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Abstract of the Dissertation
Smooth Tame Fréchet Algebras and Lie Groups of Pseudodifferential Operators
by
Kevin Ray.Payne
Doctor of Philosophy
in
Mathematics
State University of New York

at Stony Brook
1989

For certain pseudodifferential operator algebras with globally defined 0-order
symbols, belonging to either the Hérmander class S%'D(Rz“) or certain prescribed
subspaces, it is shown that these algebras possess important smooth tame structures
that make them compatible with Nash-Moser implicit function theory. In particular,
the algebras investigated possess a graded Fréchet topological structure and a family
of smoothing operators that make them into tame Fréchet spaces. With respect to
this structure, the product map on these algebras is shown to be smooth tame,
making the algebras into smooth tame Fréchet algebras. These algebras are also
invariant under the L?-adjoint, which is shown to be a smooth tame map, and the
algebras are closed under the inversion in their parent C*-algebra, which is the
bounded linear operators on LZ(R“), and thus form smooth tame y*-subalgebras
of the parent C*-algebra. Finally, the inversion map on the set of elements in the

~algebra nearby the identity is shown to be smooth tame, which gives rise to the




structure of a smooth tame Lie group to the group of invertible elements in these
operator algebras. The work exploits the characterization of Cordes for such
algebras as special subsets of the bounded linear operators on LQ(R“), where the
defining condition is a smoothness criterion involving the conjugation of an
operator in the algebra by a special strongly continuous unitary representation of a
finite dimensional Lie group. Such a characterization allows one to identify a
pseudodifferential operator with a smooth map form a finite dimensional Lie group
into a Banach space, Banach algebra, or C*-algebra. In this setting, the desired
tameness estimates are then essentially the result of the Leibniz formula acting in

concert with the appropriate interpolation estimates coming from the tame Fréchet

space structure, which is analyzed in detail.
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0. Introduction.

It is our intent in this work to begin a systematic treatment of the analysis

involved to justify the use of pseudodifferential and Fourier integral operators in
Nash-Moser schemes for the production of smooth solutions to nonlinear partial
differential equations. In particular, for a smooth function f, if:

Pu)=f

is a nonlinear partial differential equation, and P is a smooth function of its

arguments, then to conclude the that smooth solutions locally exist by applying the

Nash-Moser inverse function theorem one needs, for u near to some appropriate

Ug, a family of inverses E(u) to the linearized operator P'(u) that satisfy the so-

called smooth tame estimates with respect to u. We are motivated by the recent
work of Goodman and Yang [G/Y], in which a family of inverses is constructed
for general nonlinear partial djffercnﬁal equation of real principal type . Their
construction is built as a composition of various operators whose u dependence is
given in terms of elliptic Fourier integral operators of order 0, their inverses and
adjoints. For this reason, one would like to know whether the products, inverses
and adjoints of pseudodifferential and Fourier integral operators are compatible with

the Nash-Moser machinery,




For the present, we deal only with the following pseudodifferential question.
Does there exist a large algebra of O-order pseudodifferential operators 4 whose
subgroup A« of invertible elements forms a smooth tame Lie group in the sense of
Hamilton [H] ? In order to address this question, we pose the following questions:

1) is there a large class 4 for which the composition map:

C:AxA >4 definedby C(A,B)=A.B

is smooth tame with respect to a suitable topology on A which yields 4 as a tame

Fréchet space?
2) If one restricts attention to the invertible elements Ay, is the inversion map:

V: Ay — Ay definedby V(A)= Al

1

smooth tame?

The answer to these questions is yes, and we will demonstrate this for
q= opsgf, the pseudodifferential operator algebra of Cordes [C2], which
:_t:onsists of global 0-order operators whose symbols are smooth functions on R2"
which remain bounded after an arbitrary finite application of phase space differential
perators of a prescribed type.
The key ingredient in our treatment is the exploitation of the Cordes
chatacterization of such algebras as subsets of £(%], the bounded linear operators
on L2(R") defined by the following smoothness condition. Let U(t) be a strongly
ontinuous unitary representation of a Lie group G 3 t onto L{H). We will say
at A e L(H] satisfies the Cordes criterion with respect to U if the map
(1) = U1) A U(1) is a smooth map from G into L{%), where L{H) carries the
perator norm topology. If a class of pseudodifferential operators can be

racterized by their satisfying the Cordes criterion with respect to some unitary




representation, then there is a natural topology induced on such algebras as as a

closed subspace of a certain space of smooth maps. As a result, the verification of

tame estimates for products and inverses reduces to such questions on spaces of

smooth maps from a Lie group into a Banach algebra, where in this setting, the

estimates are essentially the result of the Leibniz formula.

Before presenting the organization of this paper, we would like to make a few

remarks. There are a few advantages of using the Cordes characterization presented

here for the purpose of obtaining tame estimates and generating a Lie group

structure on an algebra of 0-order pseudodifferential operators. First, experience

. indicates that, when trying to obtain tame estimates for pseudodifferential products,

natural attempts at the symbolic level using stationary phase methods fail to produce

sharp enough estimates unless the operators have large negative order. In

_particular, while these integration by parts arguments do give continuity estimates,

tiley result in bounds that involve too many derivatives of the symbol factors to be

ame estimates. Thus, the desire to work directly with a suitable operator topology.

econd, the Lie group structure of these operator algebras, which is an infinite

dimensional notion, is being captured by a finite dimensional underlying group,

ith the aid of the y*-subalgebra property that they in turn posses. This allows

¢ to avoid the delicacies of the infinite dimensional theory. It is then reasonable

o a' k for which algebras of pseudodifferential operators does one have a Cordes

pe characterization with a finite dimensional underlying group ? To this end, we

clude at the end of the first section an additional feature of the Cordes

aracterization in the present case of operators on the noncompact manifold R™.




We hope that these observations may serve as another model for where to look for
such algebras. We mention the related work of R. Beals [B2], A. Connes [Co],
J. Dunau [Du], R. Seeley [Se], E. Schrohe [Sr2], and M. Taylor [T3].

The paper is organized as follows. In section 1, we explore the Cordes
characterization of certain algebras of global O-order pseudodifferential operators
on R" and provide a self-contained proof that the algebra 4 = OPSg?;O can be
characterized by its satisfying the Cordes criterion with respect to an explicit
representation of a finite dimensional group. In so doing, the foundation of the
Fréchet topological structure of 4 is displayed, and in section 2, this structure is
treated carefully with an eye on the Nash-Moser categories, where we show that the
natural symbol topology and operator topology supply tamely equivalent gradings
on 4. In section 3, we provide the necessary results on the smooth tame
structures of spaces of smooth maps defined on a compact neighborhood of the
. identity in a real Lie group taking values in a Banach space, Banach algebra, or
- C*-algebra. Finally, in section 4, we translate the abstract results of section 3 by

way of the characterization of section 1 to demonstrate the smooth tame structures
0,0 0,0
of OPSgS and [OPSﬁs T




1. The Cordes Characterization of Pseudodifferential Operators

In this section, we wish to review the machinery developed by Cordes in
[C1] - [C3] for characterizing certain algebras of global pseudodifferential
operators as special sub-algebras of L({#), the C*- algebra of bounded linear
operators on the Hilbert space H = LZ(RH). In particular, we will reintroduce the
pseudodifferential operator algebras OPSY” after having described the Cordes
operator algebras WGX which characterize them by a suitable smoothness
criterion. The main goal is to present a self-contained proof of the bijective
correspondence between the algebras OPS};G and ¥GS which was stated in [C2],
ut whose proof has appeared only in the as yet unpublished form [C3]. Then, we

proceed to analyzing the group structure of the underlying Lie groups in the

smoothness criterion as a means of establishing a further connection in the bijective
o‘ﬁespondcnce between these Lie groups and the Lie algebras which define the
ymbol spaces of the pseudodifferential realization. We begin by describing where

e underlying Lie groups come from, in the framework of [C2].

:__C(_)nsidcr the "parameter space” {(s,A )}, where s = s(x) will be a coordinate
formation on R", belonging to a subgroup of the diffeomorphism group, and

A (x) will be a real valued function. Then, the map:

s H — g where  Tg,u(x) = eM®y(s(x)) VTac[sxL.




where Jac]s(x)] is the Jacobian determinant of s(x), may be viewed as a special
unitary representation of {(s, A)} onto L{#]) for H =L*R"), after noting that

{(s,A )} forms a Lie group with respect to the operations (cf. [C2]):

(1.2) (SA)A(B,A)=(sos, A+Aos) and (sh)! =7 ,-hos™)).

The image of this strongly continuous representation, that is, GC = {T .y IR

forms a subgroup of U{ #) = the group of unitary operators on # and is thought
- to be built up from a coordinate transformation u(x) — u(s(x)), and a gauge
transformation, multiplication by eil(x), hence the label GC. Cordes has analyzed
three special cases of finite dimensional groups, namely, those given by the
following choices:

(1.3) {s(x)=gx+z and Mx)={x+¢: geGL(D,R), z {ecR", and pcR}
(4) {s(x)=0ox +z and A (x) = {x + ¢: GeR*, 02 O(n), Z,L<R", and ge R)

5) {s)=x+z and Ax)={x+¢: z[eR" and peR}.

One then defines the following subgroups of U(#):

GL = {ngc(p: g€ GL@n,R), z, {eR", ¢ecR}
GS = {TcozC(p: oeRt, 0oe O(n), z,e R", pe R}
GT = {Ezt(p: z,teR™ ¢peR ),

Bate= T-z,C, 0’ and the notation is to suggest the Gauge-Linear, Gauge-

ty and Gauge-Translation subgroups of U(#). The underlying Lie groups,
lgebraic structure descends from the parameter space {(s, A)} by the group

» are denoted g/, gs, and gt respectively.




One uses the above representations to conjugate elements in £{#) by

defining:
_ _ -1
(1.9) Mgzt = Agato = Tgate) ATgato
_ B -1
(1.10) Asozl = Asozle = (Tcro,z,C,tp) ATco,z,C,tp
(1.11) A = Ppre = (Ez,c,tp)_lAEz,C,w ’

where the notation is intended to suggest the independence of the conjugation on the
parameter ¢ , since multiplication by the scalar ¢'? commutes with everything in
L{#). In particular, one denotes by GL',GS’, and GT" the subgroups formed by
modding out by the normal subgroup {ci{p :peR} and by gl'gs’, and gt' the

‘corresponding "reduced” Lie groups. One is now prepared to define the operator

S
£
{{1=H

{Ae L(#) : Ag € C™(gl’, L))},
[ A e L(H): AGO,Z,c e C™(gs', L{H))}, and
{Ae L(H): Az e C7(gt', LHH))},

o
S 8
e

here L{#{) carries the operator norm topology. That is, one requires that the
rivatives exist in the sense that the relevant difference quotients converge

"fOrﬁﬂy on compact subsets with respect to the 1.2 -Operator norm.

We pause here momentarily to recall some of the basic facts about these

ator spaces. The claim that the above WGX form algebras results from the

iz :formula and will be addressed carefully for the case X = § when we

S _t__hé tameness of products. In addition, these algebras are invariant under the

joint and may be supplied with Fréchet space topologies for which the




inversion of them as £{*) elements guarantees that the inverses remain in WYGX;
which is to say that they are y*-subalgebras of L{H) in the sense of Gramsch

[G], and as such, have nice perturbation properties.

Finally, and most importantly for now, these algebras WGX, for X = T,S,L,

are in fact algebras of 0-order pseudodifferential operators, whose symbols belong

to the classes S;;(), SE;O, and S;EO defined as examples of the following symbol

- classes.

; Deﬁnition 1.1. Let A be a finite dimensional Lie subalgebra of X(R®™), the

: s_'r_ﬂooth vector fields on R%®, with generators { X 1 1<k < M]}. Then, the symbol
' lass S%O is defined to be:

N
fae C*R™): YN=0,1,2,.., |II X a |=01) on R*" },
=1 N

N
here by I X, a one means an arbitrary N-fold product of the generators X
: =1 N

: 0 N
lied to a, with the conventions [[ X, a=a and I[ X, = X, o..0X, .
K 2k T Tk ky

gt = Real linear span of {axp , agq :1<pgsn},
gs = Real linear span of {1, Moo Mog: npq} ,
n
Moo = J:zlt [i‘jaéj - Xjaxj]
.np0=axp,15pgn; n0q=a§q,1San;
Mpg = (gpagq - gqagp) + (xpaxq - xqaxp) ,1€p<q<n,




and:

(1.17) gl = Real linear span of {epo, €0g Epq }

where:
£ =0 <p<n' €. =0 <q<n
pO Xp, 1 ? . Oq &_,q’ 1

= - < <
3 gpaéq xqaxp, 1<pgsn,

\
|
We remark that these are precisely the symbol classes yt,,s,, and yf, of |
Cordes, where two redundant aspects of his definition have been removed.

Namely, it is not necessary to explicitly assume that S;;O and S;EO are subsets of

: Sﬂ?'to . OT 18 it necessary to explicitly insist that the application of products of the
operators 1 and €_ to symbols a belong to S>°. Both conditions follow

Pij P{q; gt

éiq_tomatica]ly because the 1)'s and the €'s include those differentiations defining

We also note that the space S;;O is just the space Sg o Of uniform Hrmander

mbols of order O and type 0,0. It is well known that such a symbol space, while ‘
producing bounded pseudodifferential operators on R", does not come equipped

ith the convenient symbol calculus. On the other hand, it is not difficult to show

¢ symbol spaces S;f and szo consist of symbols which are locally of

rmah_d_cr type Sf o That is, on any relatively compact subset Q of R”, the

ctions of S;;O and S;EO to © x R" obey the estimates:

Iaﬁaga(x,g) | SCLe(1+IENT® YV (xE) e QxR




The new notation is to suggest a few of their salient features. The superscript
pair (0,0 is to suggest that their is a differentiation order as well as a multiplication
order, both of which are zero in this case. The differentiation order is the standard
notion of the order of growth at infinity in the fiber variable € and the multiplication
order is the analogous notion of the allowable growth at infinity in the spatial
variable x, where the symbol is viewed as a function on the cotangent bundle of
R". This multiplication order is one systematic way of imposing growth restictions
at infinity in the spacial variable to allow for a global pseudodifferential theory on
the noncompact manifold R", and the explicit reference to the pair of indeces is to
suggest the existence of a theory of general orders, which has been carried out by
Cdrdes. The subscripts g, gs, and gl are related to this global problem by
providing a basis for a suitable family of seminorms for their Fréchet space

to‘pélbgy, and will be examined further, with an eye on the symbol topology as well

: (x,D) with symbol a(x,E) on a suitable function is given by its Fourier

-
.

a(x,D) = fe™*'> a(x E)A(EME, where 4 = (2m)™2dE,

) =S s, dx = (2m)™2dx

10
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With this as background, we state,(cf. [C2], Theorems 1.1 and 3.2) :
Theorem 1.2: ForX =T, S, Land A= gt g5 gf one has the bijective

correspondence
(1.20) OPSY% = WGX .

Remark 1.3: (Sketch of the X = 7" case)
One first shows that : given A = a(x,D) witha e S;'O, the conjugation by GT7,

given in (1.11), yields AZ ¢= a(x+z,D+{). Then, using a fundamental solution to -

(@ + 1)™, the expression for A_ ¢» a trace formula, the Fourier -Parseval-Weyl

formula, and facts about Hilbert-Schmidt and trace class ideals, one shows that :
1) any A =a(x,D) witha e s;;", belongs to L{#),

2) given any A € WGT, one may produce a symbol for A according to the

1 21)

O(A) = 2m)"alQ*PO,D A, (],

re P is a differential operator built up from operators like @¢+ )M and Qisa

uitable fundamental solution. This symbol can be shown to lie in S;;O and the
ymbol map :
A — a=0(A)

¢ shown to be injective, hence
0,0
YGT < OPS gt

)n the other hand, proceeding from the expression for A, g One shows that

tives with respect to z and { exist as L2—operator norm limits of the relevant
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difference quotients by exploiting a refinement of the Calderon-Vaillancourt

theorem, which gives WYGT o> OPS!?;O. Finally, one argues that the operator map

and the symbol map are inverses.

Remark 1.4: (Reduction of the X = § and L cases)
In light of how one defines the symbol classes Sg.o and the Lie groups gx’,
one has the following diagram of inclusions:
YGL < YGS < YWGT

(1.22) |l
opPsY? < ops?® < ops??,
b 4% gt

As aresult, one can restrict the symbol map o©: ¥GT — S;;O to a map defined
on ‘¥GS or WGL to produce symbols which are apriori in S;;O . Also, since

O_I?Sﬁiﬂ and OPS‘;);O are contained in OPS‘;);O, one knows that any such operator is

younded on LZ(R“), and, in fact, belongs to WGT. As a result, to prove the

theorem for the cases X = §,L, one only needs to verify that;
(1) If A=a(x,D), withae S2C then the relevant derivatives of the

njugation by T, 5 exist in a suitable fashion, and

o~

1) If Ac¥GX and A=a(xD) with ae S, thenaiseven

cr, namely, thata € Sg'o.

ing (1) is just a computation and an application of the aforementioned version
Calderon-Vaillancourt theorem, and will be done for X = § in Lemmas 1.6 -
OWing (2) is aided by establishing some "connecting identities” which was

= L in [C1] and will be done for X = § in Proposition 1.10. We
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remark that Cordes has followed this reduction through for the X = L case in [C1],
so we will concentrate on the larger class X = S and imitate his X = L proof,

which has already been done to a large extent in [C3].

Remark 1.5: (Convenient parameterization of the group gs’, [C3])

Recalling that gs'={(gzL):g=00 foroce R",o0e O(n), and z,{ € R" },
one wishes to parameterize the O(n) component by skew symmetric matrices in the
standard way; namely, for o € O(n), one can realize it as:

o=eh for h=(h), . with hy=-h,

ij)nxrl Ji
More precisely, what one is doing is choosing a convenient coordinate system near
the identity (g,z,{) = (1,0,0), in which a local chart :

Q={ 00:0<c<e, 0 O@m). and||o-I}| <1},

] | being the matrix norm, is linked with :

P = { h skew symmetric : || h}| <m/4 },

o=eh=2 h¥k!  and h=log(o)=-2, (I - o).
k=0 k=1

-having been done, one denotes the conjugated operators A by A

60,2, o.h,z,(’

: ;i'mines the derivatives with respect to o,h,z, and {, thinking of it as a map
d on a neighborhood of e = (1,0,0,0). One denotes by Bhkm the directional
in the direction of Yoq where Yoq 18 the elementary skew-symmetric matrix

ntry in row M and column Vv is ('yp q)uv = (Skuﬁ - Bkvspu)'
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Proof of Theorem 1.2 (X = 3 case) :

Step 1: (Existence of gs’ derivatives)
For A =a(x,D) withae S‘;S'O , one verifies (Lemma 1.6) that :

(1.23) Agpar = 207 e M (x2),00MD4z),

Armed with this formula, one shows (Lemma 1.7) that the first derivatives dgs

. _ 2
ahpq, azp, and ch of A ozl exist at e = (1,0,0,0) as L“-operator norm convergent
limits of the relevant difference quotients. Furthermore, these first order derivatives
are (npqa)(x,D) for some npq ,and hence the transition formulas (Lemma 1.8) give

ao-,h,z,c(Acr,h,z,C) in terms of first order derivatives at e. Hence, the first order

derivatives exist everywhere on gs’, bein g uniform L2-operator norm convergent

limits on compact subsets of gs'. Moreover, since the derivatives at the identity are

qual to some (np qa) (x,D), one invokes the obvious invariance of S;;O under the

Operators Npg (Lemma 1.9) to repeat the process with Npg? € S;;O . One concludes

that the second derivatives exist on gs"and so on. Finally, since the derivatives are

uniform limits of continuous maps : gs' = L{H), one concludes that :

AO’,h,Z,g € Coo(gs’: L[m )a

OPS}? < WGS.

ep 2 ( For A € WGS, the symbol of A defined by (1.21) , which is
.. 00 . - . 0,0
ori in Sg ; »1sin fact in SES .




Take any A € WGS where A = a(x,D) witha € s;;" . One needs to show that
arbitrary finite products of the n p q‘s applied to a remain bounded on R?" pick any

Mpg: By the Proposition 1.10 below, one can realize My by way of :

qa
(1.25) [(Mp@ Do p o = TpgBonnt) »

where ﬁpq is a prescribed gs’ vector field corresponding to n p q,and the right hand
side in (1.25) is well defined since A € WGS. Moreover, this 7 0 q(A ohz, C) will still
be a smooth map from gs’ into L{H} and is the GS’ conjugation of a
~pseudodifferential operator with symbol Mgt Thus, npqa(x,D) € WGS < YT,
a_nd since WGT = 0PS§;0 , one concludes that npqa is a bounded function on R2"
or any npq. This argument can be iterated to conclude that arbitrary finite products
of the Tq's Temain bounded functions on R, and hence :

0,0
YGS < OPS‘HJ .

This completes the proof of Theorem 1.2, once one has verified the technical

ii’a_ made above, and this will be done in what follows. In particular, what Step

ows is that the restriction of the canonical operator map to S;;O , which is well
ned as a map from sﬁ?;0 to WGT, actually has its image in WGS. Similarly,

says that the symbol map from WGT to S;f restricts to WG, producing
$:y1§3bols, and hence the bijective correspondence of WGT = OPSf;O restricts

of ¥GS = OPS0
g.f
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Lemma 1.6 :(Conjugation formula)

Let a(x,£) e C (R have bounded derivatives of all orders and let its
corresponding pseudodifferential operator be A = a(x,D), then:

a) A shal = (Tc,h,z,c)nlATc,h,z,C is an element of L{#H),

and,
b) for o,h,z,§ in a neighborhood of the identity e = (1,0,0,0) in gs*:

.27 Agnze = a0 e Mz, oeDar),

where Tohs Cu(x) = gl 2eic"‘u((::'1L=:hx+z) for 6 € RT, h a skew symmetric n x n

matrix, and z,{ € R™.
roof: First notice that part a) is just an application of a version of the Calderon-

llancourt theorem (cf. [C1], Theorem 2.1), and if one verifies (1.27), then

ohat will be a family of bounded linear operators on LZ(R“), parameterized by

.G The verification of (1.27) is just an exercise in the change of variables

eorem, which is aided by the density of &(R™ < LARM), where ARY denotes

S¢_Hwartz space. This allows one to regard the elements Tohs L€ GS' as
on ARM and to exploit the Fourier representation of the action of

__Od_iffﬁrential operators. To indicate a more general formula, we will verify

a special case involving Ag 2.0 where in this case, for g € GL(n,R):
Tg 2,000 = | detg | /2 eix'cu(gx+z) for g e GL(@,R).

_ JifM iz’D
Tg,z, ¢=¢ (Tg)e .
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where eiC'Mu(x) - eig'xu(x), T gu(x) = |detg | 122 u(gx), and eZPy(x) = u(x+z).

Then :
-1 _ _-iz'D -i-M
Tgp ) =" Tgne™,

and so, for u € A(RM), one has the integral representation:

(128) Ay, 69 = PP M ) [N DAL

g2,

[elSMy gciZ'Du]"‘(‘g) = J e Vel Yy(gy-+2)| detg V2 dy |

= j e‘i(y"z)'g-t@_g)u(y') | detg |"2gy
= ciZ'g—t((‘:—f;) J‘ e'iy‘-g-t(g—C)u(y') | dctg |_1/2dy' .
stituting (1.29) into (1.28) yields :
'Aé’z,Cu(x) =

DT e M [ o8 eir8 D ae ) g0 | detg 17124

TG0 i 8 8 0 o (x5, ) g ) | detg 1
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_ [ eig" @0 g0 a(g(x-2),) T (E-0) [ detg 1€
=] 12 @0 ag k2, BgrtE 1) | detg 1t

and placing &' = g '(E~{), sothat d&'= |detg|"'dE and & = g'&' + ¢, yields :

(1.31) Ag 7000 - et ag e, g0 BEnE  forue BRM,
- and so:
(132) Ag ¢ =2 (2).g'DHO).

“ormula (1.32) is present in [C3, Proposition 1.2] and validates (1.27) after

choosing g = Geh, where g‘1 =oletand gt= oel, Q.E.D.

Armed with this formula, one can address the existence of gs’ derivatives of

ohay for A=axD)withae SH0.

1ma 1.7 :(Existence of derivatives at the identity)
fa(x8) e ), then A hz,¢ has first partial derivatives 0, 0, Tor

<n,andd, for I <p <qatthe identity e = (1,0,0,0), and moreover :
Pq

Boo = 96Bshng) |, = Mgp2(xD)

By

BY £ 3 (Agp, 0o = Mg xD)

d
qu = ahpq(AG‘,h,Z,C)I e= (npqa)(an) .

[~}

=1

azp(Ao.’h,z,C) I . = ‘(T]poa)(X:D)




Proof : The idea is to show that each difference quotient is a pseudodifferential

operator whose symbol converges to some M2 at the identity. One is guided by a

refinement of the Calderon-Vaillancourt theorem, due to Cordes [C4], which says;

for a 0-order pseudodifferential operator with symbol a € C(R?") with bounded

derivatives:

(1.37) laxD)l 2, < CXII a@(x.8) | L=r2n),

‘where the sum runs over| a land | b |< (n+2)/2, and aég))(x,ﬁ) = aﬁaga(x,g).

Hence, one needs to show that for the symbol of each difference quotient

.-sa(x,F,)le) satisfies, for every l . |, | B < (n+2)/2:

&) Im || (VeaxEye)(g) - 28 11 o gny = 0.

€
: O',h,z,C) je *

Let Yoq be the elementary skew-symmetric n X n matrix previously defined.

for 1<p<q:
% Ponzdle = I (VAVe,

VA=A

£ l,aypq,0,0 - A

1,0,0,0'

of.I;_cmma 1.6, VA = a(e™¥%a x,e*a D) - a(x,D), or:

19
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(1.41) VA=VaxD) with V.a(x}g)=a(e*ax,e®aE)-axf).

Now notice that, where in what follows 4 n= @, a)(e®pq x,e%q £), and dlis
i

the analogous expression with ag in place of 9, :

i 1

~-tEY:, -1£Y. - e, | I8 ey,
d lae™Pax,e" Pq )] ui:i 3 plE)t(e Pq x)u +a o (e™ E_,)u
Il
B Zi 2]y Cere hax), +a w (expee Trag),

= (-g) ;Zi [al M \gi (ypq)uv(e‘tﬁ‘l’pq x), + aI [ \; (ypq)uv(e-ta“qu F,)V ],

where ('yp q)uv = Spua v SPVS qv* SO the sums over v and | collapse to yield:
o -tey, A -tey, Ip . -tey o lq ey
-&)] al p(e Pq x)q a| q(e pqx)p +a'Pe pq?‘;)q a'9(e pQE,)p]
=&, qa)(e‘mpq x,e %q £),
9, a(e™™ax,e ™ Ha £) T = (en)(n pg® (e %pq x,e g £)

0,9,[ a(e™ax,epq £) ] = e(n > qa)(e'm“’pq x,e g £) +

(€0)d, [ a)(e ™™ pa x,67*pa £)].
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Now, integrate (1.43), multiplied by 1/e, over the region (t,7) € 2= [0,1] x [0,1]

to find:

©

2
(1.44) 1/el a(e™®ra x,e®Mpq £) 1 = f[npqa(-,.) + (TN pgalss)ldtde,
IZ
where we have denoted the arguments (e ™™¥ax,e™"%%q &) by the symbol (s,s).

This gives:

V.abVe - a0k = a(xE) + Zﬁnpqa«,.) + (TN pgales)ldudr,
I

- and hence:

| Vsa(x,ﬁ)/e - npqa(x,ﬁ) “Loo(RSZn) < | npqa(-,')dtdfc - npqa(x,ﬁ,) HLM(RZn)
1

2
+ell ft’E(T]jla)(0,0)dtd‘E l ILw(RZn),
12

re the terms on the left are uniformly bounded for all €, since a € S;;O and 12 is

mpact, and tend to 0 as £—0. Hence:

eliwrg) [ (VEH(X,@)/E - T}pq(X,ﬁ) I IL""(RZH)

ts derivatives of order|a |,| b | € (n+2)/2, and therefore:

(Vsa(x,D))/e — npqa(x,D) as e — 0.
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ac(Ac,h,z,C) ] e’

One begins by noting that :

(146)  AsAgp, 0= Im (VAVe  with VA=A 00-Arg00
By Lemma 1.6, VA = a(55(1+€)D) - a(x,D), or :
(1.47) V.A=VaxD)  with V a(x) = ars (1+)8).

Proceeding as above, notice that :

A (0D 1= 2, (2], Al (m),) + 2 A (0) ]

n -X.
H m
= —+
Z;gaiu(lm) ca éP

=i 2, [0, 9 2009 - (T, 2 (1+00)]

£ X
= Trie Med) (T (1+e)8).




Then :

1
(1.48) 1/e[ a(ég,(m)i) -ax,8) 1= U[ ﬁg(ﬂooa)(ﬁa(lﬂai)dt,
and so0: |
(1.49) 11 (V ax.E)/e - Ngoa(x8) N =g2n =

1
1 T%E(ﬂooa)(iTxtE’(“tﬁ)&)dt - ﬂooa(x,ﬁ)HLoo(Rzn).

From this it is clear that:

tim |1 (V2G2)Ye - g8 | L=(eony

“as do the necessary derivaiives, thus (V. a(x.D))e = Ngy(x.D) in L{H)ase— 0.

[Ao,h,z,ﬁ] le*

One begins by noting that :

_0) azp[Ac,h,z,C]l e Sﬁ_rfo (VeA)/ e, where VEA = Al,O,eeP,O - AI,O,O,O’

| s0, by Lemma 1.6, VEA = a(x-gep,D) - a(x,D), or:

V A=V a(x,D) with V ea(x,&) = a(x-eep,5) - a(x,k).




24

Then, one finds that 9,[ a(x-teep,€) 1 = -eaxpa(x—tecp,?';), and so :

1
(1.52) [ a(x-gep.€) - a(x,8) )fe = - 0y alx-tee;£)dt ,
ore

(1.53) I (V_a(x,E))e - (‘axpa(xa&))”L“(Rzn)

1
= I I - axpa(x—ti’,f:p,g)dt + axpa(x,ﬁ_,) ] [ Loo(R?.n),

“and so: (Va(x,D)/e) = -npoa(x,D) in L{H),ase— 0.

q{AG,h,z,C]] e’

~Showing (1.35) is just a repetition of the above argument for (1.34), where

VEA = Al,O,O, eg” AI,O,O,O’ and VSA = Vaa(x,D)

ha(x,£) = a(xtee 2 - 200E). This yields:

a’r;i(x,D))/S — Mgax,D) = (@, a)(x,D) in L{H)ase — 0. Q.E.D.
q Xg

g these expressions for the derivatives at the identity, one may produce

ormulas for the derivatives away from the identity (cf. [C3], Proposition
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Lemma 1.8: (Transition formulas for gs’ derivatives)

0,0 q . . . . .
Forae S 5 let BOO’ B " BY, and Bp q be the first derivatives at the identity of

= a(x,D) as given in Lemma 1.7. Then one has the following formulas :

(1.54) 36 Agnnt) = Boggp e = ZC(B ot ]

_ 1N h
(1.55) azj(Ac,h,z,C) =0 pgi (e )pj(Bp)G,h,Z,C
(1.56) 9, Aonz0)= B pnt

{.57) ahjk( Ashut) = 1s§xq (pjpla { Bponzt ™ Cp(Bq)c;,h,z,c + LB o b

ik _ ..-h h.
ere (p]pq = (e thke )oq

The idea is to reduce the Lemma to computations on the symbolic level

the following way. The operator A gis, by Lemma 1.6, a family of

o,h,z,
'dodiffercntial operators with symbol a(c'le"h(x~z),cc'h§+<‘;), where the G,h,z,
ar regarded as parameters. The symbol, being a smooth funéﬁon, may be
ntiated freely with respect to the group parameters via the chain rule, and one
th::ajt this differentiated symbol agrees with the symbol of the corresponding
o:n_ the right hand side of (1.54)-(1.57). Then, on any compact subset of

the functions weighting the expressions Bjk are smooth, the difference

the difference quotient and its conjectured limit will be uniformly bounded
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in L2- operator norm, again making use of (1.37). Hence, the derivative exists in
the appropriate sense and will have the form as claimed. We proceed to the

symbolic calculations.

(1.54" 3 [ a(c™ (x-2),0eTE+L) 1 = 21 o2 ) a) + € P), d 7]
=
=gt pgl [ -(c'lc'h(x~z))pa| pt (Ge'hE_,)pal P]
=0t XlioePErt) o P - (oleixoz)) aj,]-01 2 ¢ dP
= P p'lp =
="l [tngg)e e ea),06 P40 - 24 €@ a)o e Pra) 00 PE D],
p= P

‘which is nothing other than the symbol of 0'1[(B00) ohal i Cp(Bp) ohz C], in
E et Lot ) p=1 yaiadldy

light of (1.27) and (1.33). The identity (1.55) follows from :

55" 3 [a(cleNix-z),0eME+0) 1= D a1 8 (o7leN(x-2))
_ % p=1 ' % P

= le [2],670, (2™, 00, )]

. " -h . -h
_o-lzi [a| Pvgi(e )pv(~8jv)] =-0 lpgalp(e )pj
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=012 M) (-0, a) (o leN(x-2),06PEAD),
p=1 P X

and this is the desired symbol in light of (1.27) and (1.34). Similarly:

(1.56") I [ a(o e Dix-z),0eME+0) 1 =2 dp d. (cePE+0)
k p=1 k P

=;§ a’ p Skp = (nga)(c“le-h(x—z),ce'h§+t;),

and this is the desired symbol in light of (1.27) and (1.35).

Justifying (1.57) on the symbolic level is a little more involved and makes use of
the chain rule with g = el and a derivative formula of Cordes [C3] for the g/’
.f ‘case. In what follows, er = (8r qa)(x,D), in analogy with B q= Mm rqa)(x,l)), and so
qu = er - qu , since Mg =&q ™ Egr Also denote by bml and Ciq the symbols ofqu

and C rq Now, by making use of the conjugation formula (1.32) for Ag 2, OnC can

S8) 3, [aE x2gtr)]= r_Zl[g;p(er)g,z,c - 86, ],

ere gl.p = (g'l)]_p, and (b9, ,  is the symbol of B9, ¢ - Now, the chain rule

thg= el says that :

7' 9, [ a0 e Nx-2),0e Mg +0) |
ki

=20, (2@ g g et (3, @ey,]
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= 212 (gt a0y 0l geoct 10Cn e

where for g = oell:

- h — -1 "h < = a4
g, =(oe™) = (0"e™hjand (B, o o _ooh GO

as both are equal to (ag a) . Hence (1.57") is equal to:

a,h,z.{

2(0-16 h) G(a C )pq {(er g,z,d g=0'eh - Cr(bq)c,h,z,c.}

P.q.r

=D ha € )rq{((:rq g2 g=oe - Cr(bq)c,h,z,g}

QT

since the sum over p represents a matrix multiplication. Now, ¢ = c'hah ‘keh isa
> !

"skew symmetric matrix. Indeed:
¢'= @y, M @' =3, M'e (h' = @y, e

- - -h_hy _ -h h -hy by t
0= ah_k(Id) = E)hjk(e e)=¢ (thke )+ (ahjke YeH =09 +¢.

kcncc the terms in the sum for g = 1 are zero, so summing over 1<r<q gives

') as:

2 (P]k {(er cth C'r(b(:l)o,h,z,(; + Cq(br)c,h,z,g}

ls:<q

2 (ng {( rq D h FAGE E-'r(bq)O',h,Z,C * gq(br)c’hz":} ’

1<r<qg

s the desired symbol for ahjk[A cs,h,z,Q]'




Next we state the needed invariance lemma, which is the last claim in the

argument of Step 1 in the proof of the theorem, (cf. Cordes [C3]).

Lemma 1.9: The symbol space S;_;O is invariant under the phase space differential

. . ) . 0,0 0,0
differential operators n pq defined in (1.16), that is, if a & Sgs , thenn pq® € Sg.s ,
for any such np "

Proof: In order for Mg tO belong to S;;O , one needs first that TNpg? € C R,

¢
but this follows from a being smooth and 7 - being a differential operator with
smooth coefficients. Then, one needs to know that for any N =0,1,2,...:

fin

N+1
a) is bounded on R, but this is just LI M', o & Which must be
= =1 B

M
quj Pd
bounded on R2" gince a € S;;O.

Q.E.D.

Finally, we state the key proposition in the argument of Step 2 of the proof of the

theorem, Wherc we recall for convenience that:
n
Mo = ;[gka&‘k " Xkaxk:!’
TIJO = axJ for 1 SJ SII, TIOk = a&k for1<k=< n,

My = (ﬁjagk- 51(353 + (xjaxk— xkaxj) forl1 <j<k<n,
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Proposition 1.10: (Connecting identities) Let: i

Tl i
(1.61) flgg = 095 + E_Lickac |
(1.62) fiy = -Gi(eh)k] . forj=1l..n
(1.63) fige = g, fork=lLo.n |
= jk i .
(1.64) g = lgquwahw + (P -Gdy  for 1si<k
where:
12 :
q)12 q)pq oo Opin P
K ik : \ |
(1.65) ¢ = : <1>’ 9 is an NxN matrix,

nln nln n-1,n
VEVERE (qu (Pn-l,n

with N = (n2-n)/2,

the column indexed by 15u<v. In particular,d)&l\ﬁ is well defined in a neighborhood

f the identity (h = 0) and may be written as (det(p)'lx (determinant of an

opriate cofactor matrix of ¢).
hen, for a € s;);“ and j=k=0, j=0, k=0, or 1<j<k:

gl 2Pl pz ) = LR lops g
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Proof: One just makes use of the formula (1.27) for (a(x,D)) Shz and then

applies the given N ik to this expression, using the transition formulas of Lemma

1.8, to verify the formulas (1.67).
For j=k=0: One has by Lemma 1.8, formula (1.54):

OolAanzdl = O Bogpsr - 26BNy 0]

and one wants to isolate (BOO)cf hat = [(nooa)(x,D)] ozt 88 the right hand side of
(1.67). Well:

Bopopzy = %lAgnzg] + kgl ‘:k(Bk)o,h,z,c

Dol Aanntd * 2 Gy Agnh

‘where we have applied formula (1.56) of Lemma 1.8 to the second term on the

right hand side, and hence Mgoax.D)l5 4, = ﬁOO[A shz C] as desired.
or k=0, j=1,...,n: One has by Lemma 1.8, formula (1.55):

9, Agnap) = o“%[(e‘hm(lsu)mh,z,c],

nd one wants to isolate -(BJ.) chzl ™ [(9, a)(x,D)] o hzl which is achieved by
iyl J ity

ng the correct linear combination. One finds:

hy TS 1.
il[(ch)kjazk(AG,h,z’C)] - okil Mgl 2 0 My B ]
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=20 X (e_h)uk(ch)kj](Bu)mh’z’C

=1 k=1

=

o E{_Sju(Bu)c,h,z,C‘

Therefore, ﬁjO(Ac,h,z,q) =(-B j)o-,h,z,c = [njoa(x,D)] chzf 2 desired.

For j=0, k=1,...,n: One has by Lemma 1.8, formula (1.56):

ol Agnzrl = B9 har = (@, DYXD) g,

and hence: T, (A G’h’z,g) = [(ga)x.D)] chatr 8 desired.

For 1<j<k: The situation here is a little more delicate since the coefficients:

(P}inlfl = (e'hahjkeh) appearing in the transition formulas for ahjk[A o.hz, ) re ot

easily written down explicitly. As a result, we content ourselves with showing the

existence of the ﬁjk in a neighborhood of the identity, and in so doing, we will

verify the claim in (1.66) about their form. By Lemma 1.8, (1.57), one has the

N= (nz-n)lz dimensional linear system of equations:

W68) 3y (Agy,0) - 1£q¢g (®ponzt To®V e+ L®Bon )

here one wants to isolate (Bjk) ozl for each 1<j<k. To do this, one wants to

ert the matrix ¢ whose row indexed by uv appears in (1.68) by forming the

ct linear combination.
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First, reindex as follows:

let K=(Lv) andJ=(p,q), soK andJrunover1,.,N=(n*n)2,

so, for example:
K=1 < p=1 and v=2 and K=2 < p=1 and v=3,
which is to say that K is a linear ordering of 1<pi<v, and ] is the same linear

ordering of 1<p<q. Then place:

Ay = athG,h,Z& for the appropriate K < (L,V)
B; = (qu)cs,h,z,c for the appropriate ] & (p,q)
ZJ = 'Cp(Bq)O’,h,z,Q-‘-cq(Bp)G,h,z,C

¢y = @%H?’ >

which yields the system (1.68) as:

N
(1.69) Ay = 265(B+Z) K T=12..N,
J=1
O} 0} ... 0y \ (B +Z, A,
or: (P% (P%"'(pl% . Byt 7y = i
Lol e B :I-Z A
q)III (pgI cp%I N "N N

and, hence B, = ((p'lA)J - Z;, where @ is the matrix (p:{f above.
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Claim: ¢ is invertible in a neighborhood of the identity e = (1,0,0,0) = (0,h,z,0).

Indeed, notice that the general element of ¢ is (pjplfl = (e"hahjkeh)pq, and so at the

identity, since h = 0, one has by standard considerations:

A70) @3y Mg = (X DM@ ] ) o = G

where adh[A] = hA - Ah and Vi is the elementary skew symmetric matrix.

Therefore, (1.70) reduces, for 1<j<k and 1<p<q to being: 1 if j=p and k=qand 0

otherwise. Hence:
(1.71) Ppg = ldgn
and, so @ is invertible at the identity. Furthermore, by the continuity of the

determinant map, det¢ # 0 in a neighborhood of the identity, and hence the claim.

Consequently, if (I’I{/I represents the entry in the Jth row and Mth column of (p"l,

one has:

N
= J
(1.72) B, = MZ=1 ol Ay - Z,,

which, for I = (j,k) and M = (11,v), yields:

7 Bonnr = 2 O Achar TE®gn, 0+ LB,

1=u<y wv'h

hf;re the right hand side of (1.73) is §} jk[Ao' hz C]’ since (BP) ohat is equal to

tAc,h,z,Q]' This completes the proof of Proposition 1.10, and hence the

orem 1.2 as well, Q.E.D.
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We end this section by exploring an additional feature of the Cordes criterion for
the operator algebras considered above. In particular, the bijective correspondence:
(1.74) ¥GX = OPS,
can be interpreted as equivalent realizations of a family of subalgebras of L{#)
On one side, membership is determined by a Lie group gx’ which appears in the
Cordes criterion, and on the other side, membership is determined by a Lie algebra
gx which characterizes the symbol class of the resulting pseudodifferential operator
realization. A natural question then arises. Is the Lie algebra gx isomorphic to the
Lie algebra of the Lie group gx’? The answer is yes, and we begin by noting that
the group gt’ is isomorphic to R?"and the groups gs’ and g!’ have semidirect
product structures.

We recall that the groups gs” and g/’ described set theoretically by:

Rt x0m)xR™ and GL®n,R) xR,
where their group laws were induced by (1.2). Explicitly these laws are:
(1.75) (0,0,2,0) A (5,0',2,0") = (0'0, 0'0, 0'0'z+Z!, {+0'(")
and:
(1.76) (8.2.0) A (g.2.8) = (g8 g'z+z, {+gL).

Next we recall the notion of the semidirect product of Lie groups as given in

Varadarajan [V]. See also Taylor [T2]. Let G and H be Lie groups where G acts
‘on H by automorphisms; i.e.,there exists a group homomorphism:
(1.77 o: G — Aut(H) = automorphism group of H.

- Then, the semidirect product H x, G is the set H x G with the group law:

(h, g) Xq (0, g) = (ho(g)h', gg").
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Now, R* x O(n) and GL(n,R) can be made to act by automorphisms on R2n by

defining:

(1.79) o: Rt x O(n) - R™® with  @(0,0)(4,2) = (= L, G0z)
and:

(1.80) o : GL(n,R) » R™ with  ag)(l2) = (g, g2).

These choices of o, give the group law on R™ X, (RY x O(n)) as:

(1.81) (£.z,0,0) « ({',2,0'0) = (§+3;0C', z+60z', o', 00') ,
and on R?" x,, GL(n,R):
(1.82) Cz.g) » £'2.) = (C+g7C, z+gz, gg).

Now define the maps:
(1.83) ¢:es'—> R¥x, R x 0m))
(0,0,2,0) = (L, lgo'lz, -15 o)
and:
(1.84) ¢ :gl'—> R™x, GL(,R)
20 - € g'z g,

which are clearly well defined and bijective. Moreover:
Proposition 1.11: The maps ¢ defined by (1.83) and (1.84) are group
" omomorphisms, and hence one has the group isomorphisms:

1.85) gs'=R¥™x, (RT x Om))

gl’'=R™x, GL(n,R) .
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Proof: One merely computes: :1-

(1.87) o[ (5,0,2,8) A (6,0,2,L) ] = 9[(6'G, o'0, G'0'z+z', {+0'")]

(L+00'C, Elc—,r(o‘o)'l(c'o’z+z'), 613" (0'oy?

({+o0'C), —0 Z+-—r01(0) z, 3?,01(0) ) ' .

but: &
(1.88) 0(0,0,2.0) * ({',2,650) = (¢, 507z, g0 )+ (¢ (02, 5, ) '

C+0’0'1C 50 z+—o (o) z', 3-67,0'1(0) )s |

and, hence ¢ defined by (1.83) is a homomorphism, where in the { component one !

notes that o being orthogonal means that o' = o™, Similarly:

(1.89) olg.z0 A €2.00] = ol(g'e gz+z, {+£'0)]

&+, (2o gz+z), (g'e™h)

i

C+g'C, glz+(@) 1)z, ()™,
1.90) pC.z.0) * 02\g) = & glz, g (€, @) 'z, @)
= +£'C, glz+(@) () 2, @)D,

d 50 ¢ defined by (1.84) is also a homomorphism. Q.E.D.



Remark 1.12: In light of the isomorphisms in the above proposition, one
could have formulated the Cordes criterion for the operator algebras WGS and
YGL in terms of these semidirect structures on the groups gs’ and gi’. More
precisely, one might choose the following unitary subgroups of L{#)}, which have

the aforementioned semidirect product group laws:

(1.91) {U(C,z, 6,0) = T(g)-l eiC'M eiz-D }

and:
(1.92) {UCze) = Tgg ™MD |,

These subgroups are, therefore, isomorphic to the subgroups GS” and GT' of
L(#) in the previous formulation. Consequently, an operator A € L{H) will be
in WGS (respectively WGL ) if and only if conjugation by the unitary
representation (1.91) (respectively (1.92)) yields a smooth map from

R™x, (R¥ x On)) (respectively R?" x, GL(n,R)) into L{#) This equivalent
formulation has the advantage of decoupling some of the transition formulas and

connecting identities of Lemma 1.8 and Proposition 1.10.

Finally, we would like to relate the collections of phase space differential
operators defining the symbol classes S;;éo to the Lie groups gx’.
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Proposition 1.13: The vector subspaces of the Lie algebra X(R?®) of smooth

vector fields on R™ defined by:

(1.93)
{1.94)

where:

and:
(1.95)

where:

gt = Real linear span of {d_ , a& :1<pgsn},
S 2
g5 = Real linear span of {1100, npo, noq, npq} ,
n
%0121 [aja,;j - xjaxj]
np0=axp,1s1;5n; n0q=8§q,ISan;

Mpq = (ﬁpagq - éqaép) + (xpaxq - xqaxp) ,1<p<q<n,

gl = Real linear span of {apo, €0g° epq }

= <np<n: =
£ axp,l_p_dn, EOq agq,ISan

p0

€pq = gpaiq - xqaxp, 1<pg<n,

a) form finite dimensional Lie subalgebras of X(R*™) with respect to the

standard commutator bracket, and

b) are isomorphic to the Lie algebras of the Lie groups:

(1.93%)
(1.94%

(1.95%

R2n
R™ %, R x O(m))
R™ x, GL(n,R)) .
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Proof: gt is clearly a 2n-dimensional abelian Lie algebra, and hence isomorphic
to the Lie algebra of R?", The vector subspaces gs and gf will be Lie subalgebras

of X(RZ”) if they are closed under the commutator bracket, and so, it suffices to

derive the structure constants with respect to the bases {1 s q} and { g, q} . For gs,

|
one finds that the only nontrivial commutators of the basis elements are: I
| |

3

[leo’ Tlpq] = 3jpﬂq0 - qunpo [nOk’ Tlpq] = kanoq - kqnop i

and: (M Mg = B * BjaMigy + BiepMjq * SigMpy
While, for 4f one has the nontrivial commutators:

and: [ Epg! = Bp®iq - B

Since the commutators of the basis elements are linear combinations of the basis

elements, the bracket is closed on these subspaces, which completes part a. We
remark that the commutator identities for [njk, n p q] and [ejk, qu'] are precisely those
of skew-symmetric matrices and general matrices respectively, with respect to the
standard bases Toq and €0 for those matrix Lie algebras, where €0 is the gfn,R)
- matrix with a one in its pth row and qth column, and Yoq is the skew symmetric
matrix e oe _-¢€_ .
qual t ©
Next, we want to derive the structure constants for the Lie algebras of the

semidirect product groups R™ Xot (RJr x O(n)) and R™ %o, GL(n,R)) with respect

‘to the bases inherited from the standard bases of the Lie algebras of the factors.



We recall (cf. [V]) that if K = H X G is the semidirect product of H and G

relative to o, and if 4 and 4 are the Lie algebras of Hand G, then the Lie algebra £
of K is isomorphic to the semidirect product of the Lie algebras kand gwith respect
to B, where [ is derived from o in a prescribed way.

The standard construction is as follows. From the given homomorphism:

(1.98) o : G — Aut(H),

one defines the antomorphism o, € Aut(H) as the image of g under o
(1.99) Otg:H—>H,

whose differential as an antomorphism on £ is denoted:

(1.100) docg:ﬁ—a k,

which in tum defines the homomorphism:

(1.101) 1:G — Aut(h) with 1(g) = dong.

The differential of 1 yields the desired § as:

(1.102) B : g — End(#) = Lie algebra of endomorphisms of A

In fact, because 7 is a homomorphism, the image of B actually lies in Der(#) which

is the Lie algebra of derivations on 4 Given such a map 3 from one Lie algebra

into the derivations of another, one defines the semidirect product of hand grelative

to B, which is denoted by ﬁxﬁ g to be the set fix gwith the Lie algebra bracket:

(1.103) [(XY), (X,Y)] = ([XX]+BOYX' - BYHX, [Y, Y1),
forall X, X'e £ and Y, Y' € 4, where the brackets on the right are the brackets

in £ and g respectively. Finally, the Lie algebra isomorphism between ﬁ.x[3 g and

k is provided by the map:
- (1.104) (p:ﬁng -k,

where: oX,Y)=X+Y forallXe £, Y e g4
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Now, let:

(1.135) {X 0 X0t 1 £jk <n ) be the standard basis of the Lie algebra £ of left

invariant vector fields on H = R?;, where, by choosing coordinates (£,z) on R?" ,
g

the canonical isomorphisms £ = TGH(Rzn) =R% allow us to identify:

Kok © aCkl ey

e = ()™ basis vector in R?®

_ :yth : . 2n
on < azjl - ey = (n+j)™ basis vector in R*%,

(1.106) { qu : 1<p,q<n} be the standard basis for the Lie algebra g of

2
G = GL(n,R)); where, by thinking of G as an open subset of R™ with coordinates J
By hear the identity I, the canonical isomorphisms 4= TG = gfn,R), allow us to ‘
identify: : ‘

o wnth . .
Yp q € agpq, I “ €hq = P4 standard basis vector in gfn,R),

and: 5
(1.107) { Zyob qu ' 1<p<qg<n) be the standard basis for the Lie algebra g'of !
G =R x O(n); where, by choosing coordinates (o,h) near the identity e = (6,h) =

(1,0), the canonical isomorphisms g= T,G' = R X o(n) allow us to identify: _ f
|
I

ZO0 o BU' . < (1,00 qu © ahp , “~ (O,ypq),

d

with 'yp q the standard basis of «(n) = skew-symmetric matrices.




By computing the structure constants of the semidirect product Lie algebras with

respect to these bases, we find that part b of the proposition follows from the

following lemma.

Lemma 1.14: Relative to the bases of 4, g, and g'given by (1.105) -
(1.107), the map J defined by (1.102) satisfies:

(1.108) B(qu)X0k = 'akpXOq for 1<p,g<n and 1<k<n,
(1.109) B(qu)XjO = quXpo for 1<pq<n and 1<j<n,
when G = GL(n,R), and when G'= RT x O(n):

(1.110) B(ZOO)XOk = 'X{)k for 1<k<n,

(1.111) BZyX = X for 1 <j<n,

(1.112) B(qu)XOk = SquOP-kaXOq for 1<pg<n, 1<k<n

(1.113) B(qu)XjO = quXpO" ijqu for I<pg<n, 1<j<n.

The proposition follows from the lemma by defining the maps:
(L.114) D:iglo k= ﬁxﬁg

:-"(1.115) D:igs— k= ﬁxﬁg'
by linearly extending the identifications of the bases:
1116) Ple) =Xj Bleg) =X and  Be,) =Y,

P(Mye) =Xjp, PMg) =Xy BN =Z,y and ) =Z,,

re these vector space isomorphisms are also bracket homomorphisms, and
nce Lie algebra isomorphisms. Indeed, the structure constants of £ and £ are

ily computed in terms of B.
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G = GL(n,R) case: Choosing bases for £ and g as in (1.105) and (1.106) also
provides the choice of basis for £ = FLXB gin light of the canonical isomorphism ¢
of (1.104). Now, since £ = R?", this factor is abelian and yields the trivial
commutators:

(1.118) [X.X] = o[ (X,0), X'0) ] = o([X.XT] + B(0)0 - BO)X, [0,0] )
= ¢(0,0) =0,

which correspond to the abelian subalgebra, span{ajo, € 1> of gL The nontrivial

commoutators are.

(1.119) Xjor Ypgl =0l Xjp.0, (0,Y )1 =

P([X;0.00 + PO - BOY )Xo, [0Y 1)
‘P(“ B(qu)XjO’ 0)

= -B(YPQ)X_]O’

L1200 X, Yool =0 Xy 0), 0Y, )] =
= -B(qu)XOk’

gnd:

(L2 ¥ Yol =00 0Y,), 0¥, 1) = 9(0, [¥, ¥, 1)
= i Ypql

where (1.119) - (1.121) yield the same structure constants as those in the nontrivial
mmutators of g/ given in (1.97); the first two depend on the lemma, and the last

Ing already noted in the remark followin g (1.97).
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G' = R* x O(n) case: One again has trivial commutators within the £ factor,

corresponding to the abelian subalgebra, span{'njo, Mgk )» of gs. In addition, there

are the trivial commutators:

(1122) [ZOO’ 2'00] = [ZOO’ qu] = (),

coming from the one dimensional subalgebra, span{Z,,}, as well as the presence
of the abelian multiplicative subgroup R* within G'. The nontrivial commutators

then correspond exactly to those in gs , provided that B acts as claimed in the

lemma., Q.E.D.

Proof of Lemma 1.14:
G = GL(n,R) case: The map Oy of (1.99) is given in this case by:

(1.123) a Gz = (€'Ce2),

and so the map:

(1.124) 7:G — Autfh)

may be identified with:

(1.125) g — (g(; 0 ) e Aut(h),

where this matrix represents the automorphism on £ with respect to the basis

(X on} previously defined for 4 To compute B(Y D q)XOk and [S(Y:p q)XjO , We

_ need to compute:

(1.126) B =drt:g—> Der{#)c End(#),

the vector space V = End{#), where we choose the basis of V:
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{VEE:ISOL,BSn,lSu,VSn ),

relative to the basis on £, i.e.:
(L127) Vil Kgp) = 8y X, +8,X o and Viw (50 = 83X+ 8, %0

This basis for V gives:
(1.128) g = D (g9,VE+ D (g) VO
1<apsn OB

1<ven BV OBV

where (g")OIB =g a'fi is the entry in row o and column f of g™,

Next, the tangent space to I' at the identity automorphism in I" is identified with
the tangent space to the vector space V at the identity endomorphism, which is, in

turn, identified with the vector space V itself. With these identifications, one finds

that;

(1.129) d’t(qu) = dt(d )

£d T

= 2 [0, | EpIvE+ X o

/00
1<a, B<n 1<pven gpql I (g”")] i

= X 8,8, IVl + 3 (5,8 IV

1<q,p<n 1spven PH QYT B
= o
= - Vgg + qu,
and, thus:
- 00 =
B(qu)(XOk) =" VSE(XOI() +qu(X0k) - _SkpXOq
‘and;

BYpIXjp) = - VE(Xi) + VoeXjp) = 8, X

Sj p0 85 claimed.
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G' = R* x O(n) case:

Here the map T, whose differential we need to compute, is given by:

(1.130) (o.h) =

! h
€ O te Autg)

where we have chosen coordinates (o,h) near the identity e = (6,0) = (1,0), with h

a skew-symmetric matrix. By the same reasoning as above, one has:

(1.131) woh) = (,l,e) Ve + Y (oehy v

1<a,psn 1iL,v<n wv Ry

and hence:
(1.132) duZyy) = d'tc(a

|
5
!
g
!
!

q¢

1h h
- ISa;BSn[ac} E(Ge )().'-B]Vgg + Z [ao-l (Ge ) v]_VOO

- Z [8gIVel + X [8,1v0

l=p,v<n

and:
(1.133) du(Zyy) = dr @, 1)

1
_ . .
B ISu.BSn[ahpql e(oe “B]VaB * 2 [ahpql Lo¢ )H\,]V

1<p,v<n HY

2, [8,,8,5-8,58,, IV + 2[5

Voo
ISO:,BSII p 1(}1 vE<n pl‘l' qv qul 1

_ 00 00

= (VB3 - Vi) + (VR - VO
i
|



Thus:
(1.134)

(1.135)

(1.136)

and:
(1.137)

as desired.

BZop Xy _a,BSn["SaB]Vgg(XOk)

= IEO%SD['BGB]SkBXOa == Xok >
B(Zgp X, Z 18,1V,

- 1%@[8 Ko = Xig
BOVp )X = (VB - VB Kp) = 8 Xop- 3 Xoq»
BYp )X = (Vo - VeI = 8, X - 8,.X 0.

Q.E.D.
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2. Freéchet Space Topologies and the Nash-Moser Category.

Having recalled Cordes characterization of the pseudodifferential operator

algebras OPSE’O, we want to proceed towards establishing this correspondence as
one between Fréchet spaces in the Nash-Moser category. In this section, we define
the two natural Fréchet space topologies on OPS‘;;0 =YGS |, a symbol topology

which comes from the pseudodifferential realization OPS;;O , and an operator

topology which comes from its characterization as ¥GS by the Cordes criterion.
Then we show, (as in [C3], Proposition 4.5), that these topologies make the
identification maps of Theorem 1.2 continuous. In fact, more is true; these maps
are tame maps between graded Fréchet spaces (Proposition 2.10), which
combined with the claim that WGS is a tame Fréchet space (Proposition 4.1),
yields this topological isomorphism as one between tame Fréchet spaces. We
remark that while we concentrate on the particular algebra OPS‘:S'O, the largest
algebra which retains locally classical symbols, all of the results stated here will
also hold for any pseudodifferential operator algebra which has such a
characterization. We begin by recalling some of the basic definitions and properties
of objects in the Nash-Moser category of tame Fréchet spaces and smooth tame

maps (cf. Hamilton [H] , Goodman/Yang [G/Y], and Sergeraert [Sr1}-[Sr3]).




Definition 2.1: A rame Fréchet space is a graded Fréchet space (F,| e [k),

i.e., a Fréchet space F with an increasing sequence of seminorms,

e IO <l Il <l 2 S ..., which supports a family of smoothing operators S

satisfying, for0=1:
2.1) Sg: F—=>F

2.2) Isguly < ¢ 64luly  ViskVue 7
(2.3) lu-84l; < q8*luly ViskVue

(2.4) lu-8ylx >0 as8 50 Vk20,Vue 7.

We remark that this definition, emphasizing the existence of the smoothin g
operators, is in the spirit of [G/Y] as opposed to the treatment in [H], where the
tameness is stated in terms of a tame linear isomorphism from ¥ to 2.(B)= the
space of exponentially decreasing sequences of some Banach space ‘B. These
notions are equivalent for spaces of smooth maps, and for our purposes the
smoothing operator characterization is useful. In what follows, we will adopt the
terminology of Schwartz [Sw] in calling (2.2) - (2.4) "efficiency estimates”. Also,

we note that there is no need to have ones sequence of seminorms begin with index

0, in fact, if (F , Ik :k=20)isa tamé Fréchet space, then so is (F, ]« ’k+r 1 k=0).
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Definition 2.2: (Hamilton [H]) Let®: U g # — § be a map defined on an
open subset U of a graded Fréchet space (F, |« | ) with values in the graded

Fréchet space (G, o] Ik), then one says that @ satisfies a tame estimate of degree r
and base bon U if Vk2b 3 C_and rsuch that:

(2.5) Hem i s C (1 +1 £ ) forallfe U.
One then says that @ is a tame map if it is defined on an open subset of F and is

continuous and satisfies a tame estimate on a neighborhood of each point.

Remark 2.3: In general, one allows the degree and the base to vary from

neighborhood to neighborhood, but often they may be chosen uniformly. The

constants C, , however, almost always depend on fixing a neighborhood, which is

often described by bounding f in a lower order seminorm.

Remark 2.4: If ® is linear, or more generally, if ®(0) =0, then the estimate

(2.5) may be replaced by:
(2.6) Howlly < Ck“fllk.,.r.

In addition, if @ is linear, then the tameness estimates of course imply continuity,
but for nonlinear @, continuity does not automatically follow from tameness

estimates.

Definition 2.5: Amap ®:Ug F-— G between graded Fréchet spaces is said
0 be smooth tame if © and all of its tangent maps satisfy tame estimates on the
:'r:elevant Cartesian product (U< F)x F x ... x F-> G, where the derivatives

are taken in the sense of Gateaux (cf, [H], Definition, 1.3.1.1).
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Remark 2.6: In practice, the verification of @ being smooth tame is often
reduced just to the tameness of @ by making use of the general result that the
composition of tame maps are tame (cf. [H], Theorem. I1.2.1.6) and by examining
the form of the derivatives on the space (U c F ) X Fx .. x ¥F, where one knows
that the Cartesian product of tame Fréchet spaces is a tame Fréchet space with
respect to the standard topology built on products. So, for example, a bilinear map
G F x F— G satisfies a tame estimate of degree r and base b in both factors if:
(2.7) Howw Iy < qllulgy + Ivih) Vb,

where C, depends only on k and seminorms of order < k+r.

We are now ready to define Fréchet space topologies on OPS}J;O =¥(GS.

Definition 2.7: (Symbol topology)

On S0 = {a(x,) € C™(R™) : I‘Inp @€ L"®R™  VN=0,12,.},
j=1 Fi%

one defines the seminorms:

(2.8) pk[a] = sup I anjqja HLoo (R2) >

_ where we recall that the symbol 1'[ [, stands for an arbitrary N-fold product of  \
‘]-

;'f_the phase space differential operators My of (1.16), with the adopted conventions

a = a to contain the boundedness of a, and 1o
anjqJ © Jnlnquj Tonan Moy

address the lack of commutivity.
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Then, in light of the characterization OPS;_;0 = W(GS as a subset of
C™( gs', L{*H)), one may also endow these operator spaces with a sensible

topology.

Definition 2.8: (Operator topology)
For A e ¥GS = OPS‘:_;O, define the seminorms:;

_ max || a0
(2.9) NelAl = @il 10% A, 0 1112 op
where by 6* one means the derivative with respect o 6,h,z,{, of length . /

Remark 2.9: One should notice that the operator topology defined by (2.9) is
generated by information about the conjugated operator near the identity in gs’. This
makes sense because the transition formulas of Lemma 1.8 relate the derivatives at
an arbitrary point in gs' to those at the identity, and hence, on any compact

neighborhood K of e:

(2.10) P X 0% A h ol e i20p S G N(A) .

This says that the seminorms in (2.9) give the topology of uniform 1.2 -operator

norm convergence on compact subsets for A

ahzl and its derivatives. Both

families of seminorms induce Fréchet space topologies on OPS}’_;O =YGS, in fact,

the topologies are tamely equivalent, which is the content of the followin Iy

. proposition.
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Proposition 2.10:  Endow s;’;“ with its symbol topology (2.8) and OPS;’;U

with its operator topology (2.9), then the maps :

(2.11) c: ops;f’ - s;’f given by o(a(x,D)) = a(x,f)
and

(2.12) Op: s;;" - opsgf given by Op(a(x,£)) = a(x,D)
are tame.

Remark 2.11: The maps, being linear and tame, will be continuous in

accordance with Remark 2.4, and so OPSﬁ;O =WGS are isomorphic as Fréchet

spaces. In addition, equipping 0PS§_;O =WGS with either the symbol topology or

the operator topology yields tamely equivalent gradings. Finally, since these maps
are linear, their tangent maps will also be tame, provided that the product map is a

tame bilinear map on OPS};D X OPSE;O, which will be shown in section 4. Hence,

the maps will be smooth tame.

Proof: (of Proposition 2.10)
o is tame:  One has:

sU il
(2.13) ploA)] = B2 1| IIlnquja(x,E,,) ||L°°(R2”)
=

N
Now put b(x,£) =I] q.a(x,f*;) and make use of the following estimate, which
=1 Pi%

P

results from the trace formula (1.21).
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Lemma 2.12: Let b(x,£) ¢ CB(R?™) = {smooth functions on RZ" with
bounded derivatives of all orders}. Then:

- ®
(2.14) b llmgany < € MZQH 168Dy 112,
Proof: (of Lemma 2.12)

For B = b(x,D), one recovers the symbol b(x,£) by way of the trace formula

(1.21)
(2.15) bzl = @n™u(Q'PE,3.B, ]
where:
(2. 16) Bz g = ciZ'Dc*iC.'MBeiC'Mc—iZ'D
and:
2.17) P, = 11 @, + D@y, + 1)
=1 % ]
and:
(2.18) Q’f = the reflected adjoint of Q, a fundamental solution for P(az,ac).
Then, one estimates:
(2.19) 6@ 1=l ery™2ulQ*P@,0,)8B, 1 |

<o ™11 Q* 1411 P@,0B, M2

vhere || o | Itr is the trace class norm, Q’f is of trace class, and P(BZ,BC)BZ ¢

belongs to L{#], as per Cordes [C1]. Now:
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- ®
(2.20) P(az,BC)BZ,C = WX&% CBV(B M2

follows by a simple calculation based on:

azj[Bz,Ql z[(aij)(x’D)]z,Q and aCjIBZ,C] = [(agjb)(X,D)]Z,c-

Hence:

@2 vl < en™ 1 Q* e

izDg -i{'M . (B) 1CM -iz’D
lﬂ“%‘,gnﬂcﬂye biyxD) e 2 op’

but 652D and e¥EM gre unitary, so:

(2.22) bz, | < (27:)'“’2HQ’fHu Z Gy AoBeD)y 2.,

and hence the bound on || b | f e, completing the lemma. Q.E.D.

Applying (2.14) to (2.13), with b = Hn a, wherebe CB°°(R2") because

j=1 Pi4j
ae OPSEf“, one finds:
(2.23) Plo < 3B Cy Z NoGepy 12
Sup Yﬂ Bl ﬁn

1
N<k CNlﬁlwzfsz Mg MpgMgp 1 H'ﬂ g D) ;2 op’




and now, by Lemma 1.8, since each (1 . qa)(x,D) is some first derivative of Ao‘,h,zC

evaluated at the identity, (2.23) becomes:

2.24) ploa)] < WP o XlloeBa o, e,

where the sum rums over | |=NandiB1{,/v|<2n, and @ represents

differentiation with respect to G,h,z, and {. Therefore, for A € ¥GS:

(2.25) Plo(A)] < C NiyanlAl,

which is to say that the symbol map is tame of degree < 4n and base 0.

Before proceeding to the tameness of the operator map, we want to remark
that the degree of the symbol map in (2.25) is not claimed to be sharp. In fact, as
Cordes remarks in [C1], since the formula (1.21) involves a choice of the
differential operator P, which has degree 2n in both variables z and {, a different

choice of a lower degree operator may produce an equivalent trace formula that uses

fewer derivatives. At any rate, the symbol map is tame,

Op is tame: For a(x,£) € s;f and A = a(x,D):

- (2.26) - NdOp@1 = mEx{a%A L oy, Iz

= HH(n a)(xD)H

l ot kk 1.2 -op’
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in accordance with Lemma 1.8. Now, one invokes the form of the Calderon-
Vaillancourt theorem given in (1.37), which bounds the 1% operator norm of a
pseudedifferential operator in Op(CB*(R™)) by L™ norms of up to (n+2)/2

derivatives of its symbol, to give:

o
®
@.27) NIOK@) < B Co & 11 Ty 9 -y

where the sum runs over | B land | y1< (n+2)/2. Now, each derivative oY and BE’ is

itself a product of npq's , and so,if one puts p =0t + B+ ¥;

Iy
(2.28) Ni[Op@)] < C, |utﬁuﬁ+2llnl(n'quja)(x’g)”L"“(Rzn)
i
< GPpinsalel:

Hence, the map Op is tame of degree < n + 2 and base 0, and the proposition is

finished. Q.ED.
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3. General Smooth Tame Structures: Spaces of Smooth Maps.

In this section, we wish to provide general results which will form the basis of
our demonstration that certain global classes of 0-order pseudodifferential operators
have smooth tame structures. The important point here is that the characterization of
the operator topology for algebras like OP8;;0 in terms of Fréchet spaces of
smooth maps from a Lie group into a C*-algebra yields the tameness of products
and inverses, when the latter exist, as an application of the Leibniz formula,
provided one can "interpolate” in the operator seminorms:

(3.1) NJ[A] = Dax|| aa(AG,h,z,C)l ol ILz_Op.

By interpolation, we mean the type of estimates interrelating the seminorms on a
tame Fréchet space. Consequently, one wants to investi gate the tame Fréchet space
structure of spaces like C™(gs’, £ (L2(R“) ). In particular, since the operator
topology on OPS!?;O is defined using only a neighborhood of the identity in gs’, one
only needs to consider spaces of smooth maps whose domains are fixed coordinate
balls containing the identity e of a real Lie group G, where this neighborhood is
_any convenient preimage of a true ball in R® under a local diffeomorphism about

‘e € G. This fact greatly simplifies the needed work.
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In this context, we seek to justify the interpolation properties of the OPS;S'G

seminorms by showing that the space C™(M, B) of smooth maps from M, a
compact coordinate ball containing the identity e of a real Lie group G into a Banach
space B is a tame Fréchet space with respect to a grading by CX norms, in the
sense of Definition 2.1. The needed smoothing operators will be first constructed
on R™ as maps on the spaces C*(Q, B), where Qs an open region with compact
closure and smooth boundary. For the special case of Q being a ball, these
smoothing operators are then easily transferred to M by a fixed coordinate chart
valid in a neighborhood of M. This would be sufficient for providing the tameness
of products and inverses, but we include for future use a more general treatment;
namely, if B is a Banach algebra, then C*(M, B ) becomes a smooth tame Fréchet
algebra , which is to say that the pointwise product map:

C:C™M, B)xC™M, B)
is smooth tame (Proposition 3.13). Also, if B isa C*-algebra, then C™(M, B)
forms a smooth tame Fréchet *-algebra, which is to say that the involution * on B

gives rise to a smooth tame map from C™°(M, B) into itself (Proposition 3.14).

Finally, if [C™(M, B )]« denotes the subgroup of invertible elements in the smooth
tame Fréchet algebra C™(M, B), then [C™(M, B )]y forms a smooth tame Lie

- group, which is to say that, in addition, the inversion map is smooth tame

- (Proposition 3.17).

We begin by working in Q, an open subset of R" with compact closure,

where additional conditions on Q will be imposed later.
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Definition 3.1: For (‘B,||« ||5) a Banach space, let ;

(3.2) Col,B)={u:Q—>B|u possesses derivatives of all orders,

and supp(u) = K < £, for some compact X}.

To say that Bx_u(x) exists is to say: i
| )
(3.3) gl_?o [ e'IVjaeu(x) - axju(}:) Hg=0, )

where VJ. ¢ 1s the relevant difference quotient. Also define: l

(3.4) C™(, B) = {u:$0 — B uissmooth in a neighborhood of Q, !

with continuous derivatives on Q }.

We consider the following seminorms on these spaces:

(3.5) Hullgy = ™% S9P)1ayu00) Il,,.

These seminorms generate a Fréchet space topology on C™(Q, B) and are bounded

linear functionals on CJ(Q2, B), which is not itself a Fréchet space.

Now, for smooth a function u € C(€2, B), one convolutes u with a suitably

chosen mollifier. Following Nash [N1], (also cf. Goodman/Y ang [G/Y] and
Schwartz [Sw]), for any 8 > 0, one can find a §(&) € C(R) such that:

(3.6) t(3)
(3.7) ®&)
(3.8) ®(£) is monotone decreasing on 8 <|§ [< 26.

(2m)™/2 VIE (<8,
0 V1]E[=28, and
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Now define:

(3.9) o) = [ ™5 () gt for At = (2m)™2d¢,

and it is straightforward to check:

Lemma 3.2: ¢(x) defined by (3.9) is such that:
i) o(x) e A(R™), the Schwartz space of rapidly decreasing functions,
i) Jodx =1
i) x%x)dx=0 Vo> 0.

Proof: Since § € CIR™ < B(RM), and the Fourier transform is an

isomorphism on &(R™), i) follows, which is to say:

(3.10) Vo, B ICpsuchthat  |xPalfac) [<Cyp,
or;
3.11) VN, a3 Cysuchthat  13fex) 1< Cy  (1+1x YN,
Since:
(3.12) Jowax = @r™2 fomydx = @r)24(0),
the condition (3.6) yields ii). Similarly:
(3.13) Fmydx = @™ KPoedx = @m™2 (%) 0)

= 20" D)),

_which is zero by (3.5), unless | o |= 0, and hence iii). Q.E.D.
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Now, one defines:
(3.14) Pg(x) =08" p(6x), for®2>1,
and by a change of variables z = 6x, one sees that Pg 1s also a Schwartz function

with integral one. Then:

Definition 3.3: Forue C3(£}, B), the operator Sy determined by Py is given
(3.15) Sgu(x) = (@eru)(x) = Jo,-yuly)dy

where one can think of the integral as being taken over R" after extending u to be

zero outside of .

One needs to verify that these operators are well defined linear maps from

| Co(Q, B)into C(0, ‘B) and possess the necessary “efficiency estimates”

basis of true smoothing operators. We begin with an important lemma.

emma 3.4: For each 6 2 1, the operator Sg, defined by (3.15), is well defined

2 linear map: CJ(Q, B) — C(Q, B), and satisfies for all multi-indices o, P

6) Bg(Seu) = 8}? Pgru = %*aj}u = af‘%e*aﬁu.
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Proof: For each x € R”, the integral in (3.15) makes sense and produces an

element S gU(x) € B, because after extending u to be zero outside of €, the integral

agrees with the integral over K = supp(u), and, as such, is the integral of a
continuous map from a compact measure space into a Banach space. Therefore, the

ntegral is well defined, and, in fact, one has (cf, Rudin [R], Theorem 3.29):

G118 Il < llogyu) Il dy,

but this is:

= (,5;,])% k| P9 | ;’gﬁ @) 5 vol(K) <eo,

for each x € Q, where the bound is uniform in x, Therefore, Seu(x) is a function
on Q with uniformly bounded values in B, and it is clear that Sg is a linear operator
by the linearity of the integral. The question that remains is whether Seu(x) isa

smooth function for x in a neighborhood of Q with derivatives continuous on Q.

Claim 1:  Sju(x) is a continuous map from & into B .

Proof of claim 1: Pick any xg € Q. and given £ > 0, one needs a & > 0 such
that;

(3.18) Ix-x0l<8 = [ISqux) - Squixp)ll,<e.

One has,

(3.19) 11Squ(x) - Sytxp) Il = Il ] (Pe(x-y) - @glxo-yDuly)dy |,
K

< vol(®) o B 11uy) 15 SR | (9gGx-y) - pglxg-y)) |




< vol(B) llu [l 0(9g,8),

where w(£,8) =, ESE,}?CSI f(z) - f(w) | is the modulus of continuity, and ! x - xg < 6.

Since @y is uniformly continuous on K, m((pe,ﬁ) can be made less than

e/(vol(K) 11 u {1 , for & small enough; whence the claim. Next, one examines first

|
derivatives. ;
\

Claim 2: Sgu(x)isa differentiable function and: |
(3.20) 3, [Squeol = Oy (@H0)X) = (9g+0, W(X)- |
Proof of claim 2: By examining the limit of the difference quotient when a

forced onto @y, one finds:

G2 3, (St = L] {@ytxreey) - 9pey) Juddy

E—-)O E

= I 8Xj[¢9(x-y)]u(y)dy )

where the last identity is in the appropriate sense; namely, that the difference in the

last two expressions converges to 0 in the B norm. Indeed, as in (3.19):

(3.22) H—I[%(x%e -¥) - Pg(x-y) Ju(y)dy - [a, [(PG(X-y)]u(y)dyll

e—0

< vol(K)ilully, ¢ e ;gﬁl {*-q)e(x+£e -y) + Qy(x-y)} - @ [(pe(x -1 |,
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but this limit is zero as the convergence of the difference quotient for the smooth

function ¢y is uniform on the compact set K for each x e & Also notice that:
(3.23) %900 = 3, [87%9(Bx)] = 6763, 0)(6) = 0D, P)y(0).
As aresult, one knows that Seu(x) is differentiable, and by examining the limit:

620 L Joumfuccreey) - uty)dy - Joswa taeeyiay i

< Uolis % ) Hluteeeey) - utx-y) - 3, [uGe-y) Il

where o € A(R™ LI(R“), the above limit is zero since u is a smooth function
with compact support, and, as such, the difference quotient converges uniformly on
the support of u.

Now, the limit in (3.24) is an expression for axj[Seu(x)] - ((pe*axju)(x) and
hence the identity (3.20), which completes the claim. To finish the lemma, one just
iterates the above arguments, by pushing the derivatives onto u or ¢ as needed,

where we remark that the content of (3.16) is:
(3.25) [02,S,] = 0. QE.D.

Next, we address the necessary "efficiency estimates” that characterize the

operators' smoothing properties.




Lemma 3.5: fue CJ(Q, B), then, V pairs (k,j) with j <k, 3 constants Cp

independent of u, such that:
(3.26) 1Sgully, < C8%llully,

Proof: First, one may notice that the estimates for j=0 imply those for j#0in
light of (3.25). However, it is not difficult to produce the estimate in one stroke by

exploiting the last identity in (3.16). Indeed:

(3.27) l1Squllg, = M2 SUp | 3% Broafull,,.,

where we have split off some derivative BE of order | B |=j. By (3.23), this is:

= max sup | fgorBlanBey o vioBuyayll,

< gkd e SUP {vol(Q) oy @ Poygxy) Nl Hu) Iy}

where we have used that 8 2 1 and u has compact support within Q. Now, since

{B1=j, £ iscompact, and p is smooth, one obtains (3.27) with:

(3.28) Gy = vol@) WX SUP| 2Py (x-y) | <o QED.
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Lemma 3.6: Ifue Cg(Q, B), then, ¥ pairs (k,j) with j <k, 3 constants Coo

independent of u, such that:
(3.29) llu-Sgully, < C O llullg, .

Proof: One may break the argument into three cases. First, one notices that the
j=k=0 case follows from Lemma 3.5 by the triangle inequality. Then one estimates
the case j=0 and k 2 1 by exploiting the identities ii) and iii) from Lemma 3.2 by
way of an appropriate finite order Taylor expansion with u - Squ appearing as its
remainder term. This remainder is then estimated. Finally, by making use of the

property (3.25), one generates the estimates for 0 < j <k from the j=0 estimates.

j=k=0 case: llu-Sgully, <llully, + HSqullg,,

< ”u”Q;O +CO”uI|ﬂ;0 < C()Huilﬂ;ﬂ’

where CO comes from Lemma 3.5.

J=0,k = 1 case: Here, one makes use of the finite Taylor expansion with

integral remainder of a smooth function f : [0, 1] — B, which states:
1
i)
(3.30) f(1) = if-(’-—-,@ + 2 N (0¥ Dggs |
=0 J! Ntg

where fﬁ)(O) = [(-gz)jf] (0) . To apply this to the present situation, one defines;

(3.31) f(t) = ux-101z)  forte [0, 1],




which is smooth in t as a map from [0, 1] into B, given thatu e CZ(Q, B). Then,

one notices that, under a change of variables z = 6(x-y), the expression for Squ(x)

becomes: .

(332 S = Jpyyutdy = Jo@ceyuenay
_ ] P@u(x-0"1z)dz.

Hence, for f(t) defined by (3.31), one has:

(3.33) Sgu(x) = J(p(z)f(l)dz.

Now, applying the expansion (3.30) with N = k-1 2 0, one finds, by making use
of the chain rule, that:

(3.34) 00) = 2 @612 = (0] X, 22w,
lo k) | oL k=j
and:
(3.35) 0) = OF X 22@%)x-s62),
o Bk

and hence:

_1 ¥
(3.36) Squ(x) = ,[(p(z) [&LQ,L 2, 22w +

=0 ¥ lakj

1
o
(Ifn; i zl;lk f(l'S)k'IZa(ag u)(x-s6"1z)ds ]dz.
1o
0
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Now, making use of the fact that jza(p(z)dz is Qif| o[>0 and is 1if| o |= 0, one
sees that the difference Sgu(x) - u(x) is the remainder term in the expansion (3.36).
One wants to estimate the 0- norm of this difference, which is the supremum over

x € Q, in terms of the k- norm of u. One finds:
(3.37) ilu-Bgully, <

G‘j_’; hkiggf [l %) | J"u -5 <11 (3%u)(x-s6"12) I, ds)dz .

Then, examination of the inner integral reveals:

1
(338) ﬁl s 111 @Y wx-s0712) [l 5 ds < € T @%u)x-5072) |1,
0
1

where C, -—-Djl 1-stElds < oo ask 2 1. Furthermore, z%p(z) ¢ &(R™ < LI(RY

for all ., and so;

Xk sup sup max SRR |
(3.39) llu- Seullm) C, 6 Ial=k axeﬁzeR“ E[Ol]ll(axu)(xsﬂ z) I

where C, = C, Elﬁr and C_ =112%(z) || 1. Finally, since u is smooth and has

compact support, the expression within the sum of (3.39) is bounded by
C, ! a;j‘u {50 and hence, one has:
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(3.40) Hu-Squllny < Cre*itully, .

where G/ = Ck is independent of u € C3(Q, B), which completes this

lokk Co

case.

J 2 1, k 2 1 case: Here, one just translates the previous estimates via:

(3.41) Hu-Squlln; = 0 Geg Hox@-Squ iy,

which, by (3.25), is

_ max sup o o _ max |50 o
ok ned 10, u - 840 0) I 5= lsj||3xu Se(axu)llﬂ;o

max ik ot
< PGy OISl

by using the j=0 estimates on Bfu € CL(2, B). Then, the continuity of 8}? on the

ck spaces provides:
k-j k-j
loHSJCka lollg, < C.© |Iul|Qk,

where C,_is independent of u. This completes the Lemma. Q.E.D.

Lemma 3.7: Ifue C(Q, B), then, V k > 0, one has:

(3.42) em_mllu Sgu llgy = 0.




Proof: Again, it suffices to know the result for k = 0, since by (3.25),

(3.43) o llu-Sqully, = Jm max ja, Sgullg. o -
and, forue CL(Q, B), E))?u is also. For the k =0 case:
(3.44) lfu-Sqully, = jzgflu(x)-fcpe(y)u(x-y)dyllg;,

but ¢ has integral one, so: |
| = S92 || gty (uce) - utx-yay 11,

and, by making a change of variables z = By, one finds:

649 il Squllgy = B SP) foe)y e - ux-ol)dz i,

6—y00 xe {2

Now, u e CG(Q, B), so its first order derivatives are uniformly bounded over its

support, and by the Mean Value Theorem:

(3.45) a0 - uex- 2 5 < Hlullg, 151,
Hence:
- Squllgy < Iluily, ™ L] aoe) e

but, zp(z) € LY(R™), and so the above limit is zero. Q.E.D.
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We are now ready to construct the desired smoothing operators on the Fréchet
space C*(Q, B). Consider two open regions Q and Q' with compact closure and
smooth boundaries in R" with @ < Q = Q'c Q. Under these assumptions on Q
and L), we can find a continuous linear extension operator:
(3.47) E:C7E, By - CR(Q', B),
which respects the smoothing procedure in the sense that;
(3.48) HEullg, < Ckliuliﬂ;k.
One such extension is described in Hamilton [H], Corollary 11.1.3.7, where, for Q
compact without boundary, a tubular neighborhood is used to extend functions to
be constant along the fibres, and a smooth bump function is employed to cut off the
support. Then a "doubling of 2" is exploited to treat thé case when (2 has
boundary. However, since we will only need this extension for the special case
when € and Q' are balls, we will make use of a related, but simpler procedure. The
method is taken from Nash's fundamental paper [N1],where he treated compact
manifolds which were analytically embedded in R™, and is carried out via a
regularized distance function. The only modification here is that the maps are
Banach space valued.

Let Q and Q' be concentric balls in R®, and foru e C*(Q, B ), define:
(3.49) Eu(x) = sGurx)) xe

0 x € RM\Q',

(3.50) r(x) = unique point in { nearest to Q'
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(3.51) s = pEEEED) |

where

(3.52) Btye C™(R) with B)=1 fort<1
B(t) monotonically decreases for 1 <t <2
BH)y=0 fortz2,

and:

(3.53) d is the Euclidian distance function,

The constant € is chosen suitably so that the resulting cutoff function s(x) will be a
smooth function with compact support in ', see Nash [N2]. This operator E is
clearly linear and extends u, since if x € Q, r(x) = x and s(x) =1. The importance
of this particular extension is that it preserves the "efficiency” of the smoothing

done above, which is why Nash was considering it. This preservation claim is the

content of the following lemma.

Lemma 3.8: The extension operator E : C™(Q, B) — C3(Q, B) ,defined by

(3.49) - (3.53) satisfies the following continuity estimates with respect to the

seminorms (3.5). For each k= 0 3 constants Ck, independent of u, such that:

(3.54) 1Bullg, s Cllully, .




Proof: The result follows from the Leibniz formula and the chain rule because

s(x) € Cy(Q") and r(x) is a real analytic, and hence smooth, function for x € Q' ,

In addirion, the natural restriction map, R: C*(Q, B) — CH, B), will also

be continuous, with:

(3.55) IRallg, < llullg, .

As a result, one has the smoothing operators Sg :C7(Q, B) - C°(Q, B ), by

forming the composition:

#o_
(3.56) Sy = R Sq - E.

Proposition 3.9: Let Q be a ball in R, Then, the Fréchet space C™(Q2, B)
supplied with its C* grading ||+ || 0 18 @ tame Fréchet space. In particular, the

operators Sg , defined by (3.56), are smoothing operators C™(Q, B ) in the sense

that they satisfy the efficiency estimates (2.2) - (2.4) with respect to the C* gradin g
e HQ;kon C™Q, B).

Proof: The proof is just a combination of Lemmas 3.5-370n Sy efficiency

estimates, together with the continuity estimates (3.54) and (3.55) for the extension

E and the restriction R. For example:

(3.57) lSgullg, = IR« Sy Byully, <11S,(Eu) [

and E just composes u with r and multiplies by s, Q.E.D.
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by the continuity of the restriction map, and by Lemma 3.5:

< G 61[EBull,,.,
and by (3.54)
£q Gk‘jllulfﬁ;j .

which is just the estimate (2.2). The same considerations yield (2.3) and (2.4).

We are now ready to transfer the smoothing operators Sg onC™(2, B)toa

neighborhood of the identity of a real Lie group. We fix a coordinate neighborhood

of the identity e in the following way. Let (V,y) be any convenient coordinate

neighborhood of ¢ where V is an open set with compact closure and Wisa

diffeomorphism:

(3.58) ¥:V—-Q"ccRM,
Inside 2" one can pick concentric balls © and Q' with center y(e ) such that:

(3.59) QcQcQcOQc
(3 60) M=ylQ).

With respect to these fixed coordinate nei ghborhoods, we define the spaces of

ooth maps below,

Q.E.D.
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Definition 3.10: For B a Banach space and M a compact coordinate ball
about the identity ¢ in a Lie group G, place:

(3.61) C°M, B) = {£:M — B | fis the restriction to M of 2 smooth
map from a neighborhood of M into B },

where since we have selected M to lie entirely within a single coordinate patch

(V,y), the smoothness may be checked by the single condition that the map:
W e Co(yw(V), B),
where:
W () =y,
and the smoothness of this map on Y(V) < R" is as in definition 3.1.
This space C™(M, B) may then be identified by way of the fixed
diffeomorphism vy with the space C(Q, B)for Q = y(M), and becomes a Fréchet

space with respect to the following seminorms:

(3.62) NI =GB bl ATy y*ar 11,
Notice that:
(3.63) NI = el for &= yow,

and, hence the identification by V is a Fréchet space isomorphism. Consequently,

the transferral of the smoothing operators to Sg on C*(Q, B) to ones on C™M, B)

| 18 a triviality.,
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Define:

(3.64) S9 :C°(M, B) - C~M, B)
by:

(3.65) So = (W)*+ Sk (yhx,

Proposition 3.11: For B a Banach space and M a compact coordinate ball

about the identity in a real Lie group, the space C”(M, ‘B) forms a tame Fréchet

space. In particular, the operators Sq defined in (3.65) satisfy the efficiency

estimates with respect to the C¥ grading by the seminorms of (3.62) on C*(M, B).

Proof: This follows directly from smoothin g properties in R" in light of the

identity (3.63). For example, by definition:
(3.66) NudSof) = |Gk xeytrny |1 OTLOW D™ o (uy* « SE -yt 11,

= otk xeyhn !l TISE [why*a] 1,

which by (3.63%;

il

I1s§ 1w 11, for Q = yw(M),

and Proposition 3.9:

A

C Oyl

and (3.63) again:

g
G, 8N,

which is the first efficiency estimate, and similarly for the other estimates. Q.E.D.




Remark 3.12: Knowing that C™(M, B ) is a tame Fréchet space allows one to
interpolate products of seminorms in a way which yields tame estimates for
products and inverses of C™°(M, ‘B ) elements whenever these products and inverse
are defined. In particular, if { |« |y } is a Fréchet space admitting smoothing
operators in the above sense, then one has the interpolation estimates (cf.

Goodman/Yang {G/Y] ) :

(3.67) luly < (ki) | ki ifue Fandi<j<k,
and:
(3.68) lulplvl, < Cyllul,lviy +‘|uld|vla) ifuve F,

with a < b, ¢ <d, and a+d = b+c. Armed with these estimates, it is straightforward

to show:

Proposition 3.13: Let M be a compact coordinate ball about the identity in a real
Lie group and B a Banach algebra. Then C(M, B), as in Proposition 3.11, forms

a smooth tame Fréchet algebra with respect to the pointwise product. In particular,

one has, for f,g € C™(M, B):

(3.69) Nfg] € C(Nylfl N,lgl + N.Ifl Nylg]) .

Proof:  The basic claim is that the product map:
C:C™M, B)x C™M, B) » C°(M, B)

(f,g) = (2 =1(p)gp)
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is a smooth tame map. It is smooth being bilinear, and the tameness of the tangent
maps will follow from the tameness of C because the tangent maps are
compositions of derivatives and products, which are tame maps. Hence, C will be
smooth tame if it is tame. To see that C is tame, one just applies the Leibniz formula
and then interpolates as per (3.68). Indeed:

(3.70) Nlfg] & max sup il of{ow g Iy,

and by applying the Leibniz formula;

= ik xoutn | 2 Caﬁaa.B[f(\V'I(X))]ag[g(‘f’_l(x))]

S ok Bgacaﬁ xes$&)||ag~[3[fw.1(x))] 15110 ew o]

s jmax &, Cop Nowp 1 Ny ]

st‘kckﬁ Nicp I Ny, Le]

where we have used that the seminorms form an increasing sequence and chosen

C Then we interpolate by | B |units in each term of the sum to get

= Imax
KB~ o gk Cop

the desired estimate (3.69). Q.E.D.
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Proposition 3.14: If B isa C*-algebra with involution *, and M is a compact
coordinate ball containing the identity in a real Lie group, then C*(M, B) forms a
smooth tame Fréchet *-algebra. That is, C™(M, B) is *-invariant and the adjoint
map defined by :
(3.71) @ : C7M, B) — C°(M, B)

fp) = EHp)*

is smooth tame. In particular, the adjoint map is seminorm preserving, i.c., 1

i
Vk=20,Vfe C°M,B): |
(3.72) NJIOM] = NJf.

Proof:  That C*(M, B) is *-invariant is the result of the fact that in any local

chart, the operations of taking derivatives and taking adjoints commute, hence the

derivatives of adjoints are adjoints of derivatives of a smooth map, and hence the

adjoint of a C™(M, B ) map is also smooth. Also, since @ is linear (B being a C*-

algebra means that * is linear), ® will be smooth tame if it is tame because its .
tangent maps will be compositions of products, adjoints, and derivatives, which are
all tame maps. Consequently, it remains to verify (3.72). Indeed:

(3.73) No®O] & max sup || 3y yem] i,

o -1
ey s TR (0] .
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For notational convenience, place T = f(qf'l(x)), and notice that:

(3.74) RIEN¥ = [PHFx)*.

Indeed:
O IECNH = B0 L (Frxseey- [Toop )

= Jm L [f(x+ee,) - FOT*),

and, by the continuity of * on B, the above limit is (d, f&)*. One may iterate this
k

argument, making use of the srnoothness of £ and the continuity of #, to produce:

(3.75) NJ®®) = o Sup 1 {a% ey en] 1+ 1),

If

o -1
sy ! AT 1,

which is just N, [f]. Q.E.D.

Remark 3.15: In what follows, we will find it convenient to notice that the ZEero

order seminorm on C™(M, B), defined as in (3.62), that is:

(3.76) Nolfl = Sy w11,

; ; ion Su
1s nothing other than the expression - D NPy 11, .




Finally, in preparation for the final result of this section, we recall a definition

of Hamilton:

Definition 3.16: A smooth tame Lie group G is a smooth tame Fréchet
manifold, (i.e. a Hausdorff topological space with local charts valued in a tame
Fréchet space such that the transition mnaps are smooth tame), supplied with an

algebraic structure such that the product map:
(3.77) C:GxG > G, given by Clg1.g2) = g129,

and the inversion map:
(3.78) ViG> G, givenby V(g)=gl,

are smooth tame maps,

With this in mind, denote by [C™(M, B)], the subgroup of the smooth tame

Fréchet algebra C™(M, B ) consisting of the elements that are pointwise invertible,

which is to say:

(3.79) fe [C™(M, B)], if there exists £-! € C°M, B) such that:

ff0) = £ M(p) =Td(p) =1 V¥ peM. 1 the identity in B

Now, we have seen that C™(M, B) is a tame Fréchet Space, and by standard

Banach algebra considerations, (cf, Douglas [D], Proposition 2.7), the set of
invertible elements [C™(M, B)]yis an open subset of C™(M, B). Thus, one may
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say that [C™(M, B)]« is a smooth tame Fréchet manifold. Also, since the product

map on C™(M, B) x C*(M, B) is smooth tame by Proposition 3.13,
[C™(M, B )]4 will form a smooth tame Lie group if the inversion map:

(3.80) Vi [C™M, B)lw = [C™(M, B)lx definedby  V(f)=f !

is smooth tame.

Proposition 3.17: For M a compact coordinate ball about the identity in a real
Lie group and B a Banach algebra, the space [C*(M, B ), defined by (3.79),

forms a smooth tame Lie group in the sense of Hamilton. Tn particular, for f near

enough to the identity map: Id: M — B with respect to Ny[¢], the inversion map

defined by (3.80) is smooth, and:

(3.81) NI € CA+NJf]) Yk20 andfe [C°MB)l,

where C, depends only on k and N,If].

Proof:  One can reduce the question of the tameness of V to its tameness near the
identity map, as in Hamilton [H] for the case of the diffeomorphism group of a

- compact manifold, in the following manner.
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If f, € [C*(M, B)]x is fixed, then for f near foog= fo“if will be near the

identity map, and since f = fog, one has:

(3.82) £ =gl = (17,
and:
(3.83) V() = C[V(C(V(E,), £)), Vi) 1,

which is to say that V near f is built up from products in [C™(M, B )], which are

smooth tame, and inverses of g near the identity. Then, one can generate the k = 0

estimate in the following way:

Claim 1:  If f is near the identity in Nyl*] norm, then f "1 will also be near to the
identity, and:

(3.84) NJIE '] € CoN,if] .

Proof of Claim 1: First notice that since f is invertible by assumption, f(p) = 0

for all p in M, where 0 is the additive identity in the Banach algebra B. Hence,

|1 f(p) | I,B = ﬁp >0 for all pin M since B is a Banach space. Moreover, since the
normon B is a continuous function and M is compact, the 89 may be chosen

uniformly, so that, in light of Remark 3.15:

(3.85) Nolfl = SR 1, = 8 > o,

85




Now, if one assumes that NO[Id -fl<e <1, then:

(3.86) I -Hp) I, <e<1,

holds uniformly on M, and by standard considerations (cf. [D], Proposition 2.5),

one has:
] 1
(3.87) Nty ll, < T DT, Vpe M,
or No[f'l} <71 . , and since N,[f] 2 0 > 0, one has that:
1
(3.88) NI[f1 < N{f],
0 (1-e)Ny[f] °

which is (3.84) with Co=

. Also, one finds that:
(1 - e)N,[f]

£
1-¢

(3.89) NIf - 1d) = NyIf '1d - ] < Njif e <

whence f ! is near the identity if f is; completing the claim.

This claim gives the O-order tame estimates of the inversion map and specifies

the dependence of the constant C, on the 0-norm of f, Using this estimate, one can

produce the higher order estimates by induction; exploiting the Leibniz formula, the

interpolation properties of the C™°(M, B) norms, and the identity f "1f = ff ! = Id,

Claim 2: Nk[f'l] < Ck (1+ N,[f] ), where Ck depends on k and N,(1d - f].
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Proof of Claim 2: Given that:

-1 ore 1o -1
NIETT = T Sup 1 aIE Ty toon] 1,

we will prove the estimate by induction on | o |, where the | o | = 0 case is Claim 1.

We assume that, for{ | < k: : |
3.90) N|a|[f—1] = C,al(l'f‘N;ai[ﬂ),

and we seek to verify (3.90) for| ot | = k. First, since f "1f = Id, one notices that

for every x € © = w(M):
(3.91) RTE Dy x)] =0

and, hence, by the Leibniz formula on the product of f 'I(w'l(x)) and f(\u'l(x)):

(3.92) 0 = ¢ Dy )] = anﬁ I eon] 98Py )]

and by splitting off the top derivative of f :

(3.93) AFfE )] f(yl)) = - B%caﬂaﬁ [ 1w o] 8% Pyt

Then, by multiplying both sides by f 'l(qf'l(x)) and taking B norms:

G99 11 37[f oy xn] 1, <

1oy 1, { %CQBH Pty )] 111 8% Py (x))] g
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Hence:

(3.95) NI = ok seub 1 OXIE Ty o] 11,

< NI {28 20 Cop Nig 1) N0

where we have used the definition of the seminorms N, [*] to say that the supremum

over Y(M) of any derivative of length | B | is bounded by the | B | seminorm. Then,
by applying the induction hypothesis since | B I< k and the estimate on the 0 order

norm from claim 1, one finds:

(3.96) NJETT < CoNype { max l;mcwqm(lﬂxﬁﬁ,[lﬂ) Nio-gilfl }

< N1 { lBZkakB(l +Nig [f]) Nyyg, [£] .

where we have the fact that the seminorms form an increasing sequence when
taking the maximum over the length of ¢. The quantity on the right of (3.96) is

then rearranged to set up the interpolation:

CoN I { C N 1f] + | gk Cep Nip [f] Ny 16D ],
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where we have chosen the constant Ck as the maximum of the constants CkB’ and

used the increasing sequence property again. Finally, we interpolate the products in

the sum by | B | units to find:

(3.97) N £ s CN I { e N,If] + lg;,k% N, If] N,[f] }

< GU1+NJf1),

with C: depending only on k and N,[fl, as claimed. Q.E.D.



4. Smooth Tame Structures on Pseudodifferential Operators

We are now ready to exploit the characterization of the pseudodifferential
algebra OPS‘;;O as a Y*-subalgebra of £ (Lz(R“)) with the tameness properties of

the spaces C™(M, B) to conclude that OPs;;O has the structure of a smooth tame
*-subalgebra of £ (LAR™) and that [OPS°1, defined as the subset of OPS*
consisting of operators whose inverses exist in £, (LZ(R“)), has the structure of a

smooth tame Lie group. To accomplish this, we state a sequence of results which
formalizes much of what has already been done. In particular, we show that OPS§;0

is a tame Fréchet space in Proposition 4.1 and that it is a smooth tame Fréchet

algebra in Proposition 4.2. Then we investigate the smooth tameness of the
inversion map on various subspaces of OPS!;);O, by exploiting the y*-subalgebra

property, which is proven in Proposition 4.3. We conclude with the smooth tame
Lie group structure of [ops;f]* in Theorem 4.9, |

Proposition 4.1: OPSE;O, together with its operator topology (2.9), forms a

tame Fréchet space in the sense of Definition 2. 1; in particular, one may interpolate

in the operator norms as per (3.68).

Proof: The idea is to show that there is a tame isomorphism between OPS§;0 and

a closed subspace of the tame Fréchet space C™(M, B) for M a compact coordinate
ball about the identity e in the Lie group gs”and B the Banach space £ (L%(R™)

with its usual norm,
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Indeed, choose M to be a compact coordinate ball about the identity e in the Lie
group gs'. In particular, choose M so that it lies entirely within an open ball U on
which the local coordinate system V(0,0,2,0) = (0,h,z,{) is valid, as addressed in
Remark 1.5, shrinking U if nhecessary so that the transition formulas of Lemma 1.8

are also valid. Using this coordinate system, a family of seminorms on C*M, B)

is given by:
TA] = Max Sup i na
@.1) NAAT = cvan ! P TAG@HZOT Tl 5,
where 0% is a coordinate derivative of length o,
Now, OPSJ?;O is characterized by:
(4.2) OPS) = {Ae B Ashat € CTles, B) },

where A‘_;:h’z’C = U‘l(c,h,z,g)AU(G,h,z,C) and U is the strongly continuous

unitary representation of gs’on B used in the Cordes criterion. The operator

topology on OPSE;O was given by:

(4.3) NJAL = Dl oA e, 1] L2.0p -

Let F denote the tame Fréchet space {C*oM, B), N/[] } and define a
subspace § of /F as the image of OPSJ?;Ounder the conjugation by U(o,h,z,0).
That 1s, set:

(4.4) G = {A(ohz0) : A(Ghz,0) = U(o,h,2,0) A U(o,h,2,0)
for some A e OPS‘;)QO} ,
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where we define the map:
. 0,0
(4.5) D : OPSJS -G,

A - A(chzl) = Agy, ¢

where we will temporarily preserve the distinction between an arbitrary function
A(o,h,z,0)in F and those A ohal coming from OPSZ?;O )

Claim1: G is a closed subspace of .

Proof of Claim 1: By Theorem 1.2, the conjugation by U of an operator in
OPSE;O is a smooth map in a neighborhood of M with values in B, hence @ is
well defined, and G is a subspace. To show that G is closed, one demonstrates

that G contains its limit points,

Let Aj(c,h,z,t) be a sequence in G that converges with respect to the F
topology. Since F is a Fréchet space, the sequence has a limit, call it A_(oh,2,0),
that belongs to . As such, this function A, is smooth in a neighborhood of M

taking values in B. The question remains as to whether this function looks like the

conjugation of an element in B . However, the function A_(o,h,z,0) is the uniform
limit over M as j — oo of :

(4.6) Uo.h,z.0) A, Ulo,h,2,0),

which, by the strong continuity of the representation U(o,h,z,{) is nothing other
than:

“.7) Uloh,z,0) A_ Ulo)h,2.0),
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with A_ =j1i)r?° [Aj] » the limit being in the B norm, and so the operator A_ belongs

to B. Hence, the function Am(c,h,z,C) is a smooth map in a neighborhood of M

that is the conjugation by U(cth,z,0) of an element in B, and thus belongs to G .

Therefore, G is closed.

Claim 2: @ is a tame isomorphism between {OPS}’;D, N [-]} and { &, NI1}.

Proof of Claim 2: @ maps OPSE;O onto G by definition as G is the image of

OPS§;0 under . @ is also one-to-one since;

(4.8) U'(o,h,z,0) A Ulo,h,z,l) = U(o.h,2,8) B U(o,h,2,0) i

if and only if: ||

(4.9) A = B, |

In fact, one has the inverse for @ defined by: '

(4.10) ¥ : G — ops% ]
Ashzt 2 Agharle = A

To complete the claim, we need to show that the maps O and ¥ are tame.

Notice that:
(4.11) N, ‘I’[Amh’z’g 1= l{fﬁ’;ll d“[A

o.h ,z,t‘;] le l lLz-op

1A}

max sup H aOL[A

ta Kk W(M) O',h,z,(:] , le-Op

NIA],




where the inequality comes from the fact that the value of the derivatives at the

identity are trivially bounded by those over a neighborhood, and the equality is just

the definition of the N norm of the function A(chz,0) =A ohzl in G . Finally,

by the transition formulas of Lemma 1.8 which hold over M, one has:

(4.12) Nl®@w)] = ﬁi i:g)ll a“[AU,h,Z,C] Ilehop
S atevon!| 20p©@h 20 FAg, )

where the functions Pyp are smooth real valued functions in a neighborhood of
€ € gs', and hence bounded over the compact set Wy(M), so;

max o _
< am G0 [Ac,h,z,(;] e ”Lz_op = CN[A]

Q.E.D.

Given that one may now interpolate in the OPSEJ'O norms, one might proceed to

verify the following tame estimates directly on OPS.;S'0 by mocking the section 3

arguments in this case. Rather than repeating them, we choose to translate the

previous results by way of the inequalities (4.11) and (4.12), which we can be
stated for further reference as: V A e OPSﬁ?‘;O :

(4.13) NJAT < N[Ag, ]

and:
(4.14)

NilAgnzgl S GNJAL




Proposition 4.2: OPSJ?;O , equipped with its operator topology, forms a

smooth tame Fréchet algebra. In particular, the product map:
. 0,0 0,0 0,0
C: OPSEs X OPSgJ - OPSJS ,
given by C(A,B)=AB = A , B, is smooth tame, and for A, B & OPS‘;);O :

(4.15) NIABI < C(NJAIN(B] + NJAINIB]) Vk>0.

Proof: By Proposition 4.1, one knows that { OPSE;O » Ny [*] } forms a tame

Fréchet space, and for A, B OPSJ?;O :

(4.16) (AB)O',h,Z,C = (To',h,z,ﬁ)-l(AB) TO',h,ZsC

i)

-1 -1
Tonz0) ATohztTonzt) Blohzt

= Ac,h,z,C B chzl -

Therefore, the composition map makes OPs;;() into an algebra since AB e L{H)

if A and B are, and (4.16) shows that (AB)G hzt € C™(gs’, L(H)), being the

composition of two such maps. As a result, one only needs to show that Cis a

smooth tame map; however, C being bilinear will be smooth tame if it is tame, as

was indicated in the proof of Proposition 3.13. Consequently, it suffices to verify

the estimate (4.15).
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Now, after choosing M as above, one makes use of Proposition 3.15 for this M
and B = L({#}. Indeed, by (4.13) and (4.16):
(4.17) N,[AB] < NI(AB),, . ]

= N;{Aﬁ,b,z,CBﬁ,h,z,C 1.

Now, both Ashz, ¢ and B o.hz¢ Delong to C*(M, B), so one may apply the

product estimate (3.69) to the last quantity in (4.17) to yield;

(4.18) NJAB] <

Ck(Nlé[Au‘,h,z,l; ] N:‘)[Bc,h,z,q I+ I\B[Ao',h,z,c ] N[Bc,h,z,C] ).
Finally, one applies (4.14) to conclude the result. Q.E.D.

Remark 4.3: OPS‘::;0 is more than just subalgebra of L{#). Propositions 4.1
and 4.2 justify calling OPS};O a smooth tame Frécher subalgebra of L{#). In

addition, it is easy to show that OPS_;’;O is invariant under the Lz-adjoint, and that

this adjoint map is smooth tame; therefore, one can say that OPS‘;;O forms a

smooth tame Fréchet *-subalgebra of the C*-algebra L(H). Moreover, as is
indicated by Cordes in [C2] and [C3], 0PS§;° possesses the y*—subalgebra

property of Grammsch [G]. This means that, in addition to being a * -invariant

subalgebra of £L{H) with a Fréchet space topology, it is closed under inversion in

L{H). Ttis this last property, the so called relative inversion that we wish to

exploit in what follows.




Proposition 4.4; OPSJ?_;O , together with its operator topology, forms a smooth

tame y*-subalgebra of the C*-algebra £, (L2(R")).

Proof:  First notice that OPS!?_;O is indeed invariant under the 1,2- adjoint since:
= -1 . -1
(4. 1 9) (AG?h’Z'IC)* - [(Tﬂ!hrzac) ATU’h’Z-»C]* - (Tc,hazag) A*Tcahgzag

= AN hao

because the representation T is unitary, Thus (A*)G bzl is the adjoint of the

smooth map Ac,h,z,?; from g5’ into L{H)}. Asa result, the GS’ conjugation of A*
is also a smooth map from gs' into L{H), or A* ¢ OPSﬁ;O . Furthermore, the

smooth tame property of the adjoint map follows from (4.19), Proposition 3.14,
and the inequalities (4.13) and (4.14). Indeed, by the seminorm inequality (4.13)
and the adjoint identity (4. 19), one has:

(4.20) N [A¥] < NQ[(A)*G,,LZ,Q] = I‘{Q[(Ag,h,z,g;)*] ,

and by the adjoint estimate (3.92) applied to the function Ay 7L and the seminorm

inequality (4.14), this is:

= NQ[Ao,h,z,l;] < CNJIA]J.




It remains to demonstrate the relative inversion property. That is, if A OPS0 0

has an inverse Al € £(70), does it follow that Ale OPS00 as well? In

particular, since:
OPS;" =(Ae L{H): Ayy v & Co(es', L(7)) ),

one only needs to verify that (A'l)c hey © € (85, L(H)) because Al e £(90)

by assumption, However:
3| _ “14-1 -1 -1
(4.21) A 0nat = Tona) A Top 0 = [T, 0'ATg ]

= (Ac,h,z,ﬁ)—l i

so that (A'l) ohazl which is well defined for A™! e L(#H), is just the inverse of
the smooth map A Gl ,and hence smooth by the Banach space inverse function

theorem. Q.E.D.

Remark 4.5: Of course, one can go on to say that if A™! and B! exist in L(H)
for A and B in OPS0 O then:

Al and B belong to opség0 ,

and since (AB}'l =B1A1¢ L{*H), one may invoke the algebra result of
Proposition 4.2 to conclude that (AB)'1 € OP8;;0 because :

(4.22) [(ABY 1,y ¢ = B Do pat Aozt




That is, the GS’ conjugation of (AB) ! is the composition of C™(gs’, L{#))
maps. In this way, one can adapt Proposition 3.17 to show that [OPS‘;S'D I+ forms

a smooth tame Lie group, as will be done in Theorem 4.10. However, in
preparation for this, we wish to exploit the y*-subalgebra property of OPSO % to

distinguish some subcollections of ()PS0 ® for which the i mversion map is well

defined and smooth tame, without explicitly assuming the invertibility in L{#).
The following three propositions give sufficient conditions for which one has a

smooth tame inversion.

Proposition 4.6:  Let:

(4.23) 4,4 [(Ae OPS;;O : HA-1d HLz_op<1 ).
Then, the map ;
(4.24) ViAp—> OPS)®  givenby  v(a)=al

is well defined and a smooth tame map. In particular, one has: V A Ay

(4.25) N[AT] < C (1 +N[A]),

with C_depending on k and N(A]l = [[A ] le_Op .

Proof:  First, one notices thar if | A - Id H 2p<1, then Ale L{H) exists

because L{F} is a Banach algcbra (cf. Proposition 2.5 of [D]). Therefore, by the
y*-subalgebra property, Al ¢ OPSO 0 Hence, V is well defined as a map from

- 0,0
A, into OPSEJ ‘




As for V being smooth tame, notice thatif A, B Ay, then:

(4.26) DV(A)®B) £ l}J'_TO%(*\/(A+h}3)-V(A)) = -A7A'B,

Indeed, the triangle inequality:

fa+18-1all 2 <tlA-1a 2, + b1l 2

and Be 4,;

1Bl 2, = H(B-Id)+IdHL2_Op < 2,

give, for h small enough:

[1(A +1B)-1d 2., <1,

and so, (A + hB)! exists. Furthermore, the difference quotient in (4.26) may be

written as:

4.27 %A'l(-hB)(A +hB)! = A1(-B)(A +hBY,

which has the advertised limit. Given this inversion formula (4.26), one sees that

the tangent maps to V are given by products of inverses on A, . Thus, the tangent
maps will be tame if V itself is tame, as taking products in Ay is a tame operation

by Proposition 4.2.
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We produce the estimate (4.25) from Proposition 3.19 and the seminorm
Inequalities (4.13) and (4.14), in the spirit of Proposition 4.2, For A e Ay

(4.28) NJA™] < NIAD, o0

by the seminorm inequality (4.13). Now, by invoking Proposition 3.17
concerning the tame inversion in C°(M, L{H)), the estimate (3.81) applied to the

last quantity in (4.28) yields :
(4.29) N J[AT] < C (1 + N;[Ac,h,z,g] ),

where the constant C, depends only on k and the Lz-operator norm of Ac,h,z,c .

Finally, the desired estimate follows from applying the seminorm inequality (4.14)

to bound (4.29) by CX noms at the identity. Q.E.D.

Remark 4.7: The collection Ay is not itself a group, or even a subalgebra of

OPSE;O as one might hope, but it does represent somethin g useful; namely, one

knows that inversion in OPS};O is a smooth tame operation provided one is near

the identity in L2- erator norm. One can also build extensions of V to other
y op

subcollections by defining Ap as above, and then iterating by:

(430) Ag = { Ae OPS)O: || ApAy, -1d HLz_Op <1 for some Ay 1 € Ag,}.

One can show that  Zyc 4, A, ... and that the inverse map V extends to

any such 4¢. We indicate the first extension in the followin proposition.
y £ £




Proposition 4.8:  Let:
(4.31) 4,={Be OPS;’;O clIBAL .19 llj2<1, forsomeAe ,},

with 4, as in Proposition 4.6, then the inversion map V extends to a smooth tame

(right) inverse on A, with the following estimate valid ¥ B « Ay
(4.32) N[BT < ¢ (1 4+ N[B]) Vkz20.

Proof:  First notice that 4, is well defined because if A e Ay, then A1 exists

by Proposition 4.6. Then notice that V is well defined on A;, which is to say that:
if B e 4,, then B! exists and lies in OPSJ?;O - By the y*-subalgebra property,

one only needs to show that Bl e L(#) exists. However, the condition on B that

lt1BAL.1]] 120p < 1 implies that (BA'I)“1 exists in L{#}, and so one may define

a (right) inverse by :

(4.33) B! = AlBAYT,
Hence, the inverse V on Ay extends to a (right) inverse on A, , in light of the

obvious inclusion A, < 4, (i.e., if B is already in A, pick A =1d in 4, for the

A, condition). The estimate (4.32) is then clear for B Ay
(434 NIBT] < CUNJATINJI®BAT] + N[ATN [BA D],

by applying the tameness of products in OPS;}O to (4.33). Then, since both A and

(A'IB) belong to 4, one can use Proposition 4.6 to estimate the inverses in the

right hand side of (4.34).
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Indeed:
435 NJIBT] < G {(1+NJADNJIBA™] + NJA] (1 + N [BATD]

and by absorbing the norms of A into the coristant:
< Gu(1+ NBAY] +N[BAY]),
and by taking products again:
< CR (1 + Ny[BIN[AT] + N,[B] N,JA ] + N,[B] N, [A1]).
Now, applying (4.25) again to A~ yields:
NBT < e {1+ Ny[BINJ[A] + N [B] No[Al+ N,[B] (1 +N,[A])},
and by absorbing NO[B] and the norms of A into the constant, one obtains:

(4.36) N[B™ <c(1+ N, [B]) Q.E.D.

Proposition 4.9:  Let:
(4.37) B, ¢ [Be ops;;" :lIB-A HLz_Op < YA 124

withA e 4, }

Then the inversion map V of Proposition 4.6 extends to a smooth tame inverse on
B, with the estimate (4.32) valid for all B e B; .
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Proof: IfBe ‘B, , then :
(4.38) I1BA-Tll 2 ) = [IB-A)AT 2.

< ”B-—A”LZ_Op ”A—IHLZ_OP <1,

and :
(4.39) HAB-1ll 2 = llA@B- A) 2.0,

< A2 IB-All 2, <1,

Therefore, (BA'I)'1 and (A'iB)'1 exist and lie in A,; so, one may define right

and left inverses by:
(4.40) Bp=A'®AY)  and  B'=(alBylal,

-1 . :
and estimate N, [Bg ] and Nk[BL1 ] in the manner of Proposition 4.8. Q.E.D.

Finally, we conclude with the main result, which is merely a recapitulation of

the previous considerations.

Theorem 4.10: Let :
(4.41) G :{()PS;;"]* = {Ae OPS£S'O : Ale £ (LR exists ).

Then G forms a smooth tame Lie group with respect to its grading by the

C(gs’, L LA(R™)) seminorms in the sense of Definition 3. 16.
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Proof:  Firstof all, G is a subgroup of the smooth tame Fréchet algebra OP8;;°

as argued in Remark 4.5. Furthermore, G has a Fréchet manifold structure because

it sits as an open set inside the Fréchet space OPS§;0 . Consequently, G will be a

smooth tame Lie group if the inversion map, which is well defined on all of Gisa
smooth tame map, but this is clear in light of Propositions 4.6 and 4.8 as the

following argument indicates.

Forany Ae G, fix an A with HA-AOHLZ <(”A1H . Such an

L% op
AO exists since the group of invertible elements of the Banach algebra £ (Lz(Rn)) is

open with respcct to the L2 -operator norm (cf. Douglas [D], Proposmon 2.7).
Then put B = A 1A 50 that :

442 IB-Tll2 = HAfA-1ll 2 = 1A@A-ab 12, <1,

Lop

and so B € 4, with 4, as in Proposition 4.6. Hence V(B) = B! defines a

smooth tame map, and:

S RS A NS DN |
(4.43) AT = BlAY = (agayial,

so that the inversion of A € G is just the product of the inversion map on B € Ay

and the inverse of a fixed element AO; that is :

(4.44) V(A) = C(V(C( V(Ay, A)), V(Ay).




As such, for all A near a fixed A(} € @, one produces the estimate:
(4.45) NJAT < ¢ (1+ NJA]) forall k >0,

where C, depends only on k and A - AG I |L2_ op’ and, therefore, V: G— G is

tame. Finally, by considerations like those in Proposition 4.6, V is smooth tame,

Q.ED.
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