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Abstract of the Dissertation

On the Global Geometry of Complete Open

Surfaces of Nonnegative Curvature

by

Donald C. York

Doctor of Philosophy

in
Mathematics

State University of New York at Stony Brook
1988

‘In this dissertation we will work with a complete open
manifold M of nonnegative curvature. We present a detailed
study involving various quantitative aspects of the global
geometry of rays and arbitrary geodesics in M, primériiy in
the case of surfaces. Our results extend and build on the
pioneering work of S. Cohn-Vossen as well as the basic ideas

in the qualitative structure theory for such spaces given by

J. Cheeger, W. T. Meyer, and D. Gromoll.

Our most important tool is the Busemann function

‘B:M +~ IR associated with a ray r, B(Q)} := limit-p(r(t),Q)],

s




where p is the distance function on M. B is convex (hence
continuous), but not necessarily differentiable. However,
the singularities have an interesting geometry.

On a surface, it is a basic problem to understand how
an arbitrary geodesic g behaves near infinity. We introduce
a concept of asymptotic "winding" and discuss various results
in this direction. For example, all gecdesics have finite
winding for total curvature less than 2wn. If the total
curvature eguals 27, the situation is more subtle.

Given r and B, we obtain a family of rays associated with
B, called B-rays, which pass through every point of M. We
develop the relationship between the B-rays and arbitrary
geodesics. Restricting our attenticon to surfaces, it seems
very important to analyze what happens at singularities of
B. We introduce the notion of a B-wedge, i.e., a region W
bounded by two B-rays which meet at their common initial
point. We discuss the total curvature of W. Given that

a .= {p e M|B(P) s a}, we study its boundary 9B% (which

B
is called a "horosphere") by using the geometry of B-rays

and B-wedges. Making strong use of all the preceding work
we prove a main result: The B? are compact if and only if

the total curvature of M is greater than n. In fact, we

arrive at more delicate conclusions.

iv




Finally, we consider two rays r,r and their associated
Busemann functions B,B, respectively, in the case of total
curvature equal to 27 . We show that B and B are "asymp-

totically equal," i.e., the angles between the B-rays and

g—rays become arbitrarily small far enough out.




This dissertation is lovingly dedicated to my

parents, Barbara and Charles York, and respectfully

dedicated to my advisor, Professor Detlef Gromoll.
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Chapter 0. Introduction and Preliminary Observations

Introduction

This dissertation deals with manifolds M (primarily
surfaces) which are complete, noncompact, and have non-
negative curvature. Recall that a ray is a unit speed
geodesic r : [0,») - M such that r minimizes distance
between any two of its points. On a complete, noncompact
manifold M there is at least one ray through any point P & M.

Associated with any ray r is a Busemann functicon B : M+ IR

L

given by B(P) := lim{t - p(r{(t),P)], Pe€ M, where p is the
o

distance function on M. Such a function B has many nice

properties, but it is not necessarily differentiable. Several
authors have studied M by "smoothing out™ B: C* Approxima-

tions of Convex, Subharmonic, and Plurisubharmonic Functions

(1979), by R. Greene and H. Wu. But as we shall see, some
interesting geometry occurs at the singqularities,

We begin by developing results about two types of rays
associated with a given ray r: the flow lines of the
Busemann function B associated with r, and rays "induced"
by r through a type of variation. It is seen that these two
types of rays quite often coincide, and the dual interpreta-
tioh of these rays is exploited throughout the paper.

An important geometric question concerns the asymptotic

behavior of arbitrary geodesics. A notion of "winding” is

introduced for surfaces, and a necessary condition for the




existence of "infinitely winding" geodesics is established.

The level sets B_l(a), a € R, are known as horospheres.

One encounters horospheres in Lobachevski's Geometrical

Researches on the Theory of Parallels (19840), where they

occur as flat planes isometrically imbedded in hyperbolic

3-space. An important recent paper employing the sets

B® = {p ¢ M|B(P) = aj, a e R, is On the Structure of Complete

Manifolds of Nonnegative Curvature (1972), by J. Cheeger and

D. Gromoll. It is proved there that the sets Bé are "totally
convex sets," i.e. given any two points in the set, and any
geodesic segment joining these two points, the geodesic
segment is also contained in the set,.
One of our main results in the case of a surface M, is
to establish a connection between compactness of the sets
B® and the total curvature C(M) of M. Specifically, the B?
are compact if and only if C(M) > 5. (See the appendix for
an intuitive motivation in the case of smoothed-out cones.)
Finally, in the case of a surface with C(M) = 2y, we
compare the flow lines associated with two different Busemann

functions, and find that they are "asymptotically equal," i.e.

the angle between the two families of flow lines becomes

arbitrarily small sufficiently far out.




Preliminary Observations

We will freely use facts from Riemannian Geometry
and Surface Theory (see [GKM] and [CE], as well as [S]).
We shall use Toponogov's Theorem [cf. CE]:

Let M be complete, its sectional curvature KMz H,

and let 91+95 be geodesic segments in M such that
9;(1;) = g,(0) and &(-§;(1;),5,(0)) =o.

Let 91 be minimal, and if H > 0, L[g2] £ 7-H ?*. Let

L]
51,52 = M, the simply connected 2-dimensional space of
constant curvature H, be such that El(ll) = 52(0),

Llg;] = Llg,1 = 1,, and

2(-g; (17),9,(0)) = a.
Then

(g (0),9,(15)) s plgy(0),9,(1,)).

We note that the Busemann function is defined, i.e.
the limit in its definition exists: For fixed P, the
guantity t - p(r(t),P) is nondecreasing in t, and is

bounded above by p{(r{(0),P).

PROOF: If 0 = s < t, then p(r{t),r{(s)) =t - s (r is a ray).

By the triangle inequality,




p{r(t) ,P} £ plr(t),r(s)) + p{r(s),P) = (t-s}) + plr(s),P).
Thus

D(r(t),P) 2 5 - Q(l"(S):P)-

or
|

Also,

+
I

plr{t),r(0})) ¢ plr{t),P} + p(P,r(0)),

so t - p(r{t),P) is bounded above by p(P,r(0)).

We next show that for all P,Q € M,

IB(P) - B(Q)] £ p(P,0Q).

lim{t - po(r(t),P)] - lim[t - p(x{(t),Q)]

tre tee

B(pP) - B(Q)

A

]

lim[p{r(t),Q) - pl(r(t),pP)] lim[p (P, Q) ]

£t o tooo

o(P,Q}.

Interchanging P and Q gives

A

- o(P,Q) B(P) - B(Q}.

We now interpret B geometrically. Suppose B(P) = a, and

consider (for t > a) the open ball B )(t-a) with center

r{t
r{t) and radius t - a. As we have seen, t - p(r(t),P)

increases to B(P) = a (in the 1imit), so t - a &£ b(r(tLP).
Thus P is not in the open ball Br(t)(t—a) for any t, but

it is an accumulation point of the union, t > a, of these

(nested) balls. Thus the level sets of B may be inter-

preted as sphéres of infinite radius.




For example, in the case of the flat plane, the level

sets of any Busemann function associated with any ray r
are the lines perpendicular to the line containing r.

We shall use the following facts, first show by Cohn-
Vossen (see [CV], 1936):

A complete open surface M with curvature K 2 0 is
either a flat cylinder or diffeomorphic to]R2. Further-
more, such a surface has total curvature (C(M) & 271,

We shall sometimes consider a ray b : [0,») > M and

its restriction b : [(s,«®) + M, s > 0, to be the same. 1I.e.,

we shall, when convenient, delete a finite initial segment.




Chapter 1. 1Induced rays and B-rays

In this chapter we shall see that any noncompact complete manifold
can be fibrated by the rays (B-rays) which form the flow-lines of a
"Busemann function" B. If the sectional curvature K 2 0, then we obtain
information as to how arbitrary geodesics behave relative to these B-rays
(see Proposition 1.6). Also, for surfaces, a notion of "infinite winding"
is developed, and a necessary condition for its existence shown.

In this chapter, unless otherwise stated, dim(M) = n is arbitrary.
Recall that a nommal geodesic is a geodesic parameterized by arc-length.

+

Throughout we fix a ray r and its associated Busemann function B.

Definition 1.1 A B-ray is a normal geodesic b : [0,®) > M such

that B(b(s)) - B(b(0)) = s for all s 2 0. We shall see (Corollary 1.7) |
\
that a "B-ray" is a ray. }
\

We shall gain most of our information -about B-rays from our study

of the closely related "induced rays."

Construction 1.2 Fix a point P. Pick an increasing sequence

tk +® of real numbers, and nommal minimal connection from P to r(tk).

Mk
Then the v 1= ﬂk(O) have an accumulation point v at P. Choosing a
subsequence if necessary, we have v, V. Let T(t) := exp(tv),

T [0,%) > M. Thenr is a ray, and we say that r induces the ray

T at P, or that T is an induced ray.

The following lemma, using induced rays will be generalized

in Proposition 1.6, where we shall use B-rays.




Lemma 1.3 Given a normal geodesic segment
g : [0,d] > M, induced ray r at g(0), induced ray £

= a(g(0),E(0)), 0, := #(§(d),E(0)), and

at g{d), © a

0
AB := B{g(d))-B{g{0)), we have

<
d cos OO £ AB £ d cos @d.

PROOF : OStep 1: We show this is true for a minimal segment.
Choose the t, and y, which induce ¥ at g(0). Let ﬁk be

minimal from g(d) to r(tkﬁ, and let Op = 4(@(0),pk(0)).

s v = E0), o o

Then since i, (0) Vi g+ Let m := L[ﬁk],

n, := L[uk], bk PS Ny -my . Then bk = (tk—mk)eﬁtkwnk) >

B{g(d))-B(g(0)) = AB. 1In particular, the b, are bounded.

k
Also, mk + o, Toponogov's theorem now implies f

mignk+d2-2nkd Ccos ek = (bk+mk)2+dz—2(b +m, })d cos ek.

k 'k
Thus 2(b,+m, )d cos 8. < b2 + d% + 2b m
k 'k k = 7k kk’
L 2
or [(bk/mk)+l]d cos @y < [(bk+d )/ka]+bk.
et k >« : [0+1]d cos 90 2 [0] + AB, or 4 cos Oy S AB.

A similar argument vyields AB £ d cos Gd’ or we can obtain

this by reversing the orientation on g and applying the




last result to get
dcosm-ed) £ B(g(0)) - B(g(d)),

or AB = B(g(d)) - B(g(0)) £ & cos 04-

Step 2* If 910, a] is not minimal, then divide [0,d]

into subintervals on which g is minimal, say

] is minimal. Let

r induce ry at g(ak), Gk 1= A(g(ak),rk(o)), dk = ap-ay g

and (AB)k t= B(g(ak)) - B(g(ak_l}). Then
dlcos @0 < (AB)l = dlcos 61, SO cos 90 £ cos 91
<
d2c?s 91 < (/_\.I?)2 s dzcos 62, SO COSs Ol £ cos 62
£ £ <
dncos en-l < (AB)n S dncos en, SO CcOos en_l < cos @n.
<
Thus cos Oy & cos ©, &...52 cos O,-1 & cos 0,-

ihus dlcos 60 g (AB)1 g dlcos BH

A

(A§)2

d2cos en

<
0,

IA

dncos @O £ (AB)n 2 dncos en.

Adding this last set of inequalities,. and noting that

d +...+dn = d and that (AB) ...+(/_\.B)n = AB, we obtain

l+

d cos g5 < AB < d cos ©4q, where G4 = © QED

n-*




Corollary 1.4  An induced ray r : [0,®) -+ M is a

B-ray.

PROOF: Fix d > 0. In the hypothesis of Lemma 1.3, let

g be r[O,d]' Then 60 = (0. Thus
d=dcos 0 < AB < dcos0,=d, i.e. B(¥(d)) - B(x(0)) = 4
for all 4@ 2 0, since the case d = 0 is also true. Thus r is

a B-ray. QED !

Thus at any point of M we have at least one B-ray,
since by Construction 1.2 there is an induced ray at any
point, and by Corollary 1.4 every induced ray is a B-ray.

The next corollary, which shows uniqueness of induced
rays under certain circumstances, generalizes to the case

of uniqueness of B-rays in Corollary 1.8.

Corollary 1.5 Given a B-ray b :: [0, +M, if r
induces a ray r at b(s), & > 0, then r = b[s w0y 7 i.e.
r
r(t) = blt+s), r : [0, - M.
PROOF: s = Llb;, 1. Let O = 4(B(s),r(0)). Then Lemma
r

1.3 implies that AB £ s cos ©. By assumption, B = s
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(b is a B-ray), so therefore s £ s cos 0, s > 0. There-
fore, 1 £ cos 0, so ©® = 0, i.e. B(s) = r(0). Therefore,

”f._

= b[s,W)' QFED

Proposition 1.6 Given a normal geodesic segment

g : [0,d] - M, let bl be a B-ray at g(0), b2 be a B-ray at

g(@), 0y = +(by(0),g(0)), 04 = =(b,(0),5(d)), and AB =

]

B(g(d))-B(g(0)). Then

d cos 80 = AB £ d cos 0,.
PROOF ; Step 1: Assume first that g : {0,d] » M uniquely
minimizes distance between g(0) and g(d). Choose a decreas-
ing sequence of real numbers Sy 0, and let My be a normal

minimal connection between bl(sk) and b2(sk), lk = L{uk],

Oy, = #byls), 0 (00), 6, = a(by(s.), B (1)), and
(AB)k = B(b, (s,)) - B(b; (s,)). Then by (s ) ~ g(0),
bz(sk) + g{d), (AB)k + AB, and lk + d. Also, it is clear
that "uk +g", i.e. if Vi = ﬁk(O) and v = §(0), then

v, =+ v (PROOF Suppose there exists a subsequence of

k




11

the v, (also labeled v,) such that vy > v # v. Then

amdh=@@umlgw==Hm@m@ﬁg=émbﬂ%)=%m)=g@.

koo kseo

Thus if g : [0,d] > M is defined by g{t) := exp(tV), then
g(0) = g(0) and g(d) = g(d). Therefore, since L[g] = 4,
g = g by the assumption of unique minimality. Therefore,

g(0) = §(0) = ¥, contradiction). Therefore, ﬁk(O) > §g(0)

<
Il

4

and ﬁk(lk) > é(d)- Thus

@
|

Lk = Bys) 1 (0)) > a(b (0),5(0) = 6

o)}
=
Q.
@
I

2,k = Mby(s), 0 (1)) » a(by(0),9(d)) = 0.

By Corollary 1.5, there is a unigue induced ray at bl(sk)'

namely b Similarly for b2. We can therefore apply

l[sk,mf

Lemma 1.3 to get

< i )
lkcos 61'k < (AB)k £ lkcos QZ Letting k » «,

Pk

< o )
d cos OO £ AB £ d cos @d.

Step 2 To prove the proposition in general, we divide

[0,d}l into subintervals on which g uniquely minimizes

distance between endpoints, and proceed exactly as in Step 2
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of Lemma 1.3. QED

Corollary 1.7 A B-ray b : [0,®) * M is a ray.

PROOF: Fix 4 > 0, and let "g" in Proposition 1.6 be b[0 ar-
r

Let "bl“ in Proposition 1.6 be b. Then 60 = 0, so

d=d cos 0 £ AB. But for all P,Q in M,

|B(P) - B(Q)]| £ p(P,Q)

where p is the distance function in M. Therefore,

Lib ] d £ B(b(d))-B(b(0})) = p(b(d),b(0))}.
(0,d]
Therefore,
L[b[o,d]] p(b(d),b(0)}, i.e. b[O,d] is minimal
for all 4 2 0. QED
Corpollary 1.8 (Uniqueness of B-rays) Suppose that

b : [0,») > M is a B-ray. Then for all s > 0, there exists

a unique B-ray at b(s), namely b[s w)

r
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PROOF: Suppose we have a B=ray b at b(s) making an angle
GS with b. Then by Proposition 1.6, AB £ s cos es, where
AB = B(b(s))~B(b{0)). Since b is a B-ray, B(b(s))-B(b(0)) = s.

Therefore, s £ s cos OS so s > 0 implies that 1 £ cos @S.

’
.
~

Therefore, © = 0, and b(0) = B(s). QED

The following corollary shows an important property,

which we shall use often.

Corollary 1.9 Given a normal geodesic g, a; < ay,

B-rays b, at g(ak), and 0, = 4(Bk(0).é(ak)), k = 1,2,

Then el 2 62.

PROOF: By Proposition 1.6, (az—al)cos Ol £ AB £ (az—al)cos 62.

i - <
Therefore, since a5 a, > 0, cos 91== Ccos 62, 50 Ol 2 62. QED

The next proposition shows the only advantage B-rays have

over induced rays, since induced rays do not have a "closure

property."

Proposition 1,10 (Closure property of B-rays) Given
B-rays bk with Ve = bk(O) at Pk such that Vi >V at P, let
b{t) := exp(tv}), b : [0,«} > M. Then b is also a B-ray.

PROQF: Fix s 2 0. Then bk(s) = exp(svk)-+ exp(sv) = b(s).

Also, bk(O) = P> P = b(0), Therefore,

k
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B(b(s))-B(b(0)) = B{lim bk(s))-B(lim b, {0))

koo koo

k

= lim[B(bk(s))—B(bk(O))l = lim{s] = s. QED
k oo k +eo

The function w introduced in the next definition will

be used in Chapters 2 and 5.

Definition 1.11 Given any {(normal) geodesic g,

defime 0_ : R > [0,n] by ©_(t) := min{*(§(),5(0))[b is |
a B-ray at g(t}}. Notice that by Proposition 1.10 this

minimum exists. Alsc, by Corollary 1.9, eg is nonincreas-

ing. (This easily implies that eg is continuous from the

right, but we will see an example where it is not continuous.)

We now define a function

w : foriented normal geodesics} + [0,%]

Since eg is bounded below by 0, and is nonincreasing, this
limit exists.
The next result will be used to simplify the proof

of Lemma 3.6.

Corollary 1.12 Given a normal geodesic g : [a,b] > M,

let 9 : [a,b] » [0, q]} be o(t) : eg(t). Since O is non-

increasing,
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fb cos O(t)dt is defined. Furthermore,

{ cos 8(t)dt B{g(b))-Bl{g(a)).

PROOF: Divide [a,b] intec subintervals a = tO < tl <...<
tn = b, i.e. the k-th subinterval is [tkwl'tk}‘ Let
(At)k = tk_tk—l’ lkztk—l' and re = tk' Proposition 1.6

implies that

cos E)(lk)-(/_\t)k g B(g(rk))-B(g(lk)) £ cos B(rk)(At)k.

Summing:
n n
E cos O(Ik)-(ﬂt)ké B(g(b))-B(g(a)) § ] cos G(rk)-(At)k.
k=1 k=1
b
But both of these sums become, in the limit, /] cos 0(t)dt. QED
a

The following lemma will be needed later.

Lemma 1.13 Given a normal geodesic g, a sequence tk

of real numbers increasing to «, a B-ray bk at g(tk), and

@k P 4(§(tk),6k(0)), then lim Bk = wl{g).

ko>
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PROOF : By Corollary 1.9, ag(tk_l) 2 0,, and 0, 2 eg(tk)
by the definition of @g. Therefore, eg(tk_l) Ok 2 Gg(tk).
Therefore since

ii2>eg(tk_l) = ii? eg(tk) = wlg), 5
we have lim ek = wlg). QED

koo

We summarize some of these results:
a) Through any point there exists an induced ray

(Construction 1.2).
B) All induced rays are B-rays (Corollary 1.4).
C) Through any point of a B-ray b : [0,») + M there

passes a unique B-ray, except possibly_at b(g)

(Corollary 1.8), |

These unique B-rays are therefore induced rays. .!
D) All B-rays are rays (Corollary 1.7). |
E)  The "closure property" of B-rays (Proposition 1.10). %

There are examples of B-rays which are not induced

rays. For example, on:zthe paraboloid § = [z=x2+y2], let -

r be the meridian through P = (0,0,0) with #{0) = <1,0,0>.
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Since only meridians of S are rays, these form the set of
B-rays. But the only induced ray through P is r. Further-
more, all meridians starting at P are B-rays (by uniqueness
of rays through_points # P on this surface, and the closure
property of B-rays in Proposition 1.10}.

‘This surface S also shows that Gg (Definition 1.11) is
not continuous: Let ray r be as in the last paragraph, and

let g be the geodesic which extends r to all reals. Then

o
E—l.
H
o
v
o

As an application of the results of this section, we
introduce a notion of infinite winding on a surface. For
example, on the paraboloid of revolution S any geodesic g,
other than the meridians of M, will "wind" infinitely often.
I.e., if r is any meridian, then g will meet r infinitely
often in the following way: There are increasing sequences
Sy s tk of real numbers such that g(sk) = r(tk), and if

g, = gl , r, = r| , and R, is the bounded
k [syssp 91" Tk [ty q] k

region bound by the curves Iy and Lyr then the Rk form a
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o0
. Q=
nested seguence Rk € Ry which exhausts S ( kgle) {see
Figure 1.1, 1.2). This situation differs from an infinitely
oscillating curve (see Figure 1.3).

Why such a g on S winds infinitely often is
indicated in the appendix. Also indicated in the appendix
is why (for the case of a surface of revolution M) if the
total curvature C{(M) < 2w, then there can be no such in-

+
finite winders. 1In the case C(M) = 27, infinite winders

may exist (as in the above case), or may not exist.

Extending this concept to arbitrary surfaces, we have

Definition 1.14 Fix a ray r in a surface M, M homeo-
morphic to the plane. A geodesic g : [0,®) > M is an
~-winder if there exist increasing sequences Sy tk of

real numbers such that g(sk) = r(tk), and if

g, = gl , I, = r| , and R, is thé bounded
k [sprsy 1" 7k [ty sty ] k

region bound by the simple curve I U Ty then Rk are nested,

Rk < Rk+l' and exhaust M.

With this definition, we now have the following theorem.
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Theorem 1.15 If M has %-winders, then C{M) = 2w,

Equivalently, if C(M) < 2m, then M can have no ®-winders.

PROOF: 0O _ is nonincreasing (Corollary 1.9). Therefore,
© (s) £ 0 (0) < 7n/2 for all s 2 0. Then by Proposition

1.6, if s < t, then

{174

(t-s) cos Og(s) B(g({t))-Blg(s)).

Then since t - s > 0 and cos Og(s) >0,
0 < B(g{(t))-Blg{s))

i.e., B is increasing along g.

:= {PeM|B(P)<a}. By assumption there is an
increasing segquence tk + ®© and a seqguence Sy such that
g(tk) = r(sk). Thus the bounded region RX which has as

its boundary the geodesic segments g[t and r

ACWEY [Syr8p 4]

a

contains B k, where a = B(g(tk)). By Gauss-Bonnet,
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ky _ _ a
C(R™) = (2n Og(tk))+®g(tk+l). The B~ are nested, and
t t % k-1 _ % _x
M= yB". Thus C(M) = lim C(B") = 1im C(B ). Since B 'z R,
tcR t +oo k5o
ok

21 = (O, (ty = 0(5)) s CBY) s2:-(0(t )6 (t 1)) But

1im ©_( ) = 1im @_(t,) = 1lim 6 _{ ) = w(g). Therefore,
21 £ 1im C(Bak) £ 2n, i.e. C(M) = 2n. QFED

*

Note: The appendix contains an independent proof for the

case of a surface of revolution.

We shall end this chapter with a simple proof of a well-
known result. See [CG].

Given a Busemann function B, let B®:= {P ¢ M|B(P) < a}.
Also, recall that a set U is called a totally convex set

(t.c.s.) if any geodesic segment joining any two points of

U is itself contained in U.

Corollary 1.16 If dim{M) = n and K 2 0, then the sets

B? are all totally convex sets,
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PROOF : This follows from the fact that the function B

is convex, which locally means that given any geodesic U,
then the graph of B°u lies above some line through
(0,B(u{0))), i.e. there is some constant k such that
B{u(t)) 2 B(u(0)) + kt for all t. For t 2 0, this is pre-
cisely Proposition 1.6, with k = cos @0. This inequality
holds with k = cos 90, again by Proposition 1.6, for t < 0
by reversingthe orientati;n of uy: for s < 0,
(—s)-cos(ﬂhﬁo) £ B(u(s))-B(u(0)). Now a property of convéx
functions is that they can have no interior maximum. To
prove the corollary, suppose that P,Q ¢ Ba, and that

M o: [0,d] > M is a (normal) geodesic segment such that

u(0) = P and u(d) = Q, and that there exists t ¢ (0,4}

such that B{u(t)) > a. But then since B{(P),B(Q) £ a, there

must be an interior maximum of B on [0,d], contradiction. QED




Chapter 2. B-~wedges and Their Total Curvature

In this chapter we shall consider certain noncompact
regions which are bounded by B-rays, and develop formulas
for their total curvature. 1In this way we are extending
the Gauss-Bonnet Theorem to triangles with a "vertex at
infinity," which in hyperbolic space is an "ideal triangle."

Throughout assume that dim(M) = 2, and that M is not
flat (hence is diffeomorphic to the plane) .

The following construction will allow us to determine
the precise formula for the total curvature of our "ideal
triangle." The full generality (r arbitrary) will not be

used until Chapter 5, but this generality is proved here to

avoid reproducing the proofs in Chapter 5,

Construction 2.1 Fix a ray r and its associated Busemann

function B. Let r be a ray such that Ber is eventually in-
creasing and which does not meet r. Let u : {0,d] - M be a
normal minimal connection from T(0) to r(0). Choose a real

number tl such that
B(r(t;)) > max{B(nu(t)) |t e [0,al}.

This can be done, since the assumption "Ber is eventuall
p Yy

increasing" implies that BeF » = by Proposition 1.6, since

cos 0, > 0 at any point where BeY has increased.
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By Construction 1.2, we get an induced ray bl at
P, := f(tl) {b; is a B-ray by Corollary 1.4). Recall that
in Construction 1.2, we have points on r and normal minimal
connections whose initial vectors converge to 51(0). Thus
choose such a point Ql and r and Hy od [0,d] -+ M a normal

minimal connection from Pl to Ql such that

0., := A(ﬁl(o),bl(O)) < 1, and such that if
8, = *(¥(t),by;(0)) # 0, then 0 < By-

Now define tyr Py bk’ Hpr Qs O, and @k, k=1,2,...,
inductively as follows: Assuming that these are defined

for k - 1, 1let tk be a real number such that

B(r(t,)) > hax{B(Q YoB(P,_y)+1}. let P = F(t ).

k k

k-1

Use Construction 1.2 as before to get an induced B-ray bk
at Pk and a (normal) minimal connection Hy * [O,dk] + M from

Pk to a point Qk on r such
0, := 4(&k(0),$k(0)) < 1/k, and such that if

*(¥(t,),B, (0)) # 0, then 0, < &

@
it

o
Notice that the curves T,u, and r divide M into two

regions, say Rl and R2,'each homeomorphic to a half-plane,

and which intersect only along ¥,u, and r.
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Claim: For each kﬂJk is contained entirely in either
R1 or R,. (PROOF: B, < 1/k ¢£1 < /2 for all k. Thus, by
Proposition 1.6, for all t e (0,4, 1,

0 < t-cos O B(pk(t))—B(uk(O)): so

Bluy (£)) > B(p, (0)) = B(P,) 2 B(P;) > max{B(u(s))ls ¢ [0,d]}

Therefore, e does not meet .

Also, since My is minimal, and r and ¥ are rays, My
can meet r and ¥ only once, i.e. at the endpoints of My (pk
cannot coincide with r or ¥ since we assume that r and ¥ do
not meet).

Therefore the endpoints of My are the only points of

M tomeet T ypuy r.)

Definition 2.2 With the notation of Construction 2.1,

call one of the regions R ¢ {Rl'Rz} a good region if an
infinite number of the My are contained in R. If R is a
good region, then we call the other region M-R a bad region.
We shall represent this situation (see Figure 2.1) by
drawing a small arrow at some point of ¥ pointing into the
good region R, thus representing the My which enter R.
The important thing to note here is that least one of

the regions Rl’RZ is good. It is possible that both are

good. For example, letting S and r be as in the examples
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after Lemma 1.13, and letting ¥ be a portion of the meridian
opposite r, ¥ is a B-ray. By the symmetry of S, we can re-
place any My by its mirror image in the xz-plane.

Denote by C(R) the curvature integral [ K of a region R.
R

Proposition 2.3 Fix ray r and its associated Busemann

function B. Let ray ¥ and u be as in Construction 2.1. Let

R be a good side of ¥ {j u y r, with angles

aat ¥ pyand B at * N u (relative to R). Then

;

C(R) a+B-T-w{r) (R good).

Furthermore, letting R = M-R (i.e. R is a bad region), we have
C(R) = a+B-m+w (T)-D (R bad), where @ := 21 - o and £ := 27 - B
are the angles at ¥ u and r N U as measured in R, and

D := 2m - C(M) is the difference between C(M) and its maximal

possible value 2.

PROOF: Choose a subsequence such that all M & R (R good).
Let R, be the subset of R bounded by ¥, u, r, and My
Recalling ék from Construction 2.1, "if ék # 0, then 9 < @k"

implies that bk’ like Hyor points into R. The Rk are nested:

min{B(uk(s))]s € [O,dk]} = B(E(tk)) > BQ )

|

max{B(u, ,(s))]s e [0,a,_,1}.

Also, the Rk exhaust R: we choose B(Pk) > B(Pk_l)+l.
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Set §, = A(ﬁk(dk),f(sk)), where Q, = r(s,). Thus

8. 1.

C(R) = lim C(R) = lim[a+B+§ k+{n-(ek+@k)] - 21] = limfo+B-T+8 0~

k> kow k »e

K™

By Corollary 1.9, since bk and r are B-rays, Gk g @k. Thus

0 = Sk % Bk < 1/k, so iig Sk = iiﬁ 9, = 0. Finally,
6k = %(f(tk),bk),ﬁk(O)), where b, is a B-ray at §(tk)' There-
fore, by Lemma 1.13, lim 6k = w(r). Therefore,
C(R) = a+B-m=-w(r). Ft;zlly, for a bad side R, R = M-R, where
R is good. Thus y
C(R) = C(M) - C(R) = C(M) - [a+B-m-w(T)]
= (2m-a) + (27-B) - m - (2m1-C(M)) + w(¥)
=a+ B - 7 + w(r) - D. QED

For our immediate purposes the following weaker version

of Proposition 2.3 is sufficient:

Corollary 2.4 Suppose in addition to the hypothesis of

Proposition 2.3 that r is a B-ray. Then

o+ B -7 if R is good

C(R) =
o + B - 1T ~-D If R is bad.
PROOF: If r is a B-ray, then (Definition 1.11) 0x(t) =0

for all t 2 0. Therefore,

w(r) = lim @f(t) = 0, QED

t-—)—DO
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Notice that if C(M) = 27, then since D = 0, the above
integral equals o + g - 7 whether R is good or not.

The above notion of a good region will be used to prove
Proposition 4.1, namely "if C(M) > 7, then B® = [PecM|B(P) sa}
is compact for ali a." TIts converse is also true, and to

prove this we shall use the following notion:

Definition 2.5 A B-wedge is a region W bounded by
two B-rays b, # b, which meet at the common point bl(O) = b2(0).
(W, ) will indicate a B-~wedge W and the angle of its vertex
as measured in W.

b1 U b2 divides M into two regions, each one a B-wedge. gé
We distinguish between "good" and "bad” B-wedges in the

following way:

A, If rc bl or b2 (say r < bl), then the wedge into

which the arrow in Figure 2.1 mentioned after Definition

2.2 (for r = b2) is a good B-wedge.

B. Ifr % b, or b,, let R, denote the region (bounded ”
by the bk) which contains r, and let R, denote the

other. Then !

i) If both of the arrows (mentioned after |
Definition 2.2) associated with bl and b2 point

into Rl' then Rl is good:;

ii) otherwise, R, is good.
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If one of the regions R,/R, 1s good, we shall then
call the other region bad.

Notice that given any pair of distinct B-rays such
that bl(O) = bz(o), at least one of the two B-wedges which
they bound is good.

Proposition 2.6 Given a B-wedge (W,c),

e if W is good
C(W) =
or
€ - D if W is bad,
where agin D = 27 - C(M).
PROOF: Case A, say r < bl (see Figure 2.2): Using Corollary
2.4, let p = b2,[0,l] and r = b2|[1,m)-
Thus B=¢€¢and a = %,
Therefore, C(W) =7 + e = 1 = ¢.
Case B.i (see Figure 2.3) Suppose r is contained

in W and both arrows assocliated with bl and b2 point into W.
Let u be a (normal) minimal connection from P = bl(O) to r(0).

Then u y r divides W into two regicons Wl’WZ' as shown.

Therefore, by Corollary 2.4,
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C(wW) = Clwy) + Cw,) = (e+B8,=m) + (e 4B 5-m)
(€1+€2) + (81+Bz) - 21 = g + 21 - 21 = ¢.
Case B.ii (see Figure 2.4) Letting W be a good

B-wedge, we have that r is contained in M - W, and that at
least one of the arrows (say associated with bl) points

into W (see Figure). Claim: 1If Rl denotes the good region
bounded by ble Uy I, then_ﬁz:ﬁris the good region bounded by
b2 U Uy r. PROOF: The Hy from Construction 2.1 associated
with bl must meet bz, say at the points uk(sk). The angles
they make with b2 are s the corresponding angles they make
with bl since bl and b2 are B-rays (Corollary 1.9). Thus

the restrictions of these My to uk[sk'dk} satisfy the

criteria of Construction 2.1 for b2, i.e. R2 is a good region.

Thus, we have
C(W) =C(Rl)—C(R2) = [(e+d+B~1 - [0+B-7] = €.

Finally, if (W,e) is bad, then (M-W,27m-¢) is good. There-

fore,

C{M~W) = 27 - ¢, so

C{w)

I
0
2
|
a
5
=
"
A
=
1
©
1
2
r

(27-C(M))




Chapter 3. Projections on Horospheres

In this chapter we introduce a function which projects

onto the "horospheres™ B'l(a). This function gives us

that the horospheres are path-connected. We also see that
if one horosphere is compact, then they all are. Throughout

this chapter we shall assume that dim(M) = 2.

Recall that B® := {P ¢ M|B(P) < a}. Let ™1

the B? such that Bb = ¢ for all b < a

dencte
r if it exists.

We shall make use of the following fact:

E]

1f B? # Bmln, then the boundary 3B? is a rectifiable
curve without boundary (see [CG]). Notice that
38% = {P ¢ M|B(P) = a} if B® # g™n,

|
Lemma 3.1  Suppose that the B-rays b, # b, have |
(0), and that P ¢ B™", fThen i
£ 1= 4(51(0),52(0)) < n, and the B-wedge (W,e)

bounded by b1 and b2 is such that .

w nB% = {p}.

PROOF: 0 < ¢ £ 7. Suppose that e = 5. If Q ¢ M (Q#P),
let p: [0,d] » M be a (normal) minimal connection from
P to Q. Then p makes an angle @ £ 7n/2 with at least one

of the b,,b, (say bl). Thus by Proposition 1.6,

0 < d-cos @ £ B(Q) - B{(P), so B(P) < B(Q) for all Q ¢ M.

30
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Therefore P ¢ Bmln, contradiction. Therefore & < 7.

Now let (W,c) be the B-wedge bounded by b1 and b2
with vertex angle & (measured in W) less than n. TIf
QeW- {P}, let u: [0,d] > M be a (normal) minimal
connection from P to Q. Since y, bl’ and b2
minimal, y W. Therefore, it makes an angle 0 < w/2

are alil

with at least one of the bl,b2 (say bl). Therefore by

Proposition 1.6,

0 < d-cos © £ B(Q) -*B(P), i.e.
B(Q) > B(P) for all Q ¢ W - {P}. Therefore

w N B® = {p}. QED

The following proposition, which classifies B-rays

through horosphere B"l(a), is used many times.

Proposition 3.2 Fix B? # B™™ ang Q,i B?. TLet

P ¢ 3B be a point of B? closest to 0 (B2 is closed}. Then
either Q lies on a B-ray through P or there exists a B-wedge

(W,e), & < w, with vertex P such that Q is in the interior

of W.

PROOF : Suppose there is no B-ray through P meeting Q.

Parametrize 3B? near p by ¢ : [-1,1] + 3B® such that
c{0}) = P. Let m, = c(-1/k) and n = c{i/k}. Let bi be
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a B-ray through m, and bﬂ be a B-ray through n, . By
Proposition 1.10, if Vi is an accumulation point of the

5?(0) and v is an accumulation point of the BE(O), then

5™, b" : [0,») > M, BT(t) := exp (tv_)
and

() 1= exp(tvn) are B-rays at P,

Now let p : [0,d] - M be a (normal) minimal connection
from P to Q. Since we have assumed that Q does not lie on
a B-ray through P, u differs from b™ and b, It is clear
that if both b™ and b¥ lie on the same side of y in M - Ba,
then by continuity one of the B-rays (say bg) meets u, say
at the point R = u(s) = bi(sk) # Q0. Our assumption of

a

minimality implies that ”{0 s is minimal from R to B-.
4

. m , m . L a
But since bk is a B-ray, bk{O,s ] 13 minimal from R to B

k
(PROOF: given Q on 3B?,
p(Q,R) 2 |B(R) -~ B(B)| = |B(R) - By | = s,).
Therefore,
m _
Pk10,5,1 74 g,

have the same length, so that the broken geodesic

m i i i £ ]
bkf[O,sk} U u[s,d] is minimal from P to my . contradiction.

Therefore, the bm, b"” lie on either side of § in M - Ba,

and thus b" # b". Furthermore, it is clear that p lies
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in the wedge W for which W N B® = [P} (else b, and b_ are
on the same side of u in M - B?, which we have just ruled

out}, and the angle at the vertex of this wedge is <, QED

The following function isg used to prove Proposition 3.5.

Definition 3.3 For a fixed B® # B™" gofine

Pr, : M > B% as follows: Given P ¢ M, let pr_(P) be the

unigue point of B® closest to P.

A

Proposition 3.4 The function pr_ defined above is well-

defined and continuous.

PROOF. Well-defined: If P € Ba, then pra(P) = P. Therefore,
assume that P ¢ B®. By Proposition 3.2, either P is on a
B~ray b through a point Q of aBa, or P lies in the interior
of a B-wedge W with vertex Q on aB® such that w n B2 = {Q}.
In the first case, pra(P) = Q (PROOF. It was noted in the
proof of Proposition 3.2 that a B-ray b minimizes the
distance from any point on it to B%, where é = B(b(0)).
Therefore, the only way that there could be another point

38 ¢ B® Closest to P would be if there were a B-ray b through
o] meeting P. But then we have two B-rays through P, con-
tradicting Corollary 1.8). - Thus suppose we have the second

case. Denote the B-rays which form the boundary of W by
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bl’bZ‘ Since M is diffeomorphic to R2

divides M into two regions. P is in the interior of W.

; the curve b1 U b2

Let u : [0,d] -~ M be a minimal connection from P to BZ.
If u(d) # Q, then since W N B% = {0} . must meet b, u b,
at a point R # Q, say at R = yu(s) = bl(t). But then, as
noted in the proof of Proposition 3.2, the broken geodesic
Hro,s] Y bl[O,t] is minimal from P to Q, contradiction.
Therefore, any minimal connection p : [0,d] - M from P to
B? has u{d) = Q.

'

Finally we show that pr, is continuous: Fix P & M,

and suppose that P, > P, Suppose that pra(Pk) %+pra(P),

k
say that they have an accumulation point Q # pr_ (P). Choose
a subsequence of the Pk such that 1im pra(Pk) = Q. By
k-o

continuity of the distance function p of M,
p(P,B%) = 1im p(p _,B%) = lim plp,,pr_(P.)) = p(P,0).
k k a 'k
k> k o0
Therefore, by the uniqueness of the closest point of B
to P, we have that ¢ = pra(P), contradiction. Therefore,

pra(Pk) > Dra(P). QED

 Proposition 3.5 If B? # B™, then B2 is path

connected. ;.

PROOF. Recall that the ray which gives us B is denoted

r: [0, >M. If B(r(0)) < a, then r meets aBa, say at
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P := r(s). If B(r(0)) > a, then let p:(0,d] -+ M be a (normal)
minimal connection between r(0) and Ba,u(O) 1= P ¢ Ba,
p{d) = r(0). We shall show that in either case there is

a (continuous) path in aBa between any point B of 3B? and
P. Thus given any point P ¢ 3B®, let r induce a B-ray T
at B (Construction 1.2). Thus we have an increasing
sequence tk of real numbers diverging to « and minimal
connections y, : [0,d, ] + M from B to r(t,) such that

L]

ﬁk(O) + ¥(0). In particular, choose a k such that

a(ﬁk(m,’f(on < /2.

Therefore the function Bojy ! [O’dk] is increasing by

Proposition 1.6. TI.e.,

B{y (£)) 2 B(p(0)) = B(P) = a for all t > 0.

We thus have a continuous curve o given by r[s,tk] U uk[dk,O]

(i.e. M With the reversed orientation) or

u[O,d] U r{o,tk] ] “k[dk,OI from P to P. Furthermore,

the value of B along this curve is 2a. But it is clear

that pra(Q) e 382 for all Q ¢ M-B? since B is continuocus. .

Therefore, the function Pr ec is a continuous curve (pra ;

is continuous by Proposition 3.4) from P to P which lies in

s8%. QED
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Whereas pr_ projects M-B% onto B t(a) = aB?, the

following lemma shows what happens when we project onto

8% from a point P,B{P) < a.

Lemma 3.6 If P ¢ M has B(P) < a, and p ot (0,41 = M
is a minimal connection from P to 3B%, then i is part of a

B~ray through P.

PROOF. There exists a B-ray b through P, and it crosses
3B? at a distance d from bP. By Definition 1.1 of a B-ray,
d = a - B(P). Now suppose that i is not part of a B-ray
through P. Then there is an & > 0 such that the function
0 = Ou of Definition 1.11 is nonzero on [0,e]. (This is
true because 0 is nonincreasing (Corollary 1.9), and if
0{t) = 0 for all t > o0, i.e., u is a B-ray starting at plt)

for all t > 0, then p is a B-ray starting at p(0) by the |

closure property Proposition 1.10). Therefore by Corollary
1.12, B{u(d)) - B(u(0)) = fg cos B(t)dt < d, contradicting
minimality since d = a - B(P) = B{u(d)) - B{(u(0)) < 4. |

Therefore y is the initial portion of a B-ray through P. QED

The next lemma shows that to prove all horospheres are

compact, we need only to show one horosphere compact.
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Lemma 3.7 1f B® £ Bmin and 3B? is compact, then 3B
is compact for all b‘z a.
PROOF: BBb = B_l(b) is closed. Therefore, we are done if
we show that aBb is bounded. Since 3B? is compact, hence
bounded, this will follow if we show that all points of
aBb are within a fixed distance of some point of aB?,
Thus let Q ¢ aBb, and let P be the point of B® closest to Q.
By Proposition 3.2, either Q lies on a B-ray through P (in

which case p{P,Q) = b - a), or Q lies in the interior of a

B-wedge (W,e), € < m, with vertex P such that w N B? = {p}.

Claim. S = [e|iW,e) is a B-wedge with vertex (say R)
in 38% and w N B2 = {R}} is bounded away from . Proof. By
Proposition 2.6,

c(w)

(C(wW) + (2m-C(M)}.

Since all the ¢ in S-are less than 7,S can approach 7w only
if there is a sequence (Wk,ek) as in the definition of S
such that €1 + . We can assume that the Wk are distinct

and disjoint. At most a finite number of the Wk can have

C(Wk) = £y since the Wk are disjoint and the total curvature

of M is £ 2%, Therefore, we have a sequence of disjoint
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(Wk,ek) for which ¢, = C(W.) + {(27-C(M))} and €, > m. Since

k k
the W, are disjoint, J C(W,) < 2y, so therefore C{(W, ) - 0.
. k=1 K k

C(M) - 5. Therefore,

¢

But C(wW,) = (ey=m) + (C(M)-m)
CM) - 7 =0. But if C(M) = 1, then 0 < C(Wk) =€) T T,
i.e., € 2 1, contradiction. Therefore the set § is bounded
away from rn, say sup(S) = k < 7.

Returning now to the case of Q in (W,e), ¢ £k < 1,

with vertex P. Letting  : [0,d] - M be a {(normal) minimal
connection from P to Q, i makes an angle o < ¢/2 with at
least one of the B-rays which form the sides of W. Thus

0 < e/2 k/2 < w/2. Therefore by Proposition 1.6,

A

d-cos © £ AB =Db - a, i.e. d £ (b-a)/cos @ < (b-a)/cos(k/2).
I.E., every point of aBb is within (b-a)/cos(k/2) of 3B®. QED
min

Lemma 3.8 1f B2 # B , 3B? is compact, and M is

not a flat cylinder, then B? is compact.

PROOF: Since M is not a flat cylinder, it is diffeomorphic
to the plane. Since aBa is a compact, connected, rectifiable
curve without boundary, it is homeomorphic teo the circle Sl.

By the Jordan curve theorem, this curve divides M into a

bounded and an unbounded region. Since M-B® is unbounded

(it contains any B-ray through any point on aBa), B? is

bounded. Therefore, since it is closed, it is compact. QED
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Lemma 3.9 1f B 1(a) is locally at P a geodesic
segment g, then any B-ray through P is perpendicular to

g at g(0) = P,

PROOF: If there is a B-ray b through P which makes an

angle © < n/2 with g, then by Proposition 1.6, (assuming

g is normal) B(g(d)) - B(g(0)) 2z d.cos © > 0 for all
sufficiently smalli d > 0. Therefore, a = B(g{(d)) > B(P) = a,

contradiciton. QED




Chapter 4. Compactness Criterion for Horospheres

All results in this chapter are used to prove Theorem
4.9, which essentially says that the horospheres are compact

if and only if C{(M) > 7 or M is a flat cylinder.

1394

Again in this chapter, we assume that dim(M) = 2, K g,

and that M is not a flat cylinder (hence M is diffeomorphic
to the plane).
Given a region R, define C(R) := [ K . This first
R

proposition will be part of Theorem 4.9,

*

Proposition 4.1 If C(M)> m, then B® is compact

for all a.

PROOF: Choose a € R sufficiently small such that C(M—Ba) o7,
and such that BZ # Bmln(Bmln has no interior). We break up
the proof that this %Ba is compact into two steps. Thus:

Suppose that 9B? is not compact.

Step 1: The closed set 9B? is thus a rectifiable curve
c : (-»,») > M without boundary whichis path—connécted
(Proposition 3.5}, so the sets c((~=,0]) and c([0,”)) are
unbounded. Choose an increasing sequence tk of real numbers,
t, » ®, and define m

k k
m,n . o~
bk’bk be B-rays through My ey, respectively, and let Rk be

s= c(—tk) and n, := c(tk). Let

the region bounded by the curve bﬁ U St ] U bi contained
_ L

a

. ~ a
in M-B™. Clearly the R

mN
x are nested. Claim: M-B® = Qﬁle.

40




~ a
Proof: As required above, RkE M-B% for all kX, so M-B

Conversely, if QeM-B?, i.e. B(Q) 2 a, then (recall Definition
3.3) let p be a minimal connection from pra(Q) e 3B to Q.

If pr_{(Q) = c{s), choose k sufficiently large such that

n

K {for as noted

m
S & (—tk,tk). u can not cross the bk’b

in the proof of Proposition 3.2, this would imply two points
on 3B? closest to Q, contradiction), and it cannot meet ap®

= B R
i=1

Now choose kO sufficiently large such that C(R

* C =~ =
a second time. Thus py & Rk’ SO Q € Rk 1*

)y >,
X0
and also such that r (the ray with which B is associated)

is such that

r ()(M—Ba);E ﬁk . Let T = m o,

0 0 0 0 0

and let g be a minimal connection from T to S (thus g = B
by Corollary 1.15). Let R denote the region bounded by the
curve blLJ g t}bz which contains ﬁko' Therefore,
C(R) 2 c(Rk”O) > .

Let ¢ and B be the angles at blfW g and g N b, as
measured in R. Claim: C(R) = o + B8 - m. Proof: Choose
a poiht M on r in the interior of R, and let 91s 9, be

minimal connections from T,S, respectively, to M. Let the

angles al,a2,81,62,61,62,63 be as shown in Figure 4.1.

Also, let the regions Rl’RZ'R3 be as shown. We now show
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that the regions Rl'RZ are "good" regions in the sense of
Definition 2.2. Letting Uk = bl{tk) for all k, eventually
we have B(Uk) > B(M) for all k 2 N for some N. Construct

’ (normal) minimal connections u? : [O,dl] + M from Uk to
r(tl) for all 1. By Construction 1.2, the ﬂ?(O) have a
vector v as accumulation point such that t =+ exp{tv) t 2 0,
is a B-ray (Corollary 1.4). Therefore by unigueness
(Corollary 1.8), this B-ray must be bllft,m)‘ Thus the

Qk(o + b, (t, ). Thus choose (for each k) a 1 such that
1 P11tk

? S
alﬁl(tk),ﬁi(O)) £ 1/k. These H, are as stipulated in
Construction 2.1, so it remains to determine which "side"
of bl they enter. The claim is that they are contained in

R Otherwise, they would enter the region contained in

1°

M - B®

and bounded by the curve bl U c But since

Pﬂm-tko]
the angle ui makes with bl is less thant 7/2, Bouk is in-
creasing (by Proposition 1.6), so the H, cannot cross 9BZ.
They alsoc cannot cross bl a second time, so they would be
trapped outside of R. But R contains r, contradiction.

. Therefore, Rl is good, as asserted, and similarly R2 is good.

Therefore by Corollary 2.4,

C(Rl) = o + 61 - T
C(RZ) = Bl + 62 - 7, and by Gauss-Bonnet
C(R3) = o, + 82 + 63 - T.
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Therefore,
3
C(R) = nzlc{Rn) = (Otl"'Ofrz) + (Bl+82) + (Gl+62 +63) - 37
=a+ B + 2m - 3m = o+ B - 7.
Therefore we have ¢ + B - 7w = C(R) >m, i.e., 0 + B > 2%.

Step 2: We now construct a new ray at T: let Hy be
(normal) minimal connections from T to the points c(~tk),

and let v be an accumulation point of the ﬁ (O); Then

k

r : (0,”) > M, defined by ¥(t) := exp(tv), is a ray (but
not a B~ray). Associated to T is a Busemann function B.
Since T and the c(-tk) are in Ba, the H, are contained in
B2 also, by Corollary 1.15. Therefore T g;Ba. Now use
Construction 1.2 with the ray r to obtain the induced ray ?
at S. Again, since ¥ is the limit of minimal gecdesic
segments which are contained in B? (again by Corollary 1.15),
T < B?. Furthermore, since T is induced by f, it is a ﬁ—ray
by Corollary 1.4.

Let the angles a, b, a, B, be as in Figure 4.2, and let
R* denote the region bounded by the curve ¥ g £ contained
in B®. Therefore by Corollary 2.4 (applied to % and B),
a+ b -m1m= CR* or C(R*) + (2r-C(M)), so in either case,

a+b-1

v

C(R*) = 0. Therefore, a + b 2z 7. Now let A,B

o

be the angles of by y T, b, y ¥ as measured in R, R*. Thus
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A= a+ a, B= B8+ b, Therefore, A + B = {a+B) + (a+b) >
2n + m = 3w. Therefore, at least one of the angles A,B
is greater than 3 1/2. Suppose w.l.0.g. that A > 3 /2.

Thus O := 4151(0),f(0)) < w/2. But then by Proposition

1.6, applied to r, if 4 > 0, then
0 < d-cos @ £ B(r(d))-B(F(0)), so B(¥(d)) » B(F(0)) = a,

so that r(d) ¢ B?. But as noted earlier, ¥ = B? contradic-
tion. Therefore, the initial assumption that aBa is non-
compact was false.

Therefore, aB? is compact for this value of a. There-
refore, BBb is compact for all b 2 a by Lemma 3.7. Therefore,
by Lemma 3.8, Bb is compact for all b 2 a. Finally, if b < a,
b

then since Bb is closed and contained in the compact set Ba, B

is compact. QED

The rest of this chapter will be used to prove the
converse of Proposition 4.1, i.e. if C(M) < 1, then the B2
are all noncompact. The proof will be by contradiction.
Thus we shall assume that the B? are all compact. This

n

implies that a minimal set B™?® exists. Thus we shall first

establish several lemmas about B™'" under the hypothesis that

it exists.
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Lemma 4.2 1f gMin exists, then either ™D is a

single point,or there is a unique (up to parametrization)
normal geodesic g such that gt o g(I), where I is either
[0,d] for some d >0, or I = [0, ).

PROOF: If B™ = gM is a single point, then we are done.
Therefore, assume that there are at least two points P # Q

in B™™,  Let g be a geodesic which passes through these

two points. Claim: Any point of B™'? pust lie on g. Proof:

n

Suppose not, say R & g™t does not lie on g. Let u be a

minimal connection from P to R, and U be a minimal connection

n

from R to Q. Since P,Q and R are in B™% , and B i a

totally convex set (Corollary 1.15), the geodesic segments
g, u, and j are contained in B™'D, But they bound a bounded
region U, so pick a point T in the interior of U, and let b

be a B-ray through T, T = b(0). Since b is unbounded, it

meets one of the g, u, U at a point b{(d), 4 > 0. Therefore,

B(b(d)) = B(b(0)) + d > B(b(0)), so B(b(d}) > m,

contradiction.

‘Therefore, any point of B™™ s on g. Also, since

g™ g totally convex, it is connected. Suppose that a
min
real seguence a, -+ a, and that g(ak) e B for all k.

Therefore, g(ak) ~ g{a), so therefore by the continuity of

E, "min" = lim B(g(ak)) = B{g(a)). Thus the set I of reals

ko




46

for which B™" = g(I) is closed and connected. Finally, we

show that I #IR. For if it were, then ™ yould divide M
into two unbounded regions Rl’RZ (Jordan curve theorem}.
- . min
£ -
Letting Ak Rk B , and bk
we note that since Bobk is increasing, the bk do - not meet

be a B~ray through Ak' k=1,2,

min

B .. Therefore, by going out far enough along the bk’ we
have points such that B(bl(a)) = B(b,(b)) = m, a,b > 0.
I.e., these points are both on BT but in different R,. Since
Bmin disconnects M, B" is disconnected, contradicting
Proposition 3.5. QED

Proposition 4.3 If Bmin exists and contains g(la,bl},

where g is a (normal) geodesic and a < b, then for all
c € [a,b]l, both geodesics perpendicular to g at g(c) are
B-rays, and the region R bounded by the B-rays perpendicular

to g at g(a) and g(b) is flat.

PROOF: Given ¢ ¢ {(a,b}, choose an open ball U = Br(g(c)) of

radius r about g{(c), diffeomorphic to an open disk, such that

r < min{b~-c,c-a}. Letting a' = c¢ ~ r, b' - c + r, it is easy

to see that v N pRif - g((a'b')). Thus U N B™? qivides

U - (UﬂBmin) into two open regions U, and U2. Let a seguence |
of points Pk in Ul have limit g(c), and let bk be B-rays through

the P Then UMN b, & U, for all k. The Bk(O) have an !

k* k= "1

accumulation point v at g(c} and by Proposition 1.10,
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bi : [0, > M, bé(t) 1= exp(tv), 1s a B-ray, and therefore

n

by Lemma 3.9, bi is perpendicular to 8™ at g(c). By

1 Similarly, we get a B-ray bi

™ at g(c) such that bg NU< U

continuity, bé Nygesu

perpendicular to pmt There-

9¢

T at g(c) for all

fore, both geodesics perpendicular to Bmi
¢ ¢ {a,b) are B-rays. The result for ¢ = a,b follows from
this and Proposition 1.10.

Te show that the region R is flat, let Rl and R2 be

as shown in Figure 4.3.

Case 1: Rl and R2

2.5), then by Proposition 2.6

are good {B-wedges, as in Definition

C(R)

S C(M) - C(Rl) - C(R2) 2m = 1= =40

SO C(R)

]

0

Case 2: Rl bad, R2 good (and similarly for Rl good,

R2 bad): 1 = C(RuRz) = C{R) + C(R2) and C(RZ) = 7,

Therefore, C(R) = 0.

Case 3: Rl’RZ bad: C(RURl) = C(RuRz) = 7 {(hence

C(Rl) = C(Rz)). Given ¢ e [a,b]l, let the regions RC,Rg be

as shown in Figure 4.4. At ¢ = a, R U R2 = Rg is good, so

C(Rg) = m for ¢ = a. Letting the value of ¢ increase, if

R, remains good all the way to ¢ = b, then C(Rg) ='C(Rg) = 7,

2
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so C(Rl) = C(R2) = m, and C(R) = 0. If, on the other hand,
Rg becomes bad at ¢, then C(Rg) = 1 - (27~C(M)) = C(M) - 7.
But by continuity, 71 = 1lim C(Rg) = C(Rg). Thus C(M) = 27.
s>c =
Therefore,
2m = C(M) = C(RURl) + C(RuRz) - C(R) =7 + 1 - C(R),
so C(R) = 0.
Thus in every case, C{(R) = 0. Therefore, K(P) = 0 for all

P € R. QED

The hypotheses of the next lemma can never be true (see
Theorem 4.9), but the:lemma simplifies the proof of Corollary
4.7.

Lemma 4.4. If B™™ exists and C{M) < 7, then B! g

one point.

PROOF: Suppose there.are two points P # Q in pltin, There-
fore, the (unique) minimal geodesic segment p joining them
is contained in Bmin by Corollary 1.15. Therefore, by
Proposition 4.3, both geodesics bl,b2 perpendicular to u at
P are B-rays. bl and b2 thus form a B-~wedge at P with

vertex angle € = 7. Since at least one side W of blLJ b2

is 'a good B-wedge (Definition 2.5), we have by Proposition

2.6 that C(W) = ¢ = n. Therefore 71 = C(W) s C(M) £ 7,
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contradiction. QED

The next lemma generalizes Lemma 3.7 to the case

Ba - Bmln_

Lemma 4.5, If B = B = g(la,b]l} for a geodesic g

n

and a $ b, then the aB° approach B™" (ssm) in the following

way: given d > 0, there exists ¢ > 0 such that for all

s e (m,m+eg), B= = Bd(Bmln), where Bd(Bmln) = Bd(P),

pep™

where Bd(P) is the open metric ball of radius d about P.

PROOF: Suppose not, i.e. there is a d > 0 and a sequence

sansych that there is a

S A min
Pk € aB -Bd(B ).
. _ min min
Define S —-Bd(B ) Bd/2(B ).
Since B™P" jg bounded, Bd(Bmln) is bounded, as well as closed,
hence compact. Therefore, S is compact, and § # ¢. Now a

a
B-ray b at g(a) meets all the 9B k, s0 therefore, since
min

(B Y will meet

a/2

Bd/z(Bmln) is a neighborheood of g(a), B
a
all the oB k for k sufficiently large. Therefore, since

all the B2 are path-connected (by Proposition 3.5), and
2k Ak

for all k, 8B meets S for all
ay '

since 5 £ OB mln)

X - Bd(B

large k, say at P, € S 3B ™. Since S is compact, there
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exists an accumulation point P of the Pk' Choose a subse-

quence of the Ay such that Pk-+ P. Since S is closed,

Pe S. Also,

~

B{P)

= B(lim P, ) = 1lim B(P,) = lim a,=m, i.e.
k k koo k ¥k »oo k :
P ¢ B™ n g, But since BM1D = Bd/z(Bmln),
min & _ .min ( min, _ min -
B S B } (Bd(B ) Bd/2(B )) b.

Therefore, P ¢ B™™ N5 is 3 contradiction. QED

Y

The following lemma contains the technical aspects of

two subsequent results.

Lemma 4.6. If C(M)S$ m, and B™M = g0 is one point,

F, then there exists a B-wedge at P with angle ¢ = 7.

PROOF: There is at least one B-ray b at P. Let (W,e) denote
the "maximal" good B-wedge at P, i.e., that B-wedge with
vertex P which is good (in the sense of Definition 2.5 and

Proposition 2.6) and has maximal angle. If there are no

B-wedges at P, let this W simply be b (and ¢ = 0) . Thus we

have (by Proposition 2.6),

€ = C(W < C(M)}) < 1, so W # M.
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Suppose that ¢ < 5. We will show that in this case W

is not maximal, so that ¢ = 5. Thus let 2, be a decreasing
min m
sequence of real numbers, ak¢m, where B = B"'. Thus the
a _
dB k approach P in the sense of Lemma 4.5. Since W # M,

fix Q £ W such that B(Q) » ay for all k. Take the minimal
connection My from Q to BBak, say to Pk 3 aBa, for all k.
By Proposition 3.2, either M, can be extended (from Pk to
Q) to form a B-ray, or My lies in the interior of a B-wedge

(Wre,) such that w, n 382 = {Pk}. If the first case occurs

k
an infinite number of times, then the limit of these B-rays
through Q is a B-ray through Q@ (since the Pk + P by Lemma

4.5, so the initial wectors of the B-rays have an accumula-

tion point at P which generates a B~ray by proposition 1.10)

i.e., there is a B-ray through P which is not contained in

W. If the first case occurs only é finite number of times, |
then the second case occurs an infinite number of times.

Since the (Wk,ek) have €, < m, they must be good (for if

they were not, then their complements, with vertex angles

2 - €1 r would have to be good. But then o7 —Ek =(HM4%J £

C{M) = m so S 2 n, contradiction). Therefore by Proposi-

tin 2.6, C(Wk) = By Claim: These Wk are nested, i.e., if

k; < k,, then W, s 0w . Proof: If k,> k

a
ky k,

o7 then

k.- Therefore, He from Q to Pk meets the boundary

2 1 2 2

of W, . The B-rays which bound Wk (and also lie on either
1 2
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side of My ) cannot meet the B-rays bounding Wk . and cannot
2 1

meet |, a second time. Therefore, W, lies entirely in the
2 1

_region bounded by the boundary of Wk which contains Q, namely i
2 |
W, .
k5
Now if k2 > k then ak2< a4 + SO Wk < Wk . There

=CW, ) ~CW,_ ) =c¢  =~c_ , i.e.
k2 k1 2 1

lf

fore, 0 = C(W, -W, )
ky 'Ky

Since the P, TP (by.Lemma 4.5), the B-rays bounding

the Wk (bi,bi) have accumulation points at P, which are

B-rays by Proposition 1.10. Thus choose a subsequence

. 4
such that by > b', b2 » b, Let €y = +(b"(0),b%(0)). Then
€y = iig Exr € € (0,7] (EO_# 0 since the € form arnonde—
creasing sequence). Since €9 # 0, pl # b2. Let,(ﬁ,EO)

denote the B-wedge bounded by bl,bz. Since in the original
(W,e) we have assumed € < 7, and since W S M~W, we have

at least one more B-ray through P which lies outside W.
Therefore, in either case,

There is a B-ray through P not contained in W. We

now show that this gives a contradiction.

Case 1: W = b (e€=0). Then the new B-ray gives us

at least one good B-wedge with angle EO > 0, contradicting

the maximality of € = 0.
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Case 2: ¢ >0, i.e. we have a {(non-degenerate) B-wedge.
We have a B-ray at P not contained in W, denoted b. b makes
an angle 8 < n with at least one of the B-rays bounding W,

“say bl' Let (W*,0) be the B-wedge bounded by bl and b.

Then since 0 < 7, W is good (again since its complement has

A

an angle too large for C(M) ®). Therefore C(W*) = 0,

Then C(WuUW*) = C{W) + C(W*) € + 0 = the angle of the B-
wedge W {J W*, so that the B-wedge W \y W* is good (for if it
were bad, then its curvature integral would be € + 6 — D

by Proposition 2.6, where here D # 0). This contradicts

the maximality of W. Therefore, € =1, QED

Corollary 4.7. 1If C(M}) < 7, then phin does not exist.

n

PROOF: Suppose B™™ goes exist. Therefore by Lemnma 4.4,

Bmin is a single point,‘say‘Bmin = {P}. Then Lemma 4.6
implies that there is a B-wedge at P with angle m. But at
least one side of this B-wedge is good (Definition 2.5), say
M, so by Proposition 2.6

C(wWw) =1 > C(M) 2 C(W), contradiction. QED

Proposition 4.8. 1f ™ = g® exists, and C(M)

I
=]
-

then there exists a (normal) geodesic g such that

BT = g(lo,»)).




By Lemma 4.2, B™" is either a point P or g(I),

want to rule out the first two possibilities:
min . .
I) If B = {P}, then Lemma 4.6 implies that there
is a B-wedge at P with angle ¢ = 7. Let R2 denote
the good side, and Rl the other side. Then C(Rz) =
S0
C(Rl) = C(M) - C(R2) =9 - 71=0,
i.e., R, is flat.
min Cas
II) If B = g({0,bl), b > 0, then Proposition 4.3

implies that there is a B-wedge

¢ ¢ [0,b], with vertex angle T,

at all g(c),

and the region R

(see Figure 4.5) is flat. Claim: One of the

Rl,R2 is good and the other is bad. Proof: IFf

both are good, then C(Rl) = C(R2) = T,

50.

AT =7+ 7 = C(Rl) + C(R2) = C(R;LURZ) s Ccm =m,

contradiction.,

If both Rl and R2 are bad, then

c(RuRz} = C(RURl) =7
80 since C(R) = 0,

T = C(R) + C(RZ) = C(R2)
and T = C(R)a-c(Rl)=:C(Rl).

is either [0,b}, b > 0, or [0,=}. We thereforefgy

il
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which as before is a contradiction. Thus one
of the Rl’R2 is good and the other is bad. Thus
suppose (w.l.0.g.) that R, is good and R, is bad,

and let P = g(0). Hence

C(R2) =T, so C(R,}) =CM) - C(Rz) =7 -7 =0

1)
S0 Rl is flat.

Therefore, in both of these cases we have the same

situation:

We have a point P ¢ Bmin' a B—wedge Rl at P with angle
T and B-rays for boundaries (call them bl'bz)’ where'Rl is
flat ‘anq R, N pmin ={P}. Claim: No geodesic starting at
P and contained in Rl (other than bl and b2) can be a B-ray.
Proof: If there is a B-ray b as described, it makes an
angle 8 e (0, ) with bl' Therefore the B-wedge (W, )
bounded by bl and b is good (since its complement cannot be),
SO

}) = 0, contradiction.

Now let g : [0,%) > M be the geodesic with g(0) =p
whiéh is perpendicular to bl U b2 and is contained in Rl'
As noted in the last paragraph, g is not a B-ray. Fix
$ » 0, and choose a decreasing sSequence ak+m, where
ay < B(g(s)) for all k. Let My * [O,dk] + M be minimal

a a
connections between g(s) and the B k, say from Pk ¢ 9B K

to g(s). Claim: The M cannot meet blLJ b2. Proof: If
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W meets bl {say) at uk(tk} = bl(sk), where te € (O,dk), then
Since bl is a B-ray through P ¢ Bmln, b1 is minimal from

A A
bl(sk) to OB (say at byl(u) € 3B

). Therefore the broken
geodesic bll[u s ] Y uk,[t ,d. ] 18 minimal between g(s) and
k’"k kK" k

x
dB 7, contradiction. If on the other hand uk(O) = bl(sk) €

a
9B k, then since g(s) does not lie on the B-ray bl’ we have
(by Proposition 3.2) that My lies in the interior of a
B-wedge at bl(sk). But there is no B-wedge at bl(sk) since -
there is a unique-B—ray there {(by Corollary 1.8). There-
fore, the M) never meet bl (and similarly for bz).

Letting ak+m, then since the Pk £ Int(Rl), and

a

r pMin _ [P}, and the 3B ¥ approach B™™ a5 in Lemma 4.5,

Ry

we have Pk - P,

If an infinite number of the U are the initial portion
of B-rays (as in Proposition 3.2), then sihce the Pk + P,
they will give us a B-ray at P (by Proposition 1.10), and
this, too, will pass thromﬁlgls)eRl. But this possibility
was ruled out (no B-rays through P in Rl except bl'bZ)'
Therefore, by Proposition 3.2 an infinite number of the k
are such that Hy is contained in the interior of a B-wedge
(W,0) with vertex Pk,O < @<m . Fix one of these, and let

Ei,bz denote the B-rays which form its sides. Pk £ Int(Rl).

Let L be the 1line through Pk parallel to blLJ b2. Then

since R; is flat, and the Bl,gz cannot meet the‘bl,bz, the
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o~

El,b2 must lie in the region bounded by L and contained
in R;. Since we have noted that © < 7, the B-wedge (W, 0)
is good (again since the angle of its compliment is too

big for it to be good). But then 0 < 0 = C(wW) < c(Rl) = 0,

contradiction. Therefore, Cases I and II are not possible. QED

Note: The third Case, where gMin exists and is of the

form g{([0,=)), can occur. For example, modify the cone

22 = x2 + y2, z 2 0, by removing a neighborhood of the

singularity and replacing it smoothly with a compact,

convex cap. (See the appendix.)

The following theorem characterizes the Ba, 3B? and

gmin (whether they are compact or noncompact) according

to C(M):

Theorem 4.9 If M is open, complete, dim{M) = 2, and

K 2 0, then

i) If C(M) < 7, then each B? is noncompact {(because
B™™ does not exist), and B9 is compact if and

only if M is a flat cylinder.

ii) If C(M)

m, then:

£ p™o exists, then there is a (normal) geodesic

MM _ £ ([0,0)), and the B® # & are

g such that B




noncompact. Furthermore, the geodeslc ‘perpendicular

to g at g(0) divides M into two reglons, and the
one containing B™ in is flat.

If B™"™ does not exist, then all the B? are non-

compact, and all the 3B® are noncompact.

iii) If C(M) > 7, then all the B® (and aBa)‘are compact,

and therefore pT'1 exists.

PROOF: (i) Corollary 4.% implies that gtin does not
exist, so clearly the B? are noncompact for all a. If
there is an a such that oB? is compact, then Lemma 3.8
implies that M is the flat cylinder. Conversely, if M is
a flat cylinder, then the aB? are compact.

min

(ii): If B exists, then the first assertion follows

from Proposition 4.8 and Proposition 4.3. If B™? goes not
exist, then clearly the B2 are all noncompact. Therefore,
the 3B? are all noncompact (else Lemma 3.8 implies that M

is a flat cylinder, contradiction since C(M) # 0).

(iii): This is Proposition 4.1. QED




Chapter 5. Asymptotic Behavior of Geodesics when C(M) = 27

In this chapter we consider a surface M with total
curvature 2n. Under these hypotheses we see that all rays
are asymptotically B-rays, and that arbitrary geodesics
asymptotically behave the same way for any two Busemann
functions.

We now generalize Construction 1.2 (induced rays) and
show that their main feature (Corollary 1.4) still holds.

R

Lemma 5.1 Given ray r and its associated Busemann

fuction B, 1let tk be an increasing Sequence, t, + o, Choose

k
a4 sequence of points Pk > P e M, and let Hy [0,dk] + M

be (normal) minimal connections from Pk to r(tk). Let the
Vi = ﬁk(O) have accumulation point v at P, and let
g : [0,°) > M be g(t) = exp(tv). Then g is a B-ray.

PROOF: Choose a subsequence such that Vie > V. Fix 4 > 0.

By continuity of exp and the distance function p on M, we

have
p(g(d),g(0)) = plexp(dav),P) = 0(lim exp(dv, ), lim P,)
k> k k
[ea] k+00
= lim D(exp(dvk),exp(o-vk)) = lim d = 4.
k 2w k =0
Therefore, g is a ray. Again fix d > 0. (See Figure 5.1.)
Let bk = - m. Then AB := B(g(d)) - B(P) = 1im bk'

k o0
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As in the proof of Lemma 1.3, we arrive at (replacing d
by Gk)

[(by/my) + 1].8,cos 0 < [(bi+6§)/2mk] + b,

~

Claim: ek > 0. Proof: By assumption, Vi V. We there-

fore need only show that v. - V. Suppose not, i.e. we can

k
choose a subsequence such that ;k * v # v. Let U [0,4]) ~»
be L(t) = exp(t¥). Then N(0) = 1im exp(0.v,) = lim P, =P,
k—MJD k~+00
and u(d) = exp(dv) = lim exp(ﬁkvk) = lim g{(d) = g(d) since

koo k>

the Gk > d. Therefore, | is a minimal connection from
P = g(0) to g(d) other than 9, contradicting the fact that

9 is a ray. Therefore, lim Gk = 0.
k>

Taking the limit in the last inequality, we get
[0+1]d.cos © £ 0 + AB, or 4 s AB.
Since AB £ 4, we have
d = AB = B(g(d))-B(g(0)) for all 4 > 0.
Therefore g is a B-ray. QED
In the rest of this chapter, we shall assume that M is
a surface. Recall that C(R) =[ K for a region R.

R

In the following theorem, we see that a given ray ry will

"asymptotically approach" any family of E—rayh i.e. the




angle it makes with these ﬁ—rays goes to zero.

~  Theorem 5.2 Suppose that C(M) = 2% Given rays r

and r, we have their associated Busemann functions B and

~

B, respectively, and the functions (Definition 1.11) w and

~

w. If Ty is any B-ray, then

PROOF: If ry = r, then &(rl) = w(r}). Thus suppose r, #r.
Let y be a (normal) minimal connection from rl(O) to r(0),
and let R be the region bounded by the curve rTuvupur
which contains an unbounded portion of r. (See Figure 5.2.)
Let 0 = a, + ¢, and B = Bl + 82. By Corollary 2.4,

i 2

C(R}) = a+B - u (since D = 0). Since r,r, and r, are rays,

1
they intersect each other at most once. Therefore, suppose
that we start T at a point such that ¥ does not meet r or ry-

By the Gauss-Bonnet Theorem,
C(R3) = o, + 82 + Yy = T.
Using the "arrow" notation of Definition 2.2 to denote

"good" regions (with respect to the ray ¥), we have two cases.

Case 1: The arrow on ry and r both point into R.

Therefore, by Proposition 2.3,




M
Il

Oq + Yl - w(rl) - 7, and

CRy) =6, +y, -w(r) - 7. Therefore,

. 0 +B -7 = CRy) + CR, + C(R,)
= @fxfihﬁ)w)+'mfwf5w%m)+ (@ 48 Y =)
= loptay) + (B148,) + (yy+y,tyy) - wlr)) = &(r) - 3q
=X+ B o () -G -3 =g B m-lr) - a.
Therefore, '
@ (r;) +&(r) =0, so wlr)) =i = o,

Case 2: One of the arrows frqm r,,r points out of R, say
the arrow from ry points out of R. Therefore Rl is a bad
region. But as noted in the proof of Proposition 2.6 (the
claim in Case B.ii), this implies that R2 is a good region.

Thus the formulas for C(R2) and C(R3) are as before, but

c(Rl) =a +B -7 +y (rl) by Proposition 2.3. Therefore,
by a calculation as before, a + 8- 1= C(R): = a+g - n-rﬁ(rl)—aﬂr)
S0 E(rl) = w(r) for any B-ray ry. Therefore, we need only show

that ®(r) = 0.
We know by Theorem 4.9 that the B? are compact, so fix

a B? # B™T we have the function p?a : M B2 (Definition

3.3), where Era(M—Ea) < 9B%. Since r is a ray, it leaves

the compact set BZ. Therefore, the set {Pn=:pgahﬂn)ﬂzl= 1,2,...}




has an accumulation point P on Bﬁa. Letting un : [Oﬁdn}
be (normal) minimal connections from Pn to r(n), the

v, o= ﬁn(O) have an accumulation point v at P. Let

—

g : [0,°) > M be g(t) = exp(tv). By Lemma 5.1, g is a

B-ray.

By Proposition 3.2, the My are either the beginnings df “

ﬁ—rays, or there are B-wedges Wk at Pk such that Uk is in

the interior of W, and W 0 382 = {P, }. If an infinite

number of the Hp are B-rays, then so is their limit g (by

Proposition 1.10), so {H{g) = 0. Since &(rl) = p(r) for all
B-rays ;s and since g is a B-ray, we have wlr) = a(g) = 0.
| If, on the other hand, only a finite number of the My
are beginnings of E-rays, then we have an infinite number
of the ﬁ—wedges Wk as noted above.

There are two cases: an infinite number of the P, are

k
distinct, or an infinite number of the Pk coincide. In the

first case (taking a subsequence if necessary) the B-wedges

€ iS90] i =
(Wk, k) are mutuallymd15301nt. Since C(Wk) € (by

k

Proposition 2.6), Z e, = C{ E Wk) £ C(M) = 21. Since the
k=1 k=1 "

€, >0, lim & = 0. 1If Ek denotes the minimum of angles

between ﬁk(O) and the sides of W,, then 0 < ¢ SO

k' k < €xr
lim Ek = 0. Since the sides of the W, are B-rays which have
ke

fad

a B~ray b at P as accumulation point (Proposition 1.10), and

since Ek+‘ 0, g =Db, i.e., g is a E—ray. Therefore, as before,
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0.

j=Xi
-
If
g
19]
il

Finally, the last case is when an infinite number of

the Pk coincide (hence the Pk = P). The Wk thus are a

single wedge (W,e). Since g = W, W is a B-wedge, and g is
a B-ray, we have o(r) = &(g) s @g(O) < €/2. But B # pMil
is arbitrary, so we may choose a as large as we like. Since

e = C{(W), and C(W) + 0 as a + =, we have g(r) = 0. QED

The following corollary generalizes Proposition 2.6

in the case C(M) = 2.

Corollary 5.3 If C(M) = 27, and a wedge (W,c) has two

rays r,r; for boundaries, then C(W) = ¢,

il

PROOF: In Proposition 2.3, choose ¥ and uy so that r, T U W,

1l
o
o

kg

hence ¢ = m and 8 = . By assumption D = 0, and w(r)

Theorem 5.2. Therefore, by Proposition 2.3,

C(W) =a + 8B - 1 - wr) = €. QED

Finally, our last result shows that, in the case

C(M) = 2w, any geodesic will behave asymptotically the

same for any two Busemann functions.




Corollary 5.4 If C(M) = 2q, r and'f_a
their associated Busemann functions B,g and -t
(Definition 1.11), and g is any geodesic, then
PROOF: By Theorem 4.9, the B® and 82 are a11 ébmpac

Therefore, since g is unbounded (unless it is period

in which case w(g) and {(g) are m/2), g leaves all'Qfﬁtb

a

B? and B®. Since the B? ang B2 exhaust M, given e¢ > 0,

can find a number a such that

C(B®) > 21 - (e/2) and c(B%) > 2y - (e/2) .

Hence

c(M-B%) < €/2 and c(M-B?) < e/2.

Choose t € R such that if P := g(t), then d := Bi(g(t)) z a
and ¢ := E(g(t)) 2 a, and B.g and Bo.g are increasing at P.

Thus,

c(m-8%) U M-5%)) s cu-8Y) + cMBO) < e/2 4 e/2 = ¢,
Let b,b be B-,B-, rays at P of minimal angle with g(t). If
(W,0) is the wedge bounded by b \y b such that © < %, then
W EE(M—Bd) u (M-B%) := s. (Proof: We first note that ¢ is
less than w, i.e., 0 # 5. Since B and ﬁ increase along g

at P, it follows from Proposition 1.6 that

o = 2(g(8),B(0)) < /2 and B = 2(5() ,D(0)) < /2,

Thus, © £ O+ B< /2 + /2 = T,




To show that W = S, let Q ¢ W, and let uo: [0,k] - M be
a (normal) minimal connection from P to Q. This makes an
angle § < /2 with at least one of the sides of W, say b.

Therefore

0 <k-.cos & £ B(Q) - B(P), so B(Q) > B(PO = g

so 9 ¢ B9,

If 5 < w/2 is the angle between g and S, a similar calcula-
tion shows that © ¢ BC, , Therefore @ € s,

By Corollary 5.3, 0 = Cc(W) % C(s) <e.B==+ g + 0O,

far along g, the term @ » 0. Therefore,

wlg) =lim B(t) = lim o(t) + 1im 0(t) = wl(g). OQED

t o tow




Chapter 6. TFurther Questions

The concept of w-winders can perhaps be extended to
a measurement of "finite winding." For example, perhaps
an upper bound for the amount of winding of an arbitrary
geodesic on a surface M can be established from a
knowledge of the total curvature C(M). Such an upper

bound exists in the case of a surface of revolution

z = f(r). Using the formulas in the appendix, one sees
that if C(M) < 27, then L := 1im[1l + (f'(r))z];5 is finite,
* >0

and L = 2r/[27- C(M)]. Using the formula for geodesics,

l’ R
and using [1 + (f'(r))2]2 < L, we have

! 2.% © c-L
. oC[1+(f (r))~7] -
lim[@ (r)-6(c)] = | dr ¢ [  —~—sm=—=dr = L-1/2.
> C /éz-cz € r/r°-c

This being half of the gecdesic, the total change in g is

TL. Therefore AQ < 2w2/[2ﬂ-C(M)].

AD £

When C(M} = 271, there may or may not be ®-winders (see
the appendix). 1In the case of an arbitrary surface with
C(M} = 27, perhaps a necessary condition for the existence

of «winders exists.

The general idea and many results about B-rays are
valid in dimension n. Perhaps the concept of a B-wedge
can be extended to a "B-cone," and the projeciton map pr,
(Definition 3.3) defined in higher dimensions. The

question of the compactness of the horospheres in higher

67



68

dimensions might similarly be classified by the curvature

of M.

In the case of a surface with C(M) = 2y, can we
characterize any goedesic g as either an w-winder or
"asymptotic" to some ray? 1If the asymptotic angle wi{g) > 0,

is g necessarily an w-winder?

Finally, suppose a surface M has C(M) < 27. 1Initial
results indicate that there are at most four values for

w(b), where B is any B-ray, B a fixed Busemann function.




Appendix

We give here an intuitive look into why the compactness
of a set B? is determined by the total curvature C(S) of a
surface S by considering a special case.

Let S be a cone which has been modified by removing a
neighborhood of the vertex and replacing it smoothly with
a convex cap. We thus realize S as a surface of revolution
z = f(r), r2 = x2 + yz, where the smooth function z = f{r)
is part of the line z = mf for all r greater than some ry-
(See Figure A.l.)

It is easily seen (see [0] Section 5.6) that the

total curvature of this kind of surface of revolution is
c(s) = 271 - (1+m?) %],

Now let us imagine that we have cut off the non-flat
cap, and have then sliced the cone along a meridian ¥.
We unroll this cone, and place it into the fiat plane.
(See Figure A.2.) (For convenience complete the cone by
replacing the neighborhood of the vertex.) Let @ denote

the angle at the vertex as measured outside of the cone.

Claim: C(sS) = 6.

PROOF: We need to show that @ = 27{1 - (l+m2)_%].
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Consider the portion of the cone at distance less
than or equal to some fixed r (see Figure A.3). Let R
denote the radius of the circle forming the edge of this
set, and let L denote its length. Thus L = 23R. R and

r are related by

=L
r2 = R2+ (mR)z, sO R = r(l+m2) ‘. Thus
2 L
L = 2rr(1+m”) 2. But L is related to 0O:
L = r{27~-08). Thus

~%

r{2nmn-6) =1, = 2nr(l+m2) ;, SO

6 = 2n[1 - (l+m2)—%]; QED

In the flat plane R2, fix a ray r, and let B be its

La)

associated Busemann function. Then the level sets B~
are lines perpendicular to the line containing r. We now
cut out part of this plan to construct a cone S. Let r be
the meridian along which the two sides of S are joined, and
let the angle 0O be as before, Depicted are typical level
sets B™1(a) which do not enter the non-flat cap. Clearly,
for any © > m (Figure a.4), fhe B_l(a) will meet r, and
hence will be bounded. But if 9 < 7 (Figure A.5, A.6),

then the B“l(a) will not meet r, and will thus be unbounded.

We shall now consider some examples concerning infinite

winding. In [0], page 333, one finds the formula for a pre-

geodesic (i.e., a curve which ig a geodesic upon
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reparametrization) in a surface of revolution M, z = f(r),

r2 = x2 + y2. Namely, a curve

gl(r) = (r.cos 0(r),r-sin o(r),f(r))

in M is a pre-geodesic if and only if

2]%

a0/dr = +cll + [£'()121%/r[r2 - ¢

where ¢ is a constant. The total curvature C(M) of the

above surface of revolution z = f(r) is

»

C(M) = 27.01 - Lim[1 + [£'(r)]%] %],

I oo

(This follows from pages 243 and 281 of [0].) Thus if
-C(M) < 27, then lim £'(r) = L < o, so the function olr)
oo
above will be finite as r + .
In the case of f(r) = rz, C(M) = 27, and lim f'(r) = o,

X o0

as can be seen by noting that

[1+ [£'(0)121% 2 |£' (2)].

However, in the case f{r) = [1 + r2]3/4, C{M) = 27, but
the formula for O(r) remains bounded as r » ». Thus we see
that there can be infinite winding only if C(M) = 2m, but
that there are surfaces M with C(M) = 27 on which there are

no *®-winders.
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