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Abstract of the Dissertation
Branched Superminimal Surfaces in 84
by
Bonaventure Loo
Doctor of Philosophy
Mathematic;
State University of New York at Stony Brook
1987

We show that branghed superminimal surfaces inAS4 can
be classified by pairs of meromorphic functions of the same
degree with the same ramification divisors. We use this to
show that the space of harmonic maps of degree d from 82 to

84 is connected. We also construct examples of unbranched

superminimal surfaces of genus O with area 4wd where d 2z 3.
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PREFACE

In a study of minimal surfaces in euclidean spheres,
Calabi showed that every minimal immersion of 52 in 8"
arises from én'isotropic map to projective space. Aan
immediate corollary of this was that the image of 82 lies
"fully" in an even dimensional'sphere. This work was used
in dimension 4 by Robert Bryant to show that every compact
Riemann surface can be superminimally immersed in 84. In
this thesis, we study the "moduli" of branched superminimal
immersions of compact Riemann surfaces into 84.

In Chapter 1, we briefly discuss minimal immersions in
general. We also define superminimal surfaces in terms of
the vanishing of a holomorphic quartic form which is con-
structed from the second fundamental form B (whefe trace Bz 0).
Then we give an outline of Calabi's construction of minimal
surfaces in euclidean spheres using what he calls "pseudo-
holomorphic maps."

In Chapter 2, we develop the machinery for studying the
structure of the space of branched superminimal surfaces in
84. We begin by discussing holomorphic contact structures.
We then observe that by removing a pair of skew projective
lines ini@3, we obtain a projection map to]Plx IPl. This
enables us to represent branched superminimal surfaces by

pairs of meromorphic functions. Next, we examine the space

PTﬁPlﬂPl) which is "gimilar" toj§3 CP3 blown up along the




pair of skew lines). We then discuss a "contact map" between

the two manifolds. Next, we return toIlP3 and analyze the
ramification divisors and the degrees of the pair of mero-
mexrphic func%ions corresponding to a superminimal surface.
In Chapter 3, we consider the case of 82. ﬁBy usiné
the fact that a méromorphic function on 82 is just a
rational function, we reduce our problem to studying the
Grassmannién G(2,d+1) and a map to projective space. We
then prove that the space H

52‘&384 is connected for d

a of harmonic maps of degree g from
>

1. In the last section, we
give examples of superminimal immersions of 52 in 84.

In Chapter 4, we tackle the cése of a compact Riemann
surface of positive genus. We give conditions under which.
a palir of degree d meromorphic functions with the same rami-

fication divisor can give rise to a branched superminimal

. . . 4
immersion into §°.




CHAPTER 1

Preliminaries

The intent of this chapter is to provide a brief survey
of minimal surfacés; Most proofs of the statements mentioned
here are omitted {but references are supplied). The first
section concerns some geﬁeral facts about minimal immersions.
The second section deals mainly with Calébi's work on minimal
immersions of 82 in euclidean spheres. Bryant's result on

L : 4 .
superminimal surfaces in 8 is also mentioned.

§1.l. Minimal immersions

Tet ¥ ¢+ M > M be an isometric.immersion, where M and M
are Riemannian manifolds of dimension n and n respectively.
‘Consider the induced bundle H*(TM) equipped with the con-
nection V induced from the Riemannian connection on M. The
bundle decomposes orthoggnaily into ™ @& NM where T™™ and NM
are the tangent and normal bundles Qf M respectively. The

second fundamental form of the immersion ¢ is a section B

of Hom (TMRTM,NM) defined by B(V,W) := (EVW)N where V,W are

vector fields tangent to M and ( )N denotes the orthogonal

projection to the normal bundle. The mean curvature of U

is the normal vector field H := trace B. The immersion { is
said to be minimal iff H = 0.
For n = 2, minimal immersions are Jjust the conformal

harmonic immersions. More generally, V is a branched minimal




immersion if it is minimal away from the set of isolated

singular points (where dy vanishes). These are precisely
the nonconstant conformal harmonic maps. (cf.[ELl], [ES]).

Observe that since a Riemann surface of genus 0O admits no

holomorphic differentials, any harmonic map ¢ : s > W is

automatically conformal. Thus, branched minimal immersions

of 82 in M are just the nonconstant harmonic maps from 82

to M.
Let Z be a 2-dimensional manifold. ©Let V : X > R?

be a conformal immersion. Choose isothermal coordinates

(x,v). . .Set.z = x+iy and 3 =“%(§%-i§§). Then the induced
metric has the form 652 = 2F|dz|2 = 2F(dx2+dy2) where

F o= %[wxlz = %lwylz <d¢,3y>. Note that <,> denotes the
complex bilinear extension to T of <,>» in R". The Laplace-
Beltrami operator is given by A = %83. The map ¥ is harmonic
if Ay = 0.

Now consider a conformal immersion ¥ : ) + S8°. We may
view ¥ as an Rn+l—valued function satisfying <{,¢> = 1. The
minimal surface equation is then

33V = -Fy (3.1)

Observe that ¢ is a branched minimal immersion iff it satisfies
(3.1) with F having at most a finite number of zeroces. The
conformality condition <3y,dy> = 0 together with the con-

dition <¢,¥> = 1 imply

<aty,3dys = ¢ i+ 3 <3 (3.2)




Let €N denote the complexified normal bundle of . Define

a local section of €N by

=
Il
s

1 d 9 . d 2 1 .2, =
51BGhsg) ~ 1B, 30 = 870 - 23,590y (3.3)

Q2

Y

It follows from (3.2) that <g,¢> = <82w,82¢> and thus from
(3.1) and (3.2)

I<q,p> = 2<325¢, 529> = 2<3(~-F ), aqu = 0. (3.4)

Define ¢ := <m,¢>dz4. It is straightforward tc verify that

*
? is a well defined section of @éTl'O ). Thus by (3.4), ¢

is a holomorphic quartic form on j, i.e. ¢ ¢ HO(E;(Ql) ) .

Definition. A (branched) minimal immersion U Z > Sn is

(branched) superminimal if the holomorphic gquartic form g

vanishes identically.

Observe that since 82 has no nontrivial holomorphic

quartic differentials, every (branched) minimal immersion of
82 in s® is autcmatically (branched) superminimal.
Note that ¢ is constructed from the second fundamental

form B where H = trace B = (.

§l1.2. The Calabi Construction

In this section, we outline Calabi's construction of
s . . 2 . . . ,
minimal immersions of S° in euclidean spheres. His main

result is that the image of 82 lies "fully" in an even dimen-

sional sphere with area a multiple of 2wm. This result was
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sharpened by Barboéa who showed that the area is a multiplé
of 4. |

Let ¥ : ] » 5%¢ R™! be an isometric minimal immersion
of a compact Riemann surface in S". Consider the holomorphic
form Ajdzzj g HO(Z,(Ql)Zj) where Aj = <8j¢,8j¢>. Note that
A2d24 is nothing other than our quartic form ¢ discussed in

0 for all

Hi

the last section. Calabi observes that if Aﬁ

1

I
A

3 k-1 {with k 2z 2), then

<@y, 899> = 0 for all 1 £ i+ £ 2k- 0 (where 3%y = y)

[
™
fte
-
()
I

and <aty, 3 ys = (-1)in for 0 < i < 2x.

k

L] .'J I3 s [} - . : L] .
Such an immersion is indexed by k. Calabi calls an immersion

of infinite index a pseudohoclomorphic immersion. In other

~words, } is pseudoholomorphic if <al¢,33¢> = 0 for all

i+ J 2 1. Note that if genus()) = 0, | is automatically

pseudoholomorphic since HO(82

,(Qllzj) = 0 for all j > 0.

The complex osculating space of order k at a point pe X
is the pull back of the subspace O(y}) of En+l spanned by all
the derivities 31379y with 0 £ i+3 & k. Using the minimal
surface equation 83¢ = -FY, we find that O(wj ig spanned by
the 2k + 1 vectors w,aw,...,ak¢,§¢,...,§kw evaluated at p.

We say that a subspace W En+l is isotroéic if
<v,w> = 0 for all v,w € W. This means that W is orthogonal

to W, and thus 2.dim(W) < n. The pseudoholomorphic condition

<alm,8jw> = 0 for i1 + j > 0 means gecmetrically that the

subspace V() of gl spanned by aw,azw,...,akw at a point




e e
7
p £ ) is isotropic and orthogonal to {. Let ?k 1= awA...Aakm,
Then the plane'Span(?k(p))'is isotropic.
Let m be the largest integer such that ¥_ £ 0 but
: m
‘ = . . . m+l i
Wm+l € 0. This implies that 3 P = .Z a3, a; ¢ ¢ (7) and
B i=1 .
. m :
| L = ALY Thus am+k¢ = 3 btalw {(with bi = ai). Suppose
' i=1
k. k- oL TS
Ak = <3 Y, ¥v> = 0 for 1 £ k £ m. Then since <3 y,a"y> = 0
for 1 € i+j < 2m+l, we in fact have <3y ,d > = 0 for all
i +°3 2 1. Thus the condition Ak =0 for 1 £k g mis
equivalent to | being pseudoholomocrphic.

2

Assume now that ¢ :..8 +~Sn£:ﬁmn+l

is a minimal immersion
which is linearly fuli, i.e. ¢(S2) 1s not contained in any

hyperplane of Rn+l. Set ¥ := whwmA?m (where m is as in the

!
j
!
previous paragraph). Observe that |¥| = |‘Fm|2 + 0. Minimality !
i

implies that 3¢ = amw and 3VY = am?,

Thus, the

2m+lmn+l)

class [V¥] e B{ is ponétant. Since the image of Y 1is

contained in Span(¥) which is constant, real and of dimension

dm + 1, and since Y is linearly full, n + 1 = 2m+l. Thus

Theorem. Let ¢ : 82 + 8™ pe a (branched) minimal immersion.

Then there is an integer m £ n/2 so_that ¢ : 52 5 g% 45 4

linearly full (branched) minimal immersion.

Note 1. The theorem holds for y : ) + S where ] is a compact

Riemann surface and | is a pseudoholomorphic immersion. For

the rest of this section, results for (branched) minimal

immersions of 82 in 82m can be replaced by (branched)




pseudoholomorphic immersions of a compact Riemann surface
Z in SZm_
Note 2. For m = 2, the condition that the immersion

P o) > s? pe pseudoholomorphic is equivalent to the con-

dition that it be superminimal.
Consider now a minimal immersion 3 .: 82 > S2m which
is linearly full. Since the plane Wm(p) = IPa...~3p is

isotropic, so is ?ﬁ(p).. Now, 3 ¥ = a Vv

, 3¥ = a ¥ and
m m m m
2 - A2m+l(m2m+l

it

¥ : 8 ) T. Thus at the points where ¥ + 0,

[

we have 5‘@ Wm) = 0. By projectivizing, we can define
[ P (ATg2mtLy The map [gm] is holo-

?ﬁ] : 82| _ >
{2]¥_(z) %0}

morphic ¥(z) = 0 iff ?m(z) = 0.

Let I_ := {£€ ¢ 6(m,2m+1) |£ is isotropic)

= {isotropic m~planes in E2m+l}.

Let V & Im and let ZireesrZy be a hermitian orthonormal basis

o N .
for V. Writing Z e _/E(xk+lyk)' we obtain an orthonormal set

{xl,yl,...,xm,ym} inZR2m+l. Given an orientation onﬁR2m+l,

2m+1

there is a unit vector u ¢ R so that B = {xl,yl,...,xm,ym,u}

is an orthonormal basis forJR2m+l. Let V' be another isotropic
m-plane. In a similar manner, we obtain B' = {xiyi,...,xi,yi,u’}, on
orthonormal basis for]R2m+l. There is an element g ¢ SO{2mt+l) sending B
to B'. Thus, SO(2m+l) acts transitively on I - The subgroup Um) fixes

Im. So Im is the hamogeneous space S0(2m+1l)/U(m). Now given V e Im’ we

can decompose E2m+l into V& V ® C-u. We thus have an S0 {2m+1) —equivariant

2 - .
map  : I > S M so that ﬂo[wm] = i

dom[@m]




where 7(V) = u.

Proposition. 1w is a Riemannian submersion. Furthermore,

the map {@ﬁ} is horizontal with respect to the Riemannian

gsubmersion.

Proof.  (ecf. [Cl], [C2], [M], [LL]).
Note. We have a fibration

S0(2m) , SO(2m+1) _ .

T SO(2m+1) .2m
U (m) U{m) " *m s0(2m)

=S

where the fiber above a point x ¢ S2m is the space of all

orthogonal almost complex structures compatible with the

orientation on szzm. At a point J ¢ Im(x), the almost

complex structure on the horizontal plane HJ is tautological-

ly J itself (using the identification Ty * HJ = szzm).

It is a fact that the zerces of ?m are isolated. Let
P be a zero of ?m and D a small‘disc centered at p. Since
[@m} is horizontal, [?m][b_p is holomorphic and bounded.
Thus [?m} extends tb D and hence to all of 82.

Theorem (Calabi). Let ¢ : 82 > 82m be a branched minimal

immersion which is linearly full. Then {? ] extends to a
m

holomorphic horizontal map on 82 such that the diagram

S -*m——$—~—+ commuites.
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Calabi then goes on to show that ¢(52) has area 2mk
where k ¢ %" and % 2 (m;l) where the lower bound area of
2ﬂm(h+l) is attained. This result has been refined by
Barbosa who showed that the area is actually 47d, d ¢ 7",

In this thesis, we shall often refer to a pseudoholomorphic

map whosevimage has area 4nd as a map of degree 4.

Note. It is a well known fact that a holomorphic immersion
of a complex manifold M in a Kahler manifold X is always
minimal. Suppose 7 : X - Y is a Riemannian submersion.
If o ié a holomorphic immersion of M in X which is horizontal
with respect to 7, then To.@ is minimal. Since T is Kahler,
holomorphic horizontal curves in Im project to minimal surfaces
in Szm. |

We now consider the case when m = 2. observe tﬁat
I, = 50(5)/U(2) S®’(C). This identification gives us the

3 4

Penrose fibration w:Ip°(€)+S°. This fibration can be obtained

via a quotient of 2 Hopf maps. Choose homogenecus coordinates
2 .

(20,21,22,23) for ° (C) . Consider T = BZ as a quaternion

vector space with left scalar multipligation. The identifica—

tion is given by (20,21,22,23) -+ (ZO+Zl],22+23j). The Kahler

form of the Fubini-Study metric is given by & = 33 log”z”2.

The Penrose fibration is then given by the quotient

et {0} =]I-12—{0}




11
with fiberi@l(m). The horizontal 2-plane field H for =
is given by a 1-form whose lifting to &° {0} is
Q 1= ”2(2 pdz -z dzo+zzdz3—z3dzz).

Superminimal surfaces in 34 are jﬁst the projections

3

to 84 of nonsingular holomorphic curves in P~ (T) which are

integral curves of H, Unfortunately, it is difficult to
find integral cufves of H ini@3(¢) directly. Our search
for superminimal surfaces will be vastly simplified if we
can find a "contact" manifold "similar" toIPB(E) where it
is easy.to find integral curves of the contact plane field.

All we need do is to send the integral curves over toZJP3

(c)
via a "contact™ map. Robert Bryant has found a birational
correspondence betweenJPa(E) and the projectivized tangent

space onPZ(E) carrying f to the contact plane field. Using

that, he was able to prove the following result.

Theorem (Bryant). Every compact Riemann surface admits
4

a_confermal minimal immersion in S

In this thesis, I will be using another contact manifold

- PTCPlXPl} -~ which is "similar" to]@3(m). Also, I will let

»" denoteIPn(E) from now on.

;
|
|
T
]
J_
i
|
?

h




CHAPTER 2

Characterization of branched supérminimal surfaces in S4

In this chapter, we characterize branched superminimal
surfaces in 84 by pairs of méromorphic functions. We relate
the bidegrees of such pairs of functions to the degree of
the canonical 1ift of the surface in P3. Thé basic idea
behind our construction is that given a pair of skéw lines
Ll’ L2 injEB, there is a well defined projection from

p3 - (LT, to rpl x pt.

§2.1.  Holomorphic contact structures

Let V be a complex (2n+l)-dimensional manifold. A holo-

morphic contact form on V is a holomorphic l-form g with

values in a line bundle L » V and satisfying the nondegeneracy

condition ® ~ (30)" # 0. A holomorphic contact structure is

an equivalence class of contact formslunder the relation that
0 eT Ql(L) is equivalent to 8 e FUfTE) iff there exists an
isomorphism ¢ : L + L such that ¢*3 = 0. More geometrically,
a contact structure is a nondegenerate holomorphic distribu-
tion H of hyperplanes (i.e. the orthogonal spaces cof some

twisted holomorphic l-form). (cf. [A], [Lel).

Example 1. Let M be an n-dimensional complex manifold. Then
PT*M has a canconical holomorphic contact structure. Let
m : PT*M > M be the projection map onto the base space. A

point ¢ ¢ IPT*M defines a hyperplane Pcp in T )M. The contact

m{qp
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hyperplane at ¢ is given by (ﬂ:l)w(P¢).

Example 2. Let 7 : ETCElkPl) +ZP1 x.Pl denote the pfojec-
tivized tangent bundle of BT «x Pl. The spaceIPTaPlﬂPl) has

a canonical holomorphic contact structure where the holomor-—

phic 2-plane fieid K at a point y EJPTGPlﬂPl) is given by
-1 -
L
(7, )y( y
responding to y.

) where Ly denotes the tangent line at m{y) cor-

- *
NOTE. The projectivized contangent space IPT CPlel) is iso-

morphic to the projectivized tangent space]PTUPlﬂPl) since

an element_oijT*ﬂPlﬂPl) defines a tangent line on]Pl xIPl.

In fact, we have

Pr* @ pl) = 2 (0(-2,0000(0,-2) =P ((0(~2,0)00(0,-2)20(2,2))

P((0,2)80(2,0)) = IPT{EPlxIPl) .

S50 the contact structure onIPT*(Plel) obtained by Example 1

is the same as that on]PTGPlﬂPl) obtained by Example 2.

Example 3. Consider the Hopf fibration p :ZP3 - 54. Now

i@3 has a holomorphic contact 2-plane field H orthogecnal to
the fibers of p with respect to the Fubini-8tudy metric on
ZPB fcf. Bryant]. H can be described in local coordinates

as follows, Let {20,21,22,23] denote homogeneous coordinates
on:@3. The holomorphic horizontal 2-plane field H for p is

4

given by a l-form whose lifting to T - {0} is

N _ _ -
= “le(zodzl zldzo+22dz3 z3d22). Let w = dzondzl+dzzAdz3
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denote the standard holomorphic symplectic form on E4. Let
£ 1= 7 8/Bz +z a/az +z 8/az +2z a/az Then R = 1 E 4w
- 0 0 1 1 2 2 3 3 IIZ||2 '

§2.2. Proijection toZPl x_Pl

Consider the 2 skew lines Ll,L2 ian3 defined by

ol 1
Ly = {[0,0,22,23] |[22,z3] e P7} and L, := {[zo,zl,o',{)}l (2,211 e P b

‘,Note,that the lines Ll and Lz‘are the fibers over the north

and south poles respectively of 84 under the Hopf fibration.

Lemma 2.1. There is a well-defined projection map

pr :iPB - TLlUL ) > Pl X Pl with Pl as fiber.

2

Proof. It suffices to show that to each point x €1P3 - (LiJLZ),

there is a uﬁique line through x which intersects Ll and L2.
Consider the 2 planes Pl and P2 inIP3 defined by
;@l .= Span(X’Ll) and P2 t= Span(x,Lz). Slnée Ll and L2 are -skew,

Pl and P2 intersect in a line L which contains the point x.

The line L must intersect both Ll and-L2 gince 2 lines in-

tersect in a plane. The intersection of L with L., and L

1 2
1 1

gives the projection of x toIP™ x PP- (identified with Ll % L2).

)‘*]Plx]Pl

Proposition 2.2. The fibers of pr :3P3 - (LﬁJLZ

are horizontal with respect to p (i.e. the fibers of pr

are integral curves of H).

Proof. TLet (x,y) ¢ LixLy,. (We identify Ly x L, withjml x IP7.)
3

Let L P denote the line through x and v, i.e. L = pr—l(x,y).
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Denote the inverse images of I, Ll' L2, X and y to E4 - {O}

by P, Piy Py, £k and ﬂy respectively.

Note 1. Pl and P2 are orthogonal with respect to w. Let
A E_Pl and B ¢ P2. Then A = (0,0,a,b) and E = (¢,d,0,0) for
some a,b,c,d € L. It is clear from the definition of w that
w(A,B) = 0. Since w 1s skew, we also have w(A,A) = 0 and
m(B;B) = 0,

'Now pick nonzero vectors X e Exc: Pl and Y ¢ ﬂ?c: P2.
Note 2. P is spanned by ‘X and Y.
Now let.Vl~= aX+bY«andrV2—= cX+dY be 2 vectors in P. Then
by Note 1, w(Vl,Vz) = 0. Thus w vanishes oan. Let
mo:og? - {0} +>®°. Since £ is tangent to the fibers of =
and Q]L = (EJw)IP, we have that Q vanishes on L. Thus L is

horizontal with respect to p.

QED
3

§2.3. The blow up of P

Let X denote the blow up ofIP3 along L, and L2, i.e.

1
X 3= {([zorzlrzzrz3]r [YO’Y]_]' [Y2rY3])|Zoyl = zlyo,

Z,¥3 T Z3Y2}- Observe that X is a]Pl—bundle over]Pl xIPl:

~ 11 ~ o B
Tt X +P xP where TT([20,21,22,23];.[}70;}7111IYZ:Y?)]) = ([YO'Yl]'{YZ"y:g})

Claim: X =IP(0(-1,0)80{0,-1)).

Consider the Hopf bundle (0(-1) +3Pl. (This is a sub-

2 1

bundle of the trivial bundle &° - IP~.) Taking a Cartesian

product, we have the bundle 0(-1,0}®0(0,-1) +iE1 xIPl which




is a subbundle of the trivial bundle g4-+:ml xIPl (E4=§2®Q2).
Projectivizing, we obtain
P(0(-1,0)00(0,-1)) C »°
]Pl X ]Pl
Let z := P?O’Zl’z2’23]’ u 3= [yo,yl] and v := [y2,y3]. We
can consider'u and v as elements of]@3 by writing u =
[yo,yl,0,0}'and v = [0,0,y2,y3]. We want to show that the

triple (z,u,v) corresponds to an element of the bundle
P(O(-1,00® (0,-1)). Let ﬁu and;&rdenote the iiftings of u
and v to E4 = E2@G2. It is clear from the definition of u
and v that ﬂu and EV are linearly independent lines in E4.
Let £ := %_l(u,v)(: X. Nowdt is just the line inIlP3 uniquely
determined by u ¢ L2 and v & Ll' Let P, denote the lifting
of £ to E4. We see that PK is spanned by ﬁu and EV. Now

z € L. Let £, denote the lift of z to T°. Thus L < Py, i.e.
z corresponds to an element of:P(Pz). Hence, to each triple
{(z,u,v) in X, we obtain an element (Ez,u,v) of the bundle
P(0(~1,0)®0(0,-1) +ﬁPlx :ml. The converse follows from a
similar argument. Thus, the identification of X with
P(0(-1,0)@0(0,~-1)) as]@l—bundles overiml ximl is clear. Note
that P(0(-1,0)80(0,-1) = ((0(-1,0)@0(0,-1)R0(1,1) =
®(0(0,1)®0(1,0)). However, (0(-2,0)90(0,-2))@0(a,b) =

0(-2+a,b)®0(a,-2+b) % 0(-1,0)8% (0,-1) for any a,b.

Consequently, X and]PT*GP%IPl) are different bundles over
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Pl xi@l. From now on, for ease of notation, we shall let

1

Y dencte PT* (]PlxIP ) £ T (JPliPl) .

§2.4. The contact map

Let ¢ : X > Y be defined by

ll)( [zorzlr 22'23] ’ [YO,Yl] ¢ {ery?’} } = { [YO le] {szyB} ’ [Zodyl—zldyo,zzdy3—z3dy2]) .
We have the following diagram:

3B v 0

%t‘———-K:

E’

L o .
mé—————-%

where B is the blow down map.
Note that H extends to all of X and for x e X, ¥ (Hx) is
N S B 1
a tangent line in T%{X}CP 7)Y, t.e. o ( x) €3PT~( )GP PT) . !
Also, observe that T = Tey where m is the projection to the ﬁ

first two factors. Now let £ := ﬁ*(HX). Then ﬂ;l(ﬂ) is the

contact plane at £. Nowdl = F*(Hx) = (ﬁa$)*{HX) = ﬂ*ow*(HX}.' ‘

Thus ﬂ;l(z) = w*(Hx). We thus get: i
Lemma 2.3. 1, sends the horizontal plane field H in X to the

contact plane field K 4n Y. |

Recall that the two skew lines Ll,LZ(:ZE3 were defined by

l} The 5

Ly = {10,0,25,2,] |(2,,2;le®"} and L, = {[zy,2,,0,0] |[z,,2, kP

blow ups 0y of Ll,andidz of L2 are given by
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1
Gl = {([Orefzzrz3}:[Yoryl}:[22123]),[YOrYl]E]Pl and [22123]5[[) } and
0y = {(Uzg,21,0,00, 120,211, [v,,7;1) | [z, JeB" and Ty,,v, )Pt .

We observe that

<
Q

‘—:_’
|

- {(IYOIYl] ’ [22123] [Drl]) I [YO,Yl]EPl, {22,33]81131} and

H‘

bloy) = {(lzg,2;1, vy, v3], (1,01 (25,2, BT, by, v, leP

Proposition 2.4. ¢ is a branched 2-fold covering map. Tt

is branched precisely along o4 and Oy-

This proposition will be proved in the next section.

§2.5. The involution on X

We first define an involution o : X + X by
allzg,29,25,2,0, [yy,yq 1 [y, v51) = ([2g,21,-25,-23], [y, 7710 [yy,v5 1)

(Actually, @ is an involution on.}P3 which is extended to X

in a trivial manner.)

NOTE:

1. axl-r = Id, al, = Id and a*Q = Q.
2

2. By Note 1, a, maps the horizontal plane HX at x ¢ X

to the horizontal plane Hu(x) at alx).

3. Let u e Ll and v e L2. Denote by ﬂuv the 1line in
PB uniquely determined by u and v. Since afu) =u

and a(v}) = V, we have a(Euv) = £uv' Consequently

Toa = T. (Actually, this follows immediately from the
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definition of a and 7.)

4. Since F*(HX) = ﬂ*ow*(Hx) = ¢ (x), we have
pla(x)) = %*(Ha(x}) = %*(a*HX) by Note 2
= (Toa) , (H) |

= %*(HX) by Note 3

= U (x)
Thus Yea = y, i.e. | is g-invariant.

Notes 1-4 imply that ¢ is at least 2 to 1 except along

30 =

0, and o,. Recall thgt ¢([O,0,zz,23],[¥o,yl],[22,2
([yo,yll,{zz,z3],[0,ll) and w([zo,zl,O,O],[zo,zl],[yz,y3])
([zy,2,1,1y,i¥3),11,01). It is thus clear that ¢ is 1 to 1
on g, and Gy Let us now examine the map ¥ explicitly in

local coordinates. We assume that x # olL) 02, We can then

set z, = y; for i =0,1,2,3. | ‘?

Chart 1. Suppose 2 = ¥y = 1 and Z, + 0. Set s = ¥y and . :
= Y - = L - a
t = 3/y2. Then ds = dyl, dt = 22[22dy3 z3dy2]. Thus |
2 _ 2 1
zzdt = zzdy3—z3dy2. Hence w([l,zl,zz,z3],s,t) = (s,t,{ds,szt]).

2

We also have w([l,zl,—zz,—z3],s,t) = (s,t,[ds,zzdt])

Chart 2. Suppose 2 =y, = 1 and Z, # 0. 8Set u = Yo and
y . - -22qv = -
v = 2/y3. We get: du = dyo and -z,dv zzdy3 z3dy2.

Thus w({zo,l,zz,z3},u,v) = (u,v,[du,—zgdv]).

Chart 3. Suppose Zg = ¥g = 1 and Z4 £ 0. Set g = y; and
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v = Y2/y3. We get: w(Il,zl,zz,ZBI,s,v) = (s,v,[ds,—zgdv]}

d = = = = Y
Chart 4. Suppose zy Yq 1, Z, + 0. Set u Yor t 3/y2.

2

Then w([zo,l,z ,u,t) = (u,t,[—du,zzdt]).

20 %3]
From the above local coordinate expressions for P, it
is clear that ¢ is 2 torl away from oy and aqe Now Y is a
holomorphic map with finite fibers between compact complex
3~-folds. Thus, it is a‘branched covering map of degree 2.
This proves Proposition 2.4.
Let us now examine locally tﬁe inverse image of ¥. Pick
a point y € Y - (slusz). Locally, y has coo#dinates (s,t,a).
Recall that w([l,zl,zz,z3j,s,t) = (s,t,{ds,zgdt]) where § = z,
and t = z3/22. Then

v = v ls,e,8) = ([1,s,/3, /A t1,s,t).

The involution o on X corresponds to a permutation of the

roots. Thus,

Proposition 2.5. The map { : X +~ Y is equivalént to the

projection map P : X - X/z2 where the Zz—action on X is

given by the involution «o.

4

§2.6. "The involution on §

We shall now examine the action of o on 84. "Recall the

4

identification of S with:PlﬂH)t

P R =H

] 7

la,,4q,

?
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| _ -1 . _ -1 , _

where @l([ql,qzj) = q,749, and @2([ql,q2]) = d,°9, with tran

sition functions q » q T;%E q, where i&b mxiqé%ﬁ.CQHEsgmxito
lal -

the images inIlR4 of the stereographic projections from the

south pole and the north pole respectively of the point in 5

84. Now p([zo,zl,zz;z3]) = [zo+zlj,zz+z3j]€ JPlGH) where

[20,21,22,23] £ ET@3 and’“j" is the guaternion "j». Thus,
p(a[zo,zz,zz,z3]) = p[zD,zl,—zz,fZB] = [zn+zlj,—(22+z3j)]. The in-

volution o thus descends to an involution in S4 =IP1(H)

: _ 1
as follows: a([ql,qz]) = {gl,fqzl for all [q1'q2] eIP (M) .
(We denote by the same letter "g" both the involutions on

S -1
Now Cplo&([qquz]) = (Pl( [qlr_qz]) = —ql q2

- and wzoa([ql,qz]) = @2({qr—q2]) = —qglql.- Hence the action
of ¢ on a point x ¢ S4 is just the antipodal map on the
SBCL 84 obtained by the intersection of the horizontal
4-plane through x with S4. (This S3Ais the "latitudinal
83"). Thus, the geodesic 3-sphere in 84 passing through

the North and South poles is invariant under o.

§2.7. Socme degree computations.

In this section, we compute the degree of the total
preimage‘inJP3 of a holomorphic curve in Y. Recall the

diagram:

X “"J£—+ Y

W

11

P3 x P
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Let £, and 2

1 5 (Ei and Ké) denote the preimages in X (Y) of

the first and second factors oflPl'x Pl respectively under

the map 7 : X +-Pl:<IPl (ﬁ:Y%P%ﬂPl). Let §, and S, denote

the 2 distinguished sections of ¥ corresponding to lines

tangent to the second and first factors of Pl X Pl reg-~ ?

pectively. Recall that by (o) = §; and by (0,) = S,- Note

that $*(£i) = 2£i, i=1,2, ~Let H be a hyperplane ian3.
* = = - = -

Then g*H = ¢ +&; oy+€,.  Thus o1 = o, 32 £,. Also,

8, - 8, = w*(cl—oz) =w*(£2-£l) = 2(£;-L!). Hence, the

Picard groups of X and Y are given by
Pic(X) = Z{El,ﬂz,cl,gz}'/q;yl—gz = £ —ﬂl> and

Pic(y)

z{z',ﬂé,sl,sz}/<sl—s

]
[\
[

DI -

I
=
v

2

Let F = (fl,fz) : Z +:Pl x:@l be a holomorphic map of

& compact Riemann surface of genus g toIPlx ZPl of bidegree

(n,m). Then the curve C = F(Z) is of class {(m,n). Let P

denote the canonical 1ift of F to Y and let C' := F()).

(The 1ift of a point x ¢ C is the tangent line to C at x.)

If we assume that C is smooth, then

deg ﬁ*(ﬁi) m, deg ﬁ*(ﬁé) = n

deg ?*(Sl) = number of "branch points" of £, = 2g-2+2n

and deg F*(Sz) = number of "branch points" of f2 = 2g-2+2m

- where "deg" refers to the intersection number of F(}) with the

relevant generators. Let ¢ := w_l(C')CZ X and y := B*(E)C.IP3
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Then for a generic hyperplane H in.IP3 we have

degy = H-B,(8) = B¥H-C = (o,+2,)- (¥ lc").

1

= V(0 +8,)-C" = (s,+28]) -F, (D)

1

deg §*(sl+2£i) = 2g-2+2n+2m.

1

I used the term "branch point" in the previous paragraph. '
Let me define it as follows. Let ¢ : J »®~ be a holomorphic

map of a compact Riemann surface toIPl. A point % = Z is a

ramification point of ¢ if do(x) = 0 and its image ¢(x):€IPl

is called a branch point of @. If the map ¢ is of degree -

d and E%has genus g, then the Riemann-Hurwitz Theorem tells
us that the number of branch points of ¢ (counting multipii-

cities) is 2g + 2d - 2. (cf. GH}). The ramification divisor

of ¢ is the formal sum Zaipi where Pi is a ramification point
of ¢ with multiplicity ais and where the sum is taken over

all ramification points of ¢. Let Ram(g) denote the ramifica-
tion divisor of . |

= Ram f.,. Then

1 1 2
the curve C = F{}) has singular points with the property

Suppose deg £, = deg f2 = d and Ram £

that deq F*(S,) = deg %*(82) = 0. Consequently, deg y = 2d.

1

§2.8. Conjugate branched superminimal surfaces
Suppose f Z -+ S4 is a branched superminimal immersion

of a compact Riemann surface in 5. Generically, £(].) misses

a pair of antipodal points on S4 (say the north and south
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poles. }Also, generically, «(£(Z)) % £(I}, i.e. £(Z)
is not g-invariant. Let f : § > be the holomorphic

horizontal 1ift of f toi@3.

Proposition 2.6. A generic branched superminimal surface

£()) in 84 has the property that its 1ift (D ;QJP3

is not g-invariant.

Proof. ' The proposition follows immediately from the
definition of the involution « (and the fact that

“-invariance inIP3 project to «=-invariance in 84).
QED

Hote. The converse is not necessarily true, i.e. the

fact that f(}) is a-invariant does not imply that £(J)

is a-invariant. For example, consider the totally geodesic
82 of area 47 contained in the equator of 84 It is ob-
viously o-invariant. However, its 1ift inZP3 is a curve

Y of degree one (and hence, aZPl) which avoids the 2 skew
lines L, and L

1
that a(y) projects down to the same geodesic 82 (but with

51 and hence it is not a-invariant. Observe
the opposite orientation).
Since a generic branched superminimal surface f(Z) in

84 avoids the poles, it 1ift f(J) avoids the 2 skew lines

L1 and L2.

Thus, %(Z) is diffeomorphic to its image in X
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qnder the blow up onPB along Ll and L2. To aveid cumber-
some notation, we shall denote the image of f(f) in X by

£()) also. Now, by notes 1-4 in §2.5, Qe have Fo£()) = i
Folaof())) and that aof(Z) is holomorphic and horizontal:

in]P3 and thus pfoject to a branched superminimal surface

in 84,.i.e., we get "conjugate" branched superminimal

surfaces for free. Thus,

Coroilary 2.7. Given a generic branched superminimal surface

£(]) in 84, we obtain a conjugate branched superminimal surface,

aef (), i s?.

§2.9. Bidegrees and ramification divisors.

Let £(}) be a generic branched superminimal surface in
4

S%. - Its lift f£(}) is a holomorphic horizontal curve vy in

E3. The homology degree of YC:JPB is its fundamental class ﬁ
in'HZGP3;Z) = Z. This degree is also the intersection number

of vy with a generic PZ inp>. let 7 = (ﬁl,%z) denote the

projection map onPS —(LluLz) to]@lx ]Pl GPlx ]Pl is idesi-

fied with Ll x LZ)'

Proposition 2.8. Suppose that deg(y) = d. Then the holo-

morphic curve C

Tof(]) iHIPlx wt has bidegree (d,d). 5

Proof, Let %, € L. The fiber Ell(x)C;IPB is the plane

P, = Span(xl,LZ). Since deg vy = d, P, has d intersection

1
the plane P, = %El

points with y. Similarly, for X, € L

2f
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has d intersection points with y. Thus C = T(y) has

bidegree (4,d).

QED

Let f,%,%l and ?2 be as before. Define £, and £, by
fl 1= Hlof and f2 t= ﬂzof.
Proposition 2.9. Suppose that deg fl = deg f2. Then
Ram fl_= Ram f2.
Proof. ILet y := E(Z). Let z, be a ramification point of fl'
let p ¢ y denote the point %(zo). Then the point x := ﬁl(p)
is a branch point of fl‘ ”Let y = Fz(p) and let 1, denote

the line in P3 through x and y. Since x is a branch point

of fl,Y is tangent to L at p. let v ¢ T?{. We thus have

El*(v) =0 and %2*(V) = 0. Hence, y is a branch point of

f2. Thus Zg is in the ramification locus of both fl and f2‘
QED

1 1

Lemma 2.10. The holomorphic map F = (fl,f : Z + " x IP

has a canonical 1ift F to Y = PT(Plel).

o)

Progof. Suppose (dfl(z),dfz(z)) £ (0,0). Then F(z) =
(fl(Z);fz(z)[fi(Z),fé(z)}). We are thus left with a finite
set of singular points. Suppose 0 is a singular point. Then

1 _ P 1 - 4 -
fl(z) = z gl(z) and fz(z) = z gz(z) where gl(O) £ o, gz(O) =0
and without loss of generality 1 £ p £ g. So F(z) =

(fl(z),fz(z),[gl(z),zq—pgz(z)]) for z in a neighborhood of 0.

QED
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Proposition 2.11. Suppose f : Z > 54 is a generic superminimal

immersion, i.e. £(}) avoids the north and south poleg in S4
3

and is not a-invariant. Let f : Z + P” be the holomorphic

~

horizontal 1ift of £f. Let fl 1= %lof and f2 1= %Zof. Suppose

that deg f, = deg f, =d 2 2. Then f, # Aof, for any

A ¢ PSL(2,T).

Proof. . Suppose f2 = Aof1 for some A & PSL(2,C). Then

F=(£f,f,) = (£,,80£) ) » Pl pl factors through:Pl

as follows:

, ol 1 1
Z f‘T]P G={Id,AT]P X]P .
Since G has bidegree (1,1), it is nonsingular and its canonical

1ift G {given by lemma 2.10) avoids the 2 sections S. and S..

1 2
Since deg fl z 2, fl is necessarily branched. Thus the
canonical lift of F, F is a branched covering map of Z into
éﬂPl) ;ZPl, i.e. ¥(}) is branched. éonsequently, the 1ift
ﬁ(f) inZ]P3 is branched and hence projectsto a branched
superminimal surface in S4. This contradicts the assumption

that £(]) S4 is unbranched.

QED

Note that for d = 1, ] must have genus zero, and so

£()) is totally geodesic in s?.
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We thus have:

. . . 4 ,
Theorem A. Every superminimal immersion £ : X + S arises

from a pair of meromorphic functions (fl’fz) on ) such that

1. deg fl = deg f2 =d for some integer 4 2 1.

2. Ram(fl) = Ram(fz) whare Ram(fi) denotes the

ramification divisor of fi.

13.' For d =z 2, fl + Aofz for any A € PSL(2,T).

We would like to generate superminimal surfaces in S4

by considering pairs of meromerphic functions on ) which
satisfy the 3 conditions in Theorem A. Suppose F = (fl’fz)
is such a pair. 1tet C := ﬁ(Z). Our degree computations in
§2.7 show that the total pPreimage curve y := Bbwul(a) inIP3 :é
has degree 24. Sup?ose Y consists of 2 connected components,

Y1 and Y,- Then a(yl) = Y, and consequently deg Yy = deg Yy = d.

Under suitable conditions, Y1 and Yo will project down to a

conjugate pair of superminimal surfaces in 84. We shall ex- L

amine the genus zero and higher genus cases in the next two

chapters.




CHAPTER 3

Genus Zero

In this chapter, we analyze the space of branched
superminimal surfaces of genus zero in 84. We begin by

studying rational functions and their ramification divisors.
We show that given a generic'meromorphicAfunction f of

{24-2)y ! _. .. ‘
di(a-1) distinct PSL(2,L)-orbits of

degree d, there are
meromorphic functions of degree d with the same ramification
divisor as f. This fact enables us to construct examples
of superminimal surfaces of area 4nd in S4 for d 2 3. We

also show that the space of bmmimed superminimal surfaces

of genus O and degree d in S4 is connected for each 4 2z 1.

§3.1. Meromorphic functions, Grassmannians and resultants

Let f . Pt +2Pl be a holomorphic map of degree d (i.e.

f is a meromorphic function of degree d). Then f can be

expressed as a rational function of the form gg;i where
_ d d-1 - _,.d

P(z) = ayz tag_1z “t-..tajz+ag and Q(z) = b3z +---b;z+h,

where aj and bi are complex numbers. The map f is of degree
d if at least one of the two polynomials is of degree d, and E

that P(z) and Q(z) have no common root. In other words,

deg(f) = d if and only if the resultant of P(z) and Ql(z)
does not vanish {(cf. [VW]). Let P = (ad,ad_l,---,al,ao) and

- . adtl _
Q = (bd,bd_l,---,bl,bo) denote the vectors in I correspond

ing to the coefficients of P(z) and Q(z) respectively. Then the

resultant R(P,Q) of P(z) and Q(z) is the determinant of the

29
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matrix
Ay A,
M = where
LBl B,
A ag-1°"""%1 &y (:)
Al = 0 ad"""§2 | A2 = al aO
%q L %a-1 .- 3
by bgope---by by O
By = |0 bd......b? By = ?1 bO\
by Lbd_l.........b0~

The resultant is a homogeneous polynomial of bidegree (d,d) in
the a, and the bj. Furthermore, R(P,Q) is irreducible over
any arbitrary field (cf. [VW]). We thus require that

md+lxmd+l_

(P,Q) = R, where R is the irreducible resultant

divisor. Observe that (AP,)AQ) describes the same function
as (P,Q) for any A e C*. Thus the space of meromorphic

functions of degree d is

Md :='IP((Dd+lx(Bd+l-R)C Ipzd+l_

Define an action of GL(2,d+1) on md+l X ¢d+l as follows:

g-(P,Q) := (aP+BQ,YP+50Q) for g = ($ g) e GL(2,T) .
Let N := e, 094 yhere 4 = {(P,0) |Pr0 = 0}. Observe

that for (P,Q) ¢ N, g.(P,Q) = (aP+BQ,yP+8Q) = (Pl,Ql), and
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PirQy = (aP+BQ)¢(yP+6Q) = {(a8§-By)P~Q + 0. Thus, GL(2,C)

-acts on N. In fact, we have a free action:

g-(P,Q) = (aP+BQ,yP+§Q) = (P,Q) implies that g = I since P~Q % 0. E

Note that we can identify N with the Stiefel manifold of

2-frames in Ed+l

2=plane in Ed+l spanned by P and Q. Let Pl,Ql‘e [P~Q]I.

. For (P,Q) € N, let [P~Q] denote the

Then Pl = QP+BQ,‘Q1 = yP+&Q for some a,B,y,S$ € C. Ifiﬁfgl+ 0,
then 0 + PlAQl ; (dS-By)PAQ, i.e. aﬁ.— ay % 0. Thus, |
GL(Z,E) acts transitively on pairs of'noncollinear Vecto&sin
[P~Q] . It follows that N/GL(2,T) = q(2,d+1), and

T : N+ G(2,d+1) is a principal GL(2,T) bundle (where

m{(P,Q) = [P~Q]).

Let us now return tc the resultant in Ed+l % Ed+l

Lemma 3.1. R(g.(P,0)) = (det ¢)%%R(p,q).

Proof. Let(ﬁ,a} denote g.(P,Q), and let the resultant of

s

(F,Q) be given by the determinant of the matrix |

A By |
~ - |
M = . i
Bl BZ 3
\
Since (§,5) = (aP+fQ,vyP+6Q), we observe that
Al = aAl+BBl A2 = aA2+BBZ
B, = YA +3By B, = YA,+6B

2 )
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e 1AL Ay o B 1By Byl here T = identity
~ = - : matrix in GL(d,{)
B, B, YI ST By B,
It is straightforward to verify that det @l  BI (aé—By)d = (det g)d.
YI 61

Thus, det M = (det g)%.det M, i.e. R(g.(P,0)) = (det g) 9R(P,0).
QED

It follows that R ¢ gd*! x ¢dtl is fixed under the
action of GL({2,T). ﬁét Reg(R) denote the regular part of R.
Since R is irreducible, Reg(R) is connected. Note that
A =‘{(P{Q)|PAQ = 0} © R and A has codimension d in 91 « ot
So, A.cannot disconnect Reg(R) (which has dimensipn 2d + 1).
Consequently (Reg(R)} N N is connected, i.e. R N N is irreduc-
ible. For ease of notation, we shall iet R to also denote
RN N. By Lemma 3.1, dim(R/GL(2,T)) = dim(w(R)) = 2d-3, and
since Reg{R) is connected and ™ : N + G(2,d+1) is a principal
GL(2,C)-bundle, © (Reg(R)) = Reg(m(R)) is connected. . Thus,
T(R) is an irreducible divisor in G(2,d+1}).

Observe that the space of meromorphic functions of
deg d is M, = P(N-R). We thus haﬁe a free action of PSL(2,T)

d
on My, and Ma/psn(2,e) = a(2,a+1).

§3.2. The ramification divisor

Let £ ::@l *ZPI be a holomorphic map of degree d. Recall

that z, e P is a ramification point of £ if f,(v) = 0 for
all v € TZZPl. Expressing f as a rational function g%%%,
0
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we have: f£'(z) = [Q(2)P'(z) - P(2)0'(z)1/[0(z)]12%. Then the

- ramification points of f are given by the zeroc locus of
Q(z)P'(2) - P(2)Q'(2), a polynomial of degree 2d - 2. Note
that if deg(Q(2)P'(z)-P(2)Q'(z)) = k < 24 =~ 2, then = is a

ramification point of order 24 - 2 - k.

Define a map Wd : Md = P (N-R) #:$2d—2 by

[(P,Q} ]+~ [coefficients of {Q(E)P'(z)l— P(z)Q'(z)}].
4

Note that ¥ {Az.coefficients of {Q(z)P"(z)=-P(z)Q"'(z)}]

AP, Q)

il

[coefficients of {Q(z)P'(z)-P(z)Q'(z)}].

Also, 1f Q(z)P'(z) -P(z)Q'(2) = 0, we have that

- Q'(z) i.e. 1log P(z) = log Q(z) + C = log(CQ(z}),

i.e. P(z) = Cq(z), thus [(P,Q)] ¢ My. Thus the map vd i a

well defined map. We shall refer to Wd as the ramification

map.
Lemma 3.2. PSL{2,L) preserves the fibers of ¥q.
Proof. Let g e PSL{2,T). Let ($ g) be a representative of g.

then ¥ (g.[(P,001) = ¥ ([ (ap+pQ, vP+50) 1)

]

[coefficients of {(yP(z)+8Q(z)) @P' (z)4R0O' (z))

~(aP(z)+80(2) ) (YP' (2)+80Q" (2))}]

]

[coefficients of {(aé—BY)(Q(z)P'(z)—P(z)Q'(z)}]

= [coefficients of {Q(z)P'(z)—P(z)Q‘(z)}]

=vd([(p,01).
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Corollary 3.3. PSL(2,T) acts freely on the fibers of Yd.

Proof. PSL(2,C) acts freely on M d+lxmd+l-

g = P(TC R), and
by Lemma 3.2, it preserves fibers.
QED
' . 24-2
We thus have an induced map Yq ¢ G(2,d+1) - P , where

[P~Q] + [coefficients of {Q{Z)P'(z) Pﬁz)Q'(z}}]. This is

a well defined map.

Note that for d ='2, G(2,3) = G(1,3) =ZP2, and so
¥, : 2 > G(2,3) @2,
Proposition 3.4. Yz has degree 1 and is nonsingular every-

where. Hence V¥

2 is a biholomorphism.

A conseguence is that WZ : M2 +}P2 has connected fibers.
Thus given any pair of meromorphic functions (fl’f2) where |
deg f1 = deg f2 = 2, such that fl and f2 have the same rami-
fication divisor, we have f2 = gofl for some g, a M8bius

transformation.

Proof of Proposition. Let [P~Ql€G(2,3). Then [PAQ] can be

represented by one of the following matrices:

where P and Q correspond to the row vectors. For the first

matrix, we have P(z) = 22+a, Q(z) = z+b. Then
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WZ([P«Q]) = [coefficients of {Q(z)p'(z) - P(z)Q'(z)}]
= [coefficients of {{z+b) (2z) - (zz+a)}1 = [1,2b,-a]
1 0 a
i.e. N _
0 1 b =-11,2b,-al.
For the second matrix, P(z) = 22+az, Q(z) = 1, Then
Y, ({P~Ql) = [coefficients of {2z+a}l = [0,2,al,
ie. (T2 03V 10,247,
0 4] 1 .

Note that = is a ramification point in this case. Lastly, we

4] 1
2 0 = [0,0,1}] since P(z) = z, Q(z) = 1.

[am)

have V¥
0 1

Observe that this is a degenerate case since (P,Q) ¢ R.
From the explicit computation of each of the three cases, it

is clear that ?2 is one-to-one and nonsingular everywhere,
QED

Corollary 3.5. Let f be a meromorphic function of degrea 2.

Let g be any other meromorphic function of degqree 2 with the

bProperty that Ram(f) = Ram(g). Then g = A.f for some

A e PSL(2,T).

Corollary 3.6. There are no superminimal surfaces in 84

whose lifting to P3 is a curve of degree 2,

Proof. The genus O case follows immediately from Proposition
2.10 and Corollary 3.5. The following argument proves the

general case. Let vy be a holomorphic horizontal curve in
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P> such that deg(y) = 2. Pick any 3 distinct points A,B,C

on y. Let Ll and L2 denote the lines through A and B, and

A and C respectively. ILet P denote the plane spanne& by Ll
and L2.' Note that P contains the points A,B and C. Since
deg(Y) = 2, necessarily Y is bontained in P, i.e. vy is planar.
Since there are no horizontal Planes inIP3 (cherwise, thaf
horizoﬁtaliﬂ?2 would be diffeomorphic_to 841), Y must be a
pProjective line. ‘Since deg(y} = 2, v is necessarily branched.
(Nevertheless;‘y projects to a total;y geodesic surface in

84

-)
QED

We now consider the case when d = 3 W3 : G(2,4) ~» P4»

Let [P~0] € G(2,4). Generically, [P~Q] can be represented |
by a matrix of the form 1 0 a b - Then, we have
0 1 C d

P(z) = 23+éé+b and Q{z) = 22+cz+d. Now

{22+cz+d)(322+a) - (z3+az+b)(2z+C) |

0
N
!
E\?
|
o
N
0
N
]

2+ 2c23 + (3d-2)22 - 2bz + ad - be.

Thus, ¥, ([P~Q]) = [1,2c,3d-a,-2b,ad-bc]. Now consider the

point [1,2,0,-2,2] ¢ P*. This gives us ¢ = 1 and b = 1.

The other 2 equations- yield a = 3d and ad - bec = 2. These

reduce to a single equation: 3d2 - 1l = 2 since bc = 1. Thus,

d = +1 and a = +3. hence, [1,2,0,-2,2] has 2 pPreimage points

in G(2,4). This leads to an example of 2 "distinct" meromor-

phic functions of degree 3 with the same ramification divisor.
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§3.3. An example,.

-Consider the following 2 mercmorphic functions:

£ o= 23+32+l g(z) 23—32+l
zz+z+l z 4+z-1
4 3 4 3
Now f'(z) = & +§Z 22;2 and g'(z) = 2 +§Z _2252.
(z%+z+1) , (2%+z-1)}"

N

Thus, df and dg have the same zeroces, i.e. f and g have

the same ramification divisor.
Claim. f and g belong to distinct orbits of PSL(2,T).

Procf. Suppose instead that g = A.f for some A ¢ PSL(2,T).

Let (% g) be a representative of A. Then

a(z3+3z+l)+8(22+z+l)
Y(23+32+l)+5(22+z+l)

Aoff‘(Z)

3 2 : 3
gz +8z "+ {3a+8) z+ (a+B) = g(z) = 22—3z+l .

vz +82 %4 (3y+8) 2+ (y+8) z%4z-1

Il

Equating coefficients in the numerator, we get o = 1, 8 = 0,
3a + B = -3 and o« + B = 1, a contradiction.

QED

§3.4. The general formula.

First, let us examine the degree 3 case, i.e.

T3 : G(2,4) IP4. Let [P~Q] € G{2,4) be represented by

43 8 a;p gy
the matrix . Let P and ¢ denote the

b, b2 ) b

1 0
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row vectors (a3,a2,al,a0) and (b3,b2,bl,b0) respectively.

Recall that the Plucker embedding G(2,4) +€D(A2E4) =IP5

is given by (g) + [P~Q]. ©Let y denote the bivector P.Q.
. 4 -
Choose a‘ba51s {23,32,21,30} fer ©°. Then

W= PQ = (aBbz_a2b3)g3A32 + (a3bl—alb3)£3ngl + (§3b0—a0b3)g3ﬁﬁo

* (agbyma;by)e o~y + (agby-agb,)only + {a;by=agh 1.2~

= (X32'x31'x3o'le'xzoxlo)

where x,. =.a,b. - a,b.. The x..'s are called the Plilicker
ij i35 371 ij

coordinates of [PaQ]. Since y is a simple bivector, w.p = 0.

Thus

X32%10 T X31¥0 T F3p%Xyp = 0. (*)

Hence, the image of G(2,4) inIP5 is a quadric hypersurface

given by (*). Now let P(z) = a z3+a222+alz+aO and

3
Q{(z) = b 23 + b222 + blz + b Then,

3 0

Q(2)P' (2)-P(2)Q" (2) = 2°(azby-a,by)+2” (2(agby=a;by) ) +2° (3 (agby-asbs)

+(a2bl-alb2))+z(1@2b0-a0b2))+(alb0-a0bl)

4 3, 2 a0
Z (x32)+z (2x3l)+z‘(3X3O+x21)+z(2x20)+x10.

il

Let G4 denote the image of G(2,4) in PS. Then the map Y 5 can

be given in Plicker coordinates by Y5 ([B.Q]) =

[x32,2x31,3x30+x21,2x20,xlo]. The map W3 can thus be thought
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of as the restriction to G4 of a "map" from]P5 toIP4.

(Quotation marks had to be used as T3 obviously cannot
extend to all of P5).

Let L : EG > E5 denote the linear map given by

(X320%300 %300 %10 %50, %79) > (X35, 2%, 3%30¥%, 1, 2%,,%, ) .

It is clear that L has maximal rank and so L is onto and
has a l-dimensional kernel, say K. Now, K is the lifting
to E6 of some point n eZES {(x=PK) . Thus W3 can be extended
to a map from B° - {u}ltojP4. Let B° denote the blow-up of
PS at . That is, we obtainiﬁ5 by replacing each point

X € PB with a'pair (x,£) where £ is a line through x and us

Then, we have a well-defined map @3 ::ﬁS + P4. Note that
3 ¢ G4 since W3 is well-defined on G4.

Now let g ei@4. The number of points in {§3)-l(q) 4

G

is the degree of the maé w3. Let £q denote the lifting of

g to C°. Then L—l(ﬁq) is a 2-dimensional subspace Hq'of

c® containing K. Thus, (@3)-l(q) is just:@(ﬂq), which is

a projective line Aq inZlP5 containing y. Since G4 is a
dquadric hypersurface inlm5 and x ¢ G4, Aq intersects G4 at
precisely 2 points, and so W3 has degree 2 as claimed earlier.
This suggests that the dégree of ¥a is given by the degree of
the image of G(2,d+1) in Y under the Plucker embedding. Let

us now consider the general case.

d+1 2¢d+l

Let N = (d+2) (a-1) = (%) - 1 = dim@ (a

}) . TLet
d+1

L
2

P = (ad"'ffao) and Q = (bd,...,bo) be 2 vectors in C
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which span the plane [P~Q] € G(2,d+1). Then the Plucker

embedding G{2,d+1) > 2V is given by (g)*ﬁ [P~Q]. Choose
Plucker coordinates Xij onIPN where 1 > j, 1 =4d,...,1,
o _ d d-1
_3 = § 1,...,0. Let P(z) = a42 +ad—lz,4J+"‘+alZ+aO and

_ d
Q(z) = bdz +...+blz+b0. Then

1 - N - 2d_2 n ’

Q(z)P' (2) P(z2)Q'(z) = 9yg-2% t...ta oz ‘+....+0tlz+ozo

where o, = .E (i—j)xij,, n = 24-2,...,0.
i+j=n+l :
1>j

Coﬁsider the linear map L : @N+l > EZd_l given by

(xij)|+ (azd_z,...,an,...,qo).

Observe that since o contains only the_xij's which satisfy

the condition i + j = n+l, L has maximal rank. TLet K denote
the kerneil of L. Then dim K = %(d2+d) - 24d+1 =:§(d—2)(d—l).
Let % :=PK, a projective %d{d—B)-plane inIEN. Note that

GZd-2

the image of G(2,d+1) inJPN, » does not intersect u by

construction. LetZPN denote the blow-up of:EN along y. ﬁet

q em?d72 et ?d denote the map induced on Y. Then

Aq = (?&l)(q) is a projective %(d-2)(d—l)-plane ianN, i.e.
a plane of dimension complementary to that of sz_z. Con-

sequently, the number of points of intersection of Aq with

sz-z is the degree of sz_2 inZPN, which turns out to be
(2d-2} ! ' .
1d-1) rart (cf. [K], [RL]). As a consequence, generically

there are %é%i%%éT distinct PSL(2,Z)-orbits of holomorphic

maps of degree d fromi@l toi@l which have the same
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ramification divisor. We thus have

Theorem B. Let f-be a_genheric meromorphic function of

degree d 2 2. Let R denhote the ramification divisor of f.

{28-2)1
(d-1) 14!

orbits of meromorphic functions of degree d with ramification

Then under the action of PSL(2,EZ), we have distinct

divisor R.

§3.5. The space Hd

" In Chapter 2, we showed that every branched superminimal

, 4 . . . ,
surface in §° arises from a pair of meromorphic functions each

\

of degree'd > ‘1 with the same ramification divisor. -Further-
more, for 4 z 2, if the surface is unbranched, the 2 functions
do not differ by a M®bius transformation.

Now let F = (fl,fz) :.P%%E%Pl be a holomorphic map of

bidégree {d,d) such that Ram(fl) = Ram(f By the results

5) - s
of Chapter 2, the lifted curve ?f@l) in Y =IDTCPlJ@l) avoids

the 2 distinguished sections Sl
Vo PB - (glUcZ) + ¥ - (SlUS2) is a covering map of degree 2

and‘nlIPl = 0, the map F 1ifts to a map ¥ ::Pl - P - (Gluoz). |

and 52 of Y. Since

~

Let v, = B°§GP1) and vy, := BoaoF (BPY) = a(y,). Then y; and
Y, Project to a conjugate pair of branched superminimal §|
surfaces, Zl and 22 in 84. If F is an immersion, then the
paif of surfaces are unbranched. We also showed that for

d 2 2, a necessary condition for Zl and 52 to be unbranched

is that fl and f2 belong to different orbits of PSL(2,T).

Our search for unbranched superminimal surfaces is thus
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aided by the following immediate consequence of Theorem B:
Theorem C. For each d 2 3, there is a branched super-
minimal Surface of genus O in S4 which arise from a pair
of méromorphic functions (fl'f2) each of degree d such
that Ram(fl) = Ram(fz) and that fl and f2 belong to distinct
PSL(2,T)-orbits.
» ' R (2d=-2) ' .. ..
Proof. Theorem B tells us that there are (d=1) rdl distinct
‘orbits.

QED

Theorem.D.. Let.Hd denote the space of branched superminimal

surfaces of genus 0O in 84 whose 1lifting to P3 are holomorphic

horizontal curves of degree d. For each d 2z 1, Hd is para-

metrized by a space of complex dimension 24 + 4,

Proof. A meromorphic function of degree d is determined by
(2d+1) complex parameters. The therom follows immediately

from the fact that the fibers of Wd are 3-dimensional.

QED

Note. ' Theorem D is in agreement with the results of Verdier
[V2]. Verdier in fact shows that Hy is naturally equipped
with the structure of a complex algebraic variety of pure

dimension 24 + 4, and for d 2 3, Hd possesses 3 irreducible

components. We will show that in fact, Hd is connected.
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§3.6. Connectivity of Hd

Recall that a meromorphic function of degree d is

Ed+lxmd+l

an element of My =IPN - R where N = {(P,Q)|P.Q= 0]

and wheie R is the resultant divisor. We have a ramifica-

tion map Wd : Md +]P2d_2. The action of PSL{2,T) induces

a map Wd : G(2,4+1) - w(R)-+IP2d_2 where1ﬂR)==ﬂ/PSL(2AD,

an irreducible variety of codimension 1. For ease of
notation, we will let R and R" denote m(R) and Wd(n(R)T

respectively, for the rest of this section. Now

Y. & G(2,d+1) » p2d-2

d is a branched covering map. Let

R := ramification locus of Wd and B := ?d(R) = branch locus
_of ?d. Then
2d=-2 ' .
?d : G(2,d+1l) ~ R =R » P - B - R'" is a covering map.
Now consider the diagnol map § : P29 2 , p2d-2 p?972,  Let
Mg o= G(2,d+1) - R. Then, modulo the action of PSL(2,C), an

element of 6*(deﬂd) is a pair of meromorphic functions of
degree d with the same ramification divisor. We will show

that the space 6*(MdXMd) is connected.

Lemma 3.7. R is not a component of R. Consequently,

dim{(RnR) £ 28 - 4.

Proof. In §3.1, we showed that R is irreducible. Thus, it

suffices to show that there exists an x ¢ R such that x ¢ R.

Let P(z) = zd + 22, Q(z) = z. Certainly [P.Ql ¢ R ¢ G{2,d+1).
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For ?d(aj,bk) = (...,cm,...), we have
o ; f3om4
| = (2j-m-1)b_ . 0 if m j, m 1.
da. - '
251 (e, Q) ?13+ﬂ(P,Q)
i.e. ‘this derivative does not vanish for j=m=20,2,3,...,31,d.
Also,
‘acm L
3B, =_(m-2k+l)am_k+1}v + 0 if m = d+k-1 or m = k+l

Pk (P, Q) (P,0Q)

‘i.e. this derivative does not vanish for k =0, m=1, 4 - 1

and for k = 1, m = d : Pk

1y, ayd has maximal rank. Thus [P.Q] ¢ R.
(P,Q)

=d-1, m=2d - 2. Consequent-

QED

Observe that any diagonal point (gq,q) ¢ 6*(deMd) is

path connected to any other point (q',g') ¢ 6*(Made) since

Md is connected. Thus, to show that 6*(deMd) is path con-

nected, it suffices to show that (x,v) € 6*(deMd) is path

connected to the point (y,y) for any point (x,y). Now let
2d-2 '

{(x,v) € 6*(deMd). Let Wd(x) = Wd(y) = * ¢ IP - R'.

Without loss of generality, * e:PZd-Z - B - R', and hence,

X,y ¢+ R. (If * ¢ B, we can find a path C inﬂDZd_2 - R' SO
that C(0) = * and ¢(1) = *' ¢ B). Since G(2,d+1) - R - R is

connected, there is a path ¥ < G(2,d+1) - R - R so that

Y{0) = x, y(1) = y. Then vy := Wd(§) is a based loop inP&}Q-BnR
i.e. [v] ¢ ﬂl(Pzdrz—B-R’,*}. Thus v : S1 *—PZdﬁz—B~R¢: Pzdrz. Since

2d-2 is simply connected, we can extend ¥ to a map

vy D2 +1P2d_2.

By Thom transversality and Lemma 3.7, we




can make y' transversal to Reg(B), Reg(R'} and _
¥q(RAR) = BaR*, i.e. y"(D%) A {Sing(B) U Sing(R') U [BAR'} = 4.
Then YI(DZ) intersects Reg(B) and Reg(R') in a finite number

of pointé, say Y‘(Dz)f\ Reg(B) = {zl,...,zn} and |

Y‘(Dz){] Reng') = {il,...,tm} where z; + Cj for aﬁy i, 3.

Let oy and Tj be tiny based loops around z; and cj respective=

ly. Then vy is homotopic to a composition of the Ui's and T.'s.

Observe that the T;'s act trivially on F = Wal(*). Let x; = x
and X1 = Y- Since [y](x) = y, we have {cl](xl) = Xo,

{023(x2) = x3,...,{0n](xn) =X .3 y for some XoseeosX € F.
Let 0; be. the 1ifting of-oifso Ehat—Gi(O) = X, and Gi(l)~= Xiiq-

As oy traces along the boundary of a tiny disc Di around the

branch point Z5y Si traces some path around some ramification

point y, ¢ ?é%zi). Let Bi denote the contractible disc in
G(2,d+1) - Raround Yy whiéh projects to D;,. Suppose ci(t)
traces 8§i for t e [tai,tsi]. Let u, = ai(tai) and

v, = Si(tsi). Let &i be a path from u; to y; and let B; be
a path from y; to v,. Say ai(tai) = uy, Bi(tBi) = v, and
&i(tei) = Ei(tei) =y, for some tEi £ (tai,tBi). Consider

the modified path Ei defined as follows:

S,i(t) te [0, ]
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+

Let Ui r= Wd(Ei). Observe that Ui is a homotopically trivial
loop in Egd_z - R'. Let-SE-denote the lifting of Oi so that

g h — " - oA R | :

01(0),“ ol 3@ Let Y; denote the path (ci,oi) in 6*(deMd}

from (xi,y) to (xi+l,y). We have thus constructed a path

Ynan__la...qu in 6*(deMd) .from (x,y) to (Y,Y). Thus

Theorem E. For each d 2 1, Hd' the space of branched super-

minimal surfaces of genus O and degree d in S4 is connected.

§3.7. Examples.

Consider the map Fy = (f,,£,) : BT » L « P! (4>2) where
P, (z) d ‘
fl(Z) = Ql(z) = dfl+d2+l and
1 Z +z+{d-2)
fom) = 2B g%y
2 Q2 a-l (a-2

We will show that for 4 > 2, Fd gives rise to a conjugate
pair of superminimal surfaces (unbranched} in S4.
Note that fl and f2 belong to different orbits under

the PSL(2,T) action.

Lemma 3.8. Fotr 4 > 2, Fd has bidegree (d,d). Furthermore,

Ram(f = Ram(f,).

l) 2
Proof. We must show that Pi(z) and Qi(z) have no common
zeroes (i=1,2).

Suppose { is a common zero of Pl(z) and Ql(z). Certain-

(z) = z°% - 22 - 1,

ly € must be a zero of P(z) = le(z) - P

1




But P{z) has roots 1 #/2, which are certainly not roots

of Pl(z) oerl(z). Thus deg(fl) = d. A similar arqgument
shows that‘deg(fz) = d. Now
coy o RezY | 229720 (a-1) 2% (a-1) 29724 a (g-2) -1
fl(Z) = = = a-1 > and
Ql(z) [z‘ +z+{d-2}]
ciy = Riz) - 229720 (a-1) 29 (a-1) 2972 g (a-2) -1
fz(z) = = = -1 > .
-Qz(z) 1z +z—-(d-2)]
Thus, Ram(fl) = Ram(fz).
QED
Proposition 3.9. The map Fd is_generically one toc one onto
its image. Hence it is not a branched covering map.
Proof F_{0) = (£,(0),f.(0)) = - :L—) Note that O is
—==" d 1 re2 d-2 * ga-2’-
not a ramification point of either fl or f2. We shall compute
Fél(a%g, af%). This amounts to solving the simultaneous
equations:
zd+dz+1 - o2 and zd—dz+l - ~1
2371zt (a-2) 972 297 n(g-2) 972
We obtain:
(d-2) (z%+az+1) - (2% tizea-2) = 0 and
(a-2) (z%-az+1) - (2% L4z-(a-2)) = o.

This reduces to solving the simultaneous equations




gl(z)'= (a-2)2% - 2971 4 (q(a-2)-1) 2
gz(z) =

Observe that if ¢ is a common zero of 91 and DY then

O‘and

(@-2)z% + 2971 = (a(a-2)-1)2 = o.

certainly it is a zero of g, + 9, = 2(d-—2}zd (a»2).
But 91 +9, has O as its only solution. Thus

-1, 1 =1 - . . ;
Fd d—2’d—2) = {O}, 1.e.‘Fd 18 generically one to one onto
its image.
QED .

1

Proposition 3.10. The map ﬁd : P +ZPT(PIMP1) is nonsingular.

Proof. It suffices to show that d?d does not vanish at the

ramification points. We shall split the proof into 3 cases.

Case 1. Assume that the poles of Q,(z) and Q,(z) are not

ramification points. Thenlﬁd can be described locally by

Fqlz) = (£,(2),£,(2),6(z)) . where
cla) = fi(z} B zd_l+z—(d—2)12
T Ey(z) T &1 |-
z +z+ (d-2)

It suffices to show that G' does not vanish at the ramifica-

tion points. Now

zd_l+z-— (a-2)

d_l+z+(d—2))

G'(z) = 2 3 -2(d~2)h(z)

{z

where h(z) = (d-l)zd_—2 + 1. Observe that h{z) wvaniches
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when 2972 = é%f‘ Let ¢ be a (d-2)th root of é%f' Then
R() = 2972 4 (a-1)c@ ] (é—z);d‘z +d(a-2) -1
= cz(c2{6‘2? + (@0 - @187+ qga-2) -1
= ugEp i+ a2 # o,

Thus, the zeroes of G' do not coincide with the ramification

points,.i.e.'Fd is nonsingular.

Case 2. Suppose £ is a common zero of R{z) and Ql{z).

Let fl(;) = Ql{z)/Pl(z). Then locally,
< . g 0, (z) 2
Fdiz) = (fl(z),f2(z},G(z)) where G(z) = fé = -[>2 /Pl(z)] .

Then G'(z) = —2[Q2(Z)/Pi(z)]-g where

_,2d4-2 a a-1 -2

A = Pl(z)Qé(z) E Qz(z)P]'_(z) = + (1I-d)z~ + df{2d-4)z + (d-1)z

+ d(d=-2) + 1,

1

Let § = R + A = d(2a-4)z971 + 2q(4-2) .

First, observe that Ql(z) and Qz(z) have no common zeroes

since Ql(z) +'Q2(z) = 2{(3-2) % 0 for @ > 2. Thus

G'{¢) = 0 if and only if Alg) = 0. Suppose that r is a
common zero of A and R. Thengz must be a zero of §. But
S(z) vanishes when zd_l = =2d(d-2)/d4(2d~4) = -1. Then ¢ must

be a (d~1)th root of -1. But Q) ==1+¢ + (@2 =7z +d-34%£0

for d > 2, contradicting our assumption that ¢ was a zero of




0 (z). Thus G'(z) # 0.

Cagse 3. Suppose 7 is a Eomﬁon zero of R(z) and Q2(z).
Let fé = QZ/P?. ihen locally, §d(z) =_(fl(z),f;(z),G(zH
where G(z) = fi)f} z--[PZ(Z)/Ql(Z)]z' So

G'(z) = -2[P2(z?/Q§(z)]-A where

8= 0, (2)Py(2) - 2, ()0} ()

+ (a-1) 9

2d-2 +da2a-029t + (@1232 - g2 - 1.

d-1

Let 5. =R - A = -d(2d-4)z 4+ 2d{d-2).

If T is a common zeroc of A and R, certainly it is a zero of

S. But S vanishes when z0 1 = 2d(d-2

) /d(2d-4) = 1.
i.e. € is a (d-1)th root of 1. But 0,(z2) = ¢ -4d+3+0
for d > 2, a contradiction. Thus G'(z) % 0.

QED

We thus see that the total preimage Bawnl(fdﬂPl)) is
a conjugate pair of nonsingular holomorphic, horizontal

curves in:@B;‘which projects to a conjugate pair of super-

minimal surfaces, each of area 4m1d, in 54(d£3}.




CHAPTER 4

Higher Genus

We now consider branched superminimal immersions of

a compact Riemann surface z of genus greater than zero

in S4.

First, let us recall the basic facts from Chapter 2.
Suppcse £ Z > 84 is a branched superminimal immersion

where area (f(})) = 4nd. Generically, fKE)‘misseé a pair

of antipodal points on 84 (Say the north and south poles)

and is not ¢-invariant, where o is the involution on

s4 =IP10H) defined by {ql,qz} > [qi,—q2]. We obtain a

"conjugate" branched superminimal surface aaf()). Let

f : z +QE3 denote the canonical 1ift of f to EP3. Then

() is a holomorphic curve of degree & which misses the
2 projective lines L1 and 12 corresponding toc the fibers
(of the Penrose fibration) above the north and south poles.

Furthermore, £()) does not coincide with aef(}). The branched

covering map Y : B2 +ZPTGP%IP1) sends both f(}) and aoef())

to some curve.E*iniETCP%ﬁml)-which Pfojects to a curve C in

1 1

P" xP" of bidegree (d,d). The curve C misses the 2 dis-

tinguished sections Sl and 82 corresponding to lines tangent

to the second and first factors of]Plx JPl respectively.

Let fl and f2 denote the first and second factor projections
of C. We see that deg f, = deg £, = d and Ram (f,

Observe that f is totally geodesic for d = 1,2, and is lineartly

) = Ram(fz).
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full provided d 2z 3. Note that if f2 = Aofl for some
A e PSL(2,E), then themap F = (f),£,) : | » 2" !
factors thfough Pl as follows:

o g 1 (IpeBegy) 4

J P P x P
where g is a holomorphic map of degree 4 and 9, is a holo-
morphic map of degree 1. The result of Chapter 3 imply
that the map G = (gl,Aagl) :Z[Pl-+3Pl><IPl gives rise to a con-

jugate pair of totally geodesic surfaces in‘S4. Thus F

gives rise to a conjugate pair of (branched) totally geodesic
surfaces .in 34. Consegquently, f.:-Z > 84 is linearly fuilil
provided £, + Aof; for any A ¢ PSL(2,0). We wili_be in-
terested in ‘constructing linearly full branched éuperminimal
immersions ‘of ] in S4 from pairs of meromorphic functions
£,,£, on ], each of degree d 2 3 such that Ram(f;) = Ram(f,
and f, + Aof; for any A e PSL(2,L). With these conditions,

)

the canonically lifted curve E(Z)C:IPTGP%JPl) misses the 2

distinguished sections S. and S Let C denote the curve

1 2°

F(]). We require that ¢y 1(¢) consist of 2 connected com-
ponents, y; and Y5+ Such that a(yl) = Y, and w{Yl) = w(yz) = C.
If this is the case, then Ty and Yo project to a conjugate
rpair of (branched) superminimal surfaces in 84.

Let X := B3 - (o,u0,) zp3 - (L,UL,) ‘and
Y := ]PT(]PlXJPl) - (SlUSZ') . Note that TTlX = 0 and ¢ : X >~ ¥
is a 2-1 covering map. The maps that we are considering,

1 1
Fo= (£,£,) : ) > x P

, are such that F(J) € Y. Observe
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that ¥ lifts to a map F : [ » X iff F(n,]) = 0. If
ﬁ*(ﬂlZ) = 0, we have 2 maps from ] to X : F and aoF.

Thus
Theorem F. Let F = (fl’fz) : ] +£Plx :ml be a holomorphic

map of a compact Riemann surface of genus g Egiml ijl.

Suppose the map has bidegree (d,d) such that Ram (£} = Ram(fé)
and f2 +-A°fi for any A ¢ PSL(2,C). Let I : Z +IPTQP%GP1)—

(SlUSZ) be the canonical 1ift of F. Then F gives rise to

a_conjugate pair of branched supérminimal surfaces of genus

g in s? provided E*(an) = 0.

Note. The condition g*(ﬂlZ) = 0 is automatically satisfied

if geﬁus(Z) = 0. However, if ﬁ*(ﬂlZ) 4 0, then we don't

have a 1ift of E to X. Nevertheless, there is a 2-fold

cover E of ] which lifts to X, where genus(i) = 2g - 1.

We then obtain a superminimal surface in st orf genus 2g - 1.
An easyrway to satisfy the condition is by factoring

through,Pl. Let ¢ : X e-Pl be a holomorphic map of degree

d' from a compact Riemann surface of genus g toJPl. Let

(fl’fz) : p! » pl xIPl be a holomorphic map of bidegree (d,d)

. . . o ) . 1
which give rise to a branched superminimal immersion of B

in'S4. (There are lots of these maps from the results of

: 1 1
Chapter 3!) Let F = (F,,F,) := (o9, E 00) ¢ ) P x P
denote the map of bidegree (dd',dd') given by precomposing

with ¢. Certainly Ram(F,) = Ram(F2). If we assume that

1
f2 4 Aofl for any A ¢ PSL(2,L), certainly F2 $ AuFl for
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any A ePSL(2,C). Let ¥ : ] + Y be the canonical 1ift of
F. Then ﬁ*(ﬂli) = 0 and by Theorem F, F 1ifts to a holo-
morphic horizontatl map to P3. Thus, we have lots of

branched superminimal immersions of Z in S4.

There aré many questions remaining in the case of a‘
compact Riemann surface of genus g > 0. For instance,
suppose F is a.map of Z intoi@l xJ@l which factors through
IEl. Can Qe deform F to a map F' which does not factor
throughi@l, but which gives rise to a branched superminimal

surface in 84? Can F' give rise to an unbranched super-

minimal. -surface? I hope to address these unanswered ques-

tions in the near future.
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