
explicitly allﬁfhié;'ﬁe;Wili tend not to trouble the
reader with it in the future.

In order to have the option of certain manipula-

tions of integrals containing cores'gu, we now create



a counterpart to the fact that any object iﬁ”ﬁ
actually a sum of derivatives of a continubdéﬂfﬂnctiﬁﬁ
This will be our most useful lemma.

First consider the following form of the unifornm B

boundedness principle for Frechet spaces (e.q., Reed

and Simon, p. 132 [Rel).

(5.15) Proposition: Consider a Frechet space S
with directed semi-norms {dj}?zl. Consider
a family M of continuous linear maps from

5 tolR, 1If suplg(¢)[ is finite for all
geM

9 €S, then & ¢ 2" ac e R* 3 |q(p)] <

Cdj(w) ¥ € 8 ¥g e M,

Of course, we are more interested in cores

SO....

(5.16) Coroilary: Consider 9, U~ EL with support
in bounded open X S R" and with U compact.

If supl(g ,¢)’ 15 finite for all ¢ ¢ Cz'
: uEU S e ey

A
=

then EM EZZ Vu € U g is of b_z_'der

and ( U supp g ")C"C-'_; 'X.'
UeEy " :

Consider he El, hence supp h is compact.

{5.17) Define "order_of h" as the least N ¢ z

2 e Ryvep € ¢, |h(9) ] sc sup
Fodl <n
Xesupp h




(5.18) Lemma: Consider m ¢ 77. Consider'CQf

with support in bounded open X g:m“
YU e compact U. There exists M e z* anél
£, € CUR™) such that 25f ¢ cluxrM)
¥8 3 18] < m, £,(X) vanishes as x » » for a1
u e U, and 9, = (1+AM)fu for all u ¢ y.

If the order of aﬁgu is less than some Nt
for a1l B ¢ (Z+)n, Yu € U, then f may be
chosen to give the same results with *cM»

replaced by "Cwo "

Proof: Let ¢E(x) = yx)e % Lhere Ve Ce 3 v
en X, Since aggu is itself a core with support in X,

by (5.16) we have a finite sum
(CBZ§SEIBG¢E(X)1) 2 kaﬁgu,mg)l, vE ¢ RY, vYu € U,

Then 3¢ eRrY, mj e z?

Ha||<23 xeX

a.l(aﬁg,cpg)l s (1 SUP,xg,;

Thus

Hence

Define
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Since §u = (gu,¢g)'is C® in u ¢ U ang C? ?£a§£ﬁé11y,
real analytic) in ¢ e R", we have h is also Cw(d §f}  

Consider that when ”B” £ m, that

. V = ~B~A
[1 + ”5”2(34"1)1351111(5) %9y
AN
= 3B - 8 = 1B
=3, (gurcpgl = (39,9 = 99y
B - -2n . 1
Hence [auhu(g)] =0 ) as £ » = and is thus L~,

Yu ¢ U. Hence (afhu)v(x) is continuodus in x and vanishes

v ; . ,
a8 X -+ oo, Henceashu(x) 18 continuous in u and x.

Let M = j+4n,

l

Then (1+8™ 1Y (x) LA+ g™ h 1Y ()

- RNV _ ,
= (gu) (x) = 9, s desired.

= v
Thus let fn hu'

Regardiess of whether or ot U is bounded, if we

know a bound on the order of BB 's then we can do

udy

. . , 8 | < ol I ]2j
without (5.16) and stipj derive |3 9, (8 | = ¢+l g ).
Obviously if this holds all B e @*)" then the preceding

argument gives fu being ¢® in y ¢ U, =

iu- In

Consider cores_Witﬁ'cdmpact_support Iyl
keeping with earlier in the chapter, (gzu*hlu,¢) =
(ghﬂ@*hhﬂ meaning, byuah-ébuse of notation,

J950 ) LRy v Yy pw) awl av.,

Now, we replace u by v 1y in the inner integral.
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(5.19) Define g2n*hl#u as the "core of the composi-

tion" meaning ¢ » (gzu*hl#u,w)

fgzu(v)Ifh -1 (v-lw)@(w)dw]dv.
lv "u

This is justified by the following.

(5.20) Theorem: Consider Gl € wDO(Ul,Xl) with Xy
bounded and core hlu' ansider 62 £ wDO(U2,X2)
with X2 bounded and- core Iou® We'll require

the order of both 8 uJp, and 3 h to be bounded

as a varies over CZZ )n

Define 6 : ¢ w 62(61(¢>) when

U Uj\[XzﬂRn\Ul)] is nonempty. Then

G € yDO(U, X,X;) and XX, = {x.y/x ¢ x

271 2’
y € xl,-denoting group addition!. Also, G

[u]

has the core gu(w) = (gZU*hl#u)(W)°

Note: As will be seen in the next chapter, we automatic-

2% when we

o
ally have a bound on the order of augZu' a1y

work with asymptotic expansions.

Proof:

Finding U: Define (g,9) = G(¢), wo ¢ S.

Il

il

Consider that (g(w),p(w)) = (g (uw })o(w))ve ¢ S

LEE (g(w), 9w 1)) = (g (w),0(w), Vo €S,

B -

R =
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Hence, define (gu,@) (g(w),¢(uw-l))

]

fg2u(uv-l)[fhlv(vw"l)m(uw-l)dw}dv

fg2u(uv-l)[fhlv(vw)¢(uw)dw]dv.

To be well defined, it is sufficient that u be
u " -
in U2 and either v be in Ul or uv 1 not in Xz. Hence
: a,
it is sufficient if 4 is in U2 and u is not in

v
X20Rn\Ul). In turn, this means
Y U n
u € Uz\[XzﬂRQdﬁ)] which contains UZ\EXZGR ﬁ&)]

which we now consider to be U.

2
be defined as U2. Does this mean that without knowing

It can be seen that if x"lU2 < Ul’ then U can simpiy

u.?

such a condition, we can simply define U as U2 s X2 1

No. Unfortunately,
n n _ .n
X, R _\Ul) QXZR \X U = ROAX,U,) .
Hence Uz\[xzcmn\Ul)] will have to do unless we place
restrictions on{or related to) the nature of Xi'and/or

Ui (e.g.qihas'support outside of Xin)?"V

Finding the support of éu: :

1

3
Since h, (vw) has support v-lxl, the product

h;,(vw) ®(uw) is supported in w ¢ U-1X3f\ v—le.

Let X, = supp 9. Then ¢ (uw) has support u~ Xy,
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Now notice gzu(uv_l) has support uv ! ¢ x

2.

Hence WLOG, assume the "integration" w.r.t. dv is
restricted so v 1 ¢ u-lxz. Thus the product
(gz(uv_l)hlv(vw)w(uw) = 0 for w not in -
-1 -1
u X3 N (u XZ)Xl.
Hence (gu,@) = 0 when Xy N XX, = B.
Hen el(x.x.)," U
ence gu £ 281 YU E U.
(gu,w) is C® in u:

. _ -1

Con31d¢r (gu,¢) = fgzx(yv )[jhlvaw)¢(zw)dw]dv

where x = y = z = y,

By the definition of core, (gu,m) is C® in x.
Since [fh.dw] € C=», (gu,@) is C® in y. By construction,
and limit of difference of quotient arguments, (gu@}

is COhtinuous in y

and Z?fg[fh@dw]dv < ng?[fh¢dw}dv = fg[fh(z?m)dw]dv.
Hence (gu,@)Ais C® in z.

Hence (gﬁ,¢) is Cm.%nﬁ?;f:g fTY”ff2{

. . G
g, is C® on U x R'\0):

-1. '
(g_,9) = fgzu(v )[fhlvu(vw)w(w)dwldv.

For this part of the theorem, WLOG, we replace

-1 ,
gzu(v ) w1t§ gzu(v).
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Assume ¢{(w) has compact support in R™\(NN) where
N is a symmetric neighborhood of 0 (i.e. N = N L.
Pick ¥ e C2(N) 3 y®™ < [0,1] and ¢(v) = 1 near v = 0.
Consider that if v e Supp Y s N and vwe supp ¢ < N
then w = v—l(vw) € N_lN - NN and hence w % supp @.
Hence ¢{(v)y(vw)o(w) = 0 ¥V Yw. Hence the parametrized
distribution given by ¢ » f(wgzu)(y)[f(whlvu)(vw)¢(widw]&v
is the zero distribution and hence C® in u ¢ E and in
w ¢ R" 2 RN,

Cbnsider that (l--lp)g2u and (1-Lp)hlvu are both C%

functions.
Hence JQ=¥) g, (M 1 (2=p)hy (v g (w) dwldv
= JU -0y g,, (v) (A=4) by (vw) avlp (w) dw

where {fdv] is an absolutely convergent integral,‘uniform-

ly bounded w.r.t. w and C® in u € U1 and in w g Rn\NN.
Consider f(l—w)gZu(v)[f$hlvu(vw)@(w)dw]dv._ Notice

that whlvu is itself a core of cempact support. Hence

by Lemma (5.18), we havéﬂ_:_t:_._ﬂ
a0, 000 ot o (v M anias
where £ (w) is C iﬁfvﬁ éﬁ§-éqntianqs ih w. This

integral is a fiﬁiteHSum°Of 6bjects of the form

f(l-w)gzu(v)[vau(w)awm(v w) dw]dv.




oy

Notice ng{v_lw) is a finite sum of objects cf'fﬁeff

form
VBWY(amm)(v'lw).

Throwing vP onto g2u(v) and w' onto fvu(w), we

can WLOG consider
Ja-wg,, ) Ut ) (3%) (v i) awlav
= Ju-ng, e, (v (3%) (w) dwldv.

Since supp(l-¢)g, S bounded X,, we have by Fubini's
2u ‘ 2

theorem

f[f(l-m)gzu(v)fvu(vw)dv}(8wm)(w)dw.

The [fdv] is C® in y ¢ yl and (by a change of variables
v o vw_l in the inner integral) is C® in w ¢ Rn2 RT\NN.
Hence, so is ~l”w”8m [fav].

Now consider,

I(wgzu)(v)[I(l—w)hlvu(vw)m<w;dy1dy,_

Again by Lemmg (5.18), we. have T
I(1+A§)fu‘v’EI(ifwyhiGQFYWf?FW5dwidVJ .j'*
- jfu(v)(1+d§)[f(1%qohlvu(vw)@(w)dw]dv

which is a finite sum of terms of the form

a B U w - '
ffu(v)f[u W VYa(vu}f (lej(l Lp)hlvu.z(w")']q)(w)dwdv.
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Again by Fubini's theorem we have

ST, 1 1ave (w) aw,

where ffu(v)[‘]dv is C» in u ¢ Ul and (by throwing

derivatives onto (1-y}h ) is C® in w € IR\NN.

lvu
In light of h, = @hlu * {(1-¢)hy  and g, = yg,, +
(l—w)gzu, we have shown that gu(w) is C® in u and C%®

in w € RU\NN for N arbitrarily small, hence
o s n
C® in w € R \O.

Notice that by virtue of the final integral in
each of the four cases and by gu's compact support,

we may assume ¢ € S,

Finally, what is gu?

For all ¢ € §,

(9,9 = fa,, (wv ™ (b, (v h g () awlav

It

ngu(uv_l)[fhlv(vu_lw-l)¢(w*1)dw]dv

It

fgp, v )ffhlvu )m{w )gquy

fg tv)tfh-:'7:fV‘1w*1)¢kQ“liaw]dv
2u v iy

(g2u*hl#u'¢) by definition and as desired.
We will note that this is also

fg. (v) ik (wv)o (w™ 1) dwlav
2u 1v-1ly




which is in a sense (gzu,¢*h _1u) as might be -0

lv

expected. B

(5.21)

(5.22)

Proof:

Define 6l

Define gzu*f#)shlu by
p (qzu*(#)Bhlu,cp) = fgzu(v)[f(v_l)Bhlu(v'lw)cp(w)dw]dv.

Corollary: Consider hlu and doy 28 in Theorem

(5.2).
B

@ > fag, (v [f vy (™0 (w) awlav.

Then 61 ¢ ¢DO(U,X2X1) with U and X,X, as in
Theorem (5.20). Also, Gl has the core

(9y% (9 hy 9 (w) .

Replace g2u(v) by (v*l)8g2u(v). a
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6. Error Class Bk and Asymptotics,

Purpose of this chapter:

We will develop an asymptotic expansion of coreg and
show that the core of a composition may be considered
to have only a finite number of terms.

n

"
Consider U s R", k ¢ {1,2,...}.

(6.1) Define gueBk as “gu is in the kth error class"

meaning gu(x) is a core and a function w¢ E(Zf)n
va e @N)" ) | < k, aﬁuao}a(gu has a continuous

v
, : n
extension over U xR .

(6.2) Proposition: Consider m € C and positive

integers k £ Re m. Then K®¢ Bk,

Actually if k < Re m then K™ 1 c Bk, but for
simplicity we will use the above (less sharp)

pProposition.

Recall A(p) is the greatest integer less than or

equal to p.
Consider core 9y 3:supp.gﬁig;ﬁouﬁdeggopen_X,
" T T e
Yu £ U,
(6.3) Define 9, v ZKa_as'“gﬁ has an astptotic

series in K," meaning gk € T, g¢ € Ce 3¢ =1

j +3 R |
near 0, HKS e kX J, v e m , -

-9 ? Ka € BA(Re k+M+l),V' nonnegative

=0

Ty

integers M 2 - Re k.
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Note: WLOG "3¢" can be replaced by "ve".

Kk and

(6.4) Proposition: Consider Ku €
P € Cz 3 @aRn) = (0,1] and ¢ = 1 near 0.
Then N e z7¥3 the order of 3i(@Ku) is less

than N, vya ¢ (Zf)n.
Proof: Express K = AG + anda and use Corollary 2.11. L

(6.5) Corollary: 1If 9, v EKS then 3N e 7"
the order of 3igu is less than N, va e (zZ")",

Proof: Pick nonnegative M z - Re k. By the definition
k J o M |
of B and g_ Vv )K 3 (g =0 ) KJ) is to be considered
u u u'’u j=o Y
continuous and compact support. Hence order 0.

By the preceding proposition, IN e£E+9 the

M
order of 83(@ )

Kg) is less than N, va ¢ (Z+)n. Hence
J

0

the same is true of aigu. L

(6.6) Proposition: Consider cores hlu and 924 which

have compact support in x and with hlu W ZK%U.
Consider M ¢ Z+. If Ml ezt is large enough
Mr o,
: - J M
then g2u*(hl#u @jEOKl#u) € B,
Proof: By Theorem (5.20) and the definition of

%ZKJ, the above "condition" is a core of compact

support,
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By the last corollary and Lemma (5.18), gm' ¢ ZﬁagZu =

(1+a™ )£ wh £ LR") and ¢ i

2u ere 2u e C(UXIR) an in u.
oMt i

Hence (gZu*(hl#u mz Kl#u) P)

it

fgzu(v’[f(ﬁii

[ sl |

and Fubini's Theofem;-féyTM; large enough we have

e
Sy, (0) (1447 ALIS
v

F AN m' 3 '” f ; 1ﬂ}~,
3y E, (M) (1A ) (b ) o) K ) Tl av]

Iv "u 1v

is continucus over Ul x R™ ve ¢ (Z+)n,

+)n 3 ,

Vo € (% a| < M, when M' is large enougH; J7; !

(6.7) Proposition: Consider cores h lu and g2 Wlth

: j i
hlu Y zKlu and =P 4 zKZu' Consider M g EH

If M" e &' is large enough then
M" M!

(95," w_Z K3 ) % (9 Z kl, ) e 8"
i=0 :]

independent of whatever M' e Z' is.

As in the last proof, we have a core of compact

support created by convolution. Let M' E{0,1,2,...,

A{-Re k2 + 1)}. By Proposition (6.4) and Lemma (5.18)
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. + u m" .

again, @m" €2 2 ¢ ] K3 = (1+A™ )f.  where

3=0 lu lu
flu€ C(UxR™) and C® in u.

M" i Ml j

Hence  ((g,,~¢) K3 )« (9] Kd, ), ¥)

"i Ml .

= Jgp,m0lx3 ) W 1fel &3 (v (vw) awlav
M" . lv—lu

flag,=ol K3 (v) [f (140™)) £

i m"
f(QZU-CPZ K2u) (v) [fflv_lu(w) (1+ Aw ) W{vw) dw] dv i

1 (Wb {vw)dwldv
v "u

Il

WLOG we consider objects of the form ;

[lapu=ol k30 D UE | (0 v®P (370) (vw) awlav. |
v "u J ‘

In turn WLOG consider objects of the form

f(gzu-@E Kéu(v)[ff -1 (v_lw)vyww(agw)(w)dw]dv'
‘ lv "u

+

Since (g2u~¢z K;u)(v) and 9] K7 -1 (v_lw) have compact
iv "u

A

support.

Only those Y with support in a fixed compact set
need be considered, so assume the region of integration
w.r.t. dw £o be compact.. Hence by Fubini's theorem

we have WLOG:

fway vTig, -0l K;u)(v)f

(v~ 1w) av] p(w) aw.
5 _

lv-lu

By definition of Vv JK' and because flz is C® in

z, we have

n
i
2

L0 w2 Y -
A aWj[f(wv) (95, ¢) K

-1 -1 (v 1) av]

Y (wv) £
u v "w ~u




is continucus over le IRn
¥e ¢ (ZZ+)n, Yo € EZ+)n‘) a] <M

when M" jg large enough,

But recall from the beginning of the Proof that
we choose a nonnegative infeger M' £ A(-Re k 2t}
Since this ig g finite # of choices, gM" that will
work for all such M'.

What of M' > A(-Re k 2*1)?  Any extra Ki 's will

dlfferentlablllty of (gzu—mf K;u). Hence the only
additional requirement on M" jg merely that it pe

2 max(A(1+M-Re k2),0). -

(6.8) Theorem: Consider cores hlu and 94, With
i . +
hl Y zKlu and Iou ™ ZKzu. Consider M ¢ z

If N is large enough then

Iourbigy = (¢ Z K2 )*‘¢ Z Kl# )

modulo BM.

Proof: By Prop081t10n (6 6) 1f M' large enough then
o M'3" _ 3 .

' M
Tou*Pigy = *‘m 5 K{n ’ mod B

By Proposition (6.7), if M" large enough then

Ml‘ MII Ml j
ou* (@ ) Kl# ) = (o, E K *c@_zoxl#u)
j= J=
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mod BM, regardless of the size of M',

max (Ml ,M") .

Hence, we can simply let N




7. Taylor Expahéiénéiih“ﬁistfibutibhiévﬁérametef{ﬁ

Purpose of this'chéptéf{  i'
To further re&ﬂCéﬁthé core of composition to a
finite number of ¢K§H;¢kgﬁ;f We also discuss the

following operator.

{7.1) Define P, as the left invariant operator = 3
. o
at 0. In other words, p,o (u) = Bw¢(0)

where V(w) = @ {u.w), yw.

(7.2) Define pg'as the right invariant operator = 3@

at 0. In other words,

p§¢(n) = Biw(O) where V(w) = 9o (w-u), ww.

[[\%

Recall I (M) = {ae(z+)n/|a| M and 3j3]a~1j|<M}and

(7.3) Proposition: If h is C® on V which is any

open convex neighborhood of u then

vupgh(u) o
hivu) = —sr— * D Io (V)
|a <M : ae T (M) ’
where 9o, u € C®(v).
. R o
Proof: Consider that p h(u) = 3 h(x.u) = 3_f _(0)
—— %=0 X u
where f(x) = h(x.u), vyx.
v*9% (0) .
By Proposition (2.10), f (r) =} R + 1V ga,u(V)'
vapih(u) a
Hence h(vu) =) —r * v 9q, (V) as desired. =




(7.4) Proposition: Consider cores hlu and'ééu with

y i .
hyy v 1 Ky and g, v JK; . Consider M ¢ #.

If N' is large enouth then

N N . o .
(p ] Ky d*e § k3, - 7 )7 Rej, oM
j=p 2u 3=0 1#u laf<nt o o lu

regardless of the size of N ¢ z*

n,

Note: Since D ¢ X, U2\[x(Rn\Ul] is a subset of

UNIO®R™U,)] = CN®B™G.] = 5.0 & d b
2\[ R\ 1= U,NI \Ul] = U, U, as woul e

desired by the presence of Kiu‘

Proof: By Theorems (5.20) and (5.22), we are dealing
with a core. We must show, as in Propeositions (6.6)

and (6.7), 8£8$ of 'it is continuous.

Notice that the order of @Ka is less than or
equal to max(0,A(-Re k)), wvi ¢ Z+. Hence, by Lemma

(5.18) ,am ¢ Z© i e z* oK

lyg (W) = {1+ w E1yy (W) -
R .3j
Hence, ¢  Ki  (w) = (1+A} )ou J w
ith R g3 (w) = 1+A™ )o (wi-ii7?
wi - %o 1u . o lu =
| -—1'a” e
{(v._")
Henqe, cp(Klv_1 (w) “|a%<N' =T g lu(w))
ceo=1,
j {v ™)
= (1+a™) (£ (w) - AL (w)) .
w lv-—lu I F<N' a!  Pa lu

47
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By our definitions involving #,

i i ($)%
((@Kzu)*@(Kl#u |q{<N' a1 Py lu) v)
. : , -1.
) f¢K3u(V)[f(@Ki i} -F I Yol oI ) (v (vw) dwlav
v "u [al|<N' :
' . -1.a
= [IviN okl L eI - v ) Re
] IN lv--lu %a[<N' al o lu

(v I v W (3By) (w) qwiav

as in the proof of Proposition (6.7} and with

el <

1 | (v_
Notice that —~TET(f -7 T Py

) (w)
v lvulu [o]<n* lu

is €® in u, continuous in w, and by Corollary (2.11)
is continuous in v. Due to mK2u and mKlu being of
compact support, Y may be considered as such, and in
turn fl also.
u _
. . N' i L : k '
Likewise, |v| wKZU(V) is in a desired B" when N
is large enough and is also of compact support,

Contlnulng as. 1n the proof of Prop031t10n (6,7), we
5t _

have COHtlﬂUltY of the core over U’ xZR after
aﬁag vi ¢ (2:+)n va € QZ ) 9 Ia! < M when N' is
large enough. =

(7.5) Theorem: Consider M ¢ Z'. If N is large

enough then
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.z<#)“ i R __j

I2u*P1gu a1 PEyy*p 0Ky, modulo BT |
05isnN L
0 jsz2N
[a] < N

with (#)Q¢K;u(s) meaning (sﬁl)a Kéu(s) as expected.

Proof: Theorem (6.8) and Proposition (7.4). &

Hence, in the next chapter, we analyze objects

of the form ¢K2u,1*¢Klu,j‘-

The remainder of this chapter is a discussion of

P, Versus the "symmetrization" Gu (as seen in Berkoff-
Poincaré~-Witt Theorem).

Let us first review basic facts about Oyt Consider
an operator of composition x v Tl(Tz(...(Tm{x)))) asso-

ciated with the sequence of operators T re--,T on

1 m

algebraic A.

(7.6) Define S as the sum (of a! terms) of the
compositions corresponding to each ordering
of the sequence. If the seQuence is ay copies
of Ll’ A, copies of L2,..., *h copies of Ln
where [fa]l = m, then each of the terms (when
the sequence is reordered as Tl,...,Tm) are

Ccreated a! times.



(7.7) Define S, as the sum of operators of'¢6ﬁ{

position of distinct orderings of Ll};,;}Ll,

L2""’Ln'

By the above remarks, s = a!Sa. Hence a type of

average composition of Tl,.-..,Tm is given by E%S.

Consider Ll""'Ll' L2""’Ln'

{(7.8) Define 0,(L) as the o symmetrization of L

. _];S . ol S ,
meanl_ng mier meaning ”E”_! ot {L

Consider u ¢ A" = Ax...xA. Then (u.L)® =
(ulLl+...+unLn)m = (“ %_ uaSa) since the Li's do not
all =m
act on £he uj's.
Hence.;...'

(7.9) Proposition: Ty (L} is the coefficient of u®

in the expansion of W%ﬁT(ULL)”a” where - means

dot product.

(7.10) Examgﬁeé:'Congide; Drfx) = (rxl,r?xz),
vr >”O Vk sj3?Q_ : .
Consider addltlon:_ R°x R"+» R™ :

RS AL S R 2 .
(x,y) = (X1+Y1.X2+y2+xlyl) . Then R",.) is |
an abelian Lie group such that DrXDrY = Dr(xy),

but 0(2'0)(X) # 0 (2,0)+ More specifically

2
o (x)£(0) = x% P groy) = 2L () + A2
(2,0) Bt2 8w2
2 1
while P(2,0) = ng(O) by definition.
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However, inspired by Geller [G]

L

{(7.11) Proposition:

Consider group addition . op

RrR" such that vh ¢ R Yu e]Rn, hu.uy = hu+u+h2v

'where V is a polynomial in h and u.

Define X = (Xl,...,xn) as the listing of our

left invariant vector fields X. = 5%— at 0,

Then [(x:3 )"F) (sx) = EQE[F(SX)] = [(x:X)™F] (sx)
s .

where s ¢ R,

Proof: ETS form = 1, Consider that

3 dsx 3
FglFlsx)] = Z~§§l[5§§;F(sx)]

= xj(aj]SXF) = [x:3 )F] (sx).

Let G(v) = F{v.sx). Then

.a_a_s__[F(sx) ] = ifg F(hX+S}I§) -F(sx)

s F(hx+sx)-F(hx+sx+h2V)

+ lim F(hx-sx)—F(sx)

h+0 h~Q

=0+ PSP Sx61(0) = (k0] (an) .
' =0

(7.12) Corollary: If hu.y = hu+u+h2v then qfx) = Py
Proof: [x:3)"F1(0) = [(x.x)"F] ().
Hence oa(x) will equal 33 at 0, as desired. =

Note:

By choosing canonical coSrdinates, one can always

arrange straight lines thru the origin to be Parameter
subgroup . Hence, hu.u = hutu.




8.

Generalized Convolution * and the Asymptotlcs.
of Composition.

Purpcse of this chapter:

To express the asymptotic expansion of the core

of composition in terms of gl :Kiu's rather than

i i,
@Kzu*@Kgu s
Recall..,

. ] 1
(5.7) Define K2*K1 GRS (K2,¢*Kl) for Kl’K € BT,

2
Consider K2,K1 £ Rhom £ Sl.

Even though KyiRy e El, if they don't grow

too quickiy..,

(8.1} Froposition: Consider K

| 2u € Rhomkz, Klu € Rhomkl,
and Re(k2+kl) < -Q.

Then K2u*Klu € Rhom,

k2+k +Q°

Although for kl,k2 real and Kl,K2 not parametrizeqd,

see Christ and Geller [C] Lemma 9.5, page 592-3 for a

method of proof.

J
Recall t#at 5;; | Xj f X pj’m(x)xm where Xi
' J

i a
is a left invariant vector field agreeing with

T

i
at 0 and P, m (x) are homogeneous degree a_ - ay

pPolynomials.

(8.2) Proposition: Consider Megt M

Then (3——4
J

is a finite sum of terms of the form




p(x)Xb ¢

1 b

9

such that (the weighted degree of p) ; ( Z a(b )

= -Ma,.
J

Proof: Notice that 5%— is of that form.
j

Now consider

3

(=) (pX,. ...X. )
ij bl b9

= (Xj+ z P

a_>a,
m

X )(pX A S
j,m b1 b9

Enough to consider . B

e X ) %

(p ) (pX
by

] mX bl b

1
which by product rule (4.24) is
pj,mpxmxb cenXg pj’m(xmp)xb e Xy -
1 1 9
Both parts of the sum have Wweighted degree polynomial) -

'(sum of weighteqd order of Xi's) = (-M-l)aj as desired, "
Straightforward calculations give

(8.3) Lemma: Consider Klu € Rhomk and P, homogeneous
l .
polynomial degree k2.
Then dm e Z yj = 1 to n,

m .
Dj(pu log«K, /) ¢ Rhom

kl—maj+k2+Q'




(8.4) Proposition: Consider K, € K 2,
and Re(k2+kl) < -Q. R
rkl+k2+Q
€ =
Then K2u*Klu Rhomkl+k2+Q K .

Proof: 1In view of Proposition (8.1) WLOG, it is enough

to consider the case of Ky = Py (%) loglx| 4K, (x).

Since Re(k1+k2) < =Q, Ku is a well defined core

by the same reasoning as Proposition (8.1).
We can claim that we are finished by use of Lemma
(8.3), Poincaré Lemma (3.5), and Proposition (3.1).
- - — Y
Assume Re(kl+k2) 2 -Q. Then (1 @)KZU*(I €p)Klu .
would be (in general} undefined. However, if m is i

m.
large enough, then we can claim that "Dj](K2

n
u*K1y)
exists in the sense that we could expand Dj in terms
of left invariant vector fields and move them onto Klu‘

m.
" J n
In other words, Dj (K2u*Klu) equals a sum of

terms of the erm
(x) (K, £X%K, )} (x)
PAXIIBau*® By’ X
where : Re(kl+k2-|af)'< *szf

p is the appropriate pclyndmial,”énd'xq;iSTQOme (ordered)

sequencing of

Xl,...,xl(otl times),xz...xz(a2 times), ...,

X ...X (o times).
n' n

n
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Recall that D, = ¢ =5— 3 O°F = g.%."ﬁyfbféﬁééiinn a
i ij j 3 T e

(8.2), there exist a finite number of polynbmiélé?éd;ds

m _ o m _
such that D = Zcux , DY = Ede .

Pick ¥ € ¢ 3 ¢ : R" > [0,1] and ¢ = 1 near 0.

: 0 _ 0 — 00 = —
(8.5) Define Klu = leu’ K2u = wKZU, K7, (1 w)Klu,
and K2u = (l-W)Kzu.
(8.6) Lemma: Consider m e Z+ 3 Re(kl+k2) - maj <-Q,¥].

m w xBgw 1 = pM O o
Then DiXdB[Kzu*X kg1 = Dcha[KZU*x SR

Proof: ¢ ¢ Cz Yy : R [0,1] and ¥

1]

1 near 0.
There exists C > 0, yr ¢ (0,1),
1 Ll s clxy™Y

[ %R, (xy™) | s K3 (xy”

and I(XrKf)(y)| < Clyl for all relevant Y € @)",

Use these inequalities as was done in Proposition
(8.1) and then the Lebesgue Dominated Convergence Theorem,

we have

m r R my .. B oo

DYl ds [(DTD)KS 4X Klu](x).+?piZdBFK3u*X kg, 1 (x)
and D?an[(Drw)K§u*XaKTu](x) + D?Xca[Kgﬁ*XBKTu](x)
as r goes to 0, for all x in R?,

These limits are equal since
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m r o B

D} deun DK #XTKT ]
= DiDj[(n’fp)Kzu*Kofu D DT (DT )RS, «KF, ]
_ .m r - Ao '
= Dcha[(D VRS #X"KP 1, vr e (0,1). =

(8.7) Proposition: Consider m € z* J Re(k1+k2) -

maj < =Q, ¥j.

m (1] I[l [T — m " l'l'l n
Then D Dj(Kzu*Klu) = DDy Ky xKy )"

. Proof: By definition,

ST
= DTde(K2u*XBKlu) = o7 (Jag1x) xPx? )
+ (Kgu*XBKTu) * (K?U*XBKEU)} + dB[kﬁu*XBKTu])'
Since Kgu is.in E' and K?u is in C*, we have
DTD?[Kgu*Kgu)+(Kgu*KTuyHK?u*Kgu)]+DT[ZdB(K§u*XBKTu)]'

Using our Lemma (8.6), we produce

m.m,,.0 0 0 e - 0
DjDi[(Kzu*Klu) + (K2u*Klu) + 2u*Klu)]

m (4] 0:00
+ Dj[Xca(K2u*X kD)1

Now by reversing the steps used, we derive

mll m n
Dj Di(Kzu*Klu) .

Consider m € &' Re(k2+kl+Q) - maj < 0, vj.




(8.8) Define Kou2Kq, as the "generalized co

of K and Klu" by which we mean thélﬁa

-  CbﬁHi1?¥f

structed by Poincaré Lemma (3.5) from usingflﬁgi,u_ 

" m [ ]
Dj(KZu*Klu) S.

Is KZuiKlu well defined? Yes, since m is large

' w1 "y i -
enough for Dj(Kzu*Klu) s to be well defined homo

geneous distributions and due to Proposition (8.7).

* 3 i > !
Is K2u—Klu uniqguely defined? Depends on kl + k2.
]
Pick m' e zZ" 3 m' > m. Then D? of the two deriva-

i *
tions of K2u~Klu are edual.,

Hence, by Proposition (3.1), K, XK, 1is unique 4
modulo, a polynomial of degree k2 + kl + Q.

Hence, if k, + k; + Q ¢ zt, then K. *K

2u~—"1y '8

simply unique.

(8.9) Proposition: Consider K2u e K and Klu ek ~.
Pick ¢ « Cg 3 ¢ = 1 near 0.

+ U

Then K., *K = ¢K2u*QKlu u

2u—1u

with ¥ being a C* function in u and x.

Proof: Pick m e z1 3 Re(ky+ky) + ma; < -0, vj.

m _ g
DY (K, 2Ky ) = Ldg (K, «X K )

plus possibly a polynomial.

B
In turn, (Kzu*x Klu) _ _
= ((1~9) Ry *X°Ky,) + X5 (0K, % (1=0)K,.) + X5 (0K, 0K+ )
= ?) Koy 1u PRyu* (1-9)Ky 2u*? K1y -




The first two of the three parts of that.sﬁmféfélé§ 

in x.

B _ R . .
Hence, X (Kzqulu) X (¢K2u*mKlu} is C® in x.

n

2m " . :
Hence, jngj (Kzu_Klu—mKZu*mKlu] is C® in x.
But ZD%m is elliptic,

* _ . .
hence, (K2u—Klu ¢K2u*@Klu) is C*® in x.

The same holds fbr

o . L aa
au(K2u—Klu) au((pKZu*CPKlu)'

Hence, (Kzqulu—szu*@Klu) is C® in x and u. n
Recall

(7.5) Theorem: Consider M ¢ Z+.

If N is large enough then

e M

i R __7j
I2u* P14y PRy #Po 9Ky, modulo B

ACIA A
Z=2z=
e

el e e [

— 0O
2 IA 1A

with (#)awKéu(s) meaning (sul)awK;u(s).

By Proposition (8.9), (#)awKéu*%iﬁiu

_ o i, Roj X W g o
(#) KyuXPKi, is in Cc® & B™,
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(#)“ i, R,j
qp K
Os§<N ol Zu Lu

Ozﬁ N

M o

modulo B when N is large enough.
m+k

. o, 1 j 1
Notice that (#) K2u* Klu e K

Hence, g2u*hl#u

+k2+Q
where

m= 41+ 3+ [al]. Hence we finally have...

(8.10) Theorem: Consider Gi.e wDO(Ul,Xl) with |
core h1u " ZK{U énd 62 E_pr(UZ'XZ) with
core g, ZK%H.' N
Define 6 : S » C=(U) : ¢ v 6,(6,(¢)).
Then G ¢ yDO(U,X,X,) with U = U2\[X2CRn\Ul)].

The core 9, ™ ZKﬁ where

KD = )

i+j+]a]=m

o x l *05 J
a'(#) 2u— uKlu
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