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Abstract of the Dissertation
ZETA-FUNCTION OF SUBELLIPTIC DIFFERENTIAL OPERATORS
by
Irina Neymotin
Doctor of Philosophy in Mathematics
in
Department of Mathematics
State University of New York at Stony Brook

1987

On a compact contact manifold of dimension 2n+i
the complex powers of non-negative self-adjoint second
order differential operators doubly characteristic on the
contact line bundle are considered. |

Via the symbolic calculus on the grouplaxlFr1( H" is
a Heisenberg group), the asymptotic expansion for the trace
of the heat Kernel has been obtained. This allows us to get
the analytic continuation for the zeta-function to the
whole complex plane excluding the finite number of points

Z':-(ﬂ+0+;f. j'-:D,---,l'l, at which the zeta-function has simple
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INTRODUCTION

Suppose M isa compact manifold of dimension 2n+l
with a contact structure. It is defined by a line bundile N<

T*Mof codimension 2R which is symplectic inI¥MN\Oor the

symplectic form on T¥MNo is nondegenerate acting on tangent

vectors to /\ . We study the complex powers of self-adjoint

non-negative differential operators of second order on M ‘{
doubly characteristic on A. }

Another characterization of contact structure is as follows: 1
if A is a local section of A\ , thenAAQdAA... AdA #0 |
where there are B factors of d\ . A choice of such A provides
M with a local volume form 7\Ad7\.h, Two [|— forms associated
with the same contact structure differ by a smooth nonvanishing
multiple, It follows from the Darboux's theorem that any two
contact manifolds of the same dimension are locally diffeomorphic
via a map preserving the contact structure.

A CR- manifold with non-degenerate Levi form is an example \‘
of a contact manifold. A CR- structure is given by a complex Q’

n-dimensional subbundle—l'.,o < CTM satisfying_l';,o n |,,°={o}

and assumed to be integrable (i.e., the Lie bracket —l".,o:]:);_‘CT.)A-




The Levi form is given by

<’U’) a,)a’:-f,d?\,(’l}'/\ (7;) , vwelo,

The nondegeneracy of the Levi form is equivalent to the
n
condition A AdA ¥0.Dual to the Levi form is the normlcdl,

on real j—forms w given by

ool = <eo, ahy, = > [ w P
j=1

where (Z,} ,,_,Z,,) is an orthonormal basis forT,o with respect
to the Levi form. Since Il,ll-—-o the normfal.,  is degenerate.

It follows that the sublaplacian operator Ab defined on

functions by

“{4 (Ab a,) vand = j;;, <duw, dU)ﬁ‘ andx

ve C (M),

is subelliptic.

. K
Folland and Stein [1] introduced function spacesSr

on M analogous to the Sobolev spaces. For example,

fe S/ M)is

IFI% [ QdFL+ Fandd" <=
M




In the survey [2] it wés noted that the embeddihg theorems also
follow from {1}:5!2(M)C L.r(M) if y,-z-%z—ﬁ’mz
and the inclusion is compact if V,—-? yz,“%znfz -

The Heisenberg groupl}{n can be used as a standard model for
a contact manifold as an Euclidean space for a Riemannian
manifold (see [1] and [3]). If a point in JH™ is denoted by
(’f:,q,]s) the contact structure on IHn is the line bundle invariant
by right translations, whose fiber over the identity onlf’n is
spanned by qH: .

In Taylor's book [3] a symbolic calculus hés been
developed to study the classes of pseudodifferential subelliptic
operators. The symbols of convolution operators on “4r1 are
their images under the basic representation of the Heisenberg
group which are operators in the Weyl functional
calculus. Methods of [3] are extensively used in this work.

In Section 1.1 of Chapter I a symbolic calculus is
introduced for the convolution operators on the grouplQXWP{ﬂ
Based on that a parametrix forrthe heat equation onf{x\PV1 is
obtained in Section 1.2. In Section 1.3 complex powers of the
right invariant differential operators on the grouplfln are
studied. Note that the complex powers of right invariant
operators on Lie groups were considered by Folland [4].

In Chapter II subelliptic differential operators on compact

contact manifolds are investigated., In Section 2.1 a class of

operators with variable coefficients is obtained from the class




n .
of convolution operators on the group RX M using methods of
[3]. This allows further in Section 2.2 to get an asymptotic
expansion for the theta-function in which the coefficients of the i

non-integer powers of the time parameter cancel out. Such

expansion was obtained by Beals, Greener, and Stanton [5] using a
different approach. Based on results of Section 2.2 the behavior
of the zeta-function is studied in Section 2.3. é
In the case of subelliptic differential operators of second

order, the poles of the zeta-function occur only at integer
points, This implies that the zeta-function has a finite number
of poles on the complex Z -plane, and there are no poles for

Rezz0yhich would not be the case if the order of operators was ;
other than two. The analogous behavior of the zeta-function of
the special class of elliptic self-adjoint positive definite

di fferential operators of second order on the compact Rimanannian |

manifold of an even dimension and without boundary follows from %

{6]. The zeta-function of the harmonic oscillator Hamiltonian is

considered in the Appendix.




CHAPTER I. RIGHT INVARIANT OPERATORS
- - | n
Section 1.1. Convolution Operators on the Group RxH .

We will consider convolution operators on the groqu:Rle",

where IH" is the Heisenberqg group.

2 n+2
as a C°2 manifold, @ is REME A point of R and its

dual will be denoted by
(t;z) =(¢,8,9,P), t<R, s€R, qeR",PeRf

and

(5,5)= (6,%,9,7), 6<R, TeR, yeR' neR?
regpectively. The group law is
!
(‘t,, Si,qh, P,)-(tz,sz, Qz,Pz) = (t+tz, S5+S,+ 'é_— Pq,~2Lq,.9, +9, P+ &)

The dilation is defined for '« R\O by

r(t,s,9.p)= (r*t, rs,rq, rp)

(1}

F(ﬁl‘z/y;?): (f“z'é‘: ,-2..5; ry, r@-




. n
Let JI || be a Euclidean norm on Rz $ a "homogeneous norm"

is defined on (J by

%
It 2)1= [1tr+ 1s1+ 0 cq, ]

25n0
For A<(o,=) irreducible unitary representations of IH on LR |i

are

|
|

((tAsIt A2g-X+ R.}épzb) '
“/\",i--,\,(‘sl 7’P): € ' . |
i

The infinite dimensional irreducible unitary representations

of the group (F are given by

C6t
T a (G =e Fen(2), 6€R, Ac(0,=o),
3 (‘\./ - :
For a representation ”’6‘,’..1!.2, to a function ¢ on G’ we
associate

(itg;i.a'(@ = éu(g) %5’/ i-xl(g) ({9‘

For a compactly supported function {or distribution) K onG’

N
let k(ﬁ;'zj} g}?z) denote the Euclidean space Fourier transform.




We have

6'+7t.(k) k(e £1,222X, 22D)= 6, (bjil)(X,D),

where

6']((5,' + (X, §)=Q(€ £, 20%, Ag) (2)

and the operator a'(X;:D) is defined by the Weyl functional

calculus:

aX D)= Jacg,pe ™

(a(q P) is the inverse Fourier transform of a)

@G-X+p-D)
O/q dp

Formula {2) implies that
RE27,9,9)= 6, (6£D(EE Py, © /—%g >0,
Definition 1. The class WOM(GMM(G) consists of

functions ﬁ(ﬁ;‘gyjq),smooth except at O , and homogeneous of

degree fn with respect to the dilation (1), i.e.,

k(r(E5)=r"K(st) (3)
for rr€ R\O (r>o).




1 Ke llfo"'(&)( "F_;_" (G)) , we say,that the convolution
operator /((Ku,: Ko () belongs to the class OPV;”(G)(OP‘I{:_"(G))_

Let Sﬂ ’;’F - be the Frechet space with the seminorm:

/

A =11t pPhL .
lp], = S;P([’* ZEN [Depedf .

ol,m, ¥ o

m
Neglecting the singularity at the origin, the elements ofll{.,_ (G)

Feg] m/2.
belong to S5 if dt if M<0.
g gy EMzo and to 5%% i

Note that (3) is equivalent to

0. (6, £roCs= r'"6, (6 £ 90s).

m
In order to characterize the class WO (Ci),we will consider -
an auxiliary classes of functions on Rz'”{

Let Z be a union of rays through the origin in the

complex plane.

ki m 2n
Definition 2. We saya(ojx,g)es,)x , m real,(,\;g)e R ,
6 2, , ifacs, k¥ e C(R¥) for each fixed 6

and 'for each multi-index o< there is a constant CDL such that

m—foc |

LD; acexs)<Co(+ixi+i5] #1612 @




——r m m .
- As usual SZ = S';Z .For a{§,x, e S’lz’the family of

operators (6, X):I)') is defined by the Weyl functional calculus:

a(s X, Dwcy= @1 " [Je “ Va6 40, Hacsdyds
If A(6,X,5)€ 5’)’; , We say,that the operator a(ﬁ;X,_D)
belongs to the class OPS,:Z .
The classes OPS;; were considered by A.Voros [7], Gross-—
man, Loupias and Stein [8], and, in a much more general case by
Hormander [9]. The symbolic calculus can be extended from classes

GP.S,'Zto OPS,’::. For example, the multiplication law is written as
F P

follows. If a(6,X,DeOPS, s ,H(6,X,De OPS,/; ,then

—ace XD bexD) e 0ps T
cEXD=acs X0 bEXDe OPS -

and

(%9 ~ ¥ () {a, b}, (%9 ®
where

ba,b} (6% = asxs) b(65x3),

(7)

(1‘77’! {a”b}j (6:"’,5) =

h 2 4
=) 3 (Faon” Fouin) 26x98647,, -
K=1 D=5
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The meaning of (6) is that the difference between C(6,X, ¥)
and the sum of the right side of (6) over O<j= N belongs to

m4par-
S M-2ZN
IIZ .

‘Following Voros [7]7we introduce a class of comparisop
operators: powers of the harmonic oscillator. Let h()gg):le?i-lflf
H=B(X,D) 3 Hy be the operator ( I+ H)KG' OPSIZz for each
integer K. For each integer k,let \X/K be the Hilbert space
obtained by completion of the domain of  H,. in Lz(Rn)

for the inner product
({’(’; ‘U)K = CHK ("’) HK U)-
We obtain the sequence of the spaces

co. € WL<... < W <W,c W, <... CW__KC...

for k>o,\}\/KandW,.K are dual of each other for the inner product
of W, . Also, S(R")= ’QWK and its topology is given by
the directed family of seminorms N #, ,and S'(Il"):gwxilo 1.

It waé shown by Voros [7] that if CI(X,D)G_ OPS':”;.,then for
any integers K, [ with £>/m/.z s a()gﬂ)is a continuous operator
WK — Let [[g:[(’(}")(,D)[]K'M"g be the norm of the

operator

K-C

C((ﬁ',X,D).' WK—',WK-ﬂ )

To determine how Ila(ﬁ’,x,b)llk K-t depends on 6 forlfﬂ suf-
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ficiently large, we use the Calderon-~Vaillancourt theorem, which

states the following:

Calderon—Vaillancourt theorem.

If A(X,§) satisfies the estimate ’.Dx ;a(x, f), <A .
for le<| < K(n) ;then

la(x, Dl < C(MA .

The Calderon-Vaillancourt theorem and Definition 2 imply
—-m
that if M2z O, then any operator a(6, X,0) € OPS,  is bounded as
7
2
an operator fromLz'(Rn) to L (R"), and

—m
"

las, X, DIl < C(I+161%%) ()

Estimate (8) yields the more general - |‘{
\ m
Proposition 1. An operator a(@', X,])) < OPS LS is bounded
4
as an operator from WK to WK-!.’, for k, £ integers, L>mfs,

and

| C 1) V%t
llace, X DI < ke (J+16D) , k<0,

’ CeeCiris) 5 C=o0,

]6°1 - is sufficiently large.

Proof.

L
Denote as HE (6) the operator—function ( L+H+ Iﬁ'l),ﬁ"éz ]
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Tt suffices to show thata(6,X,D) is bounded on the domain ofH,,
inW/, . Denote as b(6,X,D) the operator H z a(ﬁ;)(,]))H_K . For
any vector (- in the domain of Hy a6 X,D)w =
=H, , b(6. XD H, . . The operator H is an isometry
&K K K
of WK into W[, , operator Hp x is an isometry of W, intoWj.,
m-2¢
The operator b, X D) belongs to the class OPS, 5 , hence it is
a bounded operator on Wo .

In order to proof (9),we check it at first for the operator

Hm/z (6). We have
WHoyo (M o = W Wit e COH_ N
and

H-c H”"/z(ﬁjy-;( = Hnw/z (ij'l,z .

The estimate

m;
(1+ 160 ,z) £zo,

I/H"”/z@H‘“"’// < ¢ (+16) %, £<o0,

can be deduced from the formula (&), Calderon-vVaillancourt

thedrem, and the formula

m £ moot=
sup (1ry+d) (1+g) = | HO 5 £20
Yzo0 |

m-L
Cnet ), t20,t>Rme -
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_ Now ,if a(s') X)D)C: OP._S’; , then
e X, D), = W Hpp @H-rp (Do XD, <

< M Hpy, (8]

K k-t

VH-rmp (9D (6, XD,

We have to show that

I H

L s (6706 XJ))// (10)

where . does not depend on 6,

Again,

IH,,, @ agsXD) B e ™ It (6K, MH M

Denote as h(6,X, §) the symbol of the operator H-mg (G')a(f:;X,ﬂ)
The function h(€, x §')€ ) E , S0 h(ﬁj)g 3‘) c S,oo

uniformly for 6 or

Sup [i’)oc',-A(E&E)CI*-”"*’F’)M’]éC :

X5,6 /
6€2




and the same is true for the symbol of the operator
HK H-m/2<6‘)a'(6;X)D) H—l( 2

which proves the estimate (10).

m
Definition 3. The class H consists of functions
2n+1i
a(6,x%), 6eR,(x5)eR” uhich are smooth on R and

satisfy the following condition:

a6;x,5) ~ 2. (6,%%), 161+ Ix1 2151 o=, (3

>0

where q}-(s;x,g) is smooth off (0,0,0) and satisfies the

homogeneity condition:

‘5’- (r#6, rx,r§) = r""ﬁ/'c,?. (6,%5) r>0.

pDefinition 4. We say that the function a(ﬁ;x,g belongs to

the class H'' if CL(G)’Xig)e H™ and

[+]

a(6-X-%) = D7 a(6x, 5) (12)

14
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Definition 5. We say that the pair a,(6,x, g) belongs to the
classHi. (H:’,a) if both a.f(s;x,g)and d,_(fi',:g;-‘)belong toH (Ho )?

and if their expantions are compatible in the following sense;

a, (x5 ~7, (D' P Ex5). 13)
+ z,

Proposition 2. The function

kry D= 1", (< + €%y ©h7), Tr0,

belongs to the class W;n(ﬁ) ( %m @) with 6x (6, £D(%5)=
= @+(6,X,§), if and only if A, (6,x,5) belong to HZ'( H__,_’_’:o)_

Y
Proof. It is needed to show that the function K(6,%%, Y, "’(_)

defined by (14) is smooth at T=0, (6',_9}7):;& o. From the

formula (13} we have

J;}O

as T+o, [61+ iyt in1 1.
It follows from (15) that if ©—>oO, 161+ 1yl 1% 2oy,

R te g9~ D ‘P(a‘m)
J?O
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: m
Assume that K(;z, ¢,%7) belongs to the class ¥, (G). By the

homogeneity relation (3} we have

(527,42 = R (TS, £1, Ty, €%7) , 0. 1Y

Denote the function 7(\(63:':5 9,%) as @ +(6,4,%). It is known that the

:Eunction’lz(é‘;'c,g’ ‘?_) is smooth at -0, ]6'l+lyl"z’+]’yl.-_—{ or

(e, 22,9~ (*@ (69,7 .
7>

It follows that

a6, 2y, €59 ~ ). T DGy
J>0
or
a(re,ry,r)y~> r ey 90(6" +Y9,%), (an
770

-t .

Note that

. T ¢ ~ L~ m-2(-24—1< 1 (18)
DDy D, k(ETy, D <Y T(a),




which follows from differentiation of the relation (3). In

partiéular,
:DOC M m-—i¢/
oy KETY72) < Y77(6),

. .lf( +
Denote the function » Qa +(6,Y,7%) as bd_ (6. Y, 7).
From the formula (16) we have
$°L "Z( T _,I;);:ﬂl t o e V2
Y7 6;1.,,’_-["2): T Ax(b }i'ﬁ y)f[: 78)_

It can be shown similarly to (17) that

* _ :
b (r'e, ryra)~ 3 pm 71yl (69, 2)

j;}o

as pr— fao

N _
It is clear that the function K(6; £%,Y,72) defined by (14)
is homogeneous with respect to dilation (3) for r>-p . ASsume that

(13) is satisfied. If r< O we have by (14) and (12)
e
K(ries*z, ry, ry) =

=Im T, (Bt (YERy, ~ETy) =

=M™ CD7 T Ra, (€76, £ TRy, €)=

=rmk(6,27,4,7) .

17
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‘Note that if the functions @.(6,X §) belong to the

S(R,z'”") (Schwartz space of rapidly decreasing functions),
then (14) defines an element of Opq’_;_n(&),

If the functions cL £ (6,%%§) & H;' (H;:o),
we say that @, (6,X,D) e OPH;’ (OPHZ:O) .
Proposition 2 is similar to Proposition 2.2 (Chapter I) in [3].
This allows to consider products, adjoints, and hypoellipticity
of convolution operators from the class OP'I’:’ (G) in the manner

it was performed in [3] for the similar class OP ¥y (iH?).

Proposition 3. If ai(o;x,y)e OPH: (OPH;:o),
b, (6,X,D)e0PHL (oPH L) , then

AL(EXDbe(GXD)=C(6X D)< 0P (0re, 72",

Proof. Assume that @(F, X.D)é OPH”) b(6,X,DeoPH ™

The class H . is a subset of the c¢lass 5 LS 2 so the product

(,(6'))(’_)) belongs to the class OPS:;P andc(Gj,)(,g') has the

asymptotic expansion by the formulas (6) and (7).

It follows from formula (11) that ifa(ex §)e H™(HT')

b(6,%%) e H“ (H f°) , then {a, by (5,x £e H"’*f"zj(H’:’f“ZJ)
and cL(6,X, DYb(6,X,D) « OPH ™ 1*CoPH 1)
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Now we have that c_i_(s’,-x’])) and c_(#, X,_'D) belong tooPHm“"J“"
(0PH"**) and |

caGxD~T () { @b (505). )

jzo

mepat-2 -2
The Jﬂ.'-. term of (19) belongs to the classH il J(Hmv' J)
so the series of {19) asymptotically sum to the element ofH e

my
(H ‘u.) As a consequence of Proposition 3, we have

Proposition 4. If K,éOP‘P:'(oP‘P:‘), l(ze()pq;o“’“(op!,o."‘“L ),
then K,KZGOP‘F:“’&( OP(P:W“) 5

6;(,’(2(6; ﬂ:))(X, :D) = G'K, (65 £ )) (XJ:D) 6"(2(6; t}') (XJD) -

Assume that the operator X  belongs to the class 0?‘!’:‘(&)
m Py
(opty+ (G)) . It follows from Proposition 2 that the operators
. m
€K(63t3(x;1’)= a (s X D)  belong to the class OPH;t,o
(OPH’"),It is known from the Weyl calculus that ifa.(s;x,_'b)e
0Pl then  a(s%d)¥= af(6,XD) , and

Q¥ (6,X,8)= (6% 5).

m
It follows from the last formula thatai,(ﬁ,x,’b)*é OPH, o
(OPHL' ).
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This implies
Proposition 5. If Ke OP‘P:‘ (&)(OPW?(G)) ,then k¥e OPtp::'((I) | ' ;
(0P, (@)and

6., (6£0(XD) =6, (6 £D(XD),

Consider the case when the operators 6,(;+i) (X, D) are

elliptic.

Definition 6. We say, operator a.(6,X,D) ¢ oPH™ is

elliptic with parameter 6 | if B (6,X,5)£ 0 for161+1xI5151%£0.

Let R,, be the set {€eR;I61=M]}.

Proposition 6. If the operator a(6,X,D)c OPH and it is
elliptic with parameter 6, then there exists an operatora,(’t';',ll{,]))-l
< OPS::‘RM for some M>0.

Proof. At first we show thata(gX,D)has a parametrixb(6,X,D)
€ OPH " ILet (s, X,D) be the operator with Weyl symbolp(s; x,5)

:‘%(6‘,)@,;‘) for 161 + Ix1% ‘3-;2 large. By the formulas (6) and

(7): |

B8, X,Da(s X )= T+ reXD),
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where r'(6,x,5) ~ 7_ rj(ﬁ;xlg), rJ(G;X,g) are homogeneous of
degree m~24-fin (151%2,x,5) . Therefore the operator r(6,XDeopH™

m-¢

By (6) and (7) ré(gX,D) _ iz, belongs to the class OPH™;

so the operator

b(6,X, D)= (I-r(6, X, D)+ r (6, X, D)~ ) 3(6,X,3)

is a parametrix for the operator a(6,X,D) and belongs to the
class OPH ™"

Now it has to be shown that a(6,X,D) is invertible as an
operator on WK for all integér k for {61 sufficiently

large. The product

bEXD)a(s,X,D)=T+Rq,

- ’
where the operator RG.EOP.S'Z_It follows from Proposition 1,that
r
there is M >0 ,such that IIRS"K,K—-£< %2 for{61>M,so the
operator I + Rs. is invertible as an operator on WK for any
— —f
integer K. Denote as Q’ﬁ' the operator (L-J-RG.) —~ T . We have
Qﬁ,;s(g");,S(R")is continuous, hence by the relationQg=— Re—

~QgRes CLG:S'(R”)H»S(R“) is continuous. It follows that
-1 ——o 7
a(s‘,X,D) — b(s, X;D)G OPSIJ Rpy -

Assume that the operator X & OPqum(G) and the

operators 6”;(6',19()(}])) are elliptic with parameter6, 6 R,
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Assume also that the operators G'K(G;:".D(X,:D) have the left

inverses [ 6,(6, —.-_—.)(x,]))]" € OPH-_: C OPH:“O ) Then
the operator L, , such that

-m —I
6, (6, 2D = 2 [ 6, 6,2d(XD)],

is a left inverse for the operator K and L€ OP'!’:,m (@)
(oP%)” (@)-

The next proposition is an extension for the case of the

group Rx[H" of the Proposition 2.{0[31].

Proposition 7. If K€ 0P‘l’+m((7) and 5;((5;13 (X,_)) are
elliptic with parameter o y then K has a left inverseLéOP‘P*m(G')-
if and only if 6' 6, =D(X, D) are :mjectlve on S(R. "), and

such a right inverse if and only if )(X:D) are injective
on S(RM)

m
Corollary 1. If Ke OP‘V+ (@) and G;C(G;iD(X,:D) are
elliptic with parameter §  and injective on .S(R"')7 then K is
hypdelliptic.
Denote as AG‘ the operator al{XD) -(¢6 wherea,(X,_D) is

a differential operator of second order with the symbol
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a(xs)= Z a"'J'X XJ , Xe=Xe, xcf-n':ih
’j_’ I<se=sh .

The matrix {a_ } is strictly positive definite and symmetric.
The operator AG’ satisfies the condition of Proposition 6.

Note that in this case the Weyl symbol for parametrix ong:

B(6,x5) ~2_ P.6X3), 61+ %5 ">,

j7°

where the functions (@.(s",)gg) are solutions of the following

equations:

@(x %) -c6) P (6,%5)=1

{a,'(:ﬁ; ('gvj—:.}z—l- (@—66’)50_201 J.:-’J'z)'

The function (p .(6,x5) is homogeneous of degree —z—-lq
in (161 /Z, x)g) so the operator B(G’ X:D) < OPH

As a éonsequence of the Propositions 6 and 7, we have

Corollary 2. Assume that K& OP‘{’_T (G) . and
G'K(G;il)(x,])) =y (XD)- 6 = A ¢ - If there exist
d_f()gb)"', then the operator K is bypoelliptic.
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Definition 7. We say a convolution operator k belongs to ‘

OP wm(&)’if
KnZ Ko, Rje opw ™7 (@@) |
J'?/o J °
N
in the sense,that the difference K — pa KJ is arbitrary
. J’=o

smoothing for any sufficiently large N.
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n ‘ ;
Section 1.2. Parametrix for the Heat Equation on the Group Rle . |
Let C_ be the half-plane {Im6‘<o}with the closure C_ ,

m
Definition 8. The class lPh (C\') is the subclass of (V:’(G)’

= 2n+i
consisting of functions which extend to(C.XR DN\O in such

a way to be C“" in all variables and holomorphic with respect
toB, 6 C_.

We will consider the operator %6-Lat. on G' where
n._ 2 2 .
L, =2 (Lj+ MJ-)+ rec
g

on ”»—In Note that

976;11(%6-1,,9_ 16+ 2.{32: (—99)9_9. + ){72-) _-Foc} )

Obviously, (%{; '-Z.,C)G OP‘I’: and

6,

: (9/‘9£_!'ac)<6;i9(xx§):iﬁ'—l—lX/%—lfIZ;oL,

t 6,+1 ; iptic with
The operator 6‘(5)/;(;-—1.,()( > )(X,D) is elliptic w1n
parameter i6 o o& for all 6€ R and invertible on LZ(R )

if and only if-RFek ¢ {0},.24,1,{J ,.._} .




Denoting as b *(Gj,xlg')'the Weyl symbol of the inverse operator, we

have the following equation

2
n 2,
(ixi*151% c650b (6:x5)- V3 2. ( 949,< %k %/?K‘;"Q
K=y
. (1x1’~+ 151% (6504, (6 y, 2)/ = /.
_ J=x
2=¥

After differentiation it becomes

_l 2 2
/‘7% (%;5?— + %;J?)b,c + (IXUH51306 50 b, =1 (20)

Denote by H operator -—A-I-IXI‘Z, the resolvent of H by

R_(XD)= (H+ D)

A solution of the equation (20) could be obtained as a Weyl

symbol for the operatorRa.()gD) for = (6 o4 . In turn,

RT(X/§) = -}::Z:-a.{: At(ng)(% 7

26
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 where hi_’(x’g) is the well known Weyl symbol of the operator

€ (see [3]):

ht(X, 5)= (cosht)—ne/x,o [-Cxi*151%) ﬁznhﬂ (2D

Using formula (21) and changiﬁg the variables, we have

1+ (D, 1= (D g (a%r512
6 .

/
Rp&9)=C, [a-© = (1+9) Jt . (22)

The integral (22) converges for Reg >—M.Using the Taylor

—1—(F=n - 2 1eyR
series expansions for the functions (+t) V2. andgt(":"”'fl,)-.

the integral (22) can be rewritten as the convergent series:

’ —1 + (T} 7
R.a,(x, D=C, . { (1-t) 2 CJ.{;

Jzo ?

where CJ depends on x 57 J - For each 3 the integral

S gt T i g (520!
’ (7). (T + 5)
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It follows that the integral (22) can be continued analytically
to all complex T excluding —n_,zj R J’:: o,l... Therefore, the

solution of the equation (20) can be written as follows:

bo(x) =S T ) x5 dt

for [Reocl< n.
Consider now an operator%{; + P, on G_' where P, 1is a

more general second order differential operator on [H";

- (23)
Jé._ JKXJX -.ll-LoLl7 .

where XJ.-_-, LJ? ivn = M , 1<jzn, and {a l(} is a symmetric,

positive definite matrlx of real numbers. We have

64-1(/‘%*"‘)”' o ~A QR (X, D)

where

(X g) % a. ’K 2 %j:xj; xff-n:%.) (24)
ko

I=f=n.

The operator Q(tX,:D) is a positive self-adjoint differential




operator of the second order. Let § be the symplectic form

2
on R™7:

S, (x,57) = x5 x's .

1f Q(w,V) is the symmetric bilinear form on R?*"™ polarizing the
quadratic form Q{w) (Q_(u_): Qlu, u)),the Hamilton map of Q(X, %)

is defined to be the linear map T on Rzn_.

i  oan
Slw, Fu)= Qlw,v), «, eR™" (25)
~ _
{f is positive definite (if () 1is positive definite) so its
eigenvalues are of the form + Cju,J-, Iéjs n, juJ-?o .
It was shown in [3] that Q,(X,.D) is unitarily equivalent to the
operator

n
2
]g' Sy (-9 Ix? * sz) ,

so the spectrum of Q,(X,_-D) is of the form:

29




If Q(x,5) takes the form

Q()(,'g) ::Z ju'g' (X;—"- 52-) ’ /tLJ'>O »
i J

then the equation (20) changes to

4 7 e Toee)bv 2 150508
(26)

+(6x-)b =1.

The formula for the solution of therequation (26) can be

written as

J'm ~f6€t ot
e, +

A:(xg) Jt | | (27)

where

Q n ~7
hy (x5)= ” (‘105”*/“‘,)
7=

ep 3 Gt s tanbiss)

= 7

30




and it is necessary to take Re.o&  small enough in order to

avoid the spectrum of the operator Q(X,D) i.e.,

(x}
IReo(,[{J% /u_J (28)

The formula (27) will be expressed in an invariant form as it was

done in [3]. Denote by -FQ the map"tL —FZ_ . We have

- 2
JQ (cosh{:/uf) = det cosh tfg

S0

[T Ccoshtp)) = (detcoshtts) .
FEL

Now let

A, = (FE)*

g 2
be the unique square root of the matrix 'FG_ with positive

spectrum, and ’a*’ is a quadratic form on R?*"? defined by

'J'(AQ'Z:Z)= Q(z,2) .

an
In the symplectic coordinate system on R such that

31
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Qz, D=3 pu. (x*+57), 2=059), )

J d | ]

we have |

T(2, %)= Z (xj’“+ §J?~) ,

7= ‘_

S0 {
(52 = Z $u) (4 *5) |

and é
Z2 (x5 anh (o) = - (Gank e Ao, ) =
=Q (A, tanhtAqz, 7).

Thus the formula (27) can be written invariantly as
be(x5) =S €T ID exsiit, 29

where

@Q(t) 2) = (det cosh i:%jya i

TEXp {—Q (A; tanht A, 2, Z)}, Z2=(x5%) > (30)
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'and-
h
lRe.a(..l<Z ﬂ
=179

2
The function H,, belongs to the Schwartz space S(R ary

So, we can define an element of %} by formula

6 (6,:D(%5) = &' by (T'6, £ Thx, T#5)

Using the formula (29) we obtain

72(6; £, Y, R)= f ~(6eFxTE (o’ei: coshc )—J/

“exp{-Q (AL tanh (tD)Aq £ty V)bt |
2=(Y,7%) -

The function ,12(6;:1‘: T, Y, = by (G;tq;)(ﬁfc'%‘-y’ -,_-f"/‘!:z)
belongs to the class ()U’:z' . It follows from the Proposition 1.17
of Beals, Griener, and Stanton [5] that the function K (inverse
Fourier transform ofllz ) vanishes for€< 0.

Furthermore,

Keltys,q.p=€ ko (%, % V), t70, ()
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a _
where the function K,  belongs to the Schwartz space S(Rzn-;v_
, :

If o¢=0 the invariant form for the function K?(s,q,/) is

a too | |
K, (s,q,p) :Cn[ e,"s‘z% T, q9,pdT (32)

with

TVl
¥ (z, 91.p=( z 2" det sinh 7:7';) 8

"exp {—’:‘.‘Q (A;;coﬂ)'z:AQz, z)}, Z=(q,p).
If L #£ 0, IReocl<J_Z=, My then

a
R'f“ G, 9.p)= kfl(‘g/{:-f i, Utz > P/yE) (33)

where k?CS/tf-f-Oﬂ) q/rg , p/r;_;) is defined from (32) by an

analytic continuation.
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Section 1.3. Complex Powers on the Heisenberg Group

We consider complex powers of the right invariant
differential operator(P)= R)) defined by (23). Ifm€R,

then

Q—@ﬁ(tl) (XJD): R.ﬁQﬁ(x,D) r

where the Weyl symbol of the operator Q(X,])) defined by (24).
In accordance with the last formula we will analyze the complex
powers of the operator (-'P) = (—Po) as an operator (—P)Z,such
that

Ezgag(jﬂx)()QJX)zsz;(;L ()Q:D)-

Let q_z()g s)=) be the Weyl symbol of the complex power
~Z, Rez>0p0f the operator Q(X,])) It connects with the Weyl
symbol of the operator g_':tQ' (function @Q(gxig) from (30))

by the formula:

7_2(",?) 7—,;?;) ]; i:z_'@a(t,)gg)gt, Rez>o.  (34)




The integral (34) converges for Re=z >¢ and the function

—2Z
'7_2()(, '5') belongs to the class H ~ (R?™) 1f Q = H(X,D),then
by (21)

h (x5)=L— { sz%osbi’:j- Z:xp Z:—rzﬁlanﬁg Jt

=2 (=) (35)

y=ixi¥isr?

: ~2Z
Since g (x,§) belongs to the classH mz'iwe can define an

FAN -
element k__z of zz([/-{”) by the formula

6;( (:t@ (% 5) ::f:z'%z (té‘%ax, ‘f"/zf) ) (36)
—z

By {34)

(vt T4y, "‘E’zf)dﬁ YA

If @=H(XD),then the formula (37) obtains a simpler form:

36
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6, (D=1 f “(coshet) exp{~L tanbet) de.

It follows from the above considerations that the operator
-2
("P)Zbelongs to the class OPW Z(IH ) Rez>o0.

Note that
B (zt, T4y c%y) - 6 p¢9(53)

So the formula {37) can be rewritten as follows:

ZI

( D, '5')- (5 JE . (38)

If 0<Rez< h+1 then an explicit formula for the
convolution kernel K_, of the operator (-QP)_Z can be found from

the formula (37):

Zl
K, G9.P= s [ 87, (45 9, pdt, (9

where the function K (£5,9,p) defined by (31) with e<=0O.

Similarly, we will analyze complex powers of the operator
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(—P) ,ot#0, on H" as convolution operators k—z«c“’ =
_Z)d' 7
l\’_zd:k « vwhere
7
-Zn(.('s q,p=-L_ ft K (tS9,pdt. (40)

r'z)

. The functionko‘(t,S,C],,D) was defined by (31).
For each (qu)P) , the function I(d(tls,q’ﬁ): O(t-(m-t))
as €reoe, iIf €20, (5,9, P # 0,K, (£,59,p)=0E")for anyN>0.
It follows that the integral (40) converges for o< Rez< n+i and
('S,q,P);éO, It can be shown similarly that the function
K;e(S,q,p 18C™ on/H”\O. Note that

%t |
K‘Z"‘(r(s q’P)) p( ) ot Kd(é’JrZS; rq, rP)Jé::
2(z~(n+1)
=r K 4 < 9.p,
which shows that the operator K_, _ belongs

-2z
to the class OP‘PO (/Hn)
In case of the operator [_, the formula for the function

e_z,x can be written explicitly.

The heat Kernel in this case is given by the formula
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L. (t,59.P= [@6 ctfsleriod] £ Ce/sink a"

2 4.2
. exxp{- Tcothe (Iqli;+/pl )} dz .

Substituting e“_({;lsiq,p) in (40), we have

82 x(s q, P)" o {f LL[S/ﬁ-I-LoCJ_é )

Z

(%,‘,,/,.an@xp[" veothz _%gﬂﬂ{f)jdfc’cfﬁ

We will integrate at first with respect to € . Apparently,

f‘() f_& ~(N+2) -(; "(c cs—Tcoth L)(:q],,.[pﬂ)c[é
=

Z (D)

(czs- (ecothD (gl 1p1?) .

We have
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6, 1P~ S TS

‘ Z—(n+i) o (41)
. {Lssin/m — cosh 'L’(lqlg'l— Iplz)} .

This formula is valid foro< Rez < n+l and | Restl<n . 1p
the case of Z=ke Z T formula (41) can be continued

analytically (by integration by parts) tooc € {C such that F ol
avoids the set {n-;—.ZJ', =9 l,} .
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CHAPTER II. OPERATORS WITH VARIABLE COEFFICIENTS
Section 2.1. Operator class

Let M be a compact contact manifold of dimension 2n+l
We aim to obtain the class of operators with variable
coefficients on M from the operator class OPW ™ (Rx (Hn)
in the way it was developed by Taylor [3]. In order to have
symbolic operator calculi for this class we need to verify !
certain hypotheses that were stated in Chapter I of [3]. These

hypotheses for the classOP‘I’m(&)can be written as follows:

m

| (42)
WGy < | w70
SZ; , Mm<o_

R,cOPY"(@), KaeOPE (@)~ K Ky 0Py ™7 (G) 149

m-:Zi-—Zj |

~ m c LT A
R, %y, D)< ¥, (@D DD, ,Re ¥,

o

HEG) (44)

-

KeoP¥™(q) — K'e 0P¥,"(q)
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If Kj € OP%""J CG)' j'_., 0,i,..., then there exists
K <, OP'P"’(&) such that

The property (42) follows from Definition 1; properties (43)
and (45) were stated as propositions 4 and 5, respectively;
property (44) was stated by formula (18), and property (46)
follows from Definition 7.

By Darboux's theorem an open set & €M™ can be mapped

: n .
diffeomorphically to an open set N<H s Preserving the contact

' ~
form. For eachv e ()}, if K(U‘;G',‘t:,y,"z) is a smooth function

of ¥ with values in ¥™(G) then K(¥) defined by

K(w) = K(v;-) *w -

m
is a smooth function of ¥~ taking values in OPY (G'), Then we

say that the operator K defined by
Kw) (W) = K(»a(w)

belongs to the class OP‘[Jm(RXM)_The symbol of the operator K

we dencte by

6k (056, £ (X D)= 5z . (K@D,
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As a consequence of Proposition 1.2 [3] we have the

following:

Proposition 8. If Ae OP"?"'"(R.’CM), Be op‘f,‘jl“(Rx M),then
AB € 0P ™PM(ReM) IECEOPP™M(Rxpd) is defined by

P

6.6, +)(X,D) = 6 (0§ X)X D)6, (v, 623X X, D), |

then

AB~C e OPF™HI(RxiM) . .




Section 2.2. Parametrix for the Heat Equation

Suppose P isa negative self adjoint second order
differential operator, its principal syrnbolf)2 >p and vanishes to
exactly second order on Ac T*M\ O , the span of the contact
form on M. Denote by F the Hamilton map of P,
and by tr* + the sum of the positive eigenvalues of ++.

It was shown in [3] that if the condition

fswb 6(P)|< trtF on A (47)

is satisfied then P is hypoelliptic. The operator P  also
2 2

has a discrete spectrum, since the embedding S, (M)c L (M)

is compact. |

For vrefl , We assume that

= R@uw),

where

2r
P@=>" Qi @)X Xt cl«:(zr)_r,

j;K—‘-’l

the matrix {ajk(tr)} is symmetric and positive definite for

each ¥~, the functions ajK(U')r o~c () are smooth functions of ¢y

44
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The symbol of the operator P (v) is G'P (v; ) (X,D),

where
6' (v' N (x, §)_.Z'_ (UDX. X, 7 oc(v)

%j-_‘X‘) %J+"=§J-’ lSJ‘-gn-

The operators 67 (W, -_tb(X,])) are elliptic and invertible on
of,

2
L (Rh) if the following condition is satisfied:

FLB) £ { 5 (ke K T,

Vel ,

[u‘—](v') is the eigenvalue of the Hamilton map-’z %C@
For ¢re ()  we consider the operator %t + B, (v) with

the symbol 6 (U; 6,£)(X, D), where
Poerpe ’

3/,;,5+ (U,6,£)(x,5)= Z_ ajK(U)xjxkafoé—(t'“)*Cb”.
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The operators 6’3/ p (U‘; G;iD (X, D) are elliptic with
FE¥ Toc
parameter ¢@ and invertible on £Z(R") if condition (48) is

satisfied.

Proposition 9., If condition (48} is satisfied,then the
operator %{; + R, is hypoelliptic on {2  with parametrix
Rd_ in the class OP‘P,:'z .

: A
Proof. If the function K, _, is defined by (29), we
, (

consider the function

(") Qv P {49)
koz(vj (f:,s,q,p)—_-t k, o(.(vj(S/é) 7/1@) /’/£>’

Fd

for each U, and the corresponding operator '
(K D) = (K@@, K pu=K . (D*e. ]

The operator K <

It follows from Proposition 8 that

belongs to the class OPVRJ;_Z(RXM).

(e + PIK. = T+R, Re PP (RxM).

So, the operator%t + P, has a left parametrix |

K K ~K R+ K R*—... K, + K+ Kgt-..




N ’ 4 7

' - . -\.J__ -t
It follows from Proposition 8 that KJ' € OPY ZJ(RXM)j--OI,
LJ=0.L...
Similarly it can be shown that K is a right parametrix. After

the rearrangement, we can write

K«,Z K’ , K’ € Opahhij(RxM).
jzo J

_ ~7 | G 2T
The function RJ(U;6; T, y,'f() belongs to the class (.'i ]

It is homogeneous with respect to dilation, i.e.,

1<‘J,'(u; r*e,r’t,ry,r7) = r—z‘jl?;(v; 6,7Y7)-

It follows from propositions 1.9 and 1.17 {[5] that

' . :
Kj (‘U;f)S, ?:P) . is homogeneous of degree 2+J-2n—-1{ and it
vanishes for £< 0. ' i

Substitution of F=-! shows that["(\;(tgs:"t,y’ ‘2) is an odd

function of (y}vz) ifJ’ is odd. So K‘;(U‘; {;}o):o if J is
odd, and it is homogeneous of degree_zl__(2+j-2n_4) in € |
when J is even.

Therefore,

K(tr,{;,o) ~ _6"(”*02 -éél{i(v') L t—o0. (50)

(20




I
Kul, W=kt v, ) xwlt, ), (Lv)reRxH™

then the kernel of the operator K  is the function

K(¢, v ¢! v!) independent on £ and

tr"etP:f R(o,v, ¢, o)dzfo/(v) + ,4({;)’ (51)
M

where A(t,) € Cm(é—"‘) R

From formula (50} it follows

Proposition 10. If P is a negative self-adjoint
differential operator of a second order on a compact contact
manifold, and its principal symbol vanishes to exactly second
order on AC TM \0, and the hypothesis (47) is satisfied,

then

- —~(n 52
ff?itp‘“’ +B(1:91"C;fr+ ..,) t-——0 . (52)

2

48




Section 2.3. Analytical Continuation for Zeta-Function

Let A.J- , J':O,I,--- be the eigenvalues of the operator

("’P), AJ?/O’

NO=2 1,

ALA
J

The result on the eigenvalue asymptotics for (—P) is
known [3]; it follows from the asymptotic expansion (52) and

Karamata's Tauberian theorem:

—(nN+y)
lermm X N)=C | (53)

A—> o

Denote by §(~ (Z) the zeta-function of;the operator CP) :

P

=
§(-P) (z)= J-%a 7L.J' ’

zeC.

The formula (53) implies that Z;( )(z.) is a holomorphic function
~F

of Z. for Re z > n+l. We aim to continue analytically
for <n+l.
Tem () Re z
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Proposition 11. If P is a differential operator of
second order on a compact contact manifold satisfying the above
hypotheses, then the function g(_P_)(—z) has a finite number of
simple poles at the points Z=[2, ..., N+1.

Proof. The zeta-function of the operétor (- P) and ﬁretp

are connected by the formula:

s P
E—-P)(_Z P(z)jot tre” ot Rez>n+. (54)

Note that the integral (54) converges and defines a function
-}
holomorphic for Rez > h+i (a-e"’l., C, e and
L 7]

+ -
treff = O(€™") ast—roo for any N> O) . The function

P

is a holomorphic function of Z . Consider separately for

Rez> (n+D-C, 0<i<hn+i, the integral

i L€ T Klx 60 dwolof ot (55




The function K;(:},t, O) for each X is homogeneous in &
of degree ~(N4+D+¢ or KL. (X,‘f«,o) = t—(nﬂ)*l- A/t (X, A 0) -

Let r be the contour consisting of the real axis from /7

to P, 0<p<r, the circleISI= p, and the real axis from s

to | . Denote by I‘: (z) the function

fsz—l—(ni-l) H'.[j K (x,1,0 (/()‘t)/()(_)] ds .
0 M

If Re,Z>(fH-D—L- then the integral over the circular part of g~

tends to zero with JO It follows that

— 1

L&) =-J €[] k(xt,0dvel]dt

-1‘ S l(temg K A(x, te”™ o) dwol()] Jt .
L M

S0 we have




P( ) {j}{ (x, to)dtro/(xjdﬁ_

(56)
_ I'C-=)

REC

22 T (@) .
[ A

The integral _'T(—:(z) converges uniformly in any finite region
of the Z -plane and so defines an entire function of Z.

Hence, the formula (56) gives the analytic continuation of (55)
over the complex 2 -plane. The possible singularities are the _
poles of the function P(I-Z): j_)ointg ZzZ=12,

The function IL {Z) at the points z=(n+af)—¢', j=2;3,---)
vanishes by Cauchy's theorem so the integral (55) does not have
poles at these points. As a consequence, (55) has a finite number
of simple poles at the pointsz=/2 ,...,(Iﬁ—l)-—é, <o <h+l.

In accordance with (51) and {50) now we have to continue

analytically for Rez.’:n-!—{ the expression

l’(z) {f '—’{Z S K. (58,0 duol (9 + B(t}c’é}

L 2n

where B ¢ Cm(ﬁf)_ By integraticn by parts it continues

analytically to a holomorphic function for =z € C .,

52
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APPENDIX

ZETA-FUNCTION OF THE HARMONIC OSCILLATOR HAMILTONIAN

Consider the case when a(X,D):-AHXIZE H . The Weyl

symbol of operator eth ([3]) is equal to

h (x5 = C, (cosht) exp{-Gxi*s 51 tank t}. i

For Rez>o0 , using the formula

—Z oo
K g e,

e
we define the operator H (X,.D) as the operator with Weyl

1

symbol

h—z (x,5) :I"_,(:-Z-) { _£ {;246:05/, 7‘;5 gyp{—(IX{ ?I-/§IZ) fanh '{-‘}c/ ij ) -

Denote lez'-f—lglz' as rZ Using polar coordinates in

U(S) -space, we obtain

b Hox) = S b (o 5)dxds =




I e 2 —n [Sonl
-fo { St Cosht) expCrtanht) r* di} dr s

where Iszn’ is the measure of the unit sphere in RZ"

Inverting the order of inte'gration by F+ and by £, we get

tr H-‘z(x,.D) =

Iy A {a.
21(2) jﬂ' %7 (sinht) dt 1)

Proposition Al. The & H (X, D) extends from Rez>n
to a meromorphic function on the complex plane with finite number

of simple poles at the points 251.:.— n-27, o= §< n/z .

Proof. Consider the integral

z~—f
S - .
I(Z>:'a((es..e:—‘)" ,  Z=GHiT, (a.2)

with contour 3" consisting of the real axis from e= to @,

O0<P<TL the circlelslf/o, and the real axis from @ toe=.
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Assume that 6>n. On the circle l.sl.-_-Jo we have

lsz-—al - ISG.—‘le.a?”t'
and

J(e5-e91" >c1s1™

so the integral over the circular part of T tends to zero

with o if 6 > n. We have

T(z) _,___]'mtz_’cfﬁ . j."i(_bezm:)z" It

°(et- 9" o (et-e9™

=1e)

L (sink® "t = 2"[ T ]T(2)

and

'(:RH—Z(X)D) - 27 [San] P(7) P(I—Z_)_' é—é’JTzI(z) ‘ (a.3)

2We
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The integralI(Z) converges uniformly in any finite region of

the Z -plane and so defines an entire function of z . Hence, the
formula (a.3) gives the analytic continuation of £r H"Z(X,_'D) over
the complex z -plane. The possible singularities are the poles of
function I G-Z), points Zz=/42,... . The aim now is to show that
the function L (Z) wvanishes at the points Z=h+l, N+2,... and
Zj:n—(2J‘+1), o< j< (n—i)/.The integral (a.2) after the change of

variable (£=¢>>/ can be written as

—_ / (‘6+Dn/z—l z—f
L (z)="— J = brn” («w+1) de
27 g W '

By Cauchy's theorem

(n-i

I(Z) = o
d

n—s
” )

/e~
{(66*‘9 ¢ fnz"(ccf’)] : (a.4)
=0

It follows from (a.4) that I(Z) for Z=nmi, 77+2 ... Assume that
f is an odd number : fi= 2/m#, S—-1=K, k~ integer, O<Kk<2Zm .

To find I(k—;-b we use the Taylor series for the function

Fe = (D " s
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Note that

f(u)—-——--—[(/m)]/
dt t=m-b .

if ( ) is the coefflclent of LLJ in the Taylbr series for the

functlon 1+ (L) then

=2 (F)’
jro

and

6—)1 o

Jzo c{f i

So I(k-!—a is equal to J’JK(;;)/J{;K for J'-—:Zm, t=m- .
Let 6'=t-m+14 ,

azm)! e

t=m-4 a |

K
o’i: 2m)/ = A "CLT( Q(GD/S'

where

Q(e)=[6* (2_%27[52_ (2%3)7'" J6= L
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Tt follows that I(K+D coincides with the coefficient of 6'k in

the polynomial Q(6) , and

1G>0, 1L Gzr=0, r=o,1,..,m.

The case of even s can be considered similarly. Note that,

if =1, tr H—z (X, D) has one simple pole at the point
= zZ

Z=] with residue %2 ; in fact, '(:rHZ(X,D):: (%z) [;(Zj%.),

where '

/ | - |

?(25%):”‘27:0(fz+’/2>2 - |

If n=2, b‘H—z()C.D) has one simple pole at the point z=2.
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