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Abstract of the Dissertation

The Index Theory of Toéplitz Operators on

the Skew Quarter-Plane
by
Efton Lilborn Park

Doctor of Philosophy

Department of Mathematics
State University of New York at Stony Brook

1988

In this thesis, the index theory of the Toeplitz
operators associated to a skew quarter-plane in 22 is
studied by examining the C*ualgebra generated by these
operators. Criteria for operators in this C*—algebra to
" be Fredholm is established, and cyclic cohomology is
used to construct an explicit index formula for the

Fredholm operators. In addition, the K-theory of many

of these C*—algebras is computed, as well as the

K-theory of some related algebras.
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Introduction

We begin by reviewing the development of the study

of Toeplitz operators.
The first class of Toeplitz operators considered

were those associated to the circle. Let T denote the

unit cirecle in f, equipped with Haar measure, and

consider the Hilbert space LZ(T) of square-integrable

functions on T. Define H2(T) to be the subspace of

functions in Lz(T) that extend holomorphically to the

interior of the unit disk. Note that the functions .

ineg
e form an orthonormsal

{x, | n e Z}, where x (&) = )

basis for LZ(T), and Hz(T) is the closed subspace

spanned by {xn | n 3 0).
Given a continuous function P on the circle, define

the multiplication operator M? on LZ(T) by MPf = rf.

Let P denote the orthogonal projection from Lz(T) onto
HZ(T). Define the Toeplitz operator TP on HZ(T) by

T, = PM,, and define the Toeplitz algebra 7 to be the
'C*-algebra generated by the TP' '

The index theory of the Toeplitz algebra is well
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known and discussed in several places (see [11]).

Specifically, there exists a short exact sequence

y C(T) ——— 0,

where 0 : § ——— C(T) is defined by requiring that
G(T?) = v, and where X denotes the compact operators on
HZ(T). This exact sequence immediately yields the

following index result:

Theorem 0.1: Let T € 3. Then T is a Fredholnm

operator if and only If of(T) € C(T) is nonvanishing.®
There is also the following index formula:
Theorem 0.2: Let T € J be a Fredholm operator.

Then the index of T equals the negative of the winding

number of o(T).0

Thege results can be recast to provide index

results for another class of operators. Let Z denote
the integers endowed with counting measure. Then
consider the Hilbert space &Z(Z) of square-summable

functions from Z to €, The functions {en | n € 21,




T

where en(k) equals 1 if k equals n and 0 otherwise, forﬁ
an orthonormal basis for cz(l). Let HZ(Z) be the closed
span of the e, for n » 0, and let P be the orthogonal

projection from 62(2) onto HZ(Z). Next, given n € Z,
t2(2)

define the translation operator M_ : 02(2)

by (Mnf)(k) = f(n+k), and define the operator

Tn : Hz(Z} ———;4 HZ(Z) by Tn = PMn. The Fourier
transform gives an isomorphism between LZ(T) and &2(2),
and under this isomorphism, HZ(T) and Hz(Z) correspond.

Moreover, the Fourier transform is a unitary equivalence

mapping TX to Tn' "The C*—algebra generated by the Tn
n

is isomorphic to the Toeplitz algebra T via this unitary
equivalence. Therefore, the index results for the
Toeplitz algebra on the circle can also be interpreted
as index results for the Toeplitz algébra on the
integers.

We now discuss more general types of Toeplitz
operators. Specifically, we will consider Toeplitz

“algebras on Zz. ‘We could also study Toeplitz algebras

‘'on the two-torus Tz, gince the Fourier transform will

'1mp1ement isomorphisms between the appropriate

e 3
"-algebras, but we prefer to work on 22 instead.

Let Zz be the collection of pairs of integers,

endowed with counting measure, and let 52(22) be the




Hilbert space of square-summable functions from 22 to €.

Given a pair of integers (m,n), define the translation

2,52
operator Mm,n on ¢°(Z”) by
(Mm,nf)(k,c) = f(m+k,nte).

To define Toeplitz operators, we need a subspace on
which to project, and there are several candidates. One
possibility is to project onto the subspace of sequences
in 52(22) that are supported on a half space in 22,

For each pair of integers (m,n), let e n be the
H

function in &2(22) defined by e n(k,c,) = 1 if
]
(k,¢) = (m,n) and 0 otherwise. Then it is clear that
the € n form an orthonormal basis for &2(22). Choose a
?

real number a, and define
HE = closed span of {em n | -om + n > 0}.

We could, of course, consider the closed span of the

€L n for which -am + n ¢ 0, but the results cbtained in
’

this case will be essentially the same.

Let P be the orthogonal projection of &2(22) onto

ﬂa, and define the half-plane Toeplitz algebra % to be

X
the C -algebra generated by the operators PaMm nPa. The
D ¥




half-plane Toeplitz algebras have been studied by
several authors, and the index theory of these algebras
is outlined in [8]. Specifically, there exists a short
exact sequence

a

, % , 9% _ 9, o(T%) —— 0,

where ¢® denotes the commutator idesal of_Ta_and o% is

, . a,. o a,.
defined by requiring o (P Mm,nP y = xm,n' where

ime, inse
= e le 2

. Unlike the Toeplitz algebra
the commutator ideal here does not coincide with
the ideal of compact operators on ¥, 1In fact, there
are no nonzero compact operators at all in 7%,
Therefore, the index result one obtaing here is much

different from that in the integer case!

Theorem 0.3: An operator in 5% is a Fredholm

operator if and only if it is invertible.®

As we can see, the Fredholm index theory of the
1half—plane Toeplitz algebras is not very interesting.
‘It is possible to consider a different kind of index
:ﬁhich comes from a type II°° von Neumann algebra, but

‘this is a topic which we will not discuss further.




The results above show that prosecting onto a half-
plane does not provide the proper generalization of the
Toeplitz operators, at least as far as ordinary Fredholm
index is concerned. Let us now consider a different
getup with better possibilites for such development.

Choose distinct real numbers a and g, and consider
the lines with slopes « and g that pass through the
origin in Rz. Suppose without loss of generality that
a < g, and define

®* closed span of {e -am + n

m,n |

W closed span of {e | -m + n ¢ O},
m,n
o fi - . . 2,52
Let P® and P" be the orthogonal projections of ¢“(Z7)
onto Ha and Hp, respectively. The subspace in which we
are interested is Hg’p =1 n Hp, and PaPp is the
orthogonal projection onto this subspace.

Define ?d'p.to be the C*—algebra generated by the

 operators PaPpMm nPaPp for (m,n) € Zz. This C*-algebra

H

will be called a skew quarter-plane Toeplitz algebra; we
wish to consider the index theory of this algebra.
The skew quarter-plane Toeplitz algebra was first

considered in [13] in the case a = 0, p = » (in this




case, ®*° is defined to be the closed span of the em,n
such that m > 0). 1In this case, §%'# can be identified
as the tensor product of the Toeplitz algebra T wifh
itself. Moreover, the Toeplitz algebras associated to
the upper half plane and to the right half planerare
each isomorphic to the tensor product of T and C(T).
Using these identifications, it is easy to see that
there exist surjective algebra homomorphisms 10 and 7"
from 70’w to ?0 and 7%, respectively, and these

homomorphisms allow one to obtain the following index

result:

Theorem 0.4: An operator T in 59:%° ;s Fredholm if
and only if 7O(T) and 1°(T) are invertible In 59 and 9%,

respectively.l

Moreover, in [6]1, a method for computing the index

of the Fredholm operators in 50’“ was established. The

method works in theory, but it is impractical, since it
: depends upon the construction of operator-valued
‘homotopies. Thus, it is nearly impossible to use this

result to determine the index of Fredholm operators in

In this dissertation, the Fredholm index result in




{13] is extended to the general skew quarter-plane
Toeplitz algebra %P, Since it is not always possible
to represent %P a5 a tensor product, the techniques
used in [13] do not apply. In the general case, we use
a number theoretic result concerning the approximation
of real numbers by rational numbers to establish
surjective homomorphisms +* and 1p from 5§,ﬁ to 9% and
5p. We use these homomorphisms to construct a
noncommutative symbol algebra fa,p for Fredholm
operators in the skew quarter-plane Toeplitz algebfa,
and we use this symbol algebra to prove that an operator
in 7%'# is Fredholm if and only if its image is
invertible under the aforementioned maps.

We compute the K-theory of the symbol algebra fa’p
as well as some of the skew gquarter-plane Toeplitz
algebras. We also compute the K-theory of some related
C*—algebras. We use these calculations to show that
when at least one of a and g is rational, then index is

s complete stable deformation invariant for Fredholm

operators in g& P, Finally, we consider the

possibilities for the K-theory of %P yhen « and p are

both irrational.
We use cyclic cohomology to construct an explicit

index formula for Fredholm operators in the skew




quarter-plane Toeplitz algebra. Unlike the index
formula in [13], our index formula involves calculations
that are easy to perform for many Fredholm operators.
Finally, we use our index formula to calculate the index
of some specific opefators.

The index theory of the skew quarter-plane Toeplitz
algebra is.interesting for several reasons. First, the
skew quarter plane operators are a natural general-
ization of the ordinary quarter-plane operators,

Second, the half plane Toeplitz algebras are related to
Connes's foliation algebras on the torus ([71,{131) and
it is likely that the skew quarter-plane Toeplitz
algebras can be used to study the case of two transverse
foliations on the torus. Finally, the skew quafter-
plane operators are related to Upmeier's work on
Toeplitz operators on bounded irreducible symmetric

domains ([26],[27]); our work here provides a carefully

worked out example of the index theory of a Toeplitz

algeﬁra associated to a reducible symmetric domain.

This dissertation is organized as follows. In the

first chapter, the skew quarter-plane Toeplitz algebra

5q,ﬁ and the symbol algebra #%1P are defined, and we




give necessary and sufficient conditions for operators

in 7%# to be Fredholm. In the second chapter, we

compute the K-theory of many of the relevant algebras.
We also show that when at least one of a and g is
rational, index is a complete stable deformation
invariant for Fredholm operators in %P, In the third
chapter, cyclic cohomology is used to construct an
explicit index formula for many Fredholm operators in
g% P In the fourth chapter, we use our results to
calculate the index of some specific Fredholm operators.
Finally, in the fifth chapter, we consider some open

questions and speculate on what their answers might be.




I. The skew gquarter-plane Toeplitz algebra

In this chapter we define the skew quarter-plane
Toeplitz algebra 9%'P and examine several relevant
ideals in this algebra. We also study the relationship
between %18 and the half-plane Toeplitz algebras g
and 7P.

2 . . 2 .2

Endow Z° with counting measure, and let ¢ (Z°)
denote the Hilbert space of square-summablé functions

from 22 to E.

Pefinition 1.1: Let {(m,n) e Zz. Then e € 52(22)

m,

is defined by

- 1 if (k,¢) = (m,n)
em,n(k’e’ - { 4] otheréise. ’

Definition 1.2: Let (m,n} € ZZ. Then the trans-

lation operator Mm n :_LZ(ZZ) —_— 52(22) is defined by

)

Mm,n(ek,c) = “mtk,n+e’

!

4

e R T

e e e T e e

i
E
|
|
|




Regard 22 as a subset of Rz, and consider distinct

lines through the origin with slopes a and g; without
loss of generality we may assume that o < g. We will
also allow the possibility that g = «; that is, one of
the lines is vertical. We will not usually explicitly
mention this possibility in the definitions that follow,

however.

Definition 1.3: Let o < g. The subspaces W, WP,

and Ha,p of 62(22) are defined to be

0}

(A"

H* = closed span of {e | —am + n
m,h

b
o
|

closed span of {em -pm + n < 0}

,I’l‘

Hd’p = ¥* n Hp.
. o0 2,52
Also, define the subspace H of ¢ (Z") by

00
H = closed span of {em,n | m > O}.

Definition 1.4: The operators P% and PP

defined to be the orthogonal projections

12

e




P* ;22 — ., W
PP . 2(z%) ——., WP,
Also, P” is the orthogonal projection

P* : 62(22) —_ .

Note that PaPp is the orthogonal projection onto

K P,

Definition 1.5: The C'-algebra %' is defined to

be the C*—algebra generated by the set of operators

(r°pPu_ P¥PP | (m,n) < 2%y .

!’

This C*-algebra is called a skew quarter-plane

Toeplitz algebra.

We are interested in the following questions:

which operators in %18 are Fredholm operators, and if T
in.?a’p is Fredholm, what is its index?

Before we go further, several comments are in

order. First, g%1# jg called a skew quarter-plane

13
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algebra becaﬁse the region ontc which PaPp projecté is a
skew quarter-plane in 22. Secondly, note that the two
lines of slopes a and p define four quarter-planes in
22, and we could project dnto any one of them. However,
no generality is lost considering the skew quarter-plane
we have chosen. For if P is an isomorphism of ZZ that
takes one skew quarter-plane to another, then P gives
rise to a unitary operator UP which implements an

isomorphism between the associated Toeplitz algebras.

Pefinition 1.6: Let %P be a skew quarter-plane

Toeplitz algebra. Then ¢*'? is the commutator ideal of
A,

The following theorem is proved in [4]:
Theorem 1.7: There exists a short exact sequence

a,p
o ¢S B g8 O

c(T?) — o,

where o©'P ;s defined by

r

oa’p[PaPpMm PEPP) = x

B,n




ilme ing
xm,n(e"az) = e la 2,

Furthermore, this exact sequence has a linear

splitting

¢ P L o1ty —— 9%P

defined by

£ %Py = PdeMm nPaPp.l

a,n’ ,

Unfortunately, Theorem 1.7 provides little index
information. The problem is that the commutator ideal
¢%'# contains the compact operators X on Ha,p’ but %P

is considerably larger than X.

We begin our study of the index theory of the skew
quarter-plane Toeplitz algebra g P by considering a
C*—algebra that contains Tu’p, but which is ostensibly

larger.




Definition 1.8: Define Ra,p to be the C*-algebra

generated by the collection of operators

-k
aLp [ | ] ] aLp
P P™M Q.M PP,
my,n, | J mj,nj

where each Qj is either Pa, Pp, or POpP.

Note that a dense subalgebra of ?a,p consists of

operators of the form

1A

} c. . PYPPM Q. .M p%pf |
ij mg0y 0 ij'm, ;yn

=0 j=1 J

where the cij are constants. Also observe that Ra,p
contains ja,p’ but ®* A contains operators that are not
obviously contained in %', ¥or example, the operator
PC(P‘BMk PIM PP is in Rd’p, but this operator does

€ m,n
not appear to be in §%1P, We will later show that ®%'F

and ?“’p are in fact the same C*-algebra.

Definition 1.9: Let o be a real number. Then

Tdefine % to be the C*-algebra generated by the

collection of operators

16
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"M p%* | (m,n) e 72y,

Such an algebra is called a half-plane Toeplitz

algebra.

Definition 1.10: Let a and g be distinct real

numbers., Define linear maps

a, g Py

P . qB «, p

_ R

by
p*(x) = PPxpf _
oP(yy = p%yp%,
These maps are clearly linear, but they are not
multiplicative.

B

We will construct algebra homomorphisms from g%

to 9% and 7P, but we first need the following technical

lenmma.
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~ Lemma 1.11: Let {(m,,n, )} be a finite collection
of pairs of integers. Then there exists a pair of

integers (p.q) such that, for all i,
(i). -a(m1+p) + [nj+q) > 0 if and only if -am tn 2 0.

(ii). -p(mifp) + (n1+q) < 0.
Proof: Choose positive numbers e¢ and M so that

M > m?x {—pmi + ni}

e < min {|—am. + N,
3 _ i i

I

e < M. i

Then it suffices to show that there exist integers p and
q so that |-ap + q| < e and -gp + q < -M.

In [14], it is proved that there exist an infinite
number of integers p for which there exists an integer q
1 1

€

=5-
P

. Then
a

with |a - %] < Choose such a p so large that p >

2M

and p >
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|-ap + g| <

and

-pp + g = (8 - a)p + (~ap + q)

¢ ~(p - a)p + e

as desired.n

Proposition 1.12: There exist contractive algebra

homomorphisms

+< g% P

_ 3¢

P, g%

- ., 9F

such that 1%p%= id, PpP= id.
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Proof: Let T be an operator in ®%'P of the form

€ kJ‘L '!
2 c. .P¥pPy Q. .M p%pP i,
1J Bio'Mio 1 miJ’nij
i=0 J=1
and define
¢ ky
1G(T) = { z c. .PM [ I I Qq.M ]Pa }:
1) m 0'n‘0 ij m, ,,N0
120 i i 3=1 i3’ iy

where each ng equals Pa, I, or Pd, depending on whether
Qij equals Pa, Pp, or PaPp. To show that 1% is well

defined and can be extended to an algebra homomorphism

on ia’ﬂ, it suffices to show that 1 Ta(T) W< nT n. :

Fix ¢ > 0, and choose f in 62(22) so that

1. f has finite support.

2. f has norm one.

3, n 15(T) w0 AS(TIF w4 ..

Now, since f has finite support,




(x) [ M ]f

is also finitely supported for all 0 ¢ i ¢ ¢ and
QO < N ¢ ki, whence Tf is finitely supported. Now,

consider the set

2
§ = { (myn) € Z© | n,
Apply the previous lemma to the pairs of integers in §
to obtain a pair of integers (p,q). A moment’s thought

yields that

[= ¢ [s §
M 1 = 1 T M fo
P:q (T)f (T) P:q

Furthermore, our choice of (p,q) implies that in the
expression for TMp qf, the projection pP i8 unnecessary

each place that it appears. Therefore

S (TM_ £ =M T,
Pyq P,q

and, since M is a unitary operator,

€ range of (*) for some i, N }.

21




1Ty o ANTIE N+ e
= n M 1“(T)f W+ e
P:Q
= I T™ f i+ e
P;q
< 11 TM o+ e
o8}
N T unM N+ e
P:q
< HTH + €.
Since ¢ was arbitrary, I 1G(T) W ¢ n T I, and

extends to a contractive algebra homomorphism
to 7%, -Similarly, there exists a contractive

homomorphism Tp from ?d'p to 5p. Finally, it

thus va
from ?a,p
algebra

is obvious

that pa is a splitting of 1® and pp is a splitting of

‘lp.l

Definition 1.13: The C*-algebras Ca and Cp are

defined to be the commutator ideals of 5“ and ?p.

The results in [4] yield the following theorem:

22
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Theorem 1.14: There exist short exact sequences
a

L] , ¢ — g“ g :C'[Tz) —_— 0

0 ., cP , 58 _o” v o(T¥) — 0,

where ¢ and of are defined by

o, _a o, _ B B
P, %) s xy - PP t, PP

Furthermore, these sequences have linear splittings
¢ o(1?) ———, 9%
c(Té) — ., 9°

defined by
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We now record several useful relations between the

various maps we have defined.

Lemma 1.15: o%4% = oP4P, & ?

Progof: It suffices to show that aava(T) = cpvp(T)

for T an operator of the form

ci.PaPpMm .
‘ J 10'%i0
i=0

and this is a direct computation:

aava(T)




= o-p'rp(T) B
Note that if T is in J%'8,
R (T) = oF(1(T)) = P(P(T)),

80 the homomorphism o™ A from ja,p to C(Tz) extends to

homomorphism from f% P to C(Tz).
Lemma 1.16: Tppa = tpoa and 1Gpp = tacﬁ.

Proof: Consider an operator in 99 that has the

form

It will suffice to prove that 1ppa(T) =-£pag(T) for
operators of the above form, since these operators are

dense in 9. We will only verify that Tppa = tpoa;

showing that 7app = gacp involves a similar calcul-

ation.

25
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On the other hand,
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Lemma 1.17: ga = 1a§a’p and ep = 1p§a'p.

Proof: It is enough to verify the lemma for the

functions X gince the span of these functions is

yn’
; 2
dense in C(T"):

vdtﬂ,ﬁ(xm’n) - 1G(PaPpMm

p%ph)
n

’

Similarly, Tpga’p(xm n) = Tp(xm,n
]

Definition 1.18: Define the ideals 5§, 92 ang 1% A

by




Proposition 1.19:

There exists the following

commutative diagram with exact rows and columns:

Since all other maps

need only check that
ch

» respectively, to

Take X in ﬂa.

B

o1 % (x)

a*+%(x)

Gp1p(X) =

the diagram are exact,

0 — 5a,p N “ R a + 0

| |

e

0 + gp - ?G,ﬁ U » 7a y O

o '

'Tp O'C‘
0 , ¢P , g8 %, c(té) —— 0
o Q.
Proof: We have already shown that 1< = cﬁTp.

in the diagram are inclusions, we

+¢ and 1P map 5; to €% and 52 to -

check that the diagram commutes.

Then 1%(X) is in 5%. Now,

apTﬂ(X}, and since X is in % = ker 1p,

i

0. This implies that *%(X) is in
ker o% = ¢%, Similarly, +P takes Sg to ¢P.

Next, let us verify that the rows and columns of

The last row and last column are

28




exact by Theorem 1.14, and Definition 1.18 implies that
the second row and column are exact.

It remains to show that the first row and column
are exact. We will show that the first row is exact;
the proof that the first column is exact is essentially
identical,.

Let Y be in ¢*. Then p*(Y) is in ®%'P. Further-

more, since 7ppd(Y) = {pca(Y) = 0, we see that pa(Y) is

in 5;. Thus the sequence is exact at €%, Next, take X
in 5: to be in the kernel of va. Then obviously X will

be in sa,p. Conversely, let X be in SQ’p. Then X is in
35, 80 TG(X) = 0, and hence X is in the kernel of 1%

restricted to 3%, Therefore the sequence is exact at

Ji

§<, Finally, the sequence is exact at ga,p, since the

B

map is inclusion.i

Definition 1.20: Define the C'-algebra #%'? by
9P = ((1%,T%) ¢ 7% 0 7P | oX(T™) = F(TF)).

Proposition 1.21: There exists a short exact

sequence

B %P Y 298

0———»5.:('

—_— 0,

28




1(7) = (+%(1), 1P(1)).

Furthermore, this sequence has a linear splitting

99, P a,p

—_— R

P

defined by
(™. 1P) = p%(1%) « pP(rP) - (% PP (P
Py + pP(rPy - ¢ Fe%(1%).

Proof: Let T be in ?a’ﬁ. Then og1a(T) = cpvp(T),
S0 7 maps R P snto #5P, Next, suppose T is in Sd’p._
: Then VG(T) = 0 and vp(T) = 0, g0 T is in ker 7.
Conversely, suppose that T is in ker Y. Then T is in
ker 1% and ker 1?, whence T is in 9%*#, Thefefore the
sSequence is exact mt Ra,p‘ Clearly the sequence is

» since the map is inclusion. To show that

thé sequence is exact at ya,p’ it suffices to show that

the map p defined above is a splitting.

Choose (Ta,Tp) in #%9'#,  Then to show that p is a




fa

splitting, we must show that 1ap(Ta,Tp) = T and that

1Po (1%, 7)) = 1P,

1% (1%, 1P) = v“[ pX(T%) + pP(1P) - % PoP(TP) ]

%% (1) + 1%P(TP) - +F T PP (1P

T + 1%pP(1P) - 4% % AP (TP

The proof that 7ﬁp(Tq,Tﬁ) = 'I"‘3 is - gimilar.s

We make use of this short exact sequence by
identifying 1P a5 a more familiar object.

Proposition 1.22: g% A X(Ha'p].

Proof: We first show the ’a,p is contained in
K(Ra’p). Since p is a splitting, every element of g A

can be written in the form T - (p7)(T) for some T in

.ia’p. Now, operators consisting of finite sums and
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products of translations and the projections P% and PP

. o
are dense in R 1A

s 80 the operators T - p7(T), where T
has this form, are dense in g% B, Therefore, to show
that sa,p is contained in K[Ha’p), it suffices to show
that T - (pf)(T) is a finite rank operator for operators
T having this form. Furthermore, since pt is linear, it

suffices to show that T - p7(T) has finite rank for T of

the form

k
T = P¥pPM [ l l Q.M ]P“Pﬁ.
m.,n Jom,,n,
0°70 3=1 3

In this case,

K
- = p%pP -
T - (p1)(T) = P%P Mmo’no[ l I QM n
i i

k k k
I | o _ | | aph
Qij.,n. + Mm.,n. ]P P,
Jj=1 J g=1
k
Now, let 2% = E min {~umj + “j' 0}, and choose
j=0
(m,n) so that -am + n »%. Then the definition of A%




implies that the projection Pa makes no contribution in

{T - p?(T))(em;n). Therefore,

and

k
a —
Qjmm.,n.(em,n) - | I Mm.,n.(em,n)'
i=1 JJ 1 JJ

- [+ §
so (T - pv(T))(em,n_ = 0 when -am + n > -a",

Similarly, define Aﬁ = max {—pmj + nj, 0}, and
j=0
choose (m,n) so that -gm + n ¢ - Aﬁ. Then the

projection Pp has no effeet in (T - p?(T))(em ;y SO

ln)
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1]

and thus {T - pV(T))(em n) 0 for -gm + n « map.
]
Therefore, the range of T - p1(T) is contained in the
span of the 0 n that satisfy the inequalities
!

0 ¢ ~am + n ¢ A%

-aP

~-Bfm + n ¢ 0.

It is easy to see that since a and B are distinct,
there are only finitely many pairs of integers satis-
fying both inequalities. Therefore, T =~ pt1(T) is a
finite rank operator when T has the above form, and thus
for arbitrary X in ia,p, we see that X - prv(X) is
compact.

To show that 9%'# contains X(Ha'p), it is enough to
show that Ra,p' and hence sa,p, is irreducible., That

g% P is irreducible follows from the fact that §%'# is

irreducible [5] and that T%'f ¢ §%'P g




Proposition 1.23: ®%'F - g% #A

Proof: Since 1G(PaPpMPaPﬁ) = P*MP% for every
translation operator M, we see that 1% maps 798 onto
g%, Similarly, +P maps 7%P onto 9%, Let 9 be the
kernel of 1% restricted to 9%’?. Then we have the

commutative square

g, gBP

[+ [+*
R (.

where the horizontal maps are inclusions. Now, 9§ is an
ideal in ga,p and Vp maps ?d’p onto Tp, B0 vp(ﬂ) is an
ideal in 5p. Furtherhore, the commutativity of the
square above implies that 1p(9) is an ideal in ¢P. But
Cp is simple [2], so Tp(ﬂ) is either zero or all of Cﬁ:
It is easy to show that Tp(ﬂ) contains nonzero

p

operators, so 77 maps 9 onto ch. Next, [51 implies that
?a’p is irreducible, so 3 is also irreducible.
Therefore J contains all the compact operators, and we

have the following commutative diagram with exact rows:
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0 L , 9 , ¢P , 0
! | l
0 o X —, 9P , ¢P , 0,
[0 §

where the first and third vertical maps are the identity
and the middle vertical map is inclusion. Since the
first and third maps are isomorphisms, the Five Lemma
implies that the middle map is also an isomorphism, so

- qP
5 = Ha.

We now have another commutative diagram with exact

rows;

0 ;sg' K Sl L . L S
0 , 9P , RP 9% 0,

where the first and third maps are again identity maps
and the middle map is inclusion. A second application

of the Five Lemma yields g% A - g%1P g

Corollary 1.24: The following sequence Is exact:

gE. B 7 a,p

—_— —— O,

a
»

and has a linear splitting p : g% P _ 9Py
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This short exact sequence gives an index formula
for the Fredholm operators in the skew quarter-plane

Toeplitz algebra:

Theorem 1.25: An operator T in §%:P is Fredholm if
and only If v(T) iIs invertible in ya,p' or equivalently,
if ¥*(T} and 1P(T) are invertible in 9% and 9%,

respectively.n

It should be noted that the exact sequence above
remains exact when tensored by Mn(I), so the above index
theorem alsc applies to the matrix-valued skew quarter-

plaﬂe Toeplitz algebra.

There is one more exact sequence we will need when
we compute the K-theory of the various algebras

considered in this chapter:

PropontionlI.ZG: Let ¢*'P pe the commutator ideal
of the skew quarter-plane algebra %P Then the
following sequence Is exact:

L e%.B Y

- —
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Furthermore, the splitting P : &P — P

restricts to a splitting p : ¢ @ ¢P ____, ¢A

Proof: Take X in X, Then since X = 3; n 52) VG(X)
and 1”(X) are both zero. Since o%’'F - o%+1%= op1p,
oa’p(X) = 0, whence X is in ¢%'#, Therefore ¥ is
contained in ¢®'P ang hence the sequence is exact at X,
Next, choose Y in Cd’p. Then 0 = oa’p(Y) = cava(Y), so
19(Y) is in €%, similarly, 0 = o®'A(y) - 1P (v), so
?p(Y) is in CP, Therefore 7 maps ¢“*? into ¢ e cP,

Let us show that the sequence is exact at ¢ P 3¢

X is in ¥, then 7(X) = 0, s0 X ¢ ker (1' ). Con-
c% A

versely, let X be in ¢%'#8 and Y(X) = 0. Then since X is

. x ,
also in 7 A and since the sequence

y TP, g%P

is exact, it follows that X is compact. Therefore the
sequence is exact at C%’P, Finally, we must show that
the ¥ maps ¢*'P onto €% & ¢, This will fdllpw
immediately once we have established that the linear map

p: $%P | gB restricts to give a splitting from

¢ o ¢ to ¢%A,




Take (Ta;Tp) in ¢ ¢ CP, To show that p is a
splitting for the exact sequence in the statement of the

theorem, we need only show that p(Td,Tp) is in

¢% P - ker aa,p' since it has already been shown that 1p

is the identity map on #% P, But this is easy: since T%

is in ¢%, 1*(T®) = 0, whence
Ga’pp(Ta,Tp) = cava(Ta) = 0,

Therefore p is a splitting for the sequence, and

the sequence is exact at ¢ & ¢P.»

|
|
;
E
x




IT. K-theory

In this chapter, we will compute the K-theory of
the symbol algebra ?a,p. In the cases where at least

one of a and g is rational we will calculate the

K-theory of the other algebras as well, and we will show
that index is a complete stable deformation invariant
for Fredholm operators in g A, Finally, we will
discuss the case when both « and g8 are irrational, and
give some partial results on the K-theory of the various
algebras in this case. Throughout this chapter we use
[1] as a standard reference.

We begin by discussing the K-theory of the
half-plane Toeplitz algebra 7% and its commutator ideal
¢%. First consider the case when a = 0. It was shown
in [13] that 77 & 9 @ C(T), where 7 denotes the Toeplitz
algebra on the circle; the isomorphism is given by

PO. Now, to

sending PMkP ® X, to the operator POM

k,e
compute the K-theory of ?0, we need to know the K-theory

of T:




KO(T) & Z
Kl(ff) = 0.

The first isomorphism is given by sending the integer k
to the identity matrix in Mk(?). Henceforth, we will
refer to this situation by saying that K0 congists of
trivial projections, since the identity matrices in the
matrix algebras are the simplest kind of projections.

We alsoc have
KO(C(T)) = Z
KI(C(T)) = Z.

Now, KO(C(T)) consiste of trivial projections, and the

second isomorphism is given by sending an integer k to
[xk], where xk(e) = elke. We may therefore use the

Ktinneth formula.[IQ] to obtain

0
KO(? ) = KO(T ® C(T))

Ko(T) ® Ky(e(T))] @ [K,(5) ® & (o(T))]

41
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w0

Kg(T) ® K (C(T))

Z.

 [4

Just as in the case of 7 and C(T), KO(T) consists |

i

of only the trivial projections. |
|

We can also use the Hinneth formula to compute

0,.
K (F7):

Kl(?o) = K, (T ® C(T))

e

[Ko(i) ® Kl(C(T))] ® [Kl(?) ® K0<C(T))]

1

Ko(T) @ K (C(T))

= Z.

The isomorphism between Z and Kl(? @ C{(T)) is given
by sending the ipteger k to [I & xk]. Therefore, in the
case of K1(50), the integer k is sent to [POM(k'O)PO].

We can also compute the K-theory of ¢?. 1t is also
shown in [13] that the isomorphism between 50 and
7 @ C(T) restricts to an isoﬁorphism between CO and

X e C(T).

Therefore,
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[ 14
B

n”

KO(CO) = Ky(X ® C(T))

K, (C(T))

it

KI(CO) = K (X ® C(T)) = K, (C(T))

[ 14
B

Next, let « be a rational number and consider 9%,
Write a = %, where p and q are relatively prime, and
choose integers m,n so that pm + gqn = 1, Then the

matrix [g _i] gives an sutomorphism of ZZ, and this

automorphism defines a unitary operator on &2(22) that

induces an isomorphism between 7% and ?0. Therefore

o o, .
KO{? ) = KO(T ) = Z

o o, .
K. (T7) = K. (37) = Z.

In particular, the operator PM p% is a generator

q,p

for Kl(?a). Also,

[H

4 4 0
KO(C ) KO(C )y = Z

n

« 0, _
Kl(C ) KI(C ) = Z.

We make the observation that if a = % w, then we

can easily find automorphisms of 22 that induce




isomorphisms between 50 and 7*° and between Toand 7%,
so the K-theory of J** and ¢¥* is the same as that of 3° '
and ¢©.
Finally, consider the case where a is irrational.
Calculating the K-theory of c< and 79 is considerébly
more difficult in this case. It has been shown in [15]
and [28] that KO(Ta) consists of the trivial projections
and that Kl(?a) is zero. Also, it is shown that i

o, . pl [ S
KO(C ) & Z° and KI(C ) & Z.

We can use the K-theory calculations for the

half-plane Toeplitz algebras to obtain K-theory results
for the skew gquarter-plane Toeplitz algebra and the
various ideals we discussed in Chapter 1. For

simplicity, we shall assume that a < 0 < . We lose no

generality in considering this case for two reasons.

First, for any skew quarter-plane the calculations will

be essentially the same., Second, it is easy to check

that given any skew quarter-plane in Zz, there is always

an automorphism of 22 that takes the given skew quarter-

plane to one of the desired form.

Our calculations will break up into three cases:




CASE I: « and g both rational

Write a = B

, q

qQ>0, p<o0. 8
relatively prime and both positive. We begin by con-

sidering the short exact sequence

This gives us the following exact diagram in

K-theory:
Ky(X) —s Ko(ﬂg) —_— KO(CG)
I l
Ky (C%) e Kl(ﬂg) — K (X).
Now, we have pm + qn.= 1, so m and n are either

both positive or both negative. We will suppose that m
and n are both positive; the case where m and n are both
negative gives similar results.

We define operators

v Wwhere p and q are relatively prime and

. . o
imilarly, write g = 5 where r and s are




46

and define

=3
1

e
!

(I - AY(I - B).

S8ince I - B is in Ca, T is in (Ca)+, where (Cd)+ is the

algebra ¢Y with a unit adjoined. Furthermore, A is
unitary, B is a projection, and A and B commute, so it

is easily checked that T is unitary. Next, lift A and B

to

A = P%pPM p%pf
—4,;-p

B = p%pPM PN p%ph
m’n —m,-n

in 9%'#, Then T 1lifts to

end since (I -~ B) is in 9§ Furthermore,

T* lifte to the operator
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™ =1 - (1 - 2%(1 - B).

Direct calculation‘yields

- (1 - A*A)(1 - B).

Therefore, %* is injective, whence ker ¥* = {0}.
Also, ker %*% = ker % + Now, it is easy to check that
$*$(ex 0 if and only if the integers x and ¥

' ¥

satisfy the inequalities

0 ¢ ~ax + ¥y < am + n

and %*E (ex,y) = ex,y otherwise,

Consider the first inequality. If we write « as P

and multiply through by q, we obtain

0 ¢ -px + qy < pm + qn = 1,

Therefore,_-px + qy = 0, or ax = y.
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Now consider the second inequality. If we

sﬁbstitute ax Tor y, we obtain

02 (@ - g)x > -pq + p, i

or, since a - g is negative,

0 ¢ x < :Eg_i_g =

g -7 - O

Now, since y = ax = g X, we see that the only pair of
integers that satisfy both inequalities is x = y = 0. ? §

Therefore E is a Fredholm operator, and

A~

index T = dim ker T - dim ker TF = 1 - 0 = 1.

Since the connecting homomorphism from KI(CG) to KO(K). ; |
coincides with the index map, T is a generator of é

Kl(Ca). Moreover, the connecting homomorphism is an
isomorphism in this case. Since KI(X) = 0, the exact

diagram in K-theory above implies that

«
KO(Sp) & Z

a ol
Kl(ﬂp) = 0,




We can similarly write down a generator of KI(Cp) that

lifts to a Fredholm operator with index one, so
B
KO(SG) = Z
B
Kl(.‘}a) & 0.

Next, we calculate the K-theory of Ca’ﬂ. We have

the short exact sequence

0 . X L CUP L c%e P o0,
which yields the exact diagram

a; p a B
KO(K) — KO(C ) —— KO(C e C7)

| l

o' A a,p
Kl(C e C7) — KI(C ) —_—— Kl(ﬁ).

Consider the element (T,I) in (Cq @ Cp)+, where T

is defined as above. Then (T,I) lifts to % in (Ca’p)+,

and we have already observed that E is a Fredholnm

operator of index 1. Therefore the connecting

homomorphism from Kl(Cq @ Cp) to KO(X) is onto and has

kernel isomorphic to Z. Thus
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Ko (€%'P) « Ko (¢* o ¢P) & 27
Kl(c“'ﬁ) = Z.

Before we compute the K-theory of the symbol

algebra ya,p’ we need to know the K-theory of C(Tz):
Ko (C(T?) = Z & Z

K (C(T?)) = Z o Z.
-

In KO(C(TZ)), one copy of Z corresponds to the
trivial projections. The other copy of Z is generated
by the projection that corresponds to the complex line
bundle over T2 with chern class one [16]). As for
KI(C(T)), the two copies of Z are generated by [x1 0]

¥
and [XO,I]'

We can now compute the K-theory of #%2, Ssince

#9P s the pullback of 9% and 9P along C(Tz), we can
apply the Mayer-Vietoris sequence in K-theory [20] to

obtain the following exact diagram:

50
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Ko (#TP) — k(5% o Ko(9F) —— KO(C(TZ))

| |

KI(C(TZ)) — K, (T%) @ K (TF) K, (#%F).

Consider the map from Ko(?a) ] Ko(ﬁp) to KO(C(TZ)).
The elements of KO(TG) and KO(TP) consist of trivial
projections, and thus the map from KO(TG) ® KO(?p) to

KO(C(TZ)) maps onto the trivial projections. Combining

this fact with the calculation of KO(C(TZ)) above, we

see that K1(§G’p) contains at least a factor of Z, and

there is also at least one factor of Z in Ko(fa’ﬂ).

Next, consider the map from Kl(?a) ® KI(TP) to

Kl(C(Tz)). The operators Py pe

and PﬁM Pp are
s,r

*

generators of KI(TG) and Kl(?p), and these operators map

q,p
fx ] generate a proper subgroup H of KI(C(TZ)), 80

to and respectively. I eral and
X Xg, ! pec y n general, [xq,p]

s,T
K (9%'P) = Z o 2/H.

Moreover, it is easy to check that since a and B are

distinct, the map from Ki(?a) ] Kl(ﬁp) to KI(C(TZ)) is

injective, so

K1($“'p) z Z.
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Finally, we will calculate the K-theory of the skew g
guarter-plane Toéplitz algebra Ta'p. We have the short

exact segquence

and the exact diagram

o, B o, B
Ko (X)) ——— Ko (3 ) — K, (f )

I l

Kl(:r“"") -— Kl(a'“"’) —— K (X).

Let T and T be defined as above. Then (T,I) is an
invertible element in #%'F that lifts to T e 3“’9, and
we have shown that T is a Fredholm operator with index

one. Therefore, the connecting homomorphism between

Kl(fa’p) and KO(%) is an isomorphism, whence

a,p a, p Z
KO(I ) = KO(? )2 Z @ /H

Kl(Ta’p) = 0.




CASE II. a rétional and g irrational

We begin by considering the short exact seguence

and the exact diagram

24 o |
KO(X) —_— KO(SP) —— KO(C )

] 1

o [+ 4
Kl(C ) — Kl(Sp) — K, (X).

We define T in the same fashion that we did in Case I;

again T lifts to a Fredholm operator % with index one.

Thus

- SO @
KO(Sp) = K, (C7) = Z

o
Kl(ﬂp) = 0,

Next consider the short exact sequence
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and the exact diagram

Ko(8%) —— Kg(30F) & (9F)

: A (g% A a

Kl(ff ) h———-—Kl(g ) c_-—Kl(ﬂp)o
Since B is irrational, Kl(Tp) # 0, Furthermore, we

showed above that Kl(ﬁz) = 0, so both connecting

homomorphisms.are zero. Therefore
a’p ~ a p s 2
KO(T ) = KO(Sp) @ K0(5 y = Z
a,p a B
Kl(? ) o= Kl(ﬂp) @ KI(T y = 0.
Next, consider the short exact sequence

g% L, 0

P . g, A
0 —_ Sa . T
and the exact diagram
i a,p «
KO(SG) —_— K0(5 LAl TN KO(? )

I !

a a,p A
Kl(fr ) 1———-—K1(T ) «—-——KI(SG).




The group Ko(ga) consists of trivial projections, and it

is easy to see that KO(?a’p) maps onto KO(TG). We
combine this observation with the calculation of the
K-theory of 792 above to obtain
g 2
Ko(ﬂa) =z Z

J
Kl(Sa)

We now compute the K-theory of ¢%'#. We have

short exact sequence

and the exact diagram

a,p o i
KO(S() — KO(C ) — KO(C e CM)

T l

a B a,p
KI(C e C7) c———Kl(c ) 1———-—1{1(5().

Again consider the element (T,I) in (C"'I @ Cﬁ)+. As

+

above, (T,I) lifts to T in (Ca'p) , and T is a Fredholm

operator of index one. Therefore the connecting




i
t
i
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homomorphism from Ki(Ca @ Cp) to KO(X) is onto and has

kernel isomorphic to Z, and hence )
Ko (P w K (¢® o ¢#) & Z°

Kl(c“'P) x Z.

Finally, we compute the K-theory of the symbol

space #“'#.  The short exact sequence

yvields the exact diagram

o, p a,pB
KO(K) _—y KO(? ) — Ko(i }

. 1 |

x, B a,p
Kl(f ) e—— Kl(T Y — Kl(K).

Let T be defined as above. Then (T,I) is an

invertible element of ya,p that lifts to a Fredholm

-
[1)]

operator of index one, We have shown that Kl(ﬁa’p)

zero, so




e By o, 2
Ko (97 F) = K (9%F) « 2%,
K, (#9P) « K (X) = Z.

Before we consider the case where « and A are both
irrational, let us make some definitions and
observations. First, we note that the algebra g% P can

be imbedded in any of its matrix algebras Mn(?a'p) by

putting gOA in the upper left hand corner of Mn(?d’p).

With this identification, we make the following def-

inition:

Definition 3.1: Let S and T be Fredholm operators
in 7%, If there exists a positive integer n and a
path of Fredholm operators in Mn(Ta’p) connecting S and
T, then S and T are said to be stably connected by

Fredhoim operators.

It is clear that a necessary condition for S and T
to be stably connected is that they have the same index.
We have shown that in Caseg I and II above, Kl(fa’p) is
isomorphic to Z, and that isomorphism is implemented by
the index map. Therefore, the index condition is not

only necessary, but sufficient as well:
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Theorem 3.2: Let a and g be distinct numbers, at
least one of which is rational. Then index is a
complete stable deformation invartant for Fredholm
operatqrs in the skew quarter-plane Toeplitz algebra
?a,p; t.e., iIf S and T are Fredholm operators in ja,p,

they are stably connected by Fredholm operators if and

only if S and T have the same index.m

This theorem holds not only for Ta’p, but also for

the matrix algebras over 5a,p.

CASE III. a and g8 both irrationsl

Finally, let us consider the case where a and B are
both irrational. We begin with the K-theory of the
symbol space fd’p. When & and g are irrational, then
KO(?a) and KO(Tp) consist of trivial projections and
Kl(ﬁa) and Kl(ﬁp) are both zero. It is therefore easy

to see from the Mayer-Vietoris sequence that




as By
KO(f ) = Z

4
B

Kl(.‘)ﬂa’p)

Calculating the K-theory of the remaining algebras
is considerably more difficult. The difficulty lies in
in producing an invertible element in (CG)+ that gen-

erates Kl(Ca). Now, we have the short exact sequence

0 , & , 79 , C(T?) ——— 1, 0

and the exact diagram

o o 2
KO(C )} ——— KO(T ) KO(C(T M)

I |

K (C(T)) e K (5% e &, (¢%).

The connecting homomorphism from KO(C(Tz)) to
Kl(Ca) maps the projection corresponding to the complex
line bundle with chern class one to a generator of
Kl(Ca). It is possible to actually write down this
projection in KO(C(Tz)), but the expression for it isg so
complicated that producing a generator of KI(CG) in this

manner is infeasible. The inability to explicitly
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produce such a generator makes it impossible to analyze
the connecting homomorphism between KI(CG) and KO(X)._
We encounter the same difficulties in considering tle
connecting homomorphism between Kl(fa’p) and KO(X). If
one of these connecting hbmomorphisms is an isomorphism,

80 is the other, in which case |

o 2
KO(Sp)  Z

K (9%P) « 28

a

Ky (95

) & Kl(ia'p) = 0.

On the other hand, if one of the connecting homo-

morphisms is the zero map, so0 is the other, and then

a$Q L 3
KO(Sp) = Z

K (T%F) & 2*

- a,p
K (9 = K (5%F) « 7,

There are, of course, other possibilities for the




connecting homomorphisms, but it seems unlikely that

they could occur. We will have more to about this in

Chapter 5,




IIT. Cyclic cohomology

In the introduction, we asked the following quest-
ions: When is an operator in g% P Fredholm, and if T in
g% P g Fredholm, what is its index? We answered the
first question in Chapter 1, where we established
criteria for an operator in g% A to be Fredholm., 1In
this chapter, we answer the second question. We use
Connes's cyclic cohomology fo construct an explicit
index formula for many operators in g% P Throughout
this chapter we shall assume for concreteness that
a < 0 < g; as we have pointed out in previous chapters,
no generality will be lost in making this assumption.

An index theorem for Fredholm operators in io’w was
given in [6]; the theorem uses the existence of certain
operator-valued homotopies in the symbol algebra fo'w,
and these are in practice difficult to produce. Pre-
sumably this theorem generalizes to arbitrary skew
quarter-plane Toeplitz algebras, but we seek an index

formula that is easier to compute. We use Connes's
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cyclic cohomology to produce the desired index formula,
and we begin by outlining those aspects of cyclic

cohomology that we need.

Definition 3.1: Let A be a normed algebra with
unit. For n > 0, let C?(A) denote the A-module of
{n+l)-linear continuous complex functionals ¥ on A such
that

P(al

2 0 1
8%, .,ah8Y) = (-1)"(a%,al, ... ,a"),
and for n < 0, define CJ(A) to be zero. Also, define

the graded A-module

X _ n
Cl(A) = E c(a).
neZ

Definition 3.2: Let A be a normed algebra with
unit. The graded A-module homomorphism b on C:(A) is

defined by
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(br)(al,al, ... a1y

n-1

z ?(ao,...,aJaJ+1,...,an+1) +
3=0

(—1)n?(an+lao,al,...,an)

for n > 0, and b is the zero map for n < 0.

One can check that b2 = 0, and we can therefore

consider the cohomology of the complex (C:(A), b).

Definition 3.3: H:(A) is the cohomology of the

complex (C:(A), b).

These are Connes’s cyclic cohomology groups

{actually, Connes takes a direct limit to obtain two

even odd

groups H (A) and H (A), but it is simpler for us to

work with the groups H?(A)). The study of the groups

H?(A) naturally splits into the cases where n is even

and where n is odd. It is the odd case that concerns
us,'since it will be the case that will yield our index
formula. Therefore, we shall restrict our discussion to

the odd case, specifically the case n = 1.
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We can construct elements of'Hi(A) in the following
manner. Let ¥ be a Hilbert space, and let p be a
continuous (not necessarily unital) linear map from A
into L(%X) with the property that pixy) - p(x)p(y) is a
trace class operator. Such a map is called an almost
multiplicative map. We can associate to p a cyclic

l-cocycle 7 defined as follows: |

r(ao,al) = Trace (eo - el),

p(a’aly - p(ao)p(al)

10 1 0
pla’a”) - pla )p(a).
We would like to produce a cyclic l1-cocycle in this
manner for the symbol algebra ya,p' Consider the

following short exact sequence from Chapter 1:

» JUR | g%P

We showed that this sequence has a linear splitting p

from ya,p to %P ¢ L(Ha'p), and therefore for all X and
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Y in ya,p, P(XY) - p(X)p(Y) is compact. Unfortunately,
in this generality, this is the most we can 8ay; |

P(XY) - p(X)p(Y) is not always a trace class operator.
We will get around this problem by restricting our
choices of X and Y to a dense subalgebra ?:’ﬁ of %P E

which we will define presently,

Definition 3.4: An operator T in §%'# of the form

where each Qj is either Pa, Pp, or PaPp, is called a

finite product.

We recall some definitions from Chapter 1;

Definition 3.5: Let T be a finite product written

as in Definition 3.4. Then define

A%(T)




P -
ATA(T) max { /3:11‘j + Ny, 0}.

0

"
I~ ™

A(T) = max (1, a%(T), AP(T)}.

Definition 3.6: ?i is the collection of operators

T that can be written in the form

where each Tk is a finite product, and where the

sequence {ok(A{Tk))z} is absolutely summable.

Note that in particular the sequence (ck] is

absolutely summable, and since each finite product T

k 1‘

has norm 1, the infinite gum above is well defined.
. a,p
Proposition 3.7: T is an algebra.

Proof: Clearly Tg’p ig closed under addition and

scalar multiplication. The only nonobvious point to
check is that T:’ﬁ is closed under multiplication.

Let S and T be finite products. Then it is easy to




see from the definition of A% and A2° that

A% (sT) = A%(s) + A%(T)

AP(sT)

"

AP(sy + AP(m),

and therefore

A(ST) ¢ A(S) + A(T).

Now let § = b&S6 and T = cka be in 5g’p. Then
&=0 k=0

oo o0
ST = E }. b,c,8,T)
2=0 k=0

2 > Ibgey ] tats,T, )2
¢=0 k=0

o0 o0

<y > Ibeiltats,) + at, 12,
=0 k=0
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E l} b, [ (a(s,))? §|b |§ ey | (a(T) )2
k=0 =0 k=0

=0

<0 o0
+ 2 } b, |4(s,) E ley [4(T, ),
=0 k=0

which is finite. Therefore ST is in ?2'p, as desired.na j

Lemma 3.8: Let T be a finite product in g% B ‘

Then T - p1(T) is a partial Isometry.

Proof: Since T is a finite product, T can be

written in the form

T = p%pPy

Therefore,

p1(T)




Note that each of these summands must either
annihilate a basis element €, p °r map it to the basis

element e where

M,N’

Moreover, note that each of the four summands above
contains the same translations; only the projections
that appear in each term differ. Therefore, if two

summands do not annihilate & basis element, they must

each map that basis element to the same place.




Suppose fhat (m,n) is a pair of integers for which

ta’paa'p(T)(em n) = 0. Then it is clear that the other
»
three terms in the sum above also annihilate €n . n! S°

¥

(T = p7(T)) e, ) = 0.

Now suppose fa’poa’p(T)(em n) is not zero.

r
consider several cases.

Case I: paTa(T)(em’n) = 0, vap(T)(em,n) -

Since pava(T)(em n) = 0, it is clear that
H

ta’pca’p(T)(em n) = 0 as well. Therefore,
- H

(T - p7(T)) (e

]

Case II: p%r™(T)(e_ RIERT ppvp(T)(em £ 0.
H

]n)

Just as in case I, pava(T) annihiliates e

ta,pga

’

’ﬂ(T) must also annihilate en n' and thus

{T ~ pT{T))(em’n) = eM,N

Case III: pa7d(T)(em n) £ 0, ppvp(T)(em n) = Q.

’




Thig case is essentially the same as case I1;

pPrP(T) (e,

since

= 0, gdspaaxﬁ(T) -

n) = 0 also. Thus, |
?

(T - pP1(T)) (e, )

N

n
sz
=
|
0
¢
L)
+
=]
1]
it

Case IV: pava(T)(em 2) %0, pﬂvp(w)(em L) %o,

If neither of these terms annihilates - then
L

the expressions for these

the projections that appear in

two terms are unnecessary. However, gsince these

projections are the same ones that appear in

ga’pca’p(T), this term will not annihilate en . n either.
y

Therefore,

(T - PIT) ) (e M,N M,N M,N * ey,xy = 0.

Thus in each case a basis element e is either

'

annihilated or mapped to a basis element by T - p1(T).

Therefore T - p7(T) is a partial isometry whose initial

space is the space spanned by the e nwhich are not
r

annihilated.n



Lemma 3.9: Let T be a finite preduct in 5a'p. and

let 1 "1 denote trace norm. Then

T - p1(T) ¥, ¢ C A(T)z,

1

where C is a constant depending only on a and p.

Proof: Since T is a finite product, we may write T

in the form

12

T = p%pPM [ I , Q.M ]P“Pp.
LN P Jmgn,

J=1

The previous lemma yields that T - PYI(T) is a
partial isometry, so [T -~ pPI{TYIIT - p?(T)}* is a

projection onto the final space of T - pY{(T).

Therefore,

T T - pv(T)_u1 = (T - pv(T))* ||1

trace ([T - p7(T))IIT - pr(T)1%)

dim ran (T - pYI(T)).




The dimension of the range of T -~ p7(T) is the
number of em,n such that (T - pv(T))(em,n) # 0, and we
noted in Chapter 1 that this number is bounded by the
number of pairs of integers (m,n) that satisfy the

following two inequalities:
0 ¢ -am + n ¢ Aa(T)
—Aﬂ(T) ¢ =-fm + n ¢ O,

On one hand, we can combine these two inequalities

to obtain

0 < (p - aim ¢ a%(T) + AP(T),

so the number of different possible values of m that can

appear in a solution to the inequalities is bounded by

A%(Ty + AP(T)
J

+ ].I

On the other hand, we can also combine the two

inequalities to obtain

arP(T) ¢ (5 - a)n ¢ pa%(T),




80 the number of possible values of n that can appear in

a solution to the inequalities is bounded by

2 AYT) - aaP(T)

& + 1.

Hence, the total number of possible solutions, and

hence the dimension of T - P1(T), is bounded by

A%(T) + AP(T) Br%(T) - aaf(T)
[ L+ 2 +1” ) -2 +1].

We get the bound in the statement of the lemma by
recalling the definition on A(T) as the maximum of 1,

A%(T) and AP(T).n
Definition 8.10: #%'F = 4(7%4),

Proposition 3.11: Let X and Y be in ?i’p. Then

P(XY} - p(X)p(Y) is trace class.

Proof: Choose operators § and T in 52’” such that

7{8) = X and *(T) = Y. We first consider the case where

S and T are both finite products. Now,
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PIXY) = p(X)p(Y) = p(1(ST)) - p(7(S))p(1(T))

= SIT - p1(T)) + [S ~ pv(S)}p7(T) - [ST - p7(ST)].
Therefore,

h p(XY) - p(X)plY) Wy & W8 N T - py(T) iy

+ 08 - pr(S) n.n T h, *+ B ST - pv(ST) 1

1 1’
Using the fact that n S Hy = W i, = 1, along with the

estimate from Lemma 3.9, we obtain
2 2 2
I p(XY) - p(X)p(Y) Wy € CLA(S)™ + A(ST)® + a(T)“].

Thus p(7(ST}) - p(7{(8))p(7(T)) is a trace class

operator, and is in fact a finite rank operator,
L] o
Now, let § = E baSc and T = z cka be operators in
" £=0 k=0

T:’p, where the 8, and Tk are finite products. Since P

and 7 are linear,




P(YT(ST)) - p(¥(8))p(1(T))=

-} &

> > bola(i(s,T)) - P(1(8,))p(1(T))],
€=0 k=0

and therefore

op(XY) - p(X)p(Y) h, <.

o0 o

.2 § [beeih p(7(S,T)) - pla(s,))pta(T)) 1,
e=0 k=0

cc S > by ltats,)? 4 a(s,m)% + arry)?).
¢=0 k=0

Now, since A(SeTk) < A(Se) + A(Tk) for all ¢ and k,
the above sum is finite, and therefore p(XY) - p{X)p(Y)

is a trace class operator.s

The proposition above shows that p yields a cyclic
l1-cocycle on $g’p. We now consider how such a cocycle
will enable us to compute the index of Fredholm

. o4
operators in %'8,




One of fhe most important features of the group
H:(A) is that there is a bilinear pairing < , > of H}(A)
with KI(A}. Let u be an invertible element of A, let p
be an almost multiplicative map, and let 7 be the cyclic

l-cocycle associated to P+ Then
< {ul}, [71 > = index p(u},

where [u)] denotes the class of u in KI(A) and [r1]

denotes the class of 7 in Hi(A). In the case we are

considering, the pairing is particularly simple:

< [ul,[7) > = 7(u - 1, w1 1),

If addition, p is & unital map, as it is
case, the pairing is

¢ [ul,[7] > = r{u,u”}

).

It is this result that we will use to obtain our index
formula. |

Let T be an operator in the skew quarter-plane
Toeplitz algebra 9%'#, Then it is easy to see that T

and p71(T) differ by a compact operator, so T is Fredholmn




if and only if pr(T) is. Moreover, if T is Fredholm,
then T and p7{T) have the same index. Therefore, to
determine the index of T, it suffices to compute the
index of p7(T). Combining the pairing above with the

definitions of p and 7, we obtain the desired index

formula:

Theorer 3.12: Let T in 9%'P be a Fredholm operator
such that 1(T) and T(T)-J are in %' Then the index
(-]

of T is given by the following formula:

Index T = Trace[p(vfrj)p(vfrj‘lj - p(v(rj'l)p(v(r))}u.

We will have more to say about this index formula
in Chpater 5, but we also make some remarks here.
First, the class of Fredholm operators we consider above
is not the largest class for which this formula will
work. However, the above formule applies to many cases
of interest. Segond, this index formula will also give
the index of matrix Toeplitz operators, where the trace
in the above formula is taken to be the ﬁsual matrix
trace. Finally, this index formula gives the index of

Fredholm operators in 5z’p for all values of a and g.

However, when a and g are both irrational, it is not




known if there are any operators of nonzero index, 8o in

this case the index theorem may turn out to be

uninteresting.
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IV. Examples

We now use our index formula to compute the index

of some specific Fredholm operators.

EXAMPLE 1

Let o be rational and negative, and let B be
positive number, rational or irrational. Write e
with p and q relatively prime and p < 0 and q > 0.

Also, choose positive integers r and s, Then let

T = P*pPPu_ _p%pP
q,p

POPPM__ _ p%pR,

b b

(I - pP%pPM_  p%pP)p%phy
q,p : 8
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1901) = P'M_ P 4 (1 - POy PYyP%M  p%M p%,
gq,p q,p 8, -8,~-T

It is easy to check that Pan pPa is a unitary operator
H |

!
in 7% and that P®M_  P% commutes with PM Py pY, |
q,p S, I ~-8,-r
80 1G(T) is invertible with inverse |
|

1%(1)~1 = py PY 4 |
~q,-p f

(I - PM PY)p%M P p<, !

qQ,-p s, -s,-r |

We also have

1P(1) = P o,

Therefore, 7(T) is invertible, so T is a Fredholm
operator. We will now use our jindex formula to compute

the index of T,

PUITY) = p2(1%(T)) + pP(aP(T)) - (%P (T 1B (1))

= p%pPy_ pYpP 4

' P

(I - P*PPu_ p%ph)p%phy  pOy p%p?,
q’p ,r —S,—I‘
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and
plr(m)™l)y = p¥pPy_ I |
(I- PaPpM_q’_pPaPp)PaPpMs’rPaM_s,_quPp. :é
Next, direct computation vields that
P Nyp(a(Ty) = 1
PLY(T))p(1(T)™Y) = 1 - 4p,
where
A= PPPPu_ (1 - p%phyy pph
a,p ~q, -
B = PP (1 - PHm_ _ PP, |
Therefore,
POTNA(I(TI™YY - p(r(T) yp(r(T)) = - 4B,

It is easy to check that this is a finite rank

projection, and e n is in the range if and only if the
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rair of integérs (myn) satisfies the inequalities
0 ¢ -am + n < -a8 + p
0> -pm + n > -Bq + p.
We therefore have from our index formula that the

index of T is minus the number of pairs of integers

(m,n}) that satisfy the inequalities above.

To make this example more concrete, let q = 1,
P=-1, =1, and s = 2. Then a = -1. Also, let
B = V2 . The above inequalities become

0 ¢m+n < 3

0> ~m/ 2 +n > - <2 -1,

Direct calculation yields that the only pairs of

integers that are solutions to the inequalities are

(0,0), (1,0}, and (1,1). Therefore, the index of T in i

this case is -3,
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EXAMPLE 2

Let a be rational and negative, and let g be any
positive number, rational or irrational. Write o = =,

with p and q relatively prime and p <0, > 0. Also,

choose positive integers r and s. Then let

T = p%pPM Py p%ph , lp%phy p%ph
S, T -s,-r b3 -




o0

Piryl = S (g)-n pB :
1P (r)~t = 2 -2)7" P P

n=0

Both Tq(T) and 1p(T) are invertible, so T is

Fredholm, Néxt,

. (44
p(1(T)) ~q,-p"

p(rimy™ly = 21 - p°pPM, P%M__ _ P¥pP)p%py

s T ¥ q,p

Therefore,

POUTNAI(TI ™Y = p(r(m)™Yp(r(1)) = aB,

p%pPM
q

(I - P9pP)m_ p%pP

' q,-p

PaPpMS AT - P%)m ppP

] "'S,"I‘

Just as in the Example 1, we have a finite rank
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projection, and €n o n is in its range if sand only if the
]

pair of integers (m,n) satisfies the inequalities
0 ¢ -am + n< -as8 +
O > -pm + n » -Bg + p.

We therefore have from our index formula that the index
of T is the number of pairs of integers (m,n) that

satisfy the inequalities above.

EXAMPLE 3

As we mentioned earlier, we can also consider skew
quarter-plane Toeplitz opérators with matrix-valued
symbols. Let a = g, with p < 0 and q > 0, and let B =
with r and s both positive. We also assume that P and

and r and s are relatively prime. Now, define

p¥pPy p¥ph - P%pPy p%ph
mg,mp ns,nr

p¥pPy p%ph P¥pPy PopP |,
-ns,-nr -mq, -mp ]
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Then

| [« p< p< a ]
mg,mp ns,nr
1%(T) =
PoM p® p* @ |
| -ns,-nr -mq, -mp 4, i
and 1%(T)"! =
|
[ 1_« o 1_« o) !
AL M—mq,-—mpP 2P Mg, nr I
(lPaM Sy p* _ I)PaM a lpa o
|'2Z" “ns,nr -ns,-nr -ns,-nr 2z mq,mp |
Also,
[ pA P - PPy pP ]
mg , mp ns,nr |
7P(T) = i
| -Nng, -nr -~=mq,~mp _'
o
|
and 1P(T)~! |
i
[
[ 1.8 p By ph s 1,5 ' |
(I - 5P ns,nrP M hs,-nrF P M-mq,-mpP Z ns,nrP |
- lphy pP 1phy pf
i 2 -ns,-nr 2" "mq,mp




Therefore, T is a Fredholm operator. To find the

index of T, we compute

p¥pfy p¥ph - P%pPy pYpf
mg,mp ns,nr
p(1(T)) =
p¥pPy p%p# p%*pPy P%pP |,
I -ng,-nr ~mq, -mp J
and
: i
X %PaPpM p¥ph
ns,nr
-1
p{Y(T) ") =
Y 10p8y pP%pP |,
_ mq, mp ]
where

_ _ loaop a B (= S . Y. a_ps
X = (I EP P Mns an P™M_ rP PT)P P M PP

’ —-ng,-mp -

nS,—n

L
1

(%PGPPMHS

H

o p Sy oL p a,p
nrf PM_pg e PPP - DP%PPM_ PopP,

Then p(1(T))p(v(T)" 1) =
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where
A = (I - P%pPy PepPy p%pP)
mg,mp ~mng,-mp
B = (I - p¥pPy p%pPy p%ph) .
Also, p(T(T)_l)p(v(T)) = I. Therefore,

Trace [p(v(T))p(v(T)"1> - p<v<T>‘1)p<v(T)>]
= - Trace AB.
In particular, if we let o = 0 and g = o, then the

trace of AB is easily seen to be mn. Therefore, in this

case, the index of T is -mn.




V. Open questions

In this chapter, we consider some open questions
and discuss in greater detail some of the points brought

up in the previous chapters.

1. Is there a more direct way to show that ®*'? ang
g% A are the same algebra? When we first defined ?a,p'
we believed that it properly contained the skew quarter-
plane Toeplitz algebra, inasmuch as there are many

operators in ®%'# that do not seem to be in 7% A8, For

example, as we mentioned in Chapter 1, operators of the

a_p o '
form PP Mk’&P Mm

all obvious why these operators are in 3a,p, especially

nPaPp are in ?a,pr but it is not at

¥

in the cases where « and B8 are both irrational. 1In any
case, the fact that these two algebras are the same is
somewhat mysterious, and it would be desirable to have &

more direct explanation of this fact.

91
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2. ;s there‘another description of 5: and Sg ? It
seems to us that these two ideals should be represented
s commutator ideals of some sort. Such a description
would perhaps be helpful in understanding 7%'# jip the
cases where o and g are ifrational. It also seems
likely that understanding the connection between
foliations and skew quarter-plane Toeplitz algebras will

hinge upon a better understanding of thesge ideals.

3. What is the index theory of g% P when a and B are
irrational? Understanding the index picture in this
case amounts to identifying the index map between
Kl(fa’p) and KO(K). As we mentioned at the end of
Chapter 2, it seems likely that the index map here is
either an isomorphism or the zero homomorphism, Perhaps
it is even possible for the index map to be something
else, but this possibility can almost be discarded on
metamathematical grounds. It may also turn out that the
index theory of 3a,p is not the game for all-irrational
numbers a and g. For example, we might get different

index results when a and £ are rationally dependent than

when they are not.
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4. Is the aigebra fi’p closed under inverses? As it
now stands, our index formula requires one to check that
a Fredholm operator T in %A has the property that both
(T} and 'r(T)-1 are in ?i’p. While this is not terrible
drawback, we would prefer to know that if X is in ig’p
and X is invertible in #%'#, then x~! jg in Qi’p as
well., To show closure under inverses, it would suffice
to show that f:’p is closed under the holomorphic
functionsal calculus. Knowing this would also imply that

the inclusion map from fi’p to #%1A induces an

isomorphism in K-theory between these algebras [8],.

5. Is the construction of the cyclic cocyle on f:’p a
special case of a more general construction? To our
knowledge, no one has constructed a cyclic cocycle in
the manner which we have. All other cyclic cocycles
arise in connection with elliptic operators or in some

other geometric context, but in our case, these

connections seem to be missing.

6. 1Is there another representation of g%+ F which allows
one to answer some of the questions above? In the case
of the half-plane Toeplitz algebra, one can define a

"real valued" index by representing the algebra as a
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Toeplitz algebra of translations on the real line. The
success of this approach suggests that it would be
fruitful for us to find an alternate representation for
g% A, We suspect that the index theory of g A when «o
and B are irrational could be better analyzed this way.
We also believe that an alternate representation of #%'A
would allow us to either show that $:’p is closed under
the holomorphic functional calculus, or else find
another dense subalgebra of #%°# that is closed under
this calculus and for which our cyclic cocycle is

defined.

7. How can the skew quarter-plane Toéplitz algebra be
used to study foliations on the torus? The relationéhip
between the half-plane Toeplitgz algebra and foliations
by lines on the two-torus isg discussed in [9]. The
existence of this relationship suggests that perhaps the
skew quarter-plane Toeplitz algebra provides a method of
studying the case of two transverse foliations on the

torus,

8. Can the skew quarter-plane Toeplitz algebra be
generalized to study foliations on manifolds other than

the torus? 1In the case of the torus, the subspaces onto




which we project to get the half-plane Toeplitz algebras
arise from the positive eigenspaces of differentiation
along the leaves of a foliation. It would be
interesting to try to define Toeplitz algebras for
foliations on other manifolds and see if the 51gebras
provide invariants for these foliations. 1If so, the
skew quarter-plane Toeplitz algebra should generalize in

the above manner for manifolds that admit two transverse

foliations.
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