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Abstract of the Dissertation
Hyperbolic Invariants for Infinitely Generated Fuchsian Groups

by

Ara Basmajian

Doctor of Philosophy

in

Mathematics

State University of New York at Stony Brook

1987

A Fuchsian group is said to be of type (gnym) if its associated
tguotient surfe:ce is of genus g with n points and m discs removed. Let h
be a hyperbolic element of PSL{2,R). We define a guantity cthy, called the
collar width of h, which only depends on the translation length of h. We
prove the following theorem,

- Suppose 7 and 13. are hyperbolic elements oriented sco that each of
their axes lies to the right of the other. Let d be the hyperbolic
distance between the axes of Y and 8. Then (V,3) form standard
generators for a Fuchsian group of type (0;0;3) or {0;1;2) if and only if

eh+eB Ld. |
With equality holding if and only if the group is of type (0;1;2).
We consider surfaces constructed by gluing together infinitely

many pairs of pants. The Fuchsian group associated with such a surface

iii




will be an infinitely generated Fuchsian group having non-conjugate
simple hyperbolics {g;} with axes {L;}. These axes have the property that
L, separates L,_, from L,;; . We call such a sequence a nested sequence
of axes.

We supply necessary and sufficient conditions, in the form of
inequalities involving distances between geodesics, for an infinitely
generated Fuchsian group G to be consiructed from only {;1;2) groups.
Let d; be the distance between the axes L, and L,,,. We show that G is
of the firs.t kind if > d,=oc0,

It is well known (The Nielsen Isomorphism theorem) that every
type preserving isomorphism between finitely generated Fuchsian groups
is a topological deformation. Using the above constructions we show that
the Nielsen Isomorphism theorem does not extend to infinitely penerated
groups.

It is evident that one can use the combination theorem s finite
number of times to construct new surfaces out of simple ones. We
investigate what happens when we iterate the combination theorem an

infinite number of times.
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CHAPTER |

0. This chapter will serve as a very brief introduction to
Fuchsian groups; the mein objective being to set up notation for the
chapters to follow. For = rrlore detailed account on the theory of
Fuchsian groups and Riemann surfaces the reader is referred to the
books of Maskit [M-1] and Beardon [Bl. Our approach to the subject is
for the most part geometric. An introduction to the analytic theory can
be found in [F-K]. T ' -

Other writers who have studied infinitely generated Fuchsian

groups include Keen [K-1] and Purzitsky [Pl

1. Two models of the hyperbolic plane H are the upper half-plane
{2 EC:Im(z) >0} and the Poincare disc {z€C:lz!<1}. Their line elements are

z__ 2ldz[?

2
s2=14Z0_ .44 ds =, respectively. Both of these models have

 (Im@)? 1—lzl
Euclidean boundaries which can be identified with the boundary of H,
9H. Thus the hyperbolic boundary-of the upper half-plane-is the -
extended real numbers RUce and for the Poincarée disc it is the unit
circie. We let p(*,*j be the hyperbolic distance between two poinis -of H.
The geodesics for the upper half-plane ar-;e vertical lines and arcs I

of circles which are orthogonal to the real line. For the Poincare d:isc

the geodesics are straight lines through the origin and arcs of circles

‘'which are orthogonél to the unit circle. We denote the geodesic with




endpoints a and b on the boundary of H by [a,bl.
The group of orientation preserving isometries of the upper half-
plane (with the hyperbolic metric) is made up of the Mdbius

transformations

az-+b
Z——
cz+4d

where ad —bec=1 and a,b,c,dcR, This group' can be naturally identified
with the projectived special linear group, PSL(2,R). Thus one can talk
about the square of the frace of an orieniastion preserving isometiry f,
denoted tr?(f). Note that this quantity is conjugation invariant.

We classify the orientation preserving isometries of H by the
square of their irace. Namely,
f is hyperbolic if and only if tr’(f)>4;
f is parabolic if and only if tr*(f)=4; and
£ is elliptic if and only if 0<tr¥{f)<4.

A hyperbolic element h has a unigque inveriani geodesic line in H,
called the axis of h and denoted Aty. If z is a point on Ach), the

translation length of h, T¢hy, is the distance p(z,h(z)). The translation

length and the sguare of the trace are related by the following formule, —-— -~

tr¥(f) =4cosh™(Td/2).
A reflection in the circle with center & and radias r is the unique
mapping o which satisf ieé,
Io’(z)—-allz-—-al#éz.

Observe that o?=1. A refleciion in a circle ortﬁogonal_ to the boundary

(or equivalently in a hyperbolic geodesic) of H is an orientation




reversing isometry of H. Hence the composition of two such reflections

is an orientation preserving isometry of H.

2. A Fuchsian group is a discrete subgroup of PSL(Z,R). A group

G CPSL(2,R) acts discontinuously at z€C if there exists an open

neighborhood V of z so that gVNV =@ for all but finitely many elements
gSG. The set of all points in € at which G acts discontinuously is called

the regular set of G and is denoted {2(G). The complement of £2(G) in >

is called the limit set of G, denoted A(G). We have the following

fundamental theorem.

THEOREM, Suppose G is a subgroup of PSL(2,R), Then the
Following are equivalent.
(7). G is discrete;
(#4). G acts discontinuously at some poz"n.t ZEH; cmd
(i11)G acts discontinuously at ever;; point of H.

If M(G)=3H, we say that G'is a Fuchsian group of the first kind, - — - -7 ==~

Otherwise, 2{G)MEH is the union of open intervals and G is said to be of

the second kind. These intervals are known as intervals of discontinuity.

An open half-space BCH which “bounds” an interval of discontinuity is

called a boundary half-space for G. If there exists a hyperbolic element

g€C whose axis “bounds” this interval of discontinuity, we say that g is

a boundary hvperbolic element with boundary helf-space B.




3. Suppose G is a torsion free Fuchsian group. Then H/G is an

oriented hyperbolic surface of constant negative curvature whose

fundamental group is isomorphic to G. The natural projection map {
7:H~H/G is a covering with group of deck transformations G. ‘

A conjugacy class is parabolic (hyperboelic) if an eiement in the

class, and hence every clement, is parabolic (hyperbolic). Maximal

parabolic conjugacy classes in G correspond to punctures on H/G.

Meaximeal hyperbolic conjugecy classes in G correspond to closed

geodesics on H/G.
A Fuchsian group G is of type (ginym) if H/G is a compact surface
of genus g with n points and m conformal holes removed. If g=0 and

m-4n=>3, we say that H/G { and likewise G) is a pair of pants.

4. The Niglsen (convex) region N(G) for a Fuchsian group G is the

smallest non-empty G-invariant convex subset of H. Equivalently, N(G) is =~
H—{boundary half-spaces of G}.

One of the esential ways of understanding the action of é.
Fuchsian group on H is by way of fundemental polygons. .. = — .-

A (convex) polygon D in H is the intersection of countably many

open half-spaces, with the property that any compact set in H infersects

‘only finitely Vmany geodesics which define the half-spaces. The geodesic




segments that make up the boundary of D are called sides. Two sides
meet at a vertex.
DEFINITION. Let G be a Fuchsian group. A polygon D is a (convex)

fundamental polveon for G if the following conditions hold.

{i). eDND=@ for all non-irivial g&G;
) | | eD=H;
geG
(iii). The sides of D are paired by elements of G;
(iv), {local finiteness) Any compact set intersects only finitely many
transiates of D.
An important feature of a fundamental polygon lies in the fact that D/G
is hyperbolically isometric to H/G.

At this point there arises a natural question. Which pelygons with
sides paired by elements of PSL(2,R) are fundamental polygons for
Fuchsion groups? Poincaré’s theorem suﬁplies us with the answer. We
content oﬁrselves with a restricted form of the theorem. For the genéral

form see [M-1].

POINCARE’S POLYGON THEOREM. Suppose D is a finile sided

{convez) polygon in H, satisfying the following conditions.
(i), The sides of D are paired by elements of PSL(2,R);
{(if) YyDND =@ for all the side pairing transformq.tz‘ons i

(ii1). The ordbit of a vertex under the side pairing transformations

is the set of all vertices of D;




(iv). The sum of the angles at the vertices is equal to 27; and
(v). D has no sides that meet tangentially on the boundary of H.
Then D is a fundamental polygon for the Fuchsian group

generated by the side pairing transformations.

5. A basic tool in the theory of Fuchsian groups is the
combination thecrem. It enables one to comstruct complicated Fuchsian
groups out of simple ones. T -

Suppose h is a boundary hyperbolic in a2 Fuchsian group T'. Call

the component of H—A¢h; which contains N(T'), B(h). Let Bh) be the

other component.

COMBINATION THEOREM. Let D, and D; be {convex) fundamental

polygons for the Fuchsian groups I'y and T, respectively. Suppose

h is a primitive boundary hype’rbolié in both T'; and fz satisfying
(3). NTRNN{T)=Ahy;

(i8). D1NBh)CT D, NB(RY; IR

(#it). D,NB'(R)CD;NB'(h); and

(iv), The sz‘dés of D, ‘that are paired by h lie on the same geodesic
iines as the sides of D, which are paired by_h.

Then (I'.I'2) is a Fuchsian group with fundamental polygon

DiND,. .




6. Suppose G is a Fuchsian group. An elliptic element g€G is said
to be & minimal rotation if tr’(g) is maximal among non-trivial elements of
(g). A group isomorphism $:G -G’ between two Fuchsian groups is said {o

be tvpe preserving if the following conditions hold.

(i}. g=G is parabolic if and only if ®(g) is;

(ii) g &G is a minimal rotation if and only if ®(g) is; and

(iii) g €C is a boundary hyperbolic element if and only if ®(g) is.
Another central theorem in the theory of Fuchsian groups and

Teichmiiller spaces is the Nielsen Isomorphism theorem.

NIELSEN ISOMORPHISM THEOREM. Suppose ©:G -G’ is a type

preserving isomorphism between two finitely generated Fuchsian

groups. Then there exists a homeomorphism f:C~C, where

faf t=a(g).




CHAPTER I

0. In this chapier we supply necessary and sufficient conditions
(theorem I1.22) for two hyperbolic elementé (Y,8) to form standard
generators for a Fuchsian group of type (0;0;3) or (0;1;2). These
‘conditions are in terms of the hyperbolic distance between the axes of 7Y
and B and the “collar widths” of % and 8. In Section 7 we state our own
version of & collar lgmma. Other writers who have investigaied collars
about geodesics include Buser [Bul, Halpern [H), Keen [K-2], Maskit [M-2],
Matelski [Ma), and Randol {[R].

First we prove an intermediate result (theorem I1.1) with a series
of lemmas which will occupy most of this chapter.lThroughout this

chapter G is & Fuchsian group of type (0;0:3) or (0;1:2).

1, Let the map w: H-H/G be projection onto the quotient space,

H/G. H/G is topologically a sphere with three holes. Choose oriented -~ ~

loops.around each of the holes so that the other loops lie to the
righ.t(f igure 1). Name these loops A,B, and C in some order where C goes
around the puncture, if there is one. The ordered pair (V,8) form

standard generators for G if G=(V.8), ®{A(Y) is freely homotopic to A,

7(AB) is Treely homotopic to B, and ®(AY'87Y) is freely homotopic to

“C. In the case where v1587! s paraﬁolic, AY'87Y is replaced by' ans}




horocycle of Y787 .
REMARK. The projection of the axis of any hyperbolic element comes

equipped with an orientation induced by the orientation on the axis,

namely the positive direction of the axis is from repelling to atiracting

fixed point.
We now state the main result of this chapter.

(I.THEOREM Let ¥ and 8 be two hyperbolic elements of PSL{(2,R)

oriented so that each of their axes lies to the right of the other .
Then {V.8) form standard generators for a Fuchsian group of

type (0;0;3) or (0;1;2) if and only if

T
' e 2 .1
(11.2) d=p( AV AiB1) > Log ——-T—' .
T
e 2 -1
e g d
s . —_
(11.3) T(Y) > 2 Logl & T[;e +l)—(e”—1) |
e 2z (e@—1)—?+1)

Equality in (I1.3) holds if and only if the group (V,8) is of type
(0;1:2). ‘ N
. We call the above theorem the “collar theorem” and we say that

the guantity

T
Tz41
cBy=Log ET&];—‘
e 2z —1

is the (one-sided) collar width of 8.

|
|
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2.This section is devoted to the lemmas needed to prove (II.1} .

ULOLEMMA, Any group G with standard generators (7,8} can be
conjugated by an element f= PSL(2,R) so that 577! has repelling
Fized point z and attracting 'fimed point 1, fB8F " has repelling
Ffized point 0 and atitracting fized point oo, and Y87 has
repelling fized point z and attracting fized poi'pt Yy, where
l<z<y<z (y=z if Y87 is parabolic).(See figure 2)

REMARK. A set of generators of this form is said to be normalized,
PROOF. Let n=""'8"% Draw the axes of V,8, and 77 (if 17 is not parabolic)
and note that the orientations on A,B, and C induce ofie;atations on A(Y),
A(B) , and A(7) {a horocycle if 77 is parabolic) so that each axis lies to
the right of all the others. Thus we must have the configurations
described in igure'3 {or some cyclic permutation of it).

Notice that the other possibility {(the configuration shown in
figure 4) can not happen since 787Y(0)><0 contradicts the relation
N8Y=1.S0 we can assume that 7, ﬂ;'anc_lrﬂ are arranged as in figure 3.

. Construct the element f = PSL(2,R) which takes the attracting
fixed point of B to oo, the repelling fixed point of B to 0, and the
attracting fix;:d point of ¥ to 1. After conjugating G by I, we have-the . - - - - -
configuration pictured in figure SD

Suppeose G is & normalized Fuchsian group with standard

zenerators (V,8). Let v be the fixed point of M= Y87 if G is of type




11
(0;1;2).
Draw the common orthogonals to each pair of axes ( in the (0;1;2)
case draw the unigue geodesic orthogonal to the axis A(Y) with endpoint

v: also draw the geodesic orthogonal to A(8) with endpoint v).

For the (0;1;2) case:

Call reflection in the geodesic orthogonal to A(Y) with endpoint v,

Call reflection in the common orthogonal to A(B) and A(Y), o,.

Call reflection in the geodesic orthogonal to A(8) with endpoint y,

Ts.

For the (0;0;3) case::

Call reflection in the comn;on orthogonal to A(Y) and A(7), o,.

Call reflection in the common orthogonal to A(8) and A(Y), o..

Call reflection in the common orthogonal to A{(7) and A(B), 3.
(refer to figures 6 and 7).With the above notation we have the following

lemma.

(II.S)LEMMA. & is equal to the orientation preserving subgroup of
(01,502,035, Furthermore Y=0,0,, 8=030,, and 7 =0,0;.

PROOF., We first show that V=00 B=030, and =0, Since the
o, reflection circle is orthogonal f.o the axis A(S), we can represent 8 as
reflection:in the o, reflection circle followed by reflection in some other

geodesic orthogonal to the axis A{8). Similarly, since the o, reflection

‘circle is orthogonal 1o the axis A(7Y), we can represent 7Y as reflection in
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some geodesic orthogonal to the axis A(Y) followed by reflection in the
o, reflection circle,

To this end, we let ¢f =8¢, and o =0o,7%Y. The of reflection
circle is orthogonal to A(B) and the of reflection circle is orthogonal to
A(Y3}. Consider the product

ob ol =(Bo,)o,Y) =Biw*Y =BY =n"'. Thus the o4 and o} reflection
circles are orthogonal to A(7). Since the o} reflection circle is also
orthogonal to A{8) we conciude that the o reflection circle is the
common orthogonal to A(7) and A(B). Hence 0§ =0, . Similarly, of =0o,
since the o,’ reflection circle is the common orthogonal. to A(7) and
A(Y). So we have that Y=0,0,, B8=0,0; and 1=7"8"'=(0,0,)(0:03)
=005 . ,

Finally, note that the orientation preserving subgroup of
<0,0,03> Is <0,0,,030,,0,0;> and by the above argument

<O0,030,0,63> = <V,B,>=G. [

(II.6) LEMMA. The common orthogonal to the geodesics [0,00] and

[1,z] , >1, has endpoints Nz and N - e T e
PROCF. It is enough to find the reflection ¢ which interchangss 0 and <«
,and interchanges 1 and x. The reflection o(z) =:-a-£.. interchaﬁges 0 and oo,
Moreover, x= o{l)= a” implies that a= yx . We conclude that the

common orthogonal to the geodesics [0,0] and [1,x] has center 0 and

radius {x-. 0O
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(1LY LEMMA. Suppose B(z)= iz, A>1, and B= o0, where o, is

reflection in the circle of radius ¥z and center 0. Then os is
reflection in the circie of radius @\m and center 0.
PROOF. Note that o, must be reflection in a circle orthogonal to the

axis of B, since the axis of # is exactly the common orthogenal between

2
the o, reflection circle and the o, reflection circle. Hence oy= %—- .

where y is the radius of the reflection circle. We must compute y in

x)? 1
z

X | Setting o= Bo!,

terms of A and x. We know that o,(z)=

N

V4 .
we find that 3—%—= oi(z)= Blozl @)= Bloz)= ﬁ(%)j—— %—x . Thus y==

Ak . O

(11.8) LEMMA. Suppose G with standard generators (V,8) is

normalized so that Szi= Az , A>1, and &>1 is the repelling fized
point of Y. Then A>x .

PROQOF. We know that G is egual to the orientation pre_serving subgroup
of {0,65,T3) whére N=0,0, y B=036,, and J=0,05 . Since |

BAYNAY) =@ , we must have that the radius of the o; reflection circle

is strictly bigger than x . By (IL.7), the radius of the o reflection circle™ ™ -

is \[hx . Hence ,

ANx>x .
We conclude that A>x . O - - .. . ..

The following two lemmas allow us to express the inequality A>x

in hyperbolic terms.
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(IL.9) lemma. consider the normalized geodesics [0,0] and 1zl . x
unigquely determines the hyperbolic distance d between these two
geodesics and conversely d uniguely determines the endpoint © .
Furthermore , mtcothz(%).

PROQCF. Let BEPSL(2,R) be the Mé&bius transformation which takes -{x
to o, X 100, and x to 1 (Refer to figure 8). That is ,

Bo—(ZZ)EE) . rhe

d= p{{0,],[1,x]}= Log Blee) (B >1)

—tog ()~ Log( 1))

Exponentiating on both sides we obtain , '

d_Nx+1
(11.10) e "—«H{—l

The formula x=coth2(g) for x> 1, follows by inverting equation (I1.10).
Finally , notice that d is monotonically decreasing . Hence x

uniquely determines d and conversely d uniquely determiﬁes X . EI
Substituting for A\ and x , in terms of their hyperbolic

equivalents, we arrive at the following lemma whose proof is a straight

forward computation .

(IL11) lemma, If A=el® ang z=(% +1]2,—then \>z if and only if -

e _1 ’
Tia)
e 2 +1
d>Log ST,
S 7
e z —1
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To simplify notation and writing we let olo T .} denote the
hyperbolic distance between the T and o; reflection circles . No

confusion should arise .

(II.12)lemma. Fix y>x . Let o, be reflection in the common orthogoﬁal
o [O,0] and [1,z] , z>1. Let o, be reflection in some geodesic [a,b]
which is orthogonal to I1,z] , where z<b<y . Let a’ be the endpoint
of the geodesic orthogonal to [1,2] with Tight endpoint ¥y . Denote

reflection in this geodesic by o] . Then

(11.13) P(02:61) > p(02,01)
with equality in (11.13) if and only if oy=c} (refer to figure 9).’
Furthermore,

plog,ol)= Log (‘J—- .

PROOF, Note that the o, reflection circle and the o,/ reflection circle
are either disjoint ér identical . We concludehthat a’< & with equality
if and only if o,= 0': . Since the distances plos0,) and plo,or) are
measured along the geodesic [1,x] , we must have that plonr,) >

plog,ol) with equality if and only if a’= a.'Morebver, by the above

remark a’= a if and only 1f c‘l—cl . This vanfles ineguality (II 13y .

Next we compute ,0(0'2,0']) Normalize by the Mobius
transformation Bs PSL(2,R) which takes 1 to 0., x to o ;and yx-to 1
(refer to figure 10). That is ,

B(z) =(Z2—=2

2=h(E=y
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Therefore ,  plo,0)= p(Bo,B ™ Bo{ B~ ") = Log (—~B(y))

= Log (¥ =gJ(E=
-l (f=) o

3. We are now prepared to prove (II.1) . We ﬁrst show the
necessity of inequalities (II.2) and (11.3) .

Suppose G has standard generators (V,8) . By (I1.4) , we can |
normalize G so that the axis of ¥ is [1,x], x>1, the axis of 8 is [0,00],

and the axis of 7= Y~ '8! lies to the right of x { or the Tixed point

of 77 lies to the right of x if G is of type (0;1;2) ) » with the orientations
as indicated in figure 11 .
Now B(z)=hz , A> 1. ”(II.8) implies that A> x . Moreover , by  (11.9)

and (I.11), A> x is eguivalent to the ineguality

d =p({ABLAMN) >Log eu___—l—l__.___ e
' e 2 —1
Thus we have verified inequality (11.2) .
Next , we will verify inequality (II.3) . We know that G is equal to
the orientation preserving subgroup of '(01,'0'2,0'3) (refer to figure 12 ).

Let o] be reflection in the geodesic orthogonal to ArY) with right

~endpoint m . Notice that the o, reflection circle cannot intersect the
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oy reflection circle , for otherwise the element o0, would be elliptic .
(We saw in (II.7) that {Ax is the radius of the o5 reflection circle .}
Hence , the right endﬁoint of the o, reflection circle musgt be less than
or egual to «J—)\; . Applying {11.12} with y—m we have

(11.14) p(62,61)2 plo.,0!) = Log {rj_% i]

hence, .

(II.15) TYi= 2p{cuo,)> 20(c,0oi)= 2log [{-m—-ll

Pz —x
Thus , factoring {x from the denominator , we have
{ax—1

(1L.16) Teh> 2Log | 5’\‘ {_] .
—x

P _

Substituting A= e T and x= [ed -I-l]z in the right side of (I[.16) we
e —1 .

obtain the following inequality ,

Tus)[
TN > 2Log Tns) T
© _[ed—1]
which simplifies to Tisy . ;
(.17 T(%> 2Log 2 é © +h—e =

e 2 (e —h—ed+1 e

 Note that by (11.12) we have equality in (f1.14) , and hence in fII 17, if
and only if o,=0{, which occurs if and only if it is of type (0,*,2) .
Thus we have verified inequality (II.3) .. = . .
We will now demonstrate the suf ficiency of inequalitie:s (I11.2) end

(I1.3) . Suppose ¥ and 8 are two hyperbolic elements satisfying

‘ inequalities (I1.2)- and (I1.3) oriented so that each of their axes lies to the




iB8
right of the other . Without loss of generality , norm;alize by an element
of PSL(2,R) , so that the axis of 8 is [0, =] ( 0 the repelling fixed point
and oo the attracting )} and the axis of ¥ is [1,x] (x>1, x the repelling
fixed point and 1 the attracting) . Construct the common orthogonal to
[0,00] and [1,x] and call reflection in this geodesic o, . Let oxz) =80,z
and oy z)=0c,Y2 . Now , ineqﬁaiity (II.2} is eguivalent to  A> x where
B{z)= hz , \>1.

Th‘q,s A> x?
and therefore m> X .

But m is the radius of the o, reflection circie . We conciude that the
o5 reflection circle does not intersect A(Y). (Refer to figure 13)

Next let of be the geodesic orthogonal to [1,x] .with m as one
of its endpoints . Since equation (II.15) is equivalent to eguation (I1.17),
inequality (I1.3) is equivalent to

T = 2p(oa0)) -

Hence , since Y=¢.,c, , we have | |

20(02:51)2 2p(c 201
and therelore , 02{02,0,)> plo,ol) . T e
Moreover , since the o, and o{'reflection circies are either disjoint or
identical we must have that ‘th.e o, reflection circle has right endpoint b
where x< b < 'qr)\; (figure 14).

The group (o050, acfs discontinuously on H. To see this,

observe that the convex region bounded by the o reflection circles and

the boundary of H is, by Poincare’s theorem, a fundamental polygon for




(61,0 2,03).
Now consider the orientation preserving subgroup G of (¢,,0,,¢4) .
G is a finite index subgroup of a discontinuous group on H, hence G
acts discontinuously on H . Furthermore G is & Fuchsian group of type
(0;0;3) or (0;1;2) and has standard generators (%,5) , where = Y 8 !is ‘

either a boundary hyperbolic or parabolic element, O

4. As an immediate conseguence of (II.1} we have the following

coroliary .

(I1.18)COROLLARY. Given any triple of positive numbers (TY,TiB),d)

satisfying tnequalities (I1.2)and (I1.3) there exists a Fuchsian

group of type (0;0;3) ( (0;1;2) if equality in (I1.3) ) with standard

generators (V,8) such that the translation length of ¥ equals Ty ,

the transtation length of 8 equ.a:ls T[.ﬁ]. . .and the distance between

the azes Ay and Afﬁ] is d .

PROOF. Let B be the hyperboli¢ element with axis [0,0] and translation

length T(8; . Orient B so that its attracting fixed point is oo . Let Y be ... .. . .
the h?pe_rbolic element with axis [1,x] and translation length T(Y) (we sew |

in (II.9) that d determines x uniguely ). Orient '}‘ so that its attracting.. = - - mns
fixed i:oiﬁt is 1 ;_Then (7,8) =satisfy all the hypotheses of (II.1} .

Whence (¥,8) form standard génerators for a Fuchsian group of type

C(00:3) or ((3132) . O




5. Inequality (I1.3) has an equivalent formulation in terms of the
collar widths about ¥ ,5 , and the hyperbolic distance , d , between the

axes of ¥ and 8 . Recall that the collar width of 8, ¢8, is

T
e 2 +1
Log E} .
e 2 —}

(II19LEMMA. Suppose d> ¢fy . Then inequality (I1.3) is equivalent

to

(I1.20) ch + eh< d

where equality holds in (I11.3) if and only if equality holds in (11.20)

PROOF. We start with ¢ + ci< d, that is

T T
e 2 +1 e 2 41

‘ Log “Ta + Log o <d .
e 2 —1 e 2z —1

Exponentiating on both sides and clearing denominators we have ——— -

T@ Ton . Te Ton
e 2 +1)e 2 +1) < e(e 2 —l)fe 2 —1) .

After multiplying and gathering terms, we have

Tie T T Tw 4 L&
2 ._1]

(.21 [—ebe 2 —l4e 2 +lle 2 +e 2 41 £ —ele
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Note that [—e“e 2 —1)4@ "2 +1)]< 0, since d> ¢B) .

Solving for T(Y; in (II.21) we find that

d T
T[7)2 2L0g —e (e 2 _1]""_(6 _T_l]

d = =

—e'e 2z —Ike 2z +h
end hence , by some straight forward rearranging we have

Ta

—— d d
2 —ed
Th> 2Log e [m(e +i)—e 1

e ,T[ed -—1)—[éd +1 ST E

, which is

precisely

eguation (I1.3) . Obviousl‘} these computations are reversible . O
We remark that equation (I1.20} , ¢(8) + 1< d , implies that
d>ciB) since ¢¥;>>0 . Hence we can restate (II.1) in the following

geometric manner,

(L.22)THEOREM. Let ¥ and 8 be two hyperbolic elemnents of

PSL(2,R) oriented so that each of their axzes lies to the right of the

other . Then (1,6) form standard generators for a Fuchsian group—— = -

of type (0;0:3) or (G1;2) if ard only if
{11.23) - ¢ + ch< d , where d =p(A148)).

Equality holds in (11.23) if and only if the group (V,8) is of type _

(0;1;2) .
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6. Suppose (V,8) are standard generators for a Fuchsian group of
type (0;0;3) or {0;1;2) . Then #x(ArY)) and 7(A(B)) are boundary geodesics
(simple closed geodesics which bound an annulus ) on a sphere with
topologically three holes . Since the metric on H/G is complete , the
hyperbolic distance , d’ , between these closed geodesics is realized by
the length of a geodesic segment . Furthermore , this geodesic segment is
orthogonal to both 7w(A(Y) and %(AB) . To see this , note that the
distence between two geodesics on _H is realized as the length of the
common orthogoﬁal line segment between them and hence since
orthogonality is precerved by the map 7: H-H/G , the quotient H/G
also shares this property .

Finally , since the distance between closed geodesics is realized by
a common orthogonai segment , we must have d’ = info(AY,ABY
where the infimum runs over all 7,8’ G which are conjugate to Y and
8, respectively . |

The next proposition shows that we know exactiy what d’ is .

(IL.2HPROPOSITION. If (V,8) are standard generators for a i N

Fuchsian group of type (0;0:3) .or (0;152) , then d’! = p(A('YJ.ApS)} .

‘Where d’ is the distance from w(4) to W(Akﬁg) . |
PROQF. By the remarks preceding the proposition it is enough to show . .. .. .
that the distance p(AY,A(B) is less than or equal to the distance !

(AT WABYS) , for any Y, B’ G which are conjugate to ¥ and 8,

~ respectively . In fact ,» Wwe need only consider the distances p(AY),AB)




s where Y= G runs through all the conjugates of v .

Normalize (7¥,8) as in figure 6 {or 7) . Define the interior of Tis
dencted int(cri) , to be the connected component of H — {the 75
reflection circle } which does not contain the other two reflection circles

. The exterior of o, denoted ext(ci) , i8 defined to be the other

component .

(IL.25YOBSERVATION int(crj} C ext(o;) for j=*1i.

UL.26)JOBSERVATION If S is any set in H so that S C int(o’j) , then

by (11.25) o5 Cintloy) for i #£ j.

(IL.27)OBSERVATION Suppose 7T={¢,,0,,05) 80 that T= i T, and no
two successive elements in the product are the same . Let S C int(o;)
where i i; . Then 78 C int(oin) by (11.26) .

Using (I1.27) we prove the following lemma whose proof is due to

Bernard Maskit (personal communication) .The proposition is now an easy

conseguence of this lemma.

(I.28)YLEMMA, If Tcloy,00,03). Then
(1.29)° AT ATVAB) 2p(ACH,AB) -
PROQF. Since o, and o, fix the axis A(Y; we can without loss of S
generality assume ‘that T begins with o5 . If the ;.rford 7 hag length one
then (I1.29) holds since o;A5 = AB) and hence ,— -~ oo — eIl
Ao ATMAB) = AAMAB) = p(AY,AB)

We will induct on the length of 7 . We assume that (I1.29) holds for all

- words 7 of length less than or equal to n . Let 7= o, «: 03 , Where no

in
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two successive elements of the product are the same . We will show that
inequality (I1.29) holds if we replace 7 by o;T , for any i=1,2,or 3.

Now , if oy is either o, or 0'.3 then since cxiA{ﬁ)= A8y we have
Ao TANAB) = plo TAY O AB) = p(TAYLAB) .
The last equality follows from the- fact that o, is an isometry of H.
Since by assumption,  p(TAMYLAB) >o(AMAR)
we can conclude that (o, TAMABN> o(ACYLAB))

where o; is either o, or o3 . Thus we need only check the case where

If T is o, then o;7= T10.0 T3 = Cin 08

which is a word of length n—: and hence by assumption satisfies (I1.29) .
If iy is either o, or o; then TA(Y) is contained in either int{c,)
or int{o;) .To see this , set S= o,A("Y) and apply (I1.27) .

Draw the Euclidean line segment , T , passing through the rcenter
of the 0'1” reflection circle and tangent to TA (figure 15). Notice that
T lies be}ow the line passing through 0 and tangenti to TA(;YJ {this line
measures p(TAY,AB) ) and § urthermore T is fixed by the reflection

o, . Hence , since 7A(Y) is contained in either int(c,) or int(c,) , we have

that o, 7AM C int{e,) by (I1.26) .Moreover , o,TA(Y) lies below T.._ _ .

Therefore , since T lies below the line through the origin which is
tangent to TA{'Y) (figure 16 ) , wWe have- Rt it

(o TATLAB) > A(TAMLAB) > p(AYLABY .

The last ineqguality follows by assumption ; this completes the induction

- step and the proof of the lemma . O
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7. Let g be a hyperbolic element in a Fuchsian group G . Define

the collar region for g to be
Pogy = { ze H: plz,Am) < clg) } (figure 17)

Throughout this section , (7,8) are standard generators for a
normalized Fuchsian group of type (0;0;3) or (0;152) . 0, , o, , and o4
play their ususl roles as they did in figure 6 .

Recall that the geometric condition in the collar theorem is the
inequality <8 + ¢« d . This simply says that the collar regions of
%Y and 8 do not intersect , that is RBi+ Yy = @ . (figure 18)

A coller about a simple closed geodesic W on g surface S is a
subsurface which contains w and i§ topologically an enrnulus . We will

show that PuY) and R project to disjoint collars on H/{V,58)

(1.2 LEMMA. R N { o, reflection circle } = &

and RY) M { os reflection circle Y = &
PROCF. We will show that p{A#),o,)>c(B) . Recall (11.7) that the right
endpoint of the o, reflection circle is less than or equal to m ; where
B{z) = Az, A\>1, snd x is the right endpoint of the axis A(Y; .Also recall
(11.6) that x is the right endpoint of the o, reflection circle .
Construct the geodesic , L , with left endpoint Jx and right
endpoint m (figure 19) and observe that p(A8),0,izp{AB,L) . We wish

to computie the distence p{A8LL) . Let fe PSL{2,R) be the Mobius

~transformation which fixes 0 and oc and takes Yx to 1 . Hence f(z)
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=—1ﬁz and thus f(«l?\_x )= \l—?_\ (figure 20), Therefore , we have
plABLL) =p(FABLTL) = p(AB)fL)

which by (I1.10) is ,

= Log

The inequality follows from the fact that Log zuj—:-} is a strictly
decreasing function for s>1.
Whence we have ,
plABLo ) =p(ABLL) > c(B) .
Thus , iy M { o, reflection circle } = @ .

Similarly , RaYy N { o5 rellection circle } = @ . O

(IL30)LEMMA. Suppose T=(o,05,0:) and at least one of the factors

of T is o, .Then TRBy N Rifr= & .

PROOF. 7 can be written as & product o, ...c;, and since o, and o, fix

1

Fnf3; , we can assume without loss of generality thst Oy = 0, . Now ,

o ,(FiB) C int {¢,) and hence by the previous lemma o, Riff) N Rf= &

We induct on the length of the word 7. Suppose 7RB) C intlo))
and 7TRENFR S =G . Consider UJT where j= i { the word 7 ends with
o, and hence if j= 1, o7 would be & word of length n—1 ).

if oy is either o, or ¢, then clesrly

GJT%;[‘I; N Refh= 637‘%{6; M Gj%iﬁ_i = UJ-('TCRJ{,B‘ MR8y
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which by assumption , koj(ﬁ)
and hence , =
Furthermore , ch'TG.R:uB] C int(o"j) , since T%RS8) C ext(orj) .

Thus the only case to consider is C;=0;. Draw the Euclidean
line segment, T, passing through the center of the o, reflection circle
and tangent to 7%(B) . Note that T lies below the collar line {z= H:
elAByz)= c(B8) } (figure 21). Thus o, 7%BC int{o,) and since T is
invariant under o, , we have that o, 7TRBNFKB =G . This completes the

induction step . D

(IL.31)PROPOSITION. %) is precisely invariant under 8 in (V,8) .
PROOF. Clearly ﬁn%(ﬁ]: %3 for all ne Z . Suppose g ¢ (V,B8) and g &
{#) . Then g can be written as a product of the o; where one of the =
is o, (otherwise en even product of o,'s and o,'s is just an element of
(8)) . Then by the previous lemme,

gR BN BBy == &

(11.32) REMARK. Of course the same analysis could have been performed

on ¥ to conclude that Ry is precisely invariant under {Y¥) in (V,B8) .

The above proposition tells us that %:3; projects to a collar about
7{AB)) (similarly for FuY)). (figure 22)

In fact , the collars about 7{AY)) and =(A3) are disjoint . To see
this , we ﬁeed to show thet for any g € (7,3, %8, Ry, =€ where

(7,8} are standard generators for & Fuchsian group of type (0;0;2) or

(G152
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Once agein we appeal to the reflections o1, 0,,and o5 . Note
that o, and o, teke RY; to itself and similarly o, and o, take RS to
itself . Since RBHNFY;= @ and o, RBr=c;Rofr=TB) , clearly we
have

o RBNRN= &

and TR NRY, =3 .

Furthermore , since o, leaves Py fixed , we have
T, R NP =3 .

We induct on the length of 7 € (01,0505 . Suppose
TRBNPorY)=2 where T has length less than or equal to n ., Consider
o;T - If 7 does not contain o, as a factor then O'J-T“.R:(B)z oj‘Po[ﬁy and
hence , |

UJT%{B) MY =crj°Rm6’) NRYy= @.
If 7 does contain o, as a factor , then without loss of generality |
since o, and o, leave RuB) fixed , the word 7 begins with o, . Hence ,
TRiBi= oy, 0 FBC oy, woint(o)) C int(o,,) .
The last inclusion comes from (I1.27) .
Now , if 'aj is o, or o, then since o, and o, leave R invarisnt

clearly , UJT%{,B;Q%H):QJ . S0 we assume thet o.=0, . By (11.29) the

i
intersection of Ry, and int{o,) is empty . Thus since o.7%RB C intlos)
we conclude thet o, 78N RV & . This competes the induction step.

We have proven the following theorem .

(I.23)THEOREM. Suppose (V,8) are standard generators for a




Fuchsian group G of type (0;0:3) or (0;1:2) . Then FRoiB1 and Ry

project to disjoint collars about m(4B) and T(AY) , Tespectively .
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CHAPTER 11
0. In this section we develop a theory of nested sequences of

geodesics .

l.Letl; = [x,,y,1, fori= 1,2,3..,, be a geodesic in H . We say

that the sequence {L,} is 2 nested sequence of geodesics if L, __, and

Li_i‘1 lie in different components of H — L, , for i = 2, 3, 4, ... and if
the L; are disjoint in H . (figure 23) A nested sequence of geodesics
converges to the geodesic L= [x,y] (X y ) » denoted 1, = L, if x,—x
and y, -y in R .If x,—x and y;,—x , we say that the nested sequence of
geodesics converges to the point x € R (or converges 1o ithe boundary of
the hyperbolic plene }. Clearly , the limit of a nested sequence is unique

. The following proposition demonstrates that these are the only

possibilities for convergence .

(I.1)PROPOSITION. 4 nested sequence of geodesics either converges

to a geodesic or to a point of the hyperbolic plane .

PROOF. Let {L,} be a nested sequence of geodesics . Without loss of
generality , by normalizing with an element of PSL(2,R) , we can assume
thet L,={—1,1] and L,= [X,vy;] , where

—1<x1<xt+i<yi+]<y!<} for 1=2,3,4... .

(See figure 24.)
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We consider the closed intervals in R of the form I,=[x,y,] and
we note that they are nested , that is, [, DI, DI;D ... . These closed
intervals are of course in one to one correspondence with the geodesics
{X;,y;] and hence it follows thst their behavior completely determines
the behavior of the nested sequence {{x,y,}} .

Now , the intersection Nl is either an interval , say [x,¥], or a
point x=y . Therefore x,—x and y;—y (where x may equal y ). Thus

either {L;} converges to a geodesic or to a point . O

(II1.2)PROPOSITION. Suppose {L;} is a nested sequence of geodesics

which converge to the geodesic L . Then
lim _plLiL)=0 .

PROOCY. Without loss of generality , suppose the {L,} sre normalized as
in the proof of proposition (III.1). Let L= [x,y], x< vy .

First we compute the distance between the geodesics L, and 1. .
Let B be the element of PSL(2,R) which takes y, to oo, x to 1, and x; to
0 : that is

Z—X; X—VY;
Blz)= "Ztmﬁ m .

Then we have p{L;,L)=p(B(L),B(L)) =0({0,0o1,[1,B(y)]} , (note :B(y)>1)

and hence by substituting B(y) for x in formule (11.10} this equals ,

1
(I11.3) —Log {BOv)

JBy) -1

Now , since
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¥ X XYy
(111.4) B(y)= V=Y, X%,

«IB 1
we have that B{y)- oo as x,—x and y,~y , (x5£y) .Thus Log (y)+

JB(y)—l

approaches zero as X;—X &nd y;—~y .We conclude that the distance p(L,,L)

approaches zero as i—-oc , O

The converse to (I11.2) is not true . Take any nested seguence of

geodesics {L;j={[x,y;]} ,where —1<x,<x%,;, < yv< ¥, <1, which

converge to a geodesic [%,v] . Construct the geodesic L' = [x,x {2-}'] (figure

25}. Since the x, converge to x, equations (I11.3) and (I11.4) imply that
the distance

(Ll = p([xi,yd,[x,}iﬁl)

goes to zero .

On the other hand , the vy, do not converge to Xty , hence the

o
-

nested sequence {L,} does not converge to L’ .

(I1.PROPOSITION. Let the sequence {L;} be a nested sequence of
geodesics. Then the L; converge to a geodesic if and only if
um oLyl <oo .

PROOF. Suppose 1; converges to a geodesic L . Since the L, are nested
we have

(111.6) oLl <p(L L) for all i=1,2,3, ... .
Taking the Limit in (IIl.6) as i ~oc and noting that the distances p(L,L,)
increase with i, we conclude that the limit,

lim pilL,L,)<<oe  exists .
OO0

Nexl , suppose that the sequence {L,} coverges tc a point , say x .
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Without loss of generality y we normalize as in the proof of (IIl.1) , SO

that L,= [x,,y,] , where

—1<x,<xi+l<yi+1<yi<1 for i=2,3,4... .

JB(y Y+1
Then ALyl =o(lx,y1)[xyy,)) =Log =22 17

'\IB(Y1)'—1
where , Bly,)= 1% X1 =¥,

Yi~—¥i ¥1—%; °
Now observe that B(y,)—1 as x,-x and vi—x . Thus,
lim _p(LiL)—ce . O
Suppose {L,} is a nested sequence of geodesics . We introduce an
orientation for each L, by designating Liyy to lie to the right of L, . Let
2, be the unique common orthogonel to the geodesics 1, and L1+1 . The
distance from £, to %y is measured by traversing L, , hence the

following definition mekes sense .

(111.8)s, — P(EuZ14) 5 if Ly is traversed in the positive direction .
S —p(Zy310) , if L, is traversed in the negative direction

We call s; the slide (twist) parameter for Ly

We would like to express nested sequences of geodesics in
hyperbolic terms . The next proposition allows us to do exactly this

Set dé: p(Li’Li+l) .

{I.9PROPOSITION, The seguence of distances {d,} together with the

sequence of slide parameters {s,) , denoted (d,,s0) , uniquely




38
determine (up to an element of PSL(2,R) ) a nested seguence of
geodesics .

PROQF. Suppose {L,} is a nested sequence of geodesics . Normalize by an
element of PSL(2,R) so that L, = [—1,1] and the unigque common
orthogonal between L, and L, is [0,00] . The orientations induced on {L,}
are as in figure 26 . Clearly L, is determined es soon as d, is specified .
Next , L; is determined once we specify s, and d, . In general , L, is
determined once {d,}{7] and {577 are chosen . O

In the sequel , we will need to identify when a nested sequence of
geodesics converges to a geodesic or to a point . The following

propositions ( (I11.10) and (IIL.12)} supply us with some tools .

(IL.10)PROPOSITION. Suppose {L;} is a nested sequence of geodesics

which converge to a geodesic . Then
o0

Z ALyLipr) <o

i

PROOF. First we claim thet the following inequality holds ,

m-1
(IIL11) Z pLokis) < o(Lulu) .
i

Once we have verified (II1.11) the theorem follows easily by letting m go

to infinity and noting thst the limit ,

,li_rymp(L,,Lm) existis

since the L, converge to a8 geodesic
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Te verify (III.11) , we observe that the common orthogonal s 2, to
L, and Ln passes through each of the geodesics L, , Ly y oo Lp—, . Set
z;=2 M L, .Then ,
ALk} =p(2122) +p(z2,Z35) oo 02— 102m)

but the distance p(L;,L;1)) <p(zyz,y,) . This verifies (II1.11). O

(I1.12)PROPOSITION. Suppose {L;} is a nested sequence of geodesics
such that 35 d, < e and Y, |s,] <o . Then the nested sequence.
{L;} converges to a geodesic .
PROOE. Let &, be the common orthogone! to the geodesics L, and Ly and
set z; =%, M L, (refer to figure 27) . Then we have ,
PLyLn) <p(21,25)

and hence since the geodesic joining z, and zp is shorter than any curve
joining z, and zn we have ,
(ML13) < dy+ I8 4dptispt ootdmtlsnl — i d, + i Is,|
Letting m—oc in (I11.13) we find that wl,iincx.\p(l""}’m) < oo , Therefore the L,
converge to & geodesic . O

Since the distance between two geodesics is a continuous function
(formula (111.3)) of the endpoints of the geodesics , we remark that given
any two geodesics M and N we cen construct & third geodesic T which
separates M and N such that the distances p(M,T) and pIN,T) are
arbitrarily small . In fact , the sbsolute value of the slide parameter {the

distance from the common orthogona! of M and T te the common

. orthogonal of T and N ) can be made arbitrarily lerge (refer to figure
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28). Using this fact we next constiruct an example to show that the
conclusion in proposition (1I1.10) is not sufficient to guarantee
convergence of a nested sequence to a geodesic .

Consider & nested sequence of geodesics {L,} all having the same
common orthogonal and converging to a point . Pair off all the geodesics
of the sequence {L;} so that L, is paired with L, , L, is paired with L, ,
and in general L,,_, is paired with L,, . For the nth pair in the
sequence construct , as indicated above , a geodesic T which comes
within a distance of 1/n° to M and e distance of ::‘_1—5—5 to N . Append all
of these geodesics to the sequence {L,} in their appropriate places . Call
the new sequence {L,} and note that p(LnL,y,) < # . Hence ,

| S ol < o
On the other hand , since the appended sequence {L,} has a subsequence
which converges 1o a point , we conclude that the appended sequence
converges to a point . Thus the conclusion in (I11.10) is not sufficient to
guarantee convergence to a geodesic .

Our next example illustrates the fact that the converse to (JI.12)
is nol true . That is , we construct a nested sequence which converges
to a geodesic and yet has 3 lgi=o0 .

We start with a nested sequence of geodesics {L,} all having the
same common orthogonal and converging to a geodesic . Pair off the
geodesics as we did in the previous example . For each pair M end N

construct the geodesic T which separates M end N so that the distance

from the common orthogonal of M end T to the common orthogonal of T
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and N is bounded from below by some positive constant which does not
depend on the peir . Once again , append all of these geodesics to the
sequence and call the new sequence also {L;} . We note that the appended

sequence {L,;} converges 1o a geodesic and yet > Isyl=cc. Thus we have

constructed an exemple with the desired properties .
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Figures 23 and 24,

|

Xz

Figures 25 and 26.

Figures 27 and 28.




CHAPTER IV

0. Our central aim in this chapter is to construct infinitely
generated Fuchsian groups of the first kind by using the combination
theorem an infinite number of times. Thus the two natura! questions
that this chapter is concerned with are; How do we construct infinitely

generated Fuchsian groups using the combination theorem and when are

these groups of the first kind?

1. The main purpose of this section is to prove the following

theorem .

UV.I)THEOREM. Let {G,}i.: be Fuchsian groups with g, and g,

non-con jugate primitive boundary hyperbolics in G, so that
N(G) M N(Gipy)== A@sin , For i=1,2,3, ... .
Let G=(G)in, . Then
(1) G is a Fuchsian group .
(ii) g, is simple in G, for i=1,2,3, ... .

(ii1) H/G is an infinite sequence of surfaces each glued
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to the nex! along the simple closed dividing geodesics {T4wgn}.

We will prove (IV.1) part (i}, by showing thst the Nielsen region

N{G,} 18 precisely invariant under G, in G . Throughout this section G

and G, are as in the hypotheses to (IV.1) . These hypotheses imply
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among other things , that the axes of the {g;} form a nested sequence of
geodesics (figure 29) .

We next define some terms and set up some notation . Let | be an
interval of discontinuity for a Fuchsian group T . Draw the geodesic L
whose endpoints are the endpoints of I . The half-space bounded by L

and I in H is said to be a boundary balf-space for T' . The geodesic L is

called a boundery geodesic for T [M V.Gl

let H be the boundary half-space of g, in G, and H’ the boundary
half-space of g,,, in G; . Define R, to be the complement of the set
N(G,)U HU H” .
Thus R; is a.disjoint union of boundary half-spaces of G, (figure 30) .
Neote that R, has infinitely many connected components . A component of
R, is called en R; - region . We set R = U R, . The following lemmas
(IV.2 - IV.4) describe how different elements of G move the Nielsen

region N(G,) around with respect to the R, - regions .

(AV.2)LEMMA. Fix a positive integer { which is not egual to one . Let

h € G;—G, and h # 1. Then h(N(G))) is contained in an R,_, -
region if hRE (g , otherwise A(N(G,)) is contained in an R, - Tegion.
PROOF. If he (gy ,then h is also & member of G,_, . Since g, and g;_, are
non-conjugate boundary hyperboelics of G,_, , we conclude thet h takes
the boundary hali-space of g,.; {in G, ) into R,_, . Since N(G,) is

contained in the boundary half-space of g,_, , we have h(N{G,) C R,_,

(figure 31).




Next , suppose h GE (gi)-.;_ Then h tekes the boundary half-space H
of gi (in Gy) into R, , and hence (see figure 32)

h(N( ,)) ChHCRi 0

(IV.3JLEMMA. Fiz a posztwe mteger t.Let h €Gy , k>1, and h#1.

Then h(R,) is contained in an Rk i -region , if he€ (g, (figure 33).
Otherwise , h(R,) is oontamed m cm Ry -region (figure 34).

PROOQEFE. Suppose hc{g,). Then h 1s also a member of G,_, . Since g, and
8.1 8re non-conjugate boundarx-- h’ypgrbolics , we conclude that h takes
the boundary half-space of gk“'l-'-.iﬁ:G;'-_1 into R,..; . Since R, is contained
in the boundary half-space of g, 1 hR C Ru_y o
Next , suppose that he(gk) Then h takes the boundary half-

space H of g, in G, into R, , and therefore

hN(G, ChE. CR, . O

QV.ALEMMA,. Fiz a positive intege.r:i.... Let heGy ,k<i, and h=1.
Then h{R;) is contained in an Rygi; .-'.regz'on y f helgresr (figure 35).
Otherwise , h{R,) is contained in an Ry -region {(figure 36).
PROOF. Suppose h&(g,,:) , then h ia also & member of G,,, . Since gy,
and g4, are non-conjugate boundary hyperbolics , we conclude that h
takes the boundary half-space of g, . in G, into R, . Hence h(R)C

Ry4: , because R, is conteined in the boundary half-space of Ciio -

Next , consider h#{gs4)) - Then h takes the boundary half-space H

of g4, in G, inte R, , end thus
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h(R,)ChHCR, .0

(IV.S)LEMMA. Any element g€C can be written as a (finite) product

so that no two successive elements are in the same G, .
PROOF. Since G =(G;)i~, , we can write g as some finite product , say
n...h] . Now starting from the right we consider the pair hih| . If they
are not in the same group we move to hih., and continue the process . If
they are in the same group then we rewrite the product as one element s
say h, , and then we start the process over with hih, .

We continue this finite process until we reach h} . Clearly , any
two successive elemenis now come {rom distinet G,’s . O

Suppose g&G —G, . We write g as the product hin...hi] » hyy EGik .
where no two successive elements are in the seme G, .Without loss of
gener_ality , the first element , hil s 1s not in G, . Now (by IV.2), hi1 takes
N{G,) to either an Ril—region or an Rii_l -region . Since hig is not in the
same group as 1'1ii we can apply lemms (IV.3) or {IV.4) (whichever is
applicable)} to conclude that hy, b, N(G,) is contained in a component of R.
- We continue this process , always noting that we can apply lemmas (IV.3)
or (IV.4) because the next element hij (for j=2,3,4,...,n) is never being
applied to an Rij -region . Thus gN{G,) is contained in a component of R

and we conclude that

gN(G)NN(G,) =& for all g€G -G, .

We have proven the following proposition .
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(IV.6)PROFOSITION. Th;_e_-. Niez-'so_ﬁ.-iregz'on N{Gy) is precisely invariant

under G, in G .

(IV.DREMARK. Wlth & shght modlflcatlon of lemma (IV.2) we could have

proven that the Nlelsen region of Gy, N(G,), is precisely invariant under

G, in G .

To illustrate how an elemén of G moves the Nielsen region of G,

we take a specific exemple

(IV.B)EXAMPLE. Let g=g;¢;8s « g takes the Nielsen region of G, to an

R,-region (figure 37). Next:;_'gl:takes-_z-fé;into R, (by IV.4) and hence

£.2:N(G,) is an R,-region (flgure 8:.' Fmally gz (by IV.3) takes R, into
R; . Thus g;2,2:N(G,} lies in an R reglon (figure 39).

We now prove theorem (IV

PROOF(of IV.1). Let X be a pomt 1n _thez 1nter10r of N(G,) . Since G, is a

Fuchsian group , there exists’ an open _s t UCN( i} so that

hUNU ﬁq f?l_"‘.?“;‘_.h €6,

Furthermore , since'N(Gl) is pfécigé'ly.::.'i'n;a\'.r{é'nt under G, in G, we have
thst gUNU=¢ for all g . Thus G acts d1scontmuously at x , hence
‘on gll of H .This shows that G is'a Fuchsmn group .

To prove (ii) , we simply note th'a_t". the axis Ay CN(G,) and hence
by remark (IV.7}, if g€G—G, then g.A(gij_hA'i:gg=® . Also , since g, is a
boundary hyperbolic for G, , we have 'fbf-:..f;EGi

gAgaAgy =@ if and only if g&lg,) .

Thus g, is & simple hyperbolic in G .

Finally , we note thal H/G is an infinite sequence of surfaces S,




each glued to the néif imple closed geodesic m(Awg,). The only

thing left to show 1sth ics mAw, are dividing.

We argue by .ci.)'ﬂtr_a_d_ / ss’ume one of the geodesics TA@g, is

not dividing. This ca'ﬁ'f_-'o'ﬁ'_l" there exists a boundary hyperbolic
element g in some G_,’{;vh;_c Quﬁdary hyperbolic in G and is not

conjugate to any of thé_ £ arly for lafge N, g is not a boundary

hyperbolic in cN m((}l,..., :tiy, its enough to show that a

boundary hyperbolic el’é_me‘n oundary hyperbolic element

after spplying the comb'i:'x_;a: finite number of times. In fact,

its enough to show that it rem ound'é"ry hyperbolic after one

application of the combiﬁhiio__

of the boundary half-space of hEI":'

space of g€T,. Hence, its easy to_"___see'_ hat

represent an element

FET T —(e) in normal form we have’}’lt’“ ] Th1$ completes the

argument for (iii).O
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2. The machinery developed in chapters II, Ill, and the beginning
of this chapter will allow us to construct infinitely generated Fuchsian
groups with presribed distances between exes of simple hyperbolics .
Geometrically , we étart with two spheres with three holes, type {0;053)
groups ,and glue them slong a common boundary geodesic to obtain a
sphere with four holes . Next , we take another sphere with three holes
and glue along & common boundary gecdesic to obtain & sphere with six : |
holes ; we continue this process ad infinitum while controlling the
distances between the boundery geodesics . Topologically , we obtain e
surface , S, with an infinitely generated fundamental group (a surface of
infinite type ) (figure 40). The closed geodesics we glued along lift to H
to form a nested sequence of geodesics . We will study the geometry of
S through these nested sequences .

We remind the resder that

Tie
s

e(A)=Log e * 1

iﬁ’ » where B is hyperbolic
z —1

=

Define K(T(B),d) to be the right side of inequality (I1.3) . First we need &

lemma ebout spheres with three holes .

(IV.I9LEMMA. Fiz M >0 . Let 3€PSL(2,R) be a hyperbolic element

with axzis A =[0,02) oriented so that its repelling fixed point is 0 .

Suppose we are given a geodesic L={lxj,z>1 , where plAB,L)>c(B).

Then there exists a hyperbolic transformation Y with axis L and
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translation length T('Y).;'M-“s" 'that (7.8) form standard generators

for a Fuchsian group oj' t

PROOF. Construct the hyperboh .ransformation Y with axis AYi={1,x],

attracting fixed point 1, and tran'sl'.é_.t_ion length T(7Y) satisfying

TY) > max{K(T(B),d),M} .

Then % and 8 are orlented so that each of their axes lies to the

right of the other and they sat1sfy mequalltles (11.2) and (i1.3) . Hence

by the collar theorem (II. 1) v (")’,ﬁ) form standard generators for =

Fuchsian group of either (0 0; 3) or”(O 1 i2) type . However , since T(Y) is

strictly bigger than K(T(A), d) we.car.l exclude the (0;1;2) case and conclude
that {V,8) is of type ((:0;3) w1th T(’T)>M 0

We say thet a hyperbolic: element %Y in & Fuchsian group T’ is
dividing (in T} if ®{AY) separates H/I‘

In the proof of the followmg theornm we will make use of the fact

that d >c(g) is equivalent to (by a Straightforward computation )

T(g):»Log d+1
: -1

(IV.10)THEOREM. Given a sequence of positive numbers {d,} and

real numbers {8} there exists an irij"‘i'hitely generated Fuchsiaon
group with simple dividing hyperbolics {g,} such that

(i) {Aigy} form a nested sequence of geodesics .

(i) plAgndigien)=d, Jor i=1,23,...

(141) plE s =8, for i=1,2,3,... where T, is the common
+1

orthogonal to Agy and 4@y -
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PROQOF. Construct the.. nested ';équence of geodesics {L,} (Proposition
(111.9)) with p(LyLyy ;) =d, 'a'ﬁa'j-;{éi,gﬁl):si . If we can find an infinitely
generated Fuchsian group G havmg simple dividing hyperbolics g, w:th
axes L, then (i), (ii), and (m) WOuld automatically be satisfied . Thus the
rest of this proof is devoted to constructmg such a group .

Normalize the geodesics’ L, and L, by an element ,EPSL{2,R) so
that f,(L;)=[0,) and f,(L,)=[1,x,] , where x,>1 . Construct the

hyperbolic transformation §, with axis [0,0¢], translation length, T(g,) .
satis{ying
dl+1

I

Tg ) >Log
and oriented so that its repelling fixed point is 0. We apply (IV.9) with

M= Log[ d. +l] ’ ﬁ:‘Eh
|

and =L, to conclude that there exists & Fuchsian group of type (0;(43)

with standard generstors (g,,g;) where

d, z

(Iv.113 T(g )>Log[ 3 +1] or equivalently
‘-1

(Iv.12) d,>clgs) .

Now , conjugatling this group by f;l and letling g,=1;"g,f, and

gzszlégfl we obilain e Fuchsian group G, of type (0;0;3) with standard

generators (g,,g,) satisfying Awg,=L,, Aigo=L, , and d,>clg,) . This last




property being the é"c}_l'la_ condition for g; (refer to figure 41).

Note that thé; Nielsen region of G, s N(G,) , lies between the

geodesics L, and L, bec use ielsen region of £,G,fT! lies between

[0,00] and [1,x] (figure 4: nsiruct the infinitely generated group G

by induction ,

Suppose that 'we;-' iven the Fuchsian group G,_, heving

of g satisfies ,

(IV.13)

2

n+1
Letting M=Log[‘-ag—-—-ﬂ] v B
n.+1__1




infinitely generated Fu'é:hs

Clearly (i}, (ii) , and (iii);'_a:

3. Our aim in this s
an infinitely generated’ F_i,iCh'sla-

prescribed distances bet_ﬁé’éﬁ

have much less freedomf }ier‘ ‘tha
((;0;3) groups . This arige b C

of (0;1;2) groups whereas ther

groups ; in essence one of the para

one of the holes of this n'.e\:ﬂ;f___surfacefha .f{hé'_s_'a_mé "size” as one of the

holes of the old surface Wegluethe WO _':s.ﬁ"'rfdces along @ common

boundary geodesic . Next ,‘we take this 'e_w:_"_sijl.'_z'ffé'ce and glue te it

another sphere with two hdh_'—.fs.ar_'t_d]_'i;i_- ']'Jjun'_ctﬁr'é where ,once again, one of




54

the holes of this surface i’s-'cgf.: the same "size” as one of the holes in the

previous surface . As befofé__:_';_: these surfaces are glued along their
common boundary geodesic ..'. W;“icontinue this process ad infinitum .
Topologically, we obtain a surf‘ace resembling the one in figure 43 .

We note that if the diétéﬁces {d;} between the nested simple
closed geodesics have been préécribed » then assigning a length (or
equivalently a collar width) to the first simple closed geodesic
determines the length of all the other simple closed geodesics in the
nest. To see this, let {g,} be the simple hyperbolic elements
representing the nested sequence of geodesics . Recall that the collar
theorem epplied to (0;1;2) groups says thaet cg,+cgy)=d, where g, and
g are the lifts of the first two simple closed geodesics . Since d, and
cgy are prescribed , cg,) is determined . Moreover C®n; g, n=d,_, for
n=2,3,4,... .Thus all the other collar widths are determined . Since cgn)
and Tign) are monotonic functions of each other , we conclude that
prescribing the length of the first geodesic and the distances {d.,}
determines the lengths of all the other simple closed geodesics in the

nested sequence .

2 i+1
We set t,= > (—1)"" d,.

=]

(IV.14)LEMMA. Let C™ ={G1,...,Gn) be a Fuchsian group where each G,

is of type (0;1;2) with standard generators {girngs ) satisfying

]\."(Gi)ﬂN(GHl):A[gH;) fO?‘ i'—"1,2,3... . Let dg =p(A(Q’1I,AEQé+n}. Then fOT
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each n=1,23,..m+1 we have ,

c _J—(tr—ecigy) for n even
Gntv= (tr—c@y) for n odd ’
In particular ,
(IV.].S) C(gn_’_l]:'tn—C(g])t .

PROOF. Recall that the collar theorem (I1.22) applied to G, supplies us

with the formula cig;, ) =d; —cg, . Hence » using the collar theorem

repeatedly , we have

CEBri) =dn —Cign)=dn _(dn——l _ngn—]])

=d’ﬂ _dngl +{dn—2 “c[gn—Z}} T e ==

_ dn —dn—l"!_d?z—?_""‘""dl_}_c(g]) fOI‘ n=2k
T} dn—d,_y4...4+d,—ogy for n=2k—1

_ ) (o —cigy) Tor n=2k
" (ko —e@y) for n=2k-1

.

Clearly C(gn+13=ttn““cig1]! . |

(IV.16)THEOREM, Suppose ¢ and {d;}i, are all positive real

numbers . Then there exists an infinitely generated Fuchsian
group G=(Gyi=, , where each G, is of type (G;1;2) with standard
generators (g ,g: ), so that

(V.17 NIGONN(G )= Agisn for i=1,23,...

IV .18 i) =cC and

(1V.19) plAg o, Aigisp)=d; for i=1,2,3,...
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if and only if the following set of inequalities are satisfied ,

(V.20 tn>¢ for all odd n and

(V.21 tn<Cc for all even n

where tn= i (—l)f+1 d; .
PROOQOF. First , we prove the necessihty of inequalities (IV.20) and (IV.21) .
Suppose G=(G,){"., , where each G, is of type (0;1;2) with standard
generators (g, ,,e; ') satisfying (IV.17), (IV.18), and (IV.19). By the
previous lemma we have ,for n=2k
0< cgnyn= —(to —cgy)

and hence , C@a >ty 3
but c=cg,), we conclude that ¢ >tz verifying inequality (IV.21).

If n=2k -1, then we have by the previous lemma s

0<C(gn+];=t2k_1—c;gl1.

and since ¢=c¢(g; we have that C<lp.; , verifying inequality (IV.20),
Thus ineguslities (IV.20) and {IV.21) are satisfied for all n .

For the sufficiency , assume that c and {d,};~, are positive real
numbers satis{ying inequalities (IV.20) and (IV.21) for all n .

Construct the normalized nested sequence of geodesics {I,} as in
figure 24 of chapter Il with the property that the distance p(L,L

i+l)

equels d, for each i ; Note that there are many such sequences , pick one

of them .

Normalize the geodesics L, and L: by an element f,€PSL(2,R) so

that {,{L,}={0,00] and fi{Lo)={l,x,,where x,>1 is determined by d, (refer

to 11.9). Construct the hyperbolic transformation B: with axis [{,x]

¥
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collar width c@g,)=c , and oriented so that its repelling fixed point is 0.
Next , construct the hyperbolic transformation By with sxis [1,%x,], collar
Wwidth c@®,=d,—c@y (note d,>c@E, by 1V.20 for n=1), and oriented so
that its repelling fixed point is X;. Then by the collar theorem ‘. (g..2,)
form standard generators for a‘Fuchsian group of type (0;1;2) .
Conjugating this group by {7’ and letting g, =1 'g,f, and go=FT 8,1, we
obtain a Fuchsian group G, of type (0;1;2) with standard generators (g,,e,)
satisfying A@g;)=L, and Ag,=L, . Notice that the Nielsen region of G,
lies between L, and L, .Since inequality (IV.21) for n==2 says that
d;—d,<c@gy , we conclude that d, >d; —cgy=c@;. The last equality is
from (g,,g,) forming standard generators for a (0;1;2) group . Thus
d; >ega.

In general , suppose G,_, is a Fuchsian group of type (0;1;2) with
standard generators (gn,g,_,) where Ag,_ =L, | and Agn=L,

.

Furthermore , suppose that d.>cigs .

Normalize the geodesics Agn) and Lo41 by an element f,EPSL(2,R)
so that frAgn={0,50] and fnl,.,; =(1,xn] ,where x»>1 is determined by
dn. Note that the attracting fixed point of f.g.f7' is 0 .Hence we
consider fagaf7n'. Construct the hyperbolic element Brne: with axis {1,xx),
oriented so that x, is its repelling_ fixed peint, and with collar width

C®nyp=0rn—cifrgn I3 .
Since by assumption the distance, dn >cign) we have

dr>c@r=cign i=clrgn ' fn}) .

Thus cig, . makes sense . We conclude that (8rnynlngn'fn") are standard
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generators for a Fuchsian group of type (0;1;2) . Conjugating by 7! and
setting gn+;=f§"g"n+1fn we obtain a Fuchsian group G, of type (0;1;2) with
standard generators (gn.H,g;l) such that Ag. =L, and A@nyn=L,., . To
complete the induction step we need to show theat g1 >C@ngy -

If nis even, then by (IV.20), we have

41 .
> (—1)'F! d; >cigy and therefore

de=]
dpyi>dn—d,_;+... ——d1+0{g])=cngn+;).
This last equality comes from the previcus lemma . Similarly , if n is

odd then by ineguality (IV.21) , we have

i+1 ,
> (=t d;<cigy  and hence

==}
dpyr1>dn—d_; +... +d1_c[g1}=c(gﬂ+ﬂ-
Once again the last equality Tollows from the previous lemma . This
completes the induction step. Set G==(C)7, . By (IV.1) ,G is a Fuchsian
group satisfying (IV.17), (IV.18), and (IV.19) by construction . [J

(IV.22)Remark. Since we never applied the combination theorem along the

axis A, or any of its conjugates , the group G just constructed has g,

as a primitive boundary hyperbolic element . Furthermore, G has

infinitely many nonconjugate parabolic elements . l
One should note that the twist parameters never entered intoc the

construction of G . Thus G can be constructed with whatever sequence

of twist parameters one would like .
Before ending this section , we derive a corollary to the above

theorem which guarantees the existence of an infinitely genergled (.

Fuchsian group mede up of (0;1;2) groups .
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(IV.22)COROLLARY. If {d}=, is a ronincreasing (or nondecreasing)

sequence of positive numbers then there exists a Fuchsian group
G=(Gi.: , where each G, is of type (6;1;2) with standard generators
(gs+1,87 ) satisfying V.17 and (IV.19) . In other words , H/G is the
union of an infinite number of spheres with two holes and a
punciure, glued along common boundary geodesics, where the
distance between successive geodesics is d, (figure 43).

PROOF. Suppose the sequence {d;}7, is nonincreasing, thet is

1 >d,>dy > >dr>.... If we can find & positive constant ¢ satisfying

(IV.20) end (IV.21) we will be done by (IV.16). Now either d; 0 or
d-;: *“K >0.

oo -
I d; -0, then the alternating series > (1) d, converges .
f=1

o
Hence set ¢c=3" (=1 d; and note that ¢ is bigger than all the odd
im ]

partiel sums and smaller then all the even partial sums, that is, ¢

satisfies (IV.,20) and (IV.21).

(o) P
If d;,-K>0, then the alternating series > (=17 4, diverges .
t=1

Furthermore, we have

tor <horgo oo <oy <oy, <tor_; for all k,
- th . . & §41
where tr is the n"" partial sum of the series ». (--1) d, . Hence,
fu=]

there exist an interval of ¢’s which satisfy the inequalities (IV.20) and

(Iv.21).

- For a nondecreasing sequence {d;}i=, of positive numbers y Simply

take any rea! number ¢ that satisfies Q<ec <d,. Note that since the d, are
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nondecreasing the even partial sums are negative and decreasing, and the
odd partial sums are bigger than d, and increasing . Thus ¢ once again

satisfies inequalities (IV.20) and (IV.21). N0

4. For this section we assume that C is one of the infinitely

generated Fuchsian groups constructed from the methods of Section 3.

Thus G=(Gyi~, is a Fuchsian group where G; is of type (0;1;2) with
standard generators (g,,,g;") satisfying (IV.17) and (IV.19). The following
propositions relate the distances {d,};2, with the translation lengths of

n F
the {g,}i;. Recall that t,=3 (—1)'"" g,.
{=1

(IV.22)PROPOSITION. If d;—0, then Tgy—os.

PROCF. We know by the collar theorem thet for each i » dy>c@y. Hence

es d,—0, the collar width about g, goes to 0. Since,

T[Ei)

e 2 1

C{gy)= LOng]j:—
i

e 2 —1

we conclude that as d,—0 the translation lengths of the g; go to

infinity.0

(IV.22)PROPOSITION. If {dJ&, is a nondecreasing sequence such

that the distances d;—«. Then the translation lengths Tign—0.

PROOF. Note that the even sums t,, — —oc and the odd sums ton g o0,
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Hence, by the lemma preceding (IV.16), we have Cigyyp—eo. Thus the

transiation lengths Tg, 0. 0

(V.22)PROPOSITION. If {d,}i, is a constant sequence, then Tgy
takes on only two values, .for all i. In particular {T(g,)} is bounded
From above and below.

PROOF. Set d;=d. Then the even sums t,, =0 and the odd sums t,, _;=d.

Hence since Cl8ne1)=Itn —cigpl, we have

Cig1) » for i even

CEeri = d—cig, , fori odd

.

We conclude that the translation lengths {Tg,)} take on only two

values.D

5. In this section we supply sufficient conditions, in terms of the
hyperbolic distances between simple closed geodesics, for an infinitely
generated Fuchsian group to be of the first kind. Our construction will
rely upon the techniques of Section 3 where we used (0;1;2) groups to
construct surfaces of infinite type.

Throughout this section, we suppose that G={(G,)i>, is some
infinitely generated Fuchsian group where G; is of type (0;2:1) and the
Gy Tor 1=1,2,3,..,, are of iype {((;1;2) having standard generators (g, ,g; ")

and satisfying the condition, N{GIMN(G, )= A,y for i=0,1,23,...

}
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Under these hypotheses the axes of the hyperbolic transformations {g,}
form a nested sequence of geodesics, {Agy}. We remind the reader that
in Section 3 we saw how to construct such a G.

Let B, be the boundary half-space of g; in G,_,. Set B=:§BQ and

G" =(Gp).-»Gr). We have the following lemma.

(JV2DLEMMA. Suppose that the nested sequence of geodesics {4g)}
converge to a geodesic. Then B is precisely invariant under the
identity in G. In part.z'cula'r, B is a boundary half-space for ¢
{(figure 44).
PROOF. Let g be any non-trivial element of G. Certeinly we con find a
large enough positive integer n so that g£G™ =(Gg,...,Gr) and B Z(Brysr
Since g,4, is a boundary hyperbolic element in G", we have
gB,1MB,.; = and thus, since BCB,,., eBNB=@.00
The intersection of B with the boundary of H is an interveal of

discontinuity for G, We say that it is ap interval of discontinuity for

the nested sequence of axes {Awg,}.

We define the set £=21(G;{g,}) to be the set of all nested
sequences of axes {Agy}, where g} is conjugate to g: in G. Observe that
the elements that conjugate the g, are not necessarily the same.

Recall that d,=p(AgnAr. ).

AV.23)LEMMA. Fiz a positive integer i, (a)If heC'™ and h¢G,, then

the axis A, separates A(hg;h_l) from Agiin. (DIf he{Guinaisn then
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the axis Aihgih™)) separates Ahgh™ from A@isi.

PROOF. We first prove (a). Suppose heG*™! and h¢G,. Observe that g, is
& boundary hyperbolic element in G'", hence h moves the axis A, away
from the boundery half-space of g, in G'"', We also know that the axis
Ao lies in the boundary hailf-space of g:. Thus the axis A, separates
Athg;h™Y) from Agiyy.

To prove (b), suppose h&€(G,)x_1.1- Note that g:4, is a boundary
hyperbolic element for the group (G,)%.:4: and hence h moves the axis
A, away from the boundary half-space of €:i41- Furthermore, since the
axis Ay lies in the boundary half-space of g,,;, the axis Athg,;h™h
separates Athgh™)) from Aw,,p. This verifies (b).0

The following proposition shows that the distance between two

boundary geodesics of s pair of pants does not change after applying the

combination theorem.

(IV.24)PROPOSITION, Fiz a posttive integer i. Suppose G is as abouve
and h€C. Then

(Iv.25) P(hgihwlrgi-i—l)Zp(gi!gi+l)-
PROOF. We view G as the free product of the group G'~! and the group
(Gi)x~: amalgamated over the subgroup {g;). We write h in normal form
hy...h, with respect to this free product decomposition.

First, suppose that h,;¢G,. Then either (a) or (b) hold (depending

on whether h, is contained in G or in (G)i-y). Applying the successive

elements h.h;,...,h, to the axis h,Awg: and noting that the separation
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properties (a) or (b) continue to hold, we see that
plhgdh™ e 1) 2 0(8ne ).

Next, if h;EG, then we replace the element g, by hygsh7?! and
proceed 8s above. If hs<h,, then the above argument shows that (1v.,25)
holds. Now if h=h,, then inequelity (IV.25) follows from the fact that
P(818:4,) is the distance between the closed geodesics which represent the

elements g, and g,,,(11.24).0

(IV.260)LEMMA. Suppose that the series > di=oc. Then all nested

sequences in £ go to the boundary of H.

PROOF. It is enough to show that the following inequality holds,
P18+ 2 P(8u8i11) =d;

where g is any conjugate of g,. But this is exactly inequality (IV.25).0

(IV.2THLEMMA. If I is an interval of discontinuity for G, then I is
an interval of discoﬁtz‘nuz‘t'y for some nested sequence in L.
PROOF. We note that G has no boundary hyperbolies, If | is an interval
of discontinuity for G then for all n, | is contained in an interval of
discontinuity for G". But the only intervals of discontinuity in G™ are
ones that are bounded by the axis of g, or by = conjugate of g,. This i

holds for each n. Hence &l such exes bound 1. We conclude that I is an I

interval of discontinuity for some nested sequence in £.0

One can interpret the above lemms es saying thet intervals of

discontinuity come in two forms. Either they are intervals for boundary




hyperbolics or they a'i_"e limit oﬂ:_'..intervals of simple dividing

hyperbolics.

Suppose we hé\}é_"'_'tha thesum of the distances between the simple

closed geodesics {W(A[g;))}. H/G "'c_'_l':iverge, that is 3 d,=oc. Then all

nested sequences in & would gq"' O'E:Ithe boundary of H. We conclude that

G is of the first kind. Wéf's___ta_te th:s formally in the following theorem.

{IV.28)THEOREM. Supﬁéés-1'iﬁat-.-'t§"x(ci)§°=o is an infinitely generated

Fuchsian group where Go zs q;_;‘i___"tﬁpc (0;2;1) and the G, for i=1,2,3,...,
are of. type (0;1;2) hamngstandard generators (g, g7 ) and
satisfying the condz‘tz‘on’f'z\f@;}ﬁﬁ(‘c”l):A(gﬁﬂ) for i= 0,1,2,3,... .
Let d,, for positive i, be thedzstance between the azis of g; and the
axis of gy, Then G is of'i}ié fzrst kind if the series 3. d,
diverges. e

Recall that ¥, denotes thef;‘,_b::rﬁﬁion orthogonal to the geodesics
Awgy and Ag,yp. The twist parérﬁé.‘c.é;;f'hich measures the oriented
distance between the common orthbgéﬁals 2, and Z,,, is denoted by s,.

Our next example illustrat.e.s"’c.ﬁé. point that the nested sequence of
axes {Agy} can converge to the boundary of H even though G is of the
second kind. The crucial point here is that there are nested sequences of
gecodesics which converge to the boundary of H and vet the sum of the

distances between the geodesics in the nest converge.

V.29 EXAMPLE, Constiruct the group G=(g,B2..8n,...) 88 indicated in

the beginning of this section with dr=1/n" meking sure that the twist
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parameters are all equal to zero, that is s,=0. Figure 46 illustrates what
the nested sequence of axes {Awgyn} would look like. The accompanying
quotient surface H/G is illustrated in figure 47. Since the nested
sequence of axes converge to a geodesic, the half-space Bounded by this
geodesic is precisely invariant under the identity in G. In particular, G is
of the second kind.

We observe that Dehn twisting about the simple closed geodesics
T(Awgy) by a length s, =T(g;4 corresponds to conjugating the group
(B4r-+s8ny-ee) by g,. Hence we have (84581814187 »ees). On the umiversal cover
this amounts to looking at another nested sequence of axes {Ag))} in 2,
where the g} equal g; if j is less than or equal to i and otherwise they
are g;g;e; (figure 48), Notice that the pairs (g}, ,(g7")") are a standard set
of generators for G;. Now, if we Dehn twist for each g, by 2 large
multiple of Tig,, ;1 we will force the axes {Ag)} to converge to the

boundary of H (figure 49). See figure 50 for the accompanying picture on

the surface H/G. Thus G is of the second kind and vet one of its nested

sequences of axes of standard generators goes to the boundary of H.
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CHAPTER V

0. It is evident that we can use the combination theorem a finite
number of times to create more compliceted surfaces from very simple
ones. In fact, the combination theorem tells us exactly what this
complicated surface would lock like in terms of the fundamental polygons
which represent the simpler surfeces. In Section 1, we investigate what
happens when we iterate the combination theorem an infinite number of
times. In Section 2, we show that the Nielsen isomorphism theorem does

not extend to infinitely generated Fuchsian groups.

1. We start with a sequence of Fuchsian groups {G;} wﬁere g, and
8:+) 8re nonconjugate primitive boundary hyperbolic elements in G.
satisfying N(G{)HN(GiJr]):A(ng] for all i, The axes of the g; form a
nested sequence of geodesics. Set d; =p(AgnAg;, ).

Our aim in this section is to show that the conclusion of the
combination theorem, that the resulting polygon obtained by intersecting
the previous polygons is & fundamental polygon, does not necessarily
hold if we apply the combination theorem infinitely often along the
nested sequence of axes {Awg,}. However, if we assume that the series

>°d, diverges then this conclusion does hold. Before we go on we need

some notstion.
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Recall that G” is defined to be {G1,..sGn). Let D, be a fundamental
polygon for G; and set D"=D,N... ND,. Let Bign be the half-space which
is the component of H—Agn; containing the Nielsen region N(G,_,).

Denote the other component by B/gn). We say that the {D,} pairwise

satisfy the compatibility conditions in the combination theorem if for

each i, D, and D, satisfy the hypotheses in the combination theorem;
theat is,

(a) DyNB@i4+1CDyyy NB@yy 13

(b) Dy 1 NMBY g0 CD;NB’gy4,3; and

(c) The sides of D, that are paired by g4, lie on the same geodesic lines
as the sides of D,,, which are paired by Eig1-

Note that after applying the combination theorem to G, and G,, we
have D? ﬂB[gz):DlﬂB(gz] and in general after applying the combination
theorem to G™* and G, we have DN NBgxm=D""'MBg. that is, D" land
D™ are the same on the half-space Bign).

We let R(G") be the set of all boundary half-spaces of G™ and
R(G™) be the set of all boundary half-spaces of G" with the boundary

half-space of Br41 &nd its conjugetes deleted. Observe that the set

N({G™)UR(G™) is invariant under G".

(V.DTHEOREM. Let G=(G)r, be an infinitely generated Fuchsian
group, where G, is a Fuchsian group containing the nonconjugate

primitive boundary hperbolics g, and @i+ satisfying

N(GINNI(G))=Agirn. Let {D,} be Ffundamental polygons for {G,)




which pairwise satfoy th compatabzhty conditions in the

combination theorem. Set

Then D is a fundamental polygon for G if Fdy=co.

PROOF. Observe that th':e. :

des :f}D_ are paired by elements of G and

that D is a convex hyperbohc polyg n'_';

Now, let g be a nontrivial element *

of G. Then g is contained m G" fdr_f_g- sufficiently large n. Hence

gD"ND"=@ and therefore, s_im_-:_ D“, we have that gDND =g,

Let x€H. Since the.-'s':er'i:e_'sﬁ_z:. di diverges, all nested sequences in
L go to the boundary of HHe ] here ‘exists & positive integer m so
that xENG™UR(G™. Since.D'?’:‘" fundamental polvgon for G™, there

exists an element gcG™ so that g(x)eDm Furthermore, since

N(G™)UR(G™) is invariant under G’"’I and ‘.R: (G™) CB@myys We have

g(x)eD™ HB[gm-}-l]"—DﬂB[gm-}-l)‘ Thus Q(X)ED

Finally we would like to show that the tesselation is locally

finite. Let K be & compact set 1n H Once agam, since all nested

sequences in L go to the boundary of H there ex1sts a positive integer

m so that -

K CN(G"‘) U%”Gm)
Since the translates of D™ by eler_ue_r_:_ts'_of G™ form a locally finite
tesselation and since .
D™ ﬂB[é,};‘;‘n %DﬂBlgm+11,
we have that K meets only finitely many G-translates of D™. Lastly,

DCD™ implies that K meets finitely many translates of D.0

Our next example will show that the above theorem is false if the
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series 2d,<oo.

First, we construct a fundamental polygon for & normalized
Fuchsian group T of type (0;0;3) or (0;1;2). Thus T has standard
generators (V,8) with axes and orientations as depicted in figure 6(7 if in
the (0;1;2) case) so that 87 is a boundary hyperbolic element(a parabolic
element, if in the (0;1;2) case ). Let ¥ be the common orthogonal to the
axes AY) and AB). Consider the image of = under 8, B(X). The right
endpoint of B(X) lies to the right of the right endpoint of A7), We draw
the common orthogonal to A¢) and B(L) and call the point of intersection
between this common orthogonal and B(T), B(z). Hence z is a point on &
which divides T into two geodesic line segments; call them s, and s{. £8(z)
divides the common orthogoneal to A7 and B(X) into two geodesic
segments; call the segment which intersects the axis A, 5. Set s, =8(s,)
and s;=7"'(s]). Finally, let s3 be 7(s3). Since 7B8Y=1, 77 takes the vertex
point B(z) to the point Y '(z). We claim that the angle made at the
vertex Y Y z) is 7/2. To see this, consider the (oriented) angle between
the sides 77 !(s,) end 77 Y(s%). Since 7' =8Y and 7 (sh) ==s,, this is the
same as looking at the angle between B7Y¥(s,) and s,. But Y(s;)=s] and s}
lies on X; hence B7Y(s)) is the line segment on B(X) which does not overlap
s7. We conclude thet the angle between the sides s, and s} is the same as
the angle between B(Z) and s, which is =/2.

We consider the polygon P bounded by the sides constructed
above having the identifications indicated in figure 51. Observe that the

hypotheses to Poincare’s theorem are 2ll satisfied and thus P is &




i
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i
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fundementel polygon for the group T

If the group T is not normalized, then we normalize (conjugate) it
by an element I of PSL{2,R) so that its standard generators are as in
figure 6(7 if in the {0;1;2) case). Next, we construct the fundamental
polygon as above and conjugate it by £, Since f is an isometry of H,
this new polygon is a fundamental polygon for T'. Once egain we name

this polygon P.

Observe that two of the sides of P lie on the common orthogonal

to the sxes of the standard generators Y and A.

(V.2JEXAMPLE. Consider a Fuchsian group G=(G,); where the G, are
(0;0;3) groups having standard generators (8441,2; ") and satisfying
N{G,) nN(GH-l)r"A(gi-H] .
Suppose further that the {Aw,) form a nested sequence of geodesics;
where dr=1/n" and s,=0. The important point to keep in mind is that
the twist parameters have all been set equal to zero and hence all the
axes of the g, have the ssme common orthogonal, call it L.
We normalize each group G, and construct the fundamental
polygon D, as we did above. We note that the {Dy} pairwise satisf{y the
compatability conditions in the combinstion theorem. We set D=nND,.
Note that the polygon D has infinitely many sides which lie on ‘

the same geodesic L. Furthermore, since the nested sequence of axes

{Aigy} converge to a geodesic, the infinitely meny sides which lie on L

must accumulate to a point of H. We conclude that the action of G on D

cannot be locelly finite. Thus this conclusion of the combination thecrem




does not in general hold. - =

2. Let #:G -G’ be an .ié_'c'):ni:cjfrphism between two torsion free
Fuchsian groups. Recall that.di::ié said to be 8 type preserving
isomorphism if boundary hyper"b.oiics correspond to boundary hyperbolics
and parabolics correspond to pér'é.b;olics. We say that @ is a topological
deformation if there exists & h&heomorphism f:H-H so that

‘Q(g)[21=fgf".1(z.). for all z€H and g€G.

In this section, we constrﬁdt a type preserving isomorphism &
between two torsion free Fuchsian groups which is not a topological
deformation. Thus showing that fhe Nielsen Isomorphism theorem does
not hold for infinitely generated .Fuchsian groups.

(V.3)EXAMPLE. In Section 5 of chapter IV we saw how to construct

infinitely generated Fuchsian groups using only groups of type (0;1;2)
(except for the initial group G, which is of type (0;2;1)). Recall that if
{dn} is a sequence of non-increasing positive real numbers then there
exists an infinitely generated Fuchsian group G=(Gn)5_, where
dn =pn(AgrKAEA4 1)
Let G be the group with length parameters {dn=1/n2} and twist
parameters {s,=0}. Since the nested sequence of axes {Agn} converges

to a geodesic L, the half-space defined by L is precisely invariant under

the identity in G. We conclude that the interval on the beundary of H

bounded by the endpoints of L is an interval of discontinuity for G.




Thus G is of the second kind: _

Next, let G'=(Gn)e_, t..).e_..‘.th'e group with length paremeter {d‘;;'—;l
and twist parameter {s},=0}. Note that the nested sequence of axes:
{Aw@gn} converge to the boundé;_}.’rz._'.pf H and (by the arguments of Secfiq_'
5, chapter IV) the group G’ is. of the first kind.

It is obvious by their éd:n;fruction that the groups G and ¢/ ar.'e_
isomorphic by the map ®:C uG_’._».v.Hich takes the generator g to the
generator gn. |

We would like to show that@ is 1ype preserving. By constructioﬁ,_z
we know thet G and G’ have né..BS#ndary hyperbolics. Thus we need
only show that ® preserves pa'rz.a'{.aic:ﬂ.ics.

First we note that the eleiﬁéﬁts g:2¢+; and their inverses g;ﬁlgf]
represent all the conjugacy cla's's'es".of‘ parabolic elements; that is, eny
parabolic element g&G is equal .to":: .h'gigH_]h_l or hg;ﬁlgfjh_l for some
heG. Of course the same stateméht. holds for G’. Since ® preserves the
type of a conjugacy class, it is én'oﬁgh to show that @ takes the
parabolic element Bigi4+1 to @ parabolic element of G’ (note: we need not
consider the inverses gfj,gf* because

‘b(gt_-:lgi_l)'"—‘(D(lgtgiﬂl_]}=(¢(g{gi+1))“]
and the inverse of a parabolic element is parabolic).

Now, ¢(gigi+l)=¢(g1)¢(gi+1}=gig;+l;
but gigi,, are standard generators for G,. Hence, g1g:4, is a parabolic

element of G. We conclude that @ is = type preserving isomorphism.

On the other hand, ® is not a topological deformation. To see this,
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suppose there exists e homeomorphism f:H —H so that G(e)z) =gl Y(2)
for all z€H and g&G; I would have to take the regular set of G to the
regular set of G’, This is ¢learly impossible since G is of the second
kind and G’ is of the first kind.

(V.OREMARK. One could equally as well construct examples where all

of the G, and Gj are of type (0;0;3), thus making G and G’ groups of the

second kind.
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