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Abstract of the Dissertation

On the Crossed Product C*-Algebras
Associated with Furstenberg Transformations on Tori

by
Ronghui Ji
in
Mathematics
State University of New York at Stony Brook
1986

In this thesis; the nofion of “Furstenberg transforma-
tion” on an n-dimensional torus T" is introduced. The cor-
‘responding crossed product C*-algebras are studied and some
classes of these C*-algebras are classified up to x-isomorphism
and -up to strong Morita equivalence. Some further developments
and conjectures are discussed. In addition, the strong Morita
equivalence for C*-algebras associated with minimal rotations

on tori is determined.
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Introduction

Topo]dgica1 dynamical systems have been studied by
topologists as wel} as physicists for many years. Operator

a1gebraists3soon-rea]ized that topological dynamical systems

-can be viewed as-a special case.of C*-dynamical systems

which yields interesting new examples of C*-algebras of

many types. These examples raise the possibility of study-

~ing connections between the nature of a-topological dynamical

system and the structure of the corresponding crossed product
C*-algebra. The success of the generalization of the topoio-
gical K-theory of Atiyéh and Hirzebruch {see [2] also [11])

to general non-commutative C*-algebras (see [56], [28], [5]
and [29], etc.) gives a way of finding very importént in-
variants for C*-algebras, and the work of Pimsner and

Voiculescu [44], [45]; Connes [8]; Fack and Skandalis [19],

“as well-as Pimsner [42] .enables one to compute the K-groups

as well as the KK-groups of crossed product C*-aigebras. Thus
the classifications of crossed product C*¥-algebras become pos-
sibie and has been quite successful.

The work of Rieffel in [50] and Pimsner and Voiculescu
in [43] taken together gives a complete classification of the
crossed product C*-a?gébras Ae = C(Fl)XeZ associated with
irrational rotations, with rotation number 6 on [0,1], ohn

the one dimensional torus Hl. That is, for irrational o




2.

and 6' in (0,1), A,, is *-isomorphic to Ag if and only if

e 1
8' = 9 or 1 - 6. Since their work, irrational rotation

C*-algebras have been recejved a great deal of_attention by
many mathemaficians who studied these algebras as a first
step for motivating general studies in different fields, e.g.
A. Connes in [9], and Pimsner and Voiculescu in [40] and [44].
Soon after, Riedel in [48] génera]ized the classification of
irrational rotation C*-algebras to the'c1assification‘of C*-
algebras associated with minimal rotations on compact metric
abelian-groups.. .In a different direction, Packer. in [35] and
[36] obtained a complete classification for twisted group
C*-algebras of the.3-dimensiona1 discrete Heisenberg group.
The méthods used in obtaining the.c1assificat10n are K-theory

and the computation of ranges of tracial states:on the KO-

groups of these C*-&]gebras, and also, the construction

of the so-called "Rieffel Projections" [50].
o In attempting to obtain a natural-method for computing
the K-theory.of.the irrational rotation C*¥-algebras, Pimsner
and Voicu]escd discovered the Pimsner-Voiculescu exact
sequence for the crossed product C*-algebras A.&XZ of a C*-
algebra A by an automorphism a of A. This yielded a new
proof of the classification for irrational rotation C*-
algebras [ 44]. |

Since the range of a tracial state on the Ko—group

of a C*-algebras is useful in distinguishing C*-algebras,
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Pimsner (as well as others) formulated an exact sequence of
traces and determinants on the K-groups for crossed product
C*-algebras of a C*-algebra A by an automorphism o of A in
[41]. This exact sequence Eﬁrns out to be a very powerful
tool for computing the range of a tracial state on the ko'

- -~ ~-group of a crossed product C*-algebra.

~ Pursuing the ideas in[50], [44] and [41], we will coﬁsider

in this thesis, the classification of the crossed pro&uct

C*-a1gébras, dendted'by'AF -, associated with what we
' f,o

call "Furstenberg transformations,"” Ff,e on tori for 8 in
[0,1), (see definition (1.1) in 81}. This is interesting
because Ff,e is a natura] generalization of the rotation g
on the 1-dimensional torus Fl, and many Ff’é's can be viewed
as affine transform§tions on the n-torus T". We will com-

pute the K-groups of AF using the Pimsner-Voiculescu
f,0

- -exact sequence,-and determine-the range of a tracial state
olAr ) using the work of Pimsner [41]. It turns out
f,e

that, in ﬁeneral K*(AF ) has a torsion subgroup in con-
f,0

trast to the rotation algebras on tori considered by Riedel
[48]. We will then classify the C*-algebras associated with
some special classes of Furstenberg transformations and the
results we obtain are similar to the classification for ir-

rational rotation C*-algebras (see §3).

In [50], Rieffel showed that if & and 8' are in the

" sam@& orbit of the action of GL(23;Z) on the irrational numbers




-8 is rational, then A

g,

in [0,1) which is defined by the cbrresponding linear frac-
tional transformation, then Ae‘ is strong Mofita equivalent
to Ae despite the fact that Ae. is *-isomorphic to Ae if
and only if 8' = 8 or 1 - 8. This answers the question of
how different these non-isomorphic irrational rotation C*-

algebras are. Rieffel further showed in [52] that all

rational rotation C*-algebras, that .is, A. for which 6 is

6
rational, are strong Morita equivalent to algebra C(Tz) of

all continuous complex valued functions on Wz.

2 2

Let‘Fk-e“w”W‘ + T~ be the Furstenberg transformation

defined by Fy o(z).2)) = (2725,e"1%2,),k # 0. Then follow-

ing the idea of Rieffel in [50 1, we will prove that
if @ is irrational, then A = C(W%x Z is strong
: Fm g Fm 5

Morita equivalent to A if and only if |m| = |k| and o'

Fr.s

is in the same orbit of & under the action of GL(2:Z). If

FL_.~i5~strong~Morita equivalent to
k,8

AF___. These results are similar to those obtained by
f,0

Rieffel iﬁ [50] and [52] for rotation C*-algebras Ag. As
a byproduct, we also obtain the strong Morita equivalence
for C*-algebras associated with minimal rotations on tori.
Therefore, we are able to combine all our previous results
into one uniform version.

The structure of this thesis is organized as follows.

In Section 1 we give basic definitions and results on




C*-dynamical systems as well as on topological dynamical

systems and on crossed product C*-algebras. Especially, we

introduce the notion of "Furstenberg transformations" on tori
and state and prove some results on these dynamical systems:

Section 2 is devoted to the study and computation of the K-

groups of the C*-algebras associated with a Furstenberg ?
~transformation and-to-computing-the-range of a tracial state
on the Ko—group of such a C*-algebra." In Section 3, we

ctassify the C*-algebras associated wifh some special classes

- of Furstenberg”transformations on T, ‘Inparticular, we !

determine the strong Morita equivalence for the C*-algebras

associated with affine transformations on the 2-torus and

also determine the strong Morita equivalence for the C*-
algebras associated with minimal rotations on tori as a by-
product in §84. In gection 5, we simply combine ail previous
,resuits.into one uniform version. Section 6 ié full

of QUestions, conjectures and remarks on further developments.
-Finally, we give a proof for the integrality of the Chern

character from K*(T™) into H*(T";@) in the Appendix.




§1. Preliminaries

In this section we will introduce some basic concepts

and results concerning dynamical systems, crossed product

C*¥-algebras and tracial states. We will determine when the

crossed product C*Qalgebra cf a C*-dynamical system has a
unique tracial state and when a tracial state on a crossed

- -product C*-algebra can be realized. 'Moreover, we are going
to introduce the notion of a "Furstenberg transformation” on
the n-dimensional torus T" and state and prove results con-

cerning these dynamical systems.

(1.1) Let G be a Tocally compact, Hausdorff, topological group
with the Jeft invariant Haar measure dt. A be a C*-algebra
and o : G »> Aut A be a strongly continuous representation, i.e.
ag(x) is continuous,in g for each fixed x in A and in the

norm on A. If, in addition, G and A are separable, then
(A;u;G)Yis called a C*-dynamical system. If A = CO(X) is

the commutative C*-algebra of all continuous functions on X
with values in € which vanish at infinity, then any automor-.
phism of A is induced from a homeomorphism of X and conversely.
In this case, we denote a dynamical system by {(X,x,G), where

a : G - Homeo(X) is strongly continuous in the sense that the

induced o : G > Aut(C_(X}) is strongly continuous.

(1.2) Let K{G,A) denote the collection of all continuous maps

from G into A with compact support and let A : G » R be the

modUTar function. If we define involution and convolution




on K{(G,A) by | ' .

y*(s) = a(s) tag(y(s™hH™)

and

(yxz)(t) = fGy(s)aS(z(s‘lt))dt

for all y, z in K(G,A), then K(G,A) becomes a x-algebra with
- —-convolution as product. For each y in K(G,A), define
Iyl = jG”y(t)Hdt. Then K(G,A) is a normed aigebra with an
isometric involution and we let Ll(G,A) denote 1ts norm
compietion.
As shown in [38, §7.6], there exists a non-degenerate

separable x-representation of Ll(G,A) into the algebra of

. bounded Tinear operators on a separable Hilbert space.

(1.3) Definition. 'The universal representation (wu,Hu) of

Ll(G,A) is the direct sum of all non-degenerate separable

““representations of L*(G,A) and the crossed product of (A,a,G)

is the norm closure of,wu(Ll(&A)) in B(Hu), which we denote

by AxaG.

(1.4) Theorem (see [38, 7.6.6 Theorem]). For each C*-dynamical
system (A,G,o) there is a covariant representation (mw,u,H)

such that AxaG is contained in C*{w(A)uu and for any other

G) 3
. . 1 1 1 . .
covariant representation {7 ,u ,H ), there is a unique re-

presentation (p,H') of Ax G so that r' = pom and u' = pou.

Inwparfﬁtaiar, if A is unital, G is compact or discrete,




then Aqu is just the C*-a]gebra'generated by w{A) V Ups -

which we denote by C*(w(A)UuG). (Note, a covariant repre-

sentation (m,u,H) of (A,G,a) means that (w,H) is a repre-
sentation of A and u is a representétion of the Group G in
the unitafy operators on H which satisfies ugw(a)u; = w(ag(a)),

~for all ¢g in G and a in A.)

~(l.5)‘AThere is-also-a notion of the "reduced crossed product"
C*-algebra for a C*-dynamical system (A,a,G). Since in this
thesis we deal mainly with the case when G = Z or R, the
‘crossed product” and the “"reduced crossed product™ C*-algebras f
coincide. In fact, this is true for any amenable group G
(see [38; 7.7.7 Theorem]). We will use crossed product

without distinguishing between the two for amenable groups.

|
(1.6) Theorem ({38, 7.7.9]1). Let (A,a,G) be a C*-dynamical %
system and B be a G-invariant C*-subalgebra of A. Suppose
-G is amenable. . Then BxaG is naturally contained in AxaG and

i 3
if B £+ A, then Bx 6 § Ax,G.

(1.7) If G is discrete and A is unital, then Ax G 1s equal

to C*(W(A)UUG) as in Theorem (1.4). We define a map from the
( |ag em{A) and ag $+ 0 for only

dense #-subalgebra B =< I a_u

LgsG g g|finitelymany g in G é
of AxaG onto A by & : I a u_ v a,s where e is the unit of G.
geG

(1.8) Proposition (Zeller-Meier). @& 1is norm reducing and

hence @ extends to a x-linear map from AxaG onto A. Moreover,




? is positive.
This proposition is essentially due to Zeller-Meier in

[60], and is explicitly proved by Itoh as Theorem 4.1 in [25].

(1.9) Corollary. Assume G is discrete. If ¢ is a G-invariant

tracial state on A, then 9 can be extended to a tracial state %

on Ax G,
(5

Proof. _Since A is-unital- and-G-is discrete, we consider the
dense *-subalgebra B in AxaG as described in (1.8) and the

map & from B onto A. Define $ on B by

( T au.) = p(ae).

ge6 g9
Then
I )| = 9ol % 3qugh)| 5 18 2 agugl] < 2 agudl.
gp{ £ a_u = o 2 aug < L ag < Z a_u
ge 99 K | geG 9 g 99

by Proposition (1.8). Furthermore, % is tracial on B as is
easily checked by the traciality of ¢. Therefore, $ extends

- to a tracial state on Aqu.

{1.,10) . Remark. - The positive linear map & : Aqu -+ A is usually
called the ™canonical conditional expectation” and it can be shown

to satisfy the following properties:

i) of{ab) = a-a(b) and &{ba) = ¢{b)-a for arin A

and b in Aqu; and

i1} a(b*) = ®(b)* for b in Ax 6.
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One can define the notion of a “cdnditioﬁa1 expecta-
tion" with the pfoperties above from a C*-algebra onto a sub-
algebra. It turns out to be useful for different purposes,
see [49], [55] aﬁd [25], etc.

In the next few sections, we mainly stﬁdy the very special
C*-dynamical systemswhich arise when G = Z and A = C(X); where
-X is a compact Hausdorff space - on-which G acté by homeo-
morphisms, or a compact abelian group on wh{ch G acts by rota-
tionsernraﬁﬁnetransformations. Later on, in §6, we will
discuss the possible generalization of this-special case to
the case when A is a "non-commutative torus" and G acts by

"affine transformations".

{1.11) We now let X be a fixed compact Hausdorff space
with a probability measure pu, G a countable discrete groub and
¢ be a homomorphism from G to the measure preserving homec-

. morphisms of:X-"-Then:{X,a;G}-isza topological dynamical sys-
tem.

We adopt some ‘definitions from [39].

(1) « is said to be minimal if every orbit of a

is dense in X.

(2} a is said to be ergodic with respect to the

G-invariant measure u, if the only a-invariant

Borel subsets of X are those which have measure ° |

.--"either zero or one.
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(3) Two topological dynamical systemsare said to
be conjugate, denoted by (X,a,G6) ~ (Y,B,G), if
there is a homeomorphism ¢ : X = Y so that

¢°&g = Bgo¢ for g in G.

(4) o is said to be topologically transitive if there
is a point X in X so that the orbit of G on x

is dense in X.

- {5)- G acts uniquely ergodically on X if there is only

one G-invariant probability measure on X.

{(6) A complex number A is said to be an eigenvalue of

agfbrsome g in G, if there is a compiex valued

invertible and continuous function f on X, so that

f(ug(x)) = 3f(x) for all x in X. For basic pro-

perties these concepts, see [39] or [58] .

(1.12) Proposition. Let (X,u,6):be a topological dynamical

system. Assume for each g in G, there is an eigenvalue

Aq $+ 1 for O - Then tracial states on C(X)qu are in one-

one correspondence with G-invariant probability measures on X.

Procf. By Theorem (1.3), there is a covariant representation
(w,u,H) of (C(X).,a,G) such that C(X)XGG = C*(w(C(ﬁ))UuG).
Identify n(C{X)) with C(X). We need only to show for any
tracial state T on C(X)qu, g in G\{e}, and f in C(X)

that T(ff»“'g) = 0.
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Since ag has an eigenvalue Ag + 1, one has a non-vanishing

function fg on X (see Definition (6) in {(1.11)) so that

-’F-*= :}\-f.
u u ag(fg) g

9949 g
.. . -1 * -1
1 - = Faoy «f o = . of .
This implies j(f ug) 7{ ugfgfg ) T(f ugfgugugfg )
= o . » » -1 = . i
T(fnggugfg ) Agr(fug). Smcel}\g $+ 1. It follows that
T(ﬁug) = (.

(1.13) Remark. We have obtained a much more geheral state~
ment for certain C*-dynamical systems which generalizes this
proposition and which leads to the study of tracial states on
crossed product C*-algebras for "homogeneous dynamical system,ﬁ

see [26].

(1.14) Corollary. If (X,a,6) satisfies the hypotheses of
the previous proposition and G aﬁts on X uniquely ergodically
,,then;C(X)xaG has-a-unique tracial state.

To give Proposition {1.11) and Corollary (1.14) some
meaning we have to determine when the hypotheses are ful-

filled.

(1.15) Let T be a homeomorphism of the compact metric space

X. The dynamical system {X,T,Z) is called equicontinuous if

for every £ > 0, there exists § > 0, so that d{x,y) < §
for x,y in X, implies d(Tnx,Tny) < e, for all ninzZ. (X,T,Z)

is called distal if x # y, x and y in X impliies
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infnd(Tnx,Tny) > 0, where d is the metric.

Clearly an equicontinuous system is distal.

e

(1.16) Theorem {see [39; Corollary 2.211). A nontrivial
_minimaI dista1 dynamical system (X,T,Z) has a non-constant

eigenfunction.

(1.17) Corollary. A nontrivial minimal distal system »

(X,T,Z) with X connected has infinitely many eigenvalues not

egual to 1.

‘Proof. Since T has a nontrivial eigenfunction f which Ts
continuous, T(f) = Af for some A in C|{0}. We claim x % 1,
and A is unimodular. We first prove A is unimodular. If
not, then foT™ = A"f would imply for any x in X, fhat
[f(x)] = 0 when |x}| > 1 or [f(x)] = = when |A] < 1 since

O<Cl<]f(x)| < Ly < e for all x in X. Next we show X % 1.

---Suppose . to the contrary, then foT = f, di.e. f(Tx) = f(x) for

all x in X, and hence f(T"x) = f(x) for n in Z. Since T is
minimal, {Tnx|nel} is dense in X, and therefore, f has to be
constant. This contradicts the assumption that f is not con-
stant. Now, if Al = 1, we define an equivalence relation en X so that
X ny if f(x) = f(y}. Then every Tn'kx js equivalent to x.

Since f is continuous, each equivalence class is a closed

subset of X. Since {Tnkx|kéZ} is contained in the equivalence
nk+1

class S, of x, T1SX contains {T x{keZ} for i = 1,.++,n-1.
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n-1 .

Now since T is minimal, it follows that U T's, = X. By the
connectedness of X, X cannot be the disjgggt union of finite-
ly many closed subsets. Therefore, SX must intersect some
T's, and hence T's, © S . It follows that S, =X, d.e., fois
a constant which contradicts the assumption. This shows that
An~+ 1 for any non-zero integer m. The coroi]éry follows.

The proof above, in fact,. proves_the following corollary.

(1.18) Lorollary.  If (X,T,Z)-is topologically transitive
and X is connected, then a non-trivial eigenvalue X of T 4s

not periodic and [A] = 1.

(1.19) Corollary. Let X = T" be the n-dimensional torus
as a compact abelian group, Z be a dense subgroup generated

by X4 in X. If o is the representation of Z defined by left

translation, then u; has infinitely many eigenvalues.
4] .

Proof. - Such a dynamical system 9s-distal, uniguely ergodic

and minimal, see [39; Theorem 2.11 and Proposition 2.10].

1

(1.20) When X is the unit circle T* in €, Z £ {3"|neZ

and & = e®™19 With o irrational} is represented as irrational

rotations, the crossed product C*-algebra C(Wl)xez = Ae which
is called the irrational rotation C*-algebra with rotation
number 6, has been intensively studied with much understand-
ing, [50], [43], [44] and [52], etc. MWhen X is abelian and

Z :'{xgjnél, x,eX} is dense in X, the crossed product
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C*-algebra C(X)qu has also been studied, see {48], From
the topological point of view, rotations on'a connected com-
pact group are all homotopic to the identity map of the
group as a topological space. To obtain some different ex-
amples, one seeks transformations on a connected space which
are not homotopic to the identity. This simpie observation
~teads-us to study fhe foilowing-dynamical system which is

based on the work of Furstenberg [20].

(1.21) Definition. A Furstenberg transformation F. g O
the n-torus T" = {(zl,---,zn)|zl,---,zneﬂl} is defined as
fO]TOWS, Ff’e(21,°'°zn) = (fol(ZZ’."’Zn)""’zn—ffn-l(zn)’

e21ﬁ?an where 6 1jes in [0,1) and each f, 1s a continuous

function with Ifj[ =1, and fj(zj+1""’zn) is homotopic to
d. .
z.9. as a function f. (.2, veeaz ) e Tl - Tl for all
j+1 jvorni+2 *tnt

- o= (J+1) - . :
(zj+2,nf-,zn)W}n T Y o4 ,-where dj 2 0 is an integer.

We will say that a Furstenberg Ff 5 satisfies condition

{A), if 8 is irrational and each fj satisfies a uniform

Lipschitz condition in z, that is

j+i?

1 1
Ifj(23+1,"',zn) - fj(zj+152j+25"',ZnH<M|Zj+1-Zj+1]

ver,z dn Tl.

for some constant M and all z n

Jj+2?

A Furstenberg transformation Ff is said to satisfy

s
condition (B), if 6 is irrational and fj(E

541770 2 2p)

:._,_.f,..j ( rd j +1 st "

.’Zn) for j = 1, 2’...,n_1_

53
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(1.22) 1t is clear that a Furstenberg transformation Fe g

is not homotopic to the identity.  The following theorem can

be found in [20].

(1.23} Theorem (Furstenberg). If Fe o satisfies condition
(A), then it is minimal, uniquely ergodic and has infinitely

many distinct eigenvalues.

(1.24) Corollary. If F satisfies condition (A), then the

a0

crossed product C*-algebra A C(Wn)xF Z is simple

Ff,0 £,6
and has a unique tracial state.

Remark. The simplicity of the crossed product C*-algebra
in this corolTary follows from work of S. Power [46] or of

R. Powers [47].

!
'

(1.25}) 1In general, the crossed product C*¥-algebra CTMx. I
| Y f,8

~is.neither.simplie nor does-it.have.a unique tracial state.
The reason we are interested in these C*-algebras is as we
indicated in (1.22), that Furstenberg transformations are not
homotopic to the identity, which contrasts with the case of
rotations on a connected compact group. In the later situa-
tion, questions concerning the structure of crossed product
C*-algebras are easier to study since the rotations them-
selves are easier to understand. There is lots of nice work

related to this subject, see e.g. (507, [431, [44], [52]1, [48],
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[14], and [59]. On the other hand, when n

- 2
and the map Ff,e N )

2, 8 is irrational

2rig,
2 € 22)9

> Froelz107p) = (2702,
is also called the Anzai skew transformation on the 2-torus
(see [39]). The structure of the associated crossed product
C*-algebras has been studied by J. Packer in a quite com-

plete fashion (see [34]). Moreover, since the C*-algebra

---associated with a Furstenberg transformation Ff 5 with 9

in [0,1) contains the rotation algebra AB even when ¢ is not
irrational, in a natural way, it is natural to view the study
of these-C*-algebras as an extension of the work of Rieffel in
[50] and Pimsner and Voiculescu in [43] and also Packer in [34]
Besides, when we specialize the functions which is used in the

definition of Furstenberg transformation to be fi(zi+1""’zn)

K k] . :
- 1+1.-. n . 9 T, .
Z:q Z, s w1th1k1+l t 0 and where the kj s are integers,

i=1, 2,~++,n-1, then Ff 3 becomes an affine transformation
H

. of the compact abelian group T".

(1.26} Definition. An affine transformation T = g-A on a

compact group G consists an automorphism A of the group G

-fo]1owed by a translation of a group element g in G.

1 1

N S K177 Ky
Clearly, the affine transformation T = |: o N
18 ' o

n n,.. . n

k1 kn

.

on R", where k}'s are integers, det{{k}) ) = #1, and PRERIY

j’'nxn

1

are in-R™, can be viewed as the affine transformation

n




T :T" 7" defined by
ki K S .
T(le"':zn) = (Alzl "'Zn :"'3An21 "'Zn )-
0 (el 1] A
: 1 kyeeoky
. o L ot 51 . 1 .
n particular, T = 5 o 'n_ kz- with ki+1 + 0, i=2,+--n-1,
0 | 1]

gives a Furstenberg transformation T on Tn satisfying condi-
"~ tion-(A) and (B)-if 8-is irrational in [0,1).
-Qur task is to study and classify the L*-algebras asso-

ciated with these Furstenberg transformations. )

(1.27) Proposition. The rotation C*-algebra A8 = C(Tl)xéz,

where 6 is in [0,1),1s naturally contained in C(T")x Z =A .
Fee Ft,e

i

Proof. Let Cfﬂl) be the C*-subalgebra of C(Wn) generated by

~-- .the last _coordinate function,;n.,mjhen_CCHl) is Fr o invariant

o LI 3 by Fg 8(zn) = e2ﬂ18~z is just the vrotation
-3

and F n

1

f,6

by 6. Hence, A, is naturally contained in A 'by
0 Ff.o
3

on T

Theorem (1.4).
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§2. K-theory and traces on‘Kd—groups

This section is devoted to computing the K-groups of the
crossed product C*-a]gebras:associated with Furstenberg trans- 4
formations on T". Unlike tﬁe case when crossed produgt C*-
algebras are giveh by rotation on C*{G) determined by a
character of G into Wl, where G is a discrete torsibn free
-group, see [48], [13] and [59], we usually have torsion sub-

“groups in Ke(A ). These are important factors in determin-

Feo
ing isomorphism classes of these C*-algebras. Another im-

portant invariant for these C*-algebras 1is the range of a
tracial state on the K-group. We will compute it using re-
sults in [44] by looking at the"Rieffel projections" in ir-
rational or rational rotation C*-algebras aﬁd by employing the

techniques developed in [44] and [41], as well as by applying

the theorem cohcerning the integrality of the Chern character
o =on K*{T") in_.the.appendix.. For references .on_ K-theory, see [71, [37,

and [55].

(2.1) In [44], Pimsner and Voiculescu established a six term
exact sequence for crossed product C*-algebras associated

with a C*-dynamical system (A,0,Z),

a;l -1 i*
KO(A) >K0(A)-———————+KO(AXQZ)
(2.2) S -1 l S !
7 o -1
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(2.3) The map ¢ involved in this sequence is described as
follows. If S is the unilateral shift on 22(Z+), then S is
a partial isometry, and the C*-algebra C*(S) generated by S
on 22(Z+), contains all compact operators K. Define T to be
“the C*—suba]gebfa of (AXJZ) 8 C*(S) generated by A & I and
“u, &S, where I is the identity operator on 22(Z+) and u
... ds the unitary oberator in the covariant representation of
AX&Z = C*(A,ua); Then as was shown in [44], the following *

sequence is exact.

(2.4) 0 > AgkYeT —>Ax I + 0

1 Qe*«Qese-

0 Q-++0---
for some maps v and 7. If €00 ST is the rank
one projection in K;= l%ﬂ Mn(m) and 1 denotes the dinclusion

1 ¢ A > ABK define to be i : Asa w» a@eooeAsK, then it is easy
to see that i induces an isomorphism KéA) - KE(A@K) for e=0, 1.
Associated with -the short exact sequence (%), there is a long

T
exact sequence for K-groups, see [56] or [3], «--+ KE(A@@-3+K4T¥j4

1
K (Ax Z) 2K, (ABK) — .. . We define § = i} o, and all

the other maps in the six term exact sequence (2.2) are clear.

(2.5) We are now going to prove a lemma concerning the
naturality of the Pimsner-Voiculescu sequence in an appropriate
sense. Although it is implicit in [44], there is no explicit

st&temgnt of it.
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(2.6) Definition. Given C*-dynamical systems (A,x,G) and

(B,B,G), a *»-homomorphism ¢-: A » B is called covariant if é

¢(ug(a)) = Bg(¢(a)) for all a in A and g in G.

It is clear that a covariant x-homomorphism induces a

N ‘
map ¢ : K(G,A) - K(G,B) defined by

SUF)(9) = o(F(g)).

One can check that

O (9) = el (9)) = elale) ey (f(g™H*))

M(a) ey (o(F(g™)*)) = al9) Te (I3 (F)(g™H)1")

(6(£))*(g),

and therefore, $is af~homomorphism from K(G,A) to K(G,B). Hence
E extends to a *—homdmorphism from AxaG into BxaG by the uni-
--yersal property.- The injectivity, surjectivity as well as bi-
Jectivity of 3 are equivalent to those of ¢ and thus we have

-the following proposition.

(2.7) Proposition. Let ¢ : A > B be a covariant x-homomorphism

with respect to C*~-dynamical systems (A,a,G) and (B,8,G). Then

¢ induces a *x-homomorphism $ : AxaG + Bx_G such that ¢ is in-

B8
v
jective or surjective or bijective, iff the same is true for ¢.

i

(2.8) Proposition. The Pimsner-Yoiculescu sequence (2.2) is

_natural it the sense that if (A,x,Z) and (B,8,Z) are C*-dynamical




22.

systems and ¢ : A + B is covariant, then the following diagram

is commutative.

a;l -1 Tg
- K (A) > Ky (A) +Kqy(Ax Z) |
‘ b , by b |
-1 ' -
- Ky(B) —— K4(B) o{BxZ)
§ T 5! 5 ‘
I . B;l - 1
Kl(BxBZZ) < K (B) +———— Kl(B)
" A
fb* ¢* ¢-k |
i ;1- I N\ |
Ky (Ax Z) < Ky (A) Ky (A)

Proof. The only uncertain part of the diagram is that |

V]
Py
K (Ax Z) rKE(BxBZ)
(2.9) § s
I8
*
-I(A) E 1 (8)

But the commutativity of this rectangle is a cohsequence of the

commutativity of the following diagram.
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*
K (Ax Z) - K (Bx Z) |
ﬁ/// : 3
5 1 (d}@l)* . «
(2.10) Ko 1 (ABK) =K _1 (B8K)
.i* j*
q)*
: Keoq(A) ~K,_1(B)

The commutativity of the upper rectangle is from the
naturality of K-theory for the commutative diagram of the

exact sequences,

Vg A
: 0 — ABK Ty —+ Ax J ——— 0
Y
(2.11) ¢®Il ’ lYﬂ l ¢
0 BOK —Lr T 5 Bx 2 — 0

where v is induced by mapping A®I to B8I via ¢8I and mapping
uaﬁs to uéﬁs. 0f course, one has ta"check if vy is actually a
*-homomorphism, but this is true since it is just the restric-
tion of 81 : Ax Z 8 C*(S) > Bx,Z 8 C*(S) to T,. The com-
mutativity of the diagram (2.11) is just the matter of looking
at the maps ¥,, Y, and Tp» Tg COnstructed in [44]. Next, the
commutativity of the lower rectangle in (2.10) is trivial. Since
the maps i, and j, are isomorphisms, we immediately see that

the diagram (2.9) is commutative. This completes the proof.

(2.12)'”[é£ﬂF be a Fursterberg transformation on T". Then

f,0
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we have the corresponding cyclic six term exact sequence for
the crossed product C*-algebra A = ¢(TM)«x Z as in (2.2).
Ff,s Fe Lo

In order to compute K*(AF ), one has to know exactly how
f,o - '
1

m.._(F; e)* acts on generators of K, (C{T")). To do this, we need

~---the following theorem and lemma.

- (2.13) Theorem. -k, (c(T™)), k*(m™), ¥*@";z) and a*fi(T";2)

Vv
are all naturally isomorphic as rings, where H* denotes the

y
Cech cohomology theory {(see, the Appendix).

Remark. The first homomorphism K, (C(T™)) ¥ k*(M") is the

standard isomorphism given in [33].

(2.14) Lemma. Let Ff g T" > 7" be a Furstenberg trans-
]

formation, then Ff g is homotopic to an automorphism K : ™ > Th,
E] . .

We call K the represéntative of Ff 9> where K has the form

1 1 n-1
) B k2 kn , kn
K(zgsenenzp) = (292,502 T eenzpyz, sz) for dntegers
i 3 .
iy 1 < n.
kJ < i< j<n
Proof. Each continuous function fk : Wk - Tl is homotopic

i i
to zll---zkk, where the zi‘s are the coordinate functions of

v
Tfk, since the cohomotopy group wl(Tk} > Hl(ﬂk) v Zk and the

- coordinate functions ZystetnZy give the canonical generators

of ﬁl(vk), (see [56, 3.9]). Therefore, F is homotopic to K

f,0
Cwd 1 .
W-Ith k‘i_‘hl’?-—(}, 1 = 152:"',“'1.
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(2.15) By this Temma, for the purpose of computing the K-theory

of the C*¥-algebra C(Wn)xF Z = AF » 1t is enough to consider

f,8 T, .
the case when Ff g = K. But, explicitly computing the K-groups

of C(Wn)XKZ is still not an easy matter. We have to restrict

ourselves to the following spec{a1 class of automorphisms.

(2.16) Definition. A sequence of non-zero integers {ki""’kn-l} | |

is said to be descending if |ki+1|[kil for all i. A Furstenberg

transformation-Ff e’Wﬁth respective-K-: T? " of the form i
Mk k

..o = 1 .« a e n-l
K{zyserazg) = (227,00 0z 120 “wzg)s set. (SSTEERIN TS

is a descending sequence is called a descending transformation.

(2.17) " Proposition. If Fe g is a descending transformation
with representative K " > 1" and descending sequence

{kys-+-k 1}, then the torsion subgroup of K*(C(TH)XF Z) is

(m,) (m ) (ny) T°
isomorphic to Zk 8 Zk 2 Beoot Zk n-1%, where Zki s the
- <1 2 n-1
group of mi-copies of the cyclic group Zk = Z/kiz.

‘ i
To prove this proposition we also need the following

standard algebraic Temma, although it is more general than

we need, (see for example: "Abstract Algebra," Theorem 7,

p. 168, by C.H. Sah).

(2.18) Lemma. If K = (k is an integral matrix, then

ij)nxn
Z(n)/K Z(n) X Z(n)/S-K.T Z(n), for S and T in GL{n3Z). Moreover,

7(M) izt % 7 (g 7

K for some m < n and integers
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kl""’ki depending on K, m+i = n.

We now turn to the proof of Proposition (2.17).
(2.19) Let [z. 1 A [z, J A-++A [z, ] be in Amﬁl(ﬁn) where
T T Tn

zi‘s are coordinate functions of Fn, which gives a canonical

y
basis of Hl(Wn). Then we have

@([zil]ﬁ--°ﬂ[zim]) = ([;11]+ki1[zil+i])ﬂ---A([zi ]+kim[zim+A1])-

m

We give an order to the basis of A*ﬁl(ﬂn),.which is the set

{[z. Ja---Alz, 1li,<-+-<i,, k=1,2,--:n}, by the following.
1y Ty 1 k

(z, JA-A[z, ] <[z, In-afz, ] if k < k' or k = k' but
' "k Ji k!

the first‘i2 t J, satisfies i, < With this ordering of

g S e
the basis, K, has a representation as a matrix:

B ~ ~~See the fo110wing page.

Ex
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where all *'s following ki can be devided by ki’

-To show this, let a. = [z, ], a. , = [z, Ja...Alz. ]
i i, i veais i. i,
] i A PRI Y i i,

and let ki. "'ki = ki. T then

J1 dy J1 Jy

Kellz: Ia--alzy 1) = (a; +k, a, ., )A...A(8; +k. 2. .o)
* 17 (s i) 7141 R P

il 51

- N =a.,. sz +k,a. . . + k., —a. . . R I |
oot i 11...1m_1(1m+1) B 11"'1m-2(1mw1+1)1m E
+K, - . . ‘. . . . . et »
cee N P .+, N .+ . cee
Jpredg Ty e Uy M ey g -0 Uy 20 sy T
+k. . a, ., . :
11...1m (11+1)...(1m+1),
These kjl"'jﬂ s are clearly divisible by kim since Jy<...<f <i s
and {kl,.,.,kn_l} 1s a descending sequence.
}
Therefore,-
4 N
0 k1 . \
0' ka
L
0
0
0 kz L
Ke = I = K. ko..k
3 . s
O". ‘. .n
. Kewek
*. "n-1
0 - 0...0
— | 0 K j
D 0 :
o 0 | axe
-~




and 2%/ (k,-1)z (%)

ne

GL(2,Z).

entries denoted by «'s and S(K,-I) has the form

Now, we can also choose S$' and T in GL(ZsZ) so that

S'S(K,-I)T has the form,

r'

0

~

2 s(k,-1)T 20*) for any s and T in

But clearly using S in GL(2,Z) we can delete all

29.
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Hence, )/ (k, -1z (%) v 200 s sk, -1y 2 (0D
(m,) (m__4)
22 6...8 anT;1 If instead of (F;fe

(Ff,e)* in the Pimsner-Voiculescu exact sequence, we cleariy

). We use

-have proved the proposition. But it is true that

Py ALY

M-zt - AR N

ne

28 -, oz sz, -z,

f.9 f,6

by Lemma (2.18). This completes the proof.

(2.20) Corollary. Let n=2, Ff’e(zl,zz) = (fo(zz),ezﬁleezz),

and f be homotopic to zg with k ¥ 0. Then

K (C(T4)x, zZ)vZ oz oz

Ff,e
and K (T8, Z)
£,9

e

F Z6Z Y Z 8 (Z/kZ)'

-~ Proof. -Let K.be the automorphism of -the 2-dimensional torus,

(zrzg,zz). Then since KO(C(TZ)) is generated by 1

and [zl]A[zz] in MZ(WZ) we have

Ke(1) = 1 and K ([zy[z,1) = (Iz)]+k[z,1) & [2,] = [2;14 12,1

v
Since Kl(C(WZ)) is generated by [21] and [22] in Hl(Wz), we

have K*([zl]) = [zl} + k[zz] and K*([zzj) = [22]. Hence we

get, from the Pimsner-Voiculescu sequence in (2.2), that

Tk (el z) =z B8Z BT

F

.0
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and Kl(C(Ti'z)x Z) =Z8ZOZ81/ ;. |

Ff,e

(2.21) We now turn our attention to computing the ranges of a
tracial state on the Ko-group. For crossed prodhct C*-algebras
associated withraffine transformations on Hn, the range of a
tracial state on the Ko—group has been calculated by several
mathematicians, see e.g. [34],-[18]. The methods used in

these papers are essentially two, the Pimsner-VYoiculescu se-
quence and the Connes' tracé formula [8] for the special case.
Both methods ‘seem to réquire that one know exactly how many
eigenvalues the affine transformations have. 1In our case,

since F is not, in general, an affine transformation on'ﬁh,.

"f.e
we cannot directly apply those results. In the two-dimensional
case, we had obtained results for Ff,e similar to those for
affine transformatidns, by Tooking ét gererators in the K-groups
and using the Pimsner-Voiculescu sequence. More precisely, we
used known results concerning ratioﬁal and irrational rotation

C*-algebras in [44, Appendix ] combined with the naturality

of the Pimsner-Voiculescu sequence,and showed that the range of

any tracial state on the Ky-group of AF = C(ﬂ2p$ Z is
f,8 f.e
3 3y
exactly equal to that of the rotation algebra Ae contained
in C(Wz)x Z, see (1.27). But in the case of higher dim-

F
.8
ension, the group seems to have difficulty taking account of

all of the generators of KI(C(Tn)). Fortunately, some recent

beautiful work of Pimsner [41] gives a way to systematize the
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the proof we had, and enables us to "neglect" those extra
generators in Kl(C(Vn)). We state without proof, a theorem '

"which is essentially Corollary 4 in [41].

(2.22) Let (C{X),a, Z) be a C*-dynamical system where X 1is
a_ compact Hausdorff space. -Let {xl""’xk} be generators of
the subgroup G of Kl(C(X)) which consists of all elements of

X in the kernel of the map a;l-

I : Kl(C(X)) - Kl(C(X)) 50
- that-x is also represented-by -an invertible function in C(X). 5
Choose projections {pl,---,pk} in Mn(C(X)) for some large in-

teger n, such that in the Pimsner-Voiculescy seguence 6[pi] '=><"I :
for 1 = 1,2,-+-,k. Then we have Pimsner's theo}em, j
Theorem (Pimsner). For any tracial state t on C(X)X£Z, the

range of 1 on KO(C(X)x&Z) is

T (K (CCOx ) = (K (CON)) + t(py )T+ -te(p, )2,

8]

with the notations introduced above.
~With this theorem, we can compute the range of any tracial

state on KO(AF ) for any higher dimensional Furstenberg
f,6

transformation on T" . ‘ i

(2.23) Theorem. Let Ff 8 be a Furstenberg transformation on

T", and © be a tracial state on AF .. Then r*(KO(AF })
,0 f,0

=7 +0Z.

Proof;'fsy Proposition (1.27), we have the inclusions
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crly

|

where C*(zn) is the C*-subalgebra of C(Wn) generated by the

R c(mr™)

d . A = ¢(T")x

' yi
Fe g

0 £.6

F

last ?oord1nate function z,» on which Ff,e acts as Ff,e(zn)
) -mf=-e2“le-zh.~u8y Proposition (2.8}, .the following diagram is
commutative,

J s _

| L
" Kl(c(wl))ci__» K

where § and &' are connecting homomorphisms in Pimsner-Voiculescu
sequence, see (2.8). Hence, Z +6Z = T*(j*(KO(Ae))) is con-

tained in 1,(K_{A. - }) since projections in A, 8 M, are also
~-the projectionsjnJA%f%é ﬁ'Mk and t,0j, ="{10j),. Note by the
-results -of Rieffel in [50] and Pimsner and Voiculescu in the

appendix of [44] that the canonical tracial state on Ko(Ae)

has the range Z + 6Z for any & in [0,1), and a result of

E11iot as Lemma 2.3 in [17] shows any tracial state on KO(A

gives the same map to Rl. Hence, T,(Jji(K

o)

O(Ae))) =Z+9Z. On

the other hand, any element [X] in K (C(TM)) with x in GL(C(T"))

is an integral combination of [21],---,[zn], the coordinate

v
functions jnZC(Hn) considered as generators of Hl(ﬂn)
N e

= GLTC(T™) /6L°(c(m™)) e Kk (C(T")), where 6L°(C(T™))
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1s the connected component of the constant function 1 in

GL(c(m",1). 1f (F;fe)[x] = [x1 in K (c(m™)), then [x] is in

¥1

the subgroup [zn]-Z of H (Wn)¢+ Kl(C(Wn)), since the only

[21] such that (F;fe);[zi] = [21] is [Zn]' Now, using the
result of Pimsner and Voiculescu we mentioned above, in the

‘appendix of [44], that the projection p 1in A8¢+ AF which
f,.8
1s constructed by Rieffel 4in [50] .and is such that &§{[pl.) = [Zn]’

where [pl, is in K (A. ) and [z,] s in K (c(T")), satisfies
- Tf,0

+([p1) = t(p) = 6. Now by Theorem in (2.22), we have

"

T*(KO(AFf,e)) = T, (K, (c(m™"))) +0Z =7 + 61,

since for any compact connected space X and any tracial state

T on C{X), T*(KO(C(X))),= Z.

Note, we used Lemma 2.3 in [ 17], that any tracial

1

state on Ae gives the same map from KO(A into R*, for any

5)
-6 in"f0,1), in proving -1, ([p]) = t(p) = 6, where p is the

"Rieffel" projection constructed in [50] (see also the appendix

of [44]F), for a tracial state T on Ap ,since p is in Ae
f.0

and tej is a tracial state on Ae.

This completes the proof.

(2.24) The computation above of the range of any tracial state

on K_(A

o\ AE ) can be generalized to give a proof of a similar

f,0
result for C*-algebras associated with Furstenberg affine

transformation on certain non-commutative tori. See the

discussion on this in (6.4) of §6.
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§3. Some classifications for A
Feo

In Section 2, we computed the K-groups of the crossed

product C*-algebras A = C(Wnk Z for F being a
F F . .0
f,0 f,0
descending transformation (see Proposition (2.17)). We also
computed the range of any tracial state on KO(C(Hn)xF Z) for
fge
a . Furstenberg transformation Ff g on h by means of the
. , :

Pimsner-Voiculescu sequence and a theorem of Pimsner. Using
these results, classification up to *-isomorphism of some of
these crossed product C*-algebras is possible. Later on, we
will also consfder strong Morita equivalence for these C*-

a]gebtas.

n

(3.1) Theorem. Let F : T +T" be a Furstenberg trans-

.6
formation satisfying condition (B) in (1.21). Then

C(Vn)XF Z is x-isomorphic to C(Fn)xF Z if and only if

f,0 ; f,e
9'~= gor 1-90, assuming-that both-6-and 6' be in the interval

[0,1).

Proof. By Theorem (2.23), any tracial state on AF will
f,0
1

induce a map on KO(AF ) with range Z +6Z inR*. Therefore,
f,0 .

the statement that C(T")x Z is x-isomorphic to C(Fnb< Z

necessarily implies 8' = 6 or 8 = 1-6, because 6 is irrational.

To see this, suppose Z+0Z =Z +8'Z. Then there exist m, n, Kk

and L inZ so that the following equations hold,
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m+nd = 9§

k+206' = 9.

We then have, [8 = k+28" , and hence,

(em+k) + {entl)e = 0

0 we

an+l = 0, am+k = 0 since g is irrational. For gn+l

I}

must have gn = -1 and so that g = =*1 and n = x1.  Now a' is
in-[0,1]-too, we must have m=0 when n=1 or m=1 when n = -1,
On the other hand, if ¢' = 1-g, let g, : T" » T" be such

that @o(zl,...,z ) = (51,..,,En) where’?i denotes the complex

n

conjugation of z Then ¢ is clearly a hOmeomo;bhism of T".
[+ ’ T

it

Moreover, we have

- -1 _ . _ _ P .el_
? 01 Ffsel T§Zl,--3,zn) -9 I(fol(ZZ""’zn)""’Zn—ffn—l(zn)’e " 'Zn)

-2mie .7 )

= (zl'fl(zz"°"Zn)""’zn-1°fn-l(zn)’e n

2ri(1-8")

z.)

(Z]:fl(zzs"':Zn)s"°,zn_1°fn_1(zn) 1= n

- Ff,l-e'(zl""’zn)’

for any 8 in [0,1). .This shows that Ff,e and Ffalwe are

topologically conjugate. Therefore, it follows that A

Fe.a
is x-isomorphic to C(Wn)xF Z, and the proof is complete.
f,1-8
(3.2) Corollary. A 8 M_is x-isomorphic to A A M
] L]

if{gnd‘th} if m=9¢ and 8' =06 or 1 -8, where Fe 6 is a
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Furstenberg transformation on T" satisfying condition (B),
note, by hypotheses 6 is irrational, and where 6' is in [0,1).
To prove this corollary we have to prove a lemma concerning

tracial state on AF g M _.
£,8° .
3

(3.3) Lemma. For a C*-algebra A with unit,anytracial state
won A8 M is of the formt 8 (%tr), where 1t is a tracial

state on A and tr is the usual trace on M,

Proof. It is obvious that Mn has a unique tracial state (%tr),

which is faithful on positive elements. Now if we set

t{a) = @(a®l) for a in A, then T is a tracial state on A, we
claim that g(aBb) = t(a)-(ftrb) for all a in A and b in
Mn' It is enough to check this for positive elements in A,

so assume that a is positive. If t(a) = 0, then by the gen-

eralized Cauchy-Schwartz inequality for states, we have

|p(agb)| = |@(a®al)- (a%eb)]

A

o((a*81)) -g((a%8b*) (a®8b)) = p(a81)p(adb®D) = 0

and therefore, gp(afb) = T(a)-%—trb = 0. If t(a) £ 0, then
w(a8b)/t(a) is a well-defined tracial state on Mn’ and hence
must be equal to %—trb, by the uniqueness of the tracial
state on M_. In any case, ¢(a@b) = T(a)(%—trb). This proves

the lemma.

(BL&){”Réﬁérk. This lemma was known by many mathematicians;
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especially it is used in [50]. The proof of the Temma clearly ‘
can be qsed to prove a generalized resulit for AQWHF, where |
"min® denotes the injective C*-norm on the algebraic tensor
produét of A and B, and where B has a unique.traciai state, see

e.g. [59].

{3.5) Lemma. If A is a unital C*-algebra such that all tra-
cial states on A have the same range on'KO(A), then all tracial

> stateson A B Mn—haverthersame range on KO(AﬁMn).

Proof. ULet p be a projection in (A@Mh) 8 M, , and ¢ be a tra-
cial state on A B8 M . Then p is of the form (ATJ)k for Aij
in A & Mn and g has the form 1 8 %-tr, as shown in Lemma (3.3)
where 1 is a tracial state on A. Now by definition, the in-
duced map of ¢ on KO(A@Mn) is

!
n

T 1(a
1§=1

def.

k 1
Pe(P) =="9( T Aj5) =
: =1 i

i\ def.
¢hi4) =5 i5) =

Lt L)

n o1 =
=t
U B

i

. . N
where A;; = (a}k) for a;k in A, and p p in (A@Mn) 8 M

nxn
is viewed as a projection in the matrix algebra A 8 Mn-k of

A, and 1, is the induced map of T on KO(A). Therefore,

9o (K (ABM ) =3 1, (K (A)). Since t.(K (A)) does not depend
on the choice of the tracial state 1, g, does not ejther. We
have the conclusion.

Now we can prove Corollary (3.2).

Suppose AF
— f,0.

8 M dis x-isomorphic to A g M . Then
n Ff 5 2

by Lemmér(3.5), the range of any tracial state on KO(AFf e@Mn)
»
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1
£ aM ) 5

is %(Z+8'Z). It is easy to check this is the case if and

is =(Z+9Z) and the range of any tracial state on KO(A

only if m=2 and 6" =0 or 1 -6 as the proof of Theorem {3.1).

On the other hand, if m=% and 6' =6 or 1 -9, then.AF

f,8
hence.AF 8 Mn is *-isomorphic

f.o' f,0 :

to A g M. | |
Ff,e' n |

is x-isomorphic to AF

{3.6) - -We now consider another classification of the C*-

algebras associated with descending transformations.

Theorem. Let Ff 5 be a descending transformation on T" of
k k . |

- - 1o n-1 2716 !
the form Ff,e(zl,---,zn) = (zlz2 . 22, 12, , e Zn)’ ‘
where 6 js 1rrationa?. If Ff',B'(Zl""’Zn) =

k! k .
= (21'221"'°’Zn-Izﬁn-1392W1e'zn)’ is another descending |
transfbrmation, then Ao 8 M __is *-isomorphic to A g M

S : Fe moCT : Fev o %
T ’ ] f s 8
if and only if m=2, and 6' =6 or 1-9 and also |ki| = |k;],
i=1,2,..-,n-1.
To prove this theorem we need a simple limma. E
(3.8) Lemma. For e' = o0 or 1-e and [ki| = [ki| =1 =1,2,-+-,n-1,

the descending transformationst and F as in the theorem,

.0 f',e'

are topologically conjugate.

Proof. We may assume o' =6 since F. o+ s conjugate. to Fgv 1 ..

>

Le%“nl,-'-,nn_l be signs of kl""’kﬁ-l’ respectively, and let




44Q.
Epseves€ be 1 or -1, such that the following equations hold,
€+ €..0 =M.y i = 1,2,00.,n-1.

These equations have a solution, for instance, let €, = 7

-1 i} el N |
n-2  Mp-2"%p-12""281 T Ny ey

£, €y
Define a homeomorphism @E(zl,---,zn) = (Zl seeesZp

m
1

then a1 =N 1€

), when

£ €.

e, =1, z.' = z. and when e, = -1, z.! = E;. Then we have

1 1 1
€ E,K En EqK
1 271 2 3°2
( '22 922 3 5

i

2 _ -1 . o

e = Id and (98 Ff,e (PE(Zl,...,Z ) LPE

£ € ~E k
Zn-

n

e k . £,k CELE
n-1 _2mis _Sn LB1%2%1 0 Epf3%p

z, ,€ "z, ) (z1 Z, 12524 st ey

-S

6n-lenkn i e-Znie Ikll lk

“n-1%n ) 'Zn) = (21’22 R T (L ’

— F|f| 1_é(zl,---,zn). Therefore, F is topologically

.0
conjugate to Flfl 156' But FIfl 1-8 is clearly topological
conjugate to F[f[ g 28 proved in the Tast paragraph in Theorem
- --(3.F)v"-Hence the Temma follows.

We now prove Theorem (3.6)

If A is *-isomorphic to A . then 8' is necessarily
Ff,e Ff',e'

equal to & or 1-9, as the proof for Theorem (3.1). Now by

Proposition (2.17) in §2, the torsion subgroup of K*(C(Fn)xF Z)
f,

(my) (m_y) 0

K 8.0 Zk

2 n-1

& Z and the torsion subgroup of

e
2

n-l)

kn-l ’

Z) 'ESZ!@Z

therefore,
1 kl

(
k
[kyl = 1ki]se

o5 lkp_ql = 1k, _;| since both {ky+--k, ;1 and

n-1[ -2rio '
o «zn)
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{ki""’ké-l} are descending. On the other hand, if 6' =g

or 1-6 and [ki| = |k;| for i = 1,2,...,n-1, then by Lemma

il

(3.7), Ff,e is conjugate to Ff',e" therefore, AFf ) s

*-isomorphic to AF . The argument for AF B M is *-
f',8" £,0 "

isomorphic to A

- 8M, if and only if m=2, [k%{ = ]kiland

‘ .I.‘D,'Al
8' =8 or1- 0 in the theorem is just the same as that of Corollary (3.2).

(3.8) Unlike the irrational case,.if 6 is rational, then the

classification-of the C*-afgebras‘AF is more delicate.
Let 0 = % where q and p are positive integers such that
1
{(gop) = 1. If %T is another such rational number with p’ ¥ p,
then we see that A_ . 1is not *-isomorphic to A by com-
F q F g;
T, , f,
P p |
paring the ranges of tracial states on them. The subtlety |
|
--here is that we do not know if A s »~isomorphic to 3
- = ' f,ﬂ
P
Awaf -for q" ¥ p-q where both q and q' are assumed less -
I P
F,
P

than p. However, we will be able to determine when they
are strongly Morita equivalent in the next section,
We are also able to obtain classifications of

some other classes of C*-algebras associated with Furstenberg

transformations. But we will not include it . in this thesis.
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-

§4. Strong Morita equivalence for AF
f.0

- The notion of "strong Morita equivalence" for C*-algebras
was first introduced by M. Rieffel [49], [51] in analogy to
the algebraic notion of "Morita equivalence" for rings. The
word "strong" refers to the nmorm topology on C*-algebras.
Later, it was shown in [6] that this equivalence relation for
C*-élgebras is Just the same as that of "stable equivalence"
which was introduced by L. Brown in [4]. Therefore, strongly
Morita equivalente C*-algebras have the same K-groups-as well
as KK-groups. Thus this notion provides an efficient tool
to study C*-algebras with the same K-groups. Readers who are
interested in this topic are referred to [49], [511, [21],
[7], and [12].

Recall that the rotation C*-algebra Ae is the crossed
product C*-algebra associated with a rotation on the 1-dimen-
sional torus Wl with rotation number 9 in [0,1). In [50] and
-[52],-Rieffel classified rotation-algebras up to strong Morita
equivaience. His result shows that some of these non-isomor-
phic rotation C*-algebras are not so different. In particular,
Rieffel showed that if 8 and 6' are irrational, then Ae. is
strong Morita equivalent to Ae if and only if ® and 6' are
in the same orbit of the action of GL(2,Z) on the frrational
numbers in (0,1) defined by linear fractional transformation.

He also showed with an explicit construction of the
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1

imprimitivity bimodules, that all rational rotation C*-
algebras Ae are strong Morita equivalent to C(Wz), Follow-

ing Rieffel's idea and using a theorem in [7] or in [12],

Packer obtained in [35]g [36] similar results for C*-algebras {
of projective representations of the Heisenberg group. The

C*-algebras considered in [35], [36] are closely related to

.— ... .—C*-aigebras associated with Furstenberg transformations on Fz. |

2 2

As a special case of Theorem (3.6), if Fe g 2T =T

k _2mio

is given by F é(ii,zz) = (zl.zz,e

z,), then A is
2 Fk,e
*-isomorphic to A. . if and only if [m[ = |k| and o' =0 or
m,8'

1-6, where we are assuming that 6 and 8' are irrational ‘ %

humbers in [0,1). In order to study the problem of strong ' :
Morita equivalence for the C*-algebras associated with general
Furstenberg transformations, we have to consider that problem

for this special class of Ar  's, that is, we have to de-
k.6 '

“termine wheanF L..andiAﬁT:L}iareﬁstrOﬂg Morita equivalent,
k,s m’e

which is possible -even though they are not %-isomorphic. We

will solve the problem for this class by applying a result

of P. Green which was described and proved in [51] together

with a construction. We leave the general case for later
study. We will also obtain, as a byproduct, the strong Morita

equivalence for the C*-algebras considered by Riedel [48].

(4.1) Definition [51]. Let A and B be C*-algebras. By an

A-B-eqd%#a]ence bimodule (also called imprimitivity A-B-bimodule)
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we mean a left A and right B bimodule X on which there are

defined an A-valued and a B-valued inner-product such that

1) X,y>,z = X<y,z>g for x,y and z in X.

*-representation-by operators which are bounded for

| S 2
- g,>B, that“js <an,ax>B < ”a“ <x,x>B

B, etc., and similarly for the right %epresentation of B on X.

|
|
2) The representation of A on X is a continuous _
\
J
as positive elements of }

3) The linear span of the <X,X> which is an ideal

A’
dn A,"is dense in A, and similarly for the <X,X>B.

We say that two C*-algebras A and B are strongly Morita '

equivalent if there exists an A-B-equivalence bimodule.

It can be verified [49] that |

\ . N
Fxll = Toxax>, 1% Clb<xsx>g %)

- defines-a norm-on X, and that-all-the structure extends to

the completion of X. From now on we will assume that X is

compiete for this norm.

(4.2) Theorem_[Sl, Proposition 2.2 and Corollary 2.6]. Let
A, B and X be as in Definition {4.1). Suppose A and B are

unital and T is a tracial state on A. Then there is an in- g

duced positive tracial function Ty on B, so that,

TX((X"Y)B) T((X=Y)A)
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for all x, y in X. Moreover,
Ty (K (B)) = t(K (A)).

(4.3) Definition. A C*-algebra B has property (D) if all

tracial states on B have same range on KO(B).'

(4.4) Theorem. Let A,Band X be as above. Suppose A and
"B are unital and both A and B have property (D). Let tand

- ¢ be tracial -states on. A and B respectively, such that

T(KO(A)) = Z+0.Z+ .48 7
- 1 1
and $(K (B)) = Z+0,Z+...+8.Z, ﬂ
where 6. and e; are in (0,1) for i = 1,2,«-,n, and (81,-=-,en)

are rationally independent. Then {Bi,o-s,eﬁ} is also
rationally independent and there exists an (n+l1) by (n+1)

matrix (aij) in GL{n+1;Z), so that
3,

)y [

. = (a'i,j)* % 0,07%,1"%1 0,n%n

on .
an,0+an’181+...+an,nen
530,O+603181+...+a 9

0,n"n/
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To prove this theorem, we need some lemmas.

(4.5) Lemma. Let S, be the set of n-tuples (81,--v,eh

)
where 0, is an-irrational number in (0,1), i = 1,2,...,n,
and (el;;..,en) are rationally independent. The action of
"GL{n+1;Z) on. S, defined in the theorem (4.4) is a group

action.

Proof. Clearily In+1* : = . . We need to check that

if A and B are in GL(n+1:Z), then

1 1
(A-B) = . = Ax(B % : )
on en
In fact, C1 0'+Cl,181+"'+cl,nen
ce ey 0,0t G107 G 8y
(A-B)* = Ch et ieaiaa i,
10 : -
n Cn,O'FCn,lel+"'+Cn,nen |
CD,0.+C0:181+"'+CO,HGQ’ ;%
|

On the other hand,




(b1,0%01,181% %0y 80 )
. bg,0%P0,1°1%"  *Pg, noy
1
A*(B* : ) p— A * *e 8 meE bédm HEe A Gsoa
en . ) i i bn,0+bn,181+"'+bn,nen
\ by, g%Pg, 1917 +Bg o0y
- n
.
: § AR Lo, i%
1,07 %,1 7y ettt h Ty
% b. .5, L b. .6.
- 1.=070,1 1 520 0,171
n n
L% Zoinsi%
aG,O + 30,1 n -4 s + aD,n h
b, .6, b, .8,
j=g 02177 j=g 0»1 1
let &y =1
n n
L% Zonai%
4,0 T %,1 et T
Il Ll . Z.b. .6, b, .0,
j=p Os1 71 j=p 0»1 1
n n
L% Zoon,i%
20,0 7 3,1 7n Tty n Ty
Ib, .0, b, .0,
j=g 0»11 j=g 0-11
¢ A fn n ) 3
L a, .b. .0 (% a, .b. .)e,
0<i,ign 1»d 411 j=0 3= L»d 3,171
£ a, .b, .6 F(§a, b, )6, 8,
0si,jsn 023 35171 i=0 j=o 0»3 3,177 ;
= = = (A'B)* .
n n 8.1
b . b .
n n
z %

x
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0f course, to make sense of the computation, one has

81 81 |
to check that for any A in GL(n+1;Z) and |:| in Sn’ Ax |
. e a ;
°n “n
is also 1in Sn" Suppose- the contrary, that is, that
%
Ax| : is not in Sn' Then there exist Pos Py InZ, so :
®n
that n :
a. .9, ;
n j=0 1,3 J
p0 + .Z p_i - = 0, 5
i=1 z a, 8 :
j=0 »d J ;
i
n n n n !
Hence, 0 = £ p La, 6. = L (I p.a, .)0.. (Note, 6.=1). |
i=0 ' j=0 '»9 I y=g i=g 1 F-37] 0
91 n |
Since {: is in S, Zp.a, .=0,j=20,1,--.,n, But
: n’ . i71,] r
5 =0
L
B '(a; J.)=‘ﬂ\'-is-'i'n-Gl_(n+1;ZZ-) and hence'we have~p1 =0, i=20,1,+++,n,
91 o
which is a contradiction. Therefore, A+ |: is also in S, :
@i

This completes the proof.

(4.6) Lemma. Let be in S,- Ifrisa

positive number, so that r(Z+elz+-..+enZ) = (1+eiz+-o-+e;Z),

4

then thére is A in GL(n+1;Z) so that As | -

n
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Proof. When n=1, <this Temma was known and used by many
mathematicians. It was mentioned in [15], and Tater used
in {16] and proved in [54]. We repeat the proof in [54]
for n=1, and then get the general statement for n > 1.:'
Since 8, > 0, ei > 0 are irrational numbers we may i

define two orders onZ & Z, denoted by P(l,el) and P(I,Gi)'
- That is, P(l;ei) and P(l;éi),are'p051t1ve cones for Z & Z,

i
l
where |
|

P(l,el) = {(m,n) e Z & Z|m + ng, > 0} |

and

{{(m,n) e Z ® Zim + n6; > 0}. : A

P :

1,87)
Now, since r(Z+BIZ) =7 + eiZ, we have an isomorphism
¢ (Z&K,P(I’el))+ (Z@Z,P(l,ei)), that is, 6 preserves the

+ 13
positive cones since r is positive and r(z+elz) = (Z+BIZ)+,

f;—xwhere”{Z+BZ)fAE;In+ma]nfmezoiJJ_Since_¢.is an isomorphism of

ZeZ, ¢ = (? g) is in GL(2;Z). Moreover, {n,m} is in

. . o _ a by _
P(l,el) if and only if ¢{n,m) = (n,m)(C d) {(an+cm,bn+dm) |
is in P(1,er)- This is equivalent to saying that n + me, > 0 [
:1 L
if and only if (an+cm) + (bn+dm)ei > 0, that is,
‘ - , c+de,
(a+bei)n * (ctdey)m > 0 or n + EIE“T m> 0 since a + bs; > 0,
_ c+de£
(¢ is order preserving jsomorphism). If we set § = 3155{’

then we have n + mo; > 0 if and only if n + m8 > 0. This
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_ c+do, ~c-a8,
impTies 9, = 6 and therefore 8, = 33pgT and ei = TIEEs
] -
But ("9 Py is atso in eL(2;z). ,
: 81 61
Now suppose n>1, and that .t and . are as in

8 8!

un nj n+1

. . : .
the Temma. Then we can also define two orders on Z&---8Z,

where P(

1,81,---,6') and P(l,e "f:en) denote the positive

n 1
’ _ n+ly 1 ]
cones. Then P(l,ei,---,eg) = {{mg,-eeum ) e Z [mg*my @)+ tm 0! >0},

and P( n+1|

”5’= mgseeeum ) ez

. m0+m181+-=-+mnen} 0}.

1381&"':8

Since r-l(

Z+eiz+---+e§z) =7Z + 64Z++.-+8 Z with r > 0, we

have an order isomorphism ¢ : (Zn+1,P(f 5! e.)) - : -
a.laf": n
n+l _y ,
+(Z ’P(l’el""’en)). Thus ¢ determines a matrix (ai,j)n+l

) .is -in P(l,B‘,---,el)

in GL(n+1;Z). Moreover, (mo,ml,---,mn .

if and only if ¢(m0,---,mn) = (mO""’mn)'(afhﬂ(n+1) is in

P(1 5. e~).;~This-is equivalent to saying that B
L] 1! 3 n

mo+mlei+---+mne; > 0 if and only if

O

v

(s
w

n n n
Zm.a. + I mi;a, 0,.F<*-+ ¥ nm
=O 1 1,0 '=D 1 1,1 1 _i=

i i

=
=

that is, if and only if m L ap :0.4eeotm Za, .9, >0, where
0 J':O OSJ J n j,—-_o

i N .
8% - em 6, > 0 if and only if

[eln]
1]

0 1. Therefore, m, + m

0

mg + m161+--.+mnen > 0 where B; = » and
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especially, my + mie% > 0 if and only if my + miﬁi > 0 for all

1=1,2,---,n. By the proof of this lemma for n

1, we see

that 51 = e; for i = 1,2,++.,n, Therefore
0

FE—
D
[uy

= Ax | » where A = (ai,j)n+1is in GL{n+1;Z), which

mlll
:“
oy
>

completes the proof.

- (4.7) . We can now prove Theorem (4.4). By Theorem (4.2),
Ty is a tracial positive functional on B, where T is a tracial
state on A. Therefore, there is a positive real number r > 0,

such that ¢ = % Ty is a tracial state on B. Hence,

1

$(K (B)) =Z + 6iZ+.. 407,

by the assumptions in Theorem (4.4). Since TX(KO(B)) = T(KO(A))
and both B and A have property (D) defined in (4.3), we have

- |
(z+elz+---+enz) = z-+elz+...+enz.

——
)‘.
o

|
5 [

S| [8'1
Since . and : are both 1in Sn as defined in Lemma
em em

(4.5), the conclusion of theorem {4.4) follows from Lemma (4.6).

8

1 °1 ®1
Note, since . is in Sn, and . and . satisfy
1
E]n, o -~ ®n
61 ‘
(%) by the proof of Lemma (4.5), we have : is also in S .
— el

P




52.

(4.8) The following theorem of P. Green appears and is proved

as situation 10 in [51]7.

Theorem (P. Green). Let H and K be locally compact groups,

‘which act on a locally compact space P such that the two actions
© "7 commute and both actions are free and wandering. Then C*(K,P/H)

= CO(P/H)XK and C*(H,P/K) = CO(P/K)xH are strongly Morita equi-

valent.

Note. The action of a group G on-P is called free if far any
x in P and g in G, g.-x = x implies g = 1dG;‘and'the action of
G on P is called wandering if the set {geG|gsns + ¢} is precompact

in G for any compact subset S of P.

(4.9) ‘Proposition. Let Fr 5 T2

transformation Fk,e(zl,zz) = (zl-zz,e_ -z2) where g is in

be the Furstenberg

(0,1). Then A is strongly Morita equivalent to A .

- Fr,o F1
. :77,-,, k,_e“

Proof. Llet P =T xR! and H ¥ Z and K ¥ Z. Let H act on P

by transiation on the second coordinate, that is, an(z,s)

= {z,s+n) for (z,s) in Wl X Rl-and n in H, and K acts on

(z-e2“1k5,5+e), where o and g are the

P by g (z,s) =
representations of the group H and K into the group of

all homeomorphisms of P, respectively. Then both actions are

free and wandering so that P/K and P/H are both compact Hausdorff spaces.
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Moreover, C*¥(H,P/K) and C*(K,P/H) are strongly Morita equiva-
tent by Green's Theorem. We claim that P/K and P/H are both
homeomorphic to W2, the ordinary 2-torus. It is trivial that
P/H is homeomorphic to HZ. To show the other, we define a
map ¢ from P/K to Wz = Wl X El by

, “ 2riy(s) 2%
0((z,s)g) = (z2-e°7171%7 o )

where (z,s)8 is a point in P/K and v(s) is some real valued
function on Rl, which will be constructed below. Since we

want ¢ to be a map on P/K, we have to find for what kind of
function v on Rl the map ¢ is well defined. 1In other words,

when can the question mark in the following rectangie be

removed |
] . S
. 271 =
(z,s)e - (z-e2”1Y(S),e 9y
? 5
S . S, . 2ri =
(Z'eZH] I<s’5+6)8 _ (2.92w1 ks-e21“(5+6),e 8)?
Therefore, we want ezﬁ]Y(s) = eZWTkB-eZWTY(S+e). For this ;‘
purpoese, one can easily find that v(s) = - %—s(%——l). We get ;

2

a map ¢ : P/K > T" by defining ié

.k S . 5
=271 ms{x-1) 2ni 2
¢((z,S)e) = (z-.e A . e %).

It is easy to check that ¢ is well-defined, one to one and

onto. ..Mofeover, ¢ is also a homeomorphism. Now we have to




54.

find that how ¢ relates the action of H on P/K to the action
of Z on Wz. We have, for o, defined above, Tet
N

% = ¢a1¢'1, then we have

&(zl,zz) = ¢a1¢_l(zl,22) = ¢a1¢—1(21,92ﬂ15)

21 -zk- 8s(s-1) 21 % os{s-1)

=¢aq((z;-e :65)g) = ¢((zg-e ,05+1) )
- T Lk 1 R c ko1 .1
-2mix(2s+<+1) 2mix . 2rig(s+1) 231 =
- . 2 ) 6 2misy _ k. 29 6,
(z1 e , .8 ) = (z1 Zp - - 22).
2mi L -Zﬁi,%(%-Fl) v,
Let A = ¢ and n = e » We . have o : . T° » T° by

n, - . ny
a(zl,zz) = (n-zl-zzk,kzz).' We claim that o is topologically

- y —_—
conjugate to F 1 ¢ Wz - Wz. First, a is conjugate to &, where

k,g
T Tl - T2 s defined by a{z,,z,) = (0, -z . 2K Az.,) If we
: Y 1°%2 N17217 2000250,
Tet F : T2 » T2 be defined by F(zl,zz) = (zl-zz,p 22), where
|
. p satisfies pk = nA, then we have
- — — ok |
o Flz1,25) = afz)°2,.02,) = (n*{zy-2,) " (pzy) " 1202,) -
= (E‘pkzl-zg+1,kpzz) and .

_ k _ k _ k+l f
F Fk 1(21922) - F((zl-zzskzz)) - ((2222)'(K22)=pl22) - (AZIZZ _akpzz)- i

’0
Since ﬁpk = A, We have FF 1 = oF. Therefore, g is conjugate
g
to Fk 1+ This shows that C*(H,P/K) = C(P/K)xaH is x-isomorphic
"9 o
to C(T%)xs (Z- Since CX(K,P/H) = c(vz)ka ez, we finally
(L , =
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obtain that C(TI'2)><F Z is strongly Morita equivalent to
k,8

(T, z.

1

k,g

(4.10) Remark. The function Y used in this preof was first
used by J. Packer in [35], in classifying the C*-algebras

associated with projective representations of the Heisenberg
group up to strong Morita equivalence. However, Packer's proof
depends on the:expTicit construction of -equivalence bimodules

and then on the utilization of a result in [7] or in [12]7.

k.8 :'Wz +'W2 be the Furstenberg trans-
. B ko 2rig . . . *
formation Fk’e(zl,zz) = (z1 Z,,e _-22) for ¢ being irrational

(4.11) Theorem. Let F

in (0,1). Then A 8 M, and A & MR are strongly Morita

F m,s"

k.8
equivalent if and only if |m| = [k| and o and 6' are in the
same orbit of the action of GL(2:Z) on irrational numbers by

-linear functional transformations.

f. -It-is obvious that for any p in {0,1), the C*-algebra

F is x-isomorphic to A for any integer n. Let
k,p K,p+n d
+
GL(2;Z) act on irrational numbers in (0,1) by (g g)*e = g;ggs

F

then by Lemma (4.5), it is a group action. Since S = (? é)
and T = (% g) generate GL{2;Z) [30] and S and T carry g to

6"1 and 6+ 1 respectively, we conclude that AF is strongly

k,8
Morita equivalent to AF . for all 8' in the orbit of GL(2:Z).
k,8
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On the other hand, by Theorem (4.3) if A and A
F ' F
k,g k,8
are strongly Morita equivalent, then 6' must be in the same

orbit of 8 by the action of GL{2,Z). Now since strongly’

Morita equivalent C*-algebras have same K-groups, we have

that if A

F | Mn and A

F @_Ml_are strongly Morita equiva-

k,8 m,o'
lent, then [k| = |m| by Corollary (2.19). Conversely, if

[k] = |m| and & and 8' are in the same orbit of GL(2;Z), then

',A#U ~ is x-isomorphic to AF -, and AF is strongly Morita
k.o “m,B m,o
equivalent to A ] Mn.zMEVA EEEAF

. We have A :
F ' ' Fk,e m,H

m,0 F

k,o
SME SME

~ AF f\.JAF_
m,o' m,'s

“strongly Morita equivalent to."

@ M,, where "SME" stands for the términoTogy
L ™

(4.12) We now consider the rational case.

Theorem. If 8 is rational in {0,1), then AF &8 Mn is strongly
"_’ k,e
Morita equivalent to A .
Fk,O

—~ We need a lemma before proving this theorem.

(4.13) Lemma. For s = % in (0,1), where p,q are positive

n
integers with (p,q) = 1, there exists a sequence {wi}izl of
matrices in GL(23Z) and each wi is one of the three matrices:

1 1

- 1
o)» T = (% g) and T ° = (_; ?) so that

(W W

0 n_l...wl)*e = 0

(Wy---W )*0 # 0 for 1 < i < n.
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p.

Proof. Since 0 < g < p, we assume % =Nyt 7% for 0 < Py < Q.
= = = = —1
-S, w2 * e~ wno']'l T )

1 - = * O 1
we will have (wn0+1...w2 Wy )*e (wn0+1--;N2) ({7 g)*e)

1. Then Tet W

L]

we also have (p;,q) 1

- p]_ P
= (Wn0+1---wz)*(n0-+7r) = (Wn0+1"'w§*(”0‘1*‘7r) =eem

Proceeding with this construction, we will finally have the

lemma.

(4.14) Proof of Theorem (4.12).
By the lemma, for 8 = %,0 <.q < p and <p;g> = 1, we

have {wl,...,wn} in GL(2;Z) with W, is one of the three

1

matrices S, T and T° so that (W....N;)*6 = 0 and (W,...W )64 0

1
(i<n).' Clearly, W, must be of the form (+% 8). Otherwise

. 0 1
wn - (1 0

contradicts to the éssumption. Since each (wi...wl)*e 0

), but &' = (wn_l...wl)*e + 0, hence wn*e‘ + 0,

for 1 <1 <-n, we can apply Proposition (4.9) and the triviai

fact that Ap is *-isomorphic to Ap for any integer m.
k,0 k,6+m :
. SME SME SME
Therefore, AF ~ AF ~ AF —~
k.9 k,W,=8 ko (WoWq)%0
1 2"1
iﬁfe--iﬂg Ap = Ar . Hence we have

(4.15) To conclude this. section, we will consider the clas-

sification of C*-algebras associated with minimal rotations
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on tori up to strong Morita equivalence. The classification

of these C*-algebras up to *-isomorphism is already solved

by N. Ridel in [48].

(4.16)  Definition. Let G be a topological group, and g be

o in G. The rotation pg of _the group G is defined by multipli-
cation pg(g‘) = g-g' for all g' in G. The rotation Pq is

called minimal, if g generates a dense subgroup of G.

(4.17) Example. Let G be the ordinary torus'vh, the group

multiplication-and inverse operation are ‘defined-as follows.

Let (21,...,zn) and &i,...,zﬁ) be in' T", then

i

] 1
(Zl.zl,...,Z 'Zn)g

(zl,...,zn)-(zi,...,zh) 0

and (zl,...,zn)'1 = (31,..,,§n).

on T" is defined to be
8,) ,
IR - Zmig 2mi6
: = (e - 1 n
) - (e 'zls se 'Zn)s

The rotation p(e ...
12

‘Where 91;...,en are all in [0,1).

(4.18) Theorem [41, Theorem 5]. For any tracial state t on

_ n ‘ .
A = C(T )xp(sl""’en)z’ the range of the trace T on KO(A) is

7 + 812+- --+8nZ.

This is a generalization of Corollary 3.4 in [48], see

also [17]. ' |
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(4.19) Theorem [48]. If (81"°"en) is rationally independent

set in [0,1), then c{(TM)x )Z is *-isomorphic to

p(@l,...,ﬁn

n, ‘ . .
C(m )Xp(9i=""eﬁ)z if and only ifZ + 6,Z+- . .46 7

=7 + eiZ+"‘+eAZ, where (ei,,..,GA) is a subset of [0,1).

(4.20) To determine the strong Morita equivalence for these
“:-minimal rotation algebras on'aniwevﬁeed Theorem (4.4) and

the following algebraic lemma.

o dn GL(n+1:Z),

(4.21). Lemma. Let Cij_be the matrix I .4 + E1,3

1
where I .. is the identity matrix and E, 3 is the (n+l) by
' h

3

(n+1l) matrix in Mn+1(l) with 1 at the (1,j) entry and 0 at

1. )
"1
all the other entry. Let also that Iij = 0....0 1
| .1 0
b ey o
S 10.....0
—
jth l-n
t "
1 N ith
inGL(n+1Z) and e; = | " . Then GL(n+1,Z) is |

i <
generated by all Cij and Iij and € for 0 € j

c

Proof. Note first for 0 < j < i < n, I

i3%3%43
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I, =1 . +E..=¢C

= 12 =
Iij(I+Eij)IiJ =1 .+ 1,.E..I.. = i3 n+1 ji 51

S ' + E..

1J INER NI B In+1 EJJ

Therefore, it suffices to show that all elementary matrices
(see the definition in page -13 of "Integral Matrices," by

M. Newman), and this is just the Theorem II.7 in page 24 of
"Integral Matrices" by M. Newman [32].

*::{4.22)._Theoremfi”Let (ei";f’sh)': 8 and (el,...,en) = g
where 6. and e;, i=1,2,...,n are all in (0,1) and (el’°"’en)

s rationally independent. Then the C*-algebras C(Wn)xQ(e e)Z
l,-a" n

and CIW”)XD(G, B')Z are strongly Morita equivalent if and
15000, _

only if (e’,...,e;) and (81,...,en) are in the same orbit of ' ?

GL(n+1;Z) (see Lemma (4.5)).

_ n : . n

Proof. Let A = C(Hl)xp(el,-'_’an)z and B c(m )Xp(eia--gseﬁ)z
n , n

If C(T )xp(el,---,an)z and C{(T )Xp(ei’---’eﬁ)z are strongly

;Morita-equiva]ent,-therewis~an-~Aw~6-equ1va1ence bimodule X.

Let v be the unique tracial state on A by Corollary (1.13)

and (1.18), and Ty be the induced positive travial functional

on B (see Theorem (4.2)). Then by Theoren (4.2),
;TX(KO(B)) = T(KO(A)) = z+elz+...+eﬁz. On the other hand,

iany tracial state ¢ on B gives the range on KO(B)

¢(KO(B)) =7 + 912+"‘+9nz

y The0fem5(4.18). Let Ty =

= |-

¢ for some r > 0 and ¢ a traciaf
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state on B. Then we have
_ 3 i
Y(Z+elz+...+enz) =7Z + elz+...+enz,

Since (el,..,,en)is rationally independent. (eis-a-seﬁ)

1s too,by Theorem (4.4). Again by Theorem (4.4),

(el,....e } and (61....,8 ) are both in the same orbit of
- . GL(n+15Z) on S - (see Definition in Lemma (4.5)). ‘ ?

Conversely, if (61,...,en) and (ei,...,e;) are both in
the same orbit of GL(n+13Z), then (ei,...,e;) is rationally

independent since (el,...,en)

n

Since GL{n+13Z) is generated by {C 1J}i>j20

{sk,k=p,1,2,...,n},see Lemma (4.21), we need only to prove ;

and

the converse for those (el,...,e )'s which are images of

: > 3 > '
(81,...,en) by act12ns of Cij’ Iij and €y for all n 2z i > j 0, |
and k = 0,1,2,...,n.

- oIt dis trivial that the C*-algebras C(T")x z

p(Byse+250,)

and C(W )x Z are *-isomorphic
- SRR L L LIS EERRRLTY ’
and S0 the converse is true for € k > 0, since, if k > 0,
s N
% %
€1 * . = . . If k = 0, we have
on k-1
_ek
et
. |
: |
___,\en / ‘
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Y o e
0% = ", * . = . . But clearly,
% 1 % 8 '
n+l
n . . . n
c(m )xD(_el,...,_en)Z.1s also *-isomorphic to C(T )xD(el’...,ean.
. .
61 ’.1\
: . e | o] . n
Next, for i > 0, Ci;O : 81._1 s but C(T )Xp(ela_.,uﬂen)z
en 8.+1
i
Oi41
L

. *_.' . n , .
is 1somorph1c to C(¥W )Xp(el""’ei+1""8n)z is obvious, we

checked the converse for Ci 0> M zi>0. Fori>gjzl,

Fl o
Cig *a] = |¢ , since for the unique tracial state
s . . )
% Yi-1
04+ 8,
19541
.
W n ’
n .
¢ on C(M }x . Z,we still have
p(el,,..,ei_l,ei+ej,ei+1,...,en)

Z))
1,e.+e.,e1.+1,...,sn)

n
p(Kgle(T )Xp(91=--"91— 1495

Z + 8L t...¥ 91_1Z-+(ei+ej)z-+ei+fz to..40 7

_— - = Z + BIZ to..t 812 +...% enz.
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By Theorem (4.19),cC(TMx Z is
p(el"°'!ei_lei+ej:ei+1,nnl8n)
*-isomorphic to C(T" .
phi ( )Xp(el,...,en)z
_ 84
Now we consider Iij * E . For 0 < j<ics<n, Iij
en. i
)
has the form ﬁ.
- 1
O..Ilﬂ.ol
Lij = | S0
0 1. E
6 10......0 f
Bj-l .]J
\
(9.) ei
% 8541
92 \ M .
h AU
ence 113 ) = 191 . But clearly
. e.
: - 8 J
— L T 8-i~1-1
Sn |
. (el""’ej-l’ei’ej+1""’ei-l’ej’ei+1’°"en) is conjugate to
jth 1th
p(el,...,en) by a coordinate change, i.e. by Yij(zly~-,zj”y,z{,,;zn) |
st gth |
n , ;
= ’ﬂ.-’ I:..-’ L - =8 5 - 5 Z
(z1 Z; Z5s Zn) Hence, C(T )xp(e Lo "en) is
*~isomorphic to C(Hn)x .

P By ae s 0y 15835085, 15s05 15050055750 0.8,]
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Finally, we consider the case when 0 = j < 1§. Clearly,

8
1/’8_i
I,,* = :
17
1/81
6i+1/61
h en —
we may assume 1 = n. Our task is to show that C(T")x o 8 y/d
1 n-1,1
p(_gco_og 9""")
% ® On
is strongly Morita equivalent to C(T")x 7.
p(el,...,en) i N N
’ 4
By Green's Theorem (4.8), we let P = -1 R and :

H =Z act by a on P by translation of integers on the last
coordinate. Let K = Z act by B on P by Bk(zl,.,.,z
-_2ﬂ161k 2716 lk

= &fe seeasZ  pe - ,t+ken). Then both actions are

n-l’t)

free and wandering. Hence C(P/H)x_K and C(P/K}xaH are strongly

B
Morita equivalent since .H and K act commutatively on P.

Now P/H = T" is the standard torus, and the induced action of
K on P/H is just p(el,...,en), i.e. C(P/H)XBK = A. We claim
P/K is also homeomorphic to T". 6Let v o P/K ~ T by

8
. 1 . n-1 -t
=27 G_E]t -2mi _e; 2mi ‘é;
,...,zn_l-e , 8

w((zl,...,zn_l,t)K).= (zre }

then we check that y is well-defined. We know (Zl""’zn-l’t)K

_ ZHjQi Zﬂien_l .
= ﬁgfe~ seeesZp € ,tﬂan)K in P/K, but
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2nie, 2mie, 4
w((zfe ,...,;n_Ie ,t+en)K)
5] 8 t+6
. 1 . . n-1 . n
= (Zfe o2 : ’ . ,.-.,Zn_]:e L= ’e )
8 3,

-2ri bt -2rt P2l oni =
- n n . n
= (ZIE seesZ y@ ;e )

V(2 ez, g5t

The one-to-one and onto as well as continuity of ¢ is easy to verify

So we have @ homeomorphism ¢ from P/K onto T". The induced-

Y]
action H on P/K is transferred by ¢ to o : T" - Wn,

&(Zl"";zn) = walw'l(zl,...,zn) = wulw"l(zl,...,zn_l,eZWI't),t in [0,1)

enin,t 2rig_ ,t 2mif,t 2mio
R - 1 "'1t

wglze honzige "Ulet)) s ullze bz ge IR0 w))
‘ ! - i - n1 (St
T e 211'1'911:7-2‘”?- E'r_]'(ent"fl)f’* wooT —-2mi Bn:i'ti-Zm _e;i'_(e‘nt‘i'l) 2mi (_en— )

= (zqe e sevesZ, po@ e -

8 ¥,
-2 o -oni L oni o
= (zge n,...,zn_Ie n,zﬁe )
— n n '
Let o : T+ T be the map
5] 8 -
B 2 gt 2ri 5L ori 4=
a(zl,...,zn) = (zfe seensZy 7€ “,zﬁe )

and vy : T" > T" be the map

) :(:Y(Zl,--ogzn) = (El,-..,:{n) &
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Then it is easy to check that
-1 _
v ay(zl,...,zn) = a(zl,...,zn).

This tells us that the C*-algebra C(P/K)qu is isomorphic to

C(Wn)x Z. Hence C(Wn)x Z is strongly
8 8 p(8,...8 )
p(_l n-1 ;L) 1 n
Bn en Gn ;
Morita equivalent to C(T")x 5 g Z.
1 n-1 1
- . Plg=aeves—g—y)
- en Bn Bn

This completes the proof of the theoren.
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-

§5. Affine transformations on tori with quasi-discrete

spectirum

In Section 3 we have classified the C*-algebras associated
with certain Furstenberg transformations on‘tori. The method
of the classification is a combination of computing the K-groups
and the ranges of tracial states on!%-groupsa]ong with some
.nothermadihocftechniques.ArSincevRiefﬁeJ—in [50], Pimsner and
Voiculescu in [44] and Riedel in [48] used the same idea of
computing the ranges of tracial states on Ko—groups we find
that there is a uniform classification combining the classifi-
cation of minimal rotation C*-algebras on tori and the classi-
ficatiqn of the Furstenberg transformation C*-algebras we con-
sidered in previous sections. 1In other words, we will con-
sider a special clasg of affine transformations on an n-dim-
ensional torus and ogtain results on classifications which
~will include those in [48] and .in 83 _0f this thesis. This may
be thought as the first step of solving the problem of clas-
sifying-alirc*~a1gebra§ associated with affine transformations
on tori. For simplicity, we only consider the following class
of affine transformations. The general case of combining
Furstenberg transformations and rotations on tori can be

carried out in analogous fashion.

(5.1) Let K = (kl""’k ) be a descending sequence of integers_.3 :’

n
as defined_in (2.16). Let o = (81,...,en) be an n-tuple of
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humbers in [0,1). We denote by Fy o the transformation on
T"L defined by

k1 k 2W181 - 2rie

_ n m
FKJD(Zl’“"’zn’zn+1""’zn+m) (2122"""ann+1’e TZpyqreeesl 2o,

(5.2) Remark. FK;O is an affine transformation on T™ ™ with
quasi-discrete spectum (see [23])} The C*-algebras associated
with-affine transformations with quasi-discrete spectrum on

T" were first considered by J. Packer in [34]. Hence

either by a result of Packer in [34], a result in [18], or

by our previous calculation using Pimsner's Theorem (2.21),

we can calculate the range of any tracial s&ate 6n the crossed
product C*-algebras. We include a sketch of this which is

similar to our proof of Propasition (2.22).

(5.3) Proposition. 'Let t be a tracial state on Ty«

K.é

~ Then T(KO(C(I“+m)gF z)

Z + 6,2 +...+ 8. 7.
K,0 1 m

Proof ({sketch). Since the C*-algebrasAe = C(Fm)xel is naturally

contained 1in Ac = c(rhtm

K,O
(

)XF Z, one can show as in the
K
proof of Theorenm

2 &
2.22) that

T(KO(C(W”+m))xF Z)= I+ 8Z +...+ 0 1,
K,o

by Theorem (4.18).

Let Ae = C(Tfl)xe Z be the rotation C*-algebra on Fl
i i
Then each A. is contained in A and hence in A in
By © .o
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Ap in a natural way. By the same argument in the proof of

K,0
Theorem (2.22) and using Theorem (2.21), we obtain that the
kernel of the map (Fife)*"I on KI(C(Tn+m)) intersected with the
' n+m
pen) OF K(CT™™))

. e n+m . .
where z;'s are the coordinate functions of T m, is Jjust the

subgroup generated by [21],...,fzn],...,[z

‘subgroup of Kl(C(Wn+m)) generated by [zn+1],...,[zn+m]. We then
- - determine the contribution of ihese_generatqrs of the range

Z+e..+p Z,
K,@ 1 m

of the trace and find that j(KO(AF Y) =Z + 8
exactly as in the proof of Theorem (2.22).

(5.4) We now assume 0 is a rationally independent set. A
theorem due to Hahn in [23] says that FK,@ is minimal and
uniquefy ergodic. Minimality follows ffom the uniqueness of
the invariant probability measure (see Theorem 8 and Theorem
15 of [23]). Since é‘is rationally independent, Corollary (1.13)
implies there is a uniqqg tracial state on AFK . for n > 0.
~Note ~that if n = 0, Fk;efféduces to the rotation pg ON T

- Thus we have the following theorem.

(5.5) Theorem. Llet Fy 5

1y independent. Then 4, = C(v“*m)xF Z is a simple C*- ‘
K.o K,0

algebra with a unique tracial state.

be as in (5.1). Suppose o is rational-

(5.6) Proposition (2.17) can also be extended to the follow-

ing form and the proof is just the same as that of (2.17).

Proposition. Let Fy o be as in'(5.1). Then the torsion subgrpgﬁ; o
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| (m,) (m,)
of K*(AF ) is isomorphic to Z, 8 Zk B...9 z, .
K,e 1 2 n !

(5.7) Lemma. Let FK,O be as in {5.1) and FlKl,e be defined

| I k| 2mie,
IKI,@(Zl"°"zn’zn+1""’Zn+m) :(ZTZZ peeesZifngy o® “Inele
2ﬂiem .
ees@ 'zn+m)‘ Then FK’O,Js_topolog1pa]Jy conjugate to F

by F

|K],9°
The proof is similar to that of Lemma (3.8).

- We can now prove the following theorem which cdntafns the

'nmaﬁnrresultVOf Riedel for minimal rotations on:tori (see [487)

and a classification result in §3 of this thesis.

(5.8) —Theorem. Let FK,@ and FK',O' be as in (5.1) where
= S 1 t =
K (kl"“’kn)’ K (kl,...,kn), e (el,...,em) and

' = (ei,...,e&). suppose © is rationally independent and if
n >0, m> 1, we assume also that 8, = 8, or 1-86,. Then
Ap, 1s *-isomorphic to A if and only if [K'| = JK| and
K,0 K',0'
- - T — I : . ¥ %
Z + 8,Z +...4 0. Z =Z + 01Z +...+ 6,z (*)

(5.9) Remark. When n= 0, FK o Ts Just the rotation Py ON !

¥

and when n > 0, m = 1, FK o is just the affine Furstenberg

transformation FK 5 on Wn+1_
]

Proof of Theorem (5.8). We consider the case n > 0. By the

assumption, 6 = 8, or 1 -6;. IT we set o" = (1—ei,eé,...,e$),

then clearly F,, _, is conjugate to F,, _,. Hence, we assume
K .0 K',0

that ?1 = Oy

LW




is *-isomorphic to Af .

K',0'

By Lemma (5.7) one can assume K

K,©

.K‘ = ‘
tionally independent and Z + ¢

dependent. By the assumption Z + &1

d ei*= ©1, we see that the matrix A (aij)m+1 is of the form
(il 0 0...,.0\ ) 0 )
= 0 £y 0+er-- 0 = 0 1 ° |uhere An-1
algO agl ang" a?m 359 Ap1 N
e LT TR It R A PR,
/ L /

in GL(m-14Z). Without-loss of generality,

10 '
= 0 1 » where a =| !
a Am-l aﬁo

& denote all such matrices in GL(m+1;Z).

oup of GL(m+1;Z). The above analysis shows

O-by the action of G. Byt clearly, by Lemma (4.21), G iSL

71.

If AFK o is *-isomorphic to Ap , then by Proposition
ne 0 K',0'
6), |K[ = [K'|, and by Proposition (5.3), (*) holds.

Lf [K[ = |K'| and (*) holds, 8] = e,, we will show that

K|. Since @ is

z+:,.+emz = Z+0 Z+--.+em2,

, 1 1
“Lemma (4.6) there is a matrix A = (aij)ﬁ+1 in GL{(m+1;Z), so
( ]
81 91
E A = =] . Hence @' is also rationally
B g!
m m

Z#...+0 Z = Z + 61Z+...+8,7

1

we may assume
m1 | (m-1)x2

Then G is a sub-

that we need only

Prove thg{converse for those @' which are in the same orbitj;pf f3f

kal
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contained in the group generated by the following elementary

matrices in GL{m+1;Z),
Oth .
(1/ (£
- {Ekl k=2,...,m}, where Ek = ',"1 / H }
-1 4 ﬂ
T :
E |
A - ]
ro1 b :
;
.- |Jj
and {Cijl 1 53 <4 ¢m}, where .th__?. 1 ?
o -
Cig ~ é .. ;th |
10.-.01 «
".1 | b
and also {115[2 $J <1ism}, where :
'- |‘
. l
1 3t
0 ......0 1 i
Lij = D1 0
0 1o
1 O ‘e e = s O
— \.

as defined in Lemma (4.21).
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Therefore, we need only to check those ©' which are the

images of © by the actions of these matrices.

F

Next, forrcij,l

Since 1 > j 2 1 we may assume i
. . P ‘ 1
tions FK,@' is conjugate to FK,@’ where ¢' = (61"°"8m-1’em+ej)’

as follows.

61 i 91

First of all, ek * | . = .
- o =9y
\ Sm)

- 13-¢(219§:;3%

K,(ei,:::;:ek;igflem) 1S conjugate to

< J < 1isgm, we have C

fl

Let ¢ : TNM , htm

Then we have,

and

? Fro

It

1]

(zlw..,z

¢(Zf22 senesZpZ o€

(

n+m)

k1 kn Zwiel.

Zpe1omees

k1 kn 2mid

1
ZpZp an e esZpZ 150

'Zn+1,--.,e

Froordlzysenzyyy)

F

K,e'(zl""’Zn+m-1’zn+m'zn+j)

and therefore,

F
"Ks(els"
%1
R
J .
em

2mi6
e Y4

2w (8,48 )

Do v n

m

be the map defined by

n*ﬁl~? t;}j;"’Zn+m-1’zn+m'zn+j)°

. o Z .
Zptm “n+j

-

)s

m. Now the affine transforma-
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k1 k 2%161

2mi0 2ri{8_+0.)
- n m-1 m
- (21'22 ,---,Zﬁzn+1,e -Zn+1,---,e 'Zn+m“1,e

J
'Zn+m'zn+j)

i

and hence, ¢FK,6 = FK,@‘¢'

Finally, for Iij’ 2 < J <1< mwe have,

81 81
JF R th g .
Iij * 93 = 61 *J7, 25 j<1ism.
i : : th
~+
8‘1 Bj 1
emj kem
It is obvious (since 2 < j < i) that FK o' 1s conjugate to
Fe,g» Where o' = (81"'"ei""’ej""’em)’ by a coordinate changef
jth 1.t!rl
Therefore, A s *-isomorphic to A if Kl = [k
_ K, . : K',8'
~~ - and Z +*eiz+.ﬁ:#eml-=“Z“+”eiz+.:i+e%z,'Where m>1and n > 0,

81 = 61 or 1 -~ el.

Now if m =1, n> 0, we get a descending Furstenberg
transformation FK,e’ and the results in Section 3 yields the
desired conclusion.

If m >0 and n.= 0, then we have a rotation Py ON T".
The above proof also applies tothis situation.

This completes the proof of the theorem.
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§6. Concluding remarks

(6.1) In previous sections, by means of K-theory, we have
classified the'C*-a1gebra§ associated with special classes

of Furstenberg transformations on tori. We also determined
strdng Morita equivalence .for the C*-algebras associated with
Furstenberg transformations which are affine transformations

2

“~on the two dimensional torus T . "It is naturai to ask if

- 1t.is possible to classify the C*-algebras associated with all
Furstenberg transformations and to determine the strong Morita
equivalence for them. The-answer is ho at present for lacking
of new invariants of C*-algebras. For example, if we consider
the affine Furstenberg transformation F(a,b,e) on the 3-torus

T3, defined by

b 21:18'

F(a,b,e)(zi’zz’zs) = (Zl'z;’ZZZB’e z4)

--where-a and:b are positive integers. Then for i = 0.1,

K: (A K. (A
RRLTERIS I R PN

and a tracial state on AF of on AF has the same
(a,b,0) (b,a,e)

range Z + 6Z. Moreover, the positive cones of KO(A

)

"la.b,e)

and K (AF ) are also the same. But F(b is not
( 3

0 b,a,0) a,0)

topologically conjugate to F
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where the degree of f is k, then Fe g 1s homotopic to F, g 28

in Proposition (4.9). Unlike the situation for rotations on

1

T", the C*-algebras Ac and AF not only have the same

f,8 . k,6

K-theory but also have the same trace range on the Ko—groups.
2 But, -in general, we do not know-if Fe o Ts conjugate to Fk 6

or F, -1 These two examples makes us believe that to determine

k,e°
the isomorphism classes of the C*-algebras is a very subtle

matter. ' A possible way of. attacking-the classification of

the C*-algebras in the second example is to consider AF as
, : f,0

the crossed product C*-algebra of the'C*-dynamical system

'(Ae.a »Z), where A is the rotation C*¥-algebra on Wl'with two

canon1ca1 generators of unitary elements U, V, s.t. Uy =e2ﬂ]eVU,
and ar is defined to be af(v) = v and af(u) = uf(v), where f(v)
is the functional calculus of v by the function f. One can

~easily check that ag is a *-automorphism of Ae, by the universal |

property of Ae. On this hon-commutative‘C*-a?gebra Ae, we

- might have more room for -effecting -the exterior equivalence of

ag and azk (see [37], [38]). ' %

(6.2) In Section 4 we have shown that for rational o in [0,1),

the C*-algebras AF on Wz are all strongly Morita equivalent
k,o

2 1
to Ap . Let o =8 and o' =3 where (p,q) = 1, (g',p')

I
s

K,0 P P
and p, q, p', q' are all positive. If p ¥ p', then as we

indiggted’igzthe last paragraph in §3, AF is not *-isomorphic
k,d
P
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to Ap - But if p = p' and q ¥ - q', we donot know the
k’H_
pl

answer yet. However, the idea for the classification for
rational rotation C*-algebras Ag on Tt given in [52] could

|

. \
Provide a method for classifying the algebras Ap with |
o k.o ‘ |

rational in [0,1). But in this case, since the primitive

ideal space of Ap-i-1is quite complicated, one has to find
k,o

- S0me new arguments to-deal with it. We-would Tike to conjecture

that AFk . is x-isomorphic to AF for & and 6' in [0,1),
- Ky k,s'

which are rational, if and oh]y if 6' =8 or 1-9.

(6.3) 1In Section 4, we also determined the stfong Morita

.equiya?ence for the minimal rotation C*-algebras on tori con- | .
sidered by Riedel [48]. In general, certain non-minimal rota-
tion C*-algebras on tori have been classified in [14] and [56]. .

_;;Jhe_srrong.Moritazequivalence;fOt,these C*-algebras is stili L

open. Using the idea of §4 and the proof of Theorem (4.12),
the strong Morita equivalence for non-minimal rotation C*-
algebras on tori is at hand. We will give a proof for this in
[27]. The idea in 54 can also be applied to give a proof of
the strong Morita equivaltence for certain non-commutative tori,
(see also [271), although the classification of non-commutative

tori is a very difficult matter, see [17], [10] and [14].

(6.4) There is a possible direction to generalize the present f
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work of this thesis which will be of interest. We consider

the so-called "affine transformations™ on non-commutative

tori. Let ul,...,un_be n-unitaries satisfying the commuta-Y
tion relations uiuj = Aijujui (#), for all 4 < j = 1,24...,n,
where Xy s din € owith ]Aijl =1 . The universal representa-
tion of'these n-unitaries satisfying (*), gives a class of C*-
_algebras. whach are called the non-commutative tori, (see [171).
Another way to interpret these non-commutative tori is as the
twisted group C*-algebras, C*(Z2";6) (see [60] , where ¢ is

2 two cocycle of Z ),wh1ch is generated by n unitaries {uI } =1

satisfying the re]at1ons up up = c(I J)uI u; where

1 7] J i
{Ii}?=1 are the canonical generators of zZ"
One would expect to define the affine Furstenberg trans-

formations on C*(Zn;o) by

k1 k]
. i+l n _
FK,S : u_I > u].uH_1 ...un i=1,2,...,n-1
. 2mig
and FK,B Pu e —un.

But a simplie calculation shows that, this could be done
for all two cocycles if and only if n = 2. Packer in [35] and
[36] classified C*(Z%50)x.  Z where 8 is in [0,1) and

1,8

= e2ﬂ1e-u2, as described above. For

F
gluy) = ujuys Fy oo (uy)
A :x 3 this could be also done either for some affine Furstenberg

transformations or for all affine Furstenberg transformations

but-some very special 2-cocycles. Hence we would 1ike to re-

formulate the question, that is, we consider the twisted group




C*-algebra C*(anAZ;c), where z”kﬁz is the semidirect product

of the group z" by an automorphism A of Zn, and ¢ is a two

cocycle of anAZ. Denote p the restriction of o to Z" and .
.denote by Up the unitary in C*(anAZ;o) which represents the

element (0,.{.,0,1) in Zn%AZ. ‘Then up induces the automorphism
'aduA defined by conjugation on C*(Zn;p) which is what we

would 1ike toncall,an.Hafffne—transformation" on the non-

commutative torus C*(Zn;p). IT A is of the form

0 N
1 ky ...k
1k oo k2 |, kI 40, 0 = 1,2,...,0-1, then we would
1ot
1 y

L

like to call aduA an-‘affine Furstenberg transformation on
C*(Zn;p). If p is not rational in the sense of Rieffel in
[53], this ds, the range-of p is not contained in the set
{ie leezﬂie = X and 6 is rational}, then-C*(Zn;p) has cancella-
tion (see [53]), and therefore, the computation of the range of

CH(Z"5p) x4, Z) = Ko(C*(2"x,Z10)) is

a tracial staﬁe on K xaduA

of

similar to that given in Section 2 without difficulties. To

compute the K-theory for C*(an Z;q) X C*(Zn;p)x Z, we
A aduA

first have to analyse K*(C*(Zn;o)) which is computed in [17]

to be AZ" as an abelian group. Hence, by a computation




similar to what we did in §2, we can find the group

K*(C*(an Z;o)) or at least know the torsion subgroup of it.
A

Therefore, the classification of these C*-algebras is possible.

We will consider this program in a subsequent paper. .
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Appendix

In Section 2, we stated Theorem (2.13). 1In this appendix,
we will give a complete proof.

: v

‘The cohomology appearing in this appendix is the Cech

cohomology or sheaf cohomology.

r

(A.1) Proposition. The éohomo]ogywalgebra H*(v”;z) is naturally

isomorphic to the exterior a]gebra'A*Hl(Wn;Z).

Proof. For n =2 it is proved in [22] and [57]. 1In general,

by the Kilinneth forﬁu1a, H*(Wn;Z) is isomorphic to the graded

tensor product algebra é H*(WI;Z) of n-copies of the graded
'ra1gebra‘H*(W1;Z). "By tge construction of the isomorphism and

assgming {[Zi]}?=1 is the canonical basis in HI(TH;Z) given by »

the coordinate functions {Zi}?=1 in C'I(Wn) (the invertible
compTéx'va1ued continuous functions over T"), we know that

L(

”~ ~

TZ) corresponds to 18...018 [z] R18...81
h o
;

3Z). Moreover, the cup product in H*(WN;Z) corresponds

;::each”fzi] in H

in @ H*(T?
n

to the graded cup product in 8 H*(ﬁl;z), that is, if a in
n

Hifﬁn;z) and b in HJ(Hn;Z) have images a; @ai @...ﬁai and

1 2 n

b. 8...8b. in 8 H*(Wl;Z), respectively, where a, 1is of degree
J1 In n Ty

and bjz is of degree Jgs L =1,2,...,n, and 11+...+1n = i,

j1+...+jn = j, then the images of aub is

(ilftvi+i )j1+...+1

- J
n n—1(a1 Uph, ). 1In

Ub. )é...@(a
1

1 n Jn
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particular, the image of [Zi] U [Zi] is ; |

el

18...818([zJu[z])818...81= 0 in 8H*(T1;Z). Therefore,
' n

1th

[21] ) [Zi] =0 in Hx(T";zZ). oOn the other hand, [Zi] U [zj]

A

= -[zj] U [z;] by the construction of the cup product. Thus

we have shown that H*(T™z) s naturally isomorphic to

IR

~qA*H%an;Z) as-rings,-where the.cup product "py" in H*(ﬂn;Z)

corresponds to the wedge product "A" in A*Hl(ﬁn;z).

(A.2) Next, we state several theorems from [24], which are

crucial in the proof of integrality of the Chern character

on Kx(T").

(A.3) Theorem (Theorem 3.2.1 [24]). ﬁThe isomorphism classes
of fibre bundles over X'with structure group G and fibre F
(with a given effective continuous action of G on F} are in
~a:natura1~one-one correspondence with the elements of the
cohomology set Hl(X;GC). The trivial bundle W = XxF corres-
~ponds-to the distinguished element 1 in Hl(X;GC), where G

is a topological group and GC islthé sheaf of germs of con;

tinuous functions on X with values in G.

(A.4) Proposition (3.8)in [241). The map sf : H'(X;0%) »H2(x;2)

. . . 1 . .
is a natural isomorphism, where &8, is the connecting homo-

morphism in the long exact sequence,

1
8
2

. +H1(X;E£)'4 Hl(X;EE)~—j;H2(X;Z) +~ H

X;mc)_),...
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where € is the topological group of all complex numbers, C*
is the group of all non-zero complex numbers and Z is the

group of integers.

(A.5) Theorem (Theorem 4.3.1, [24]). Let £ be a complex

Tine bundle over X -and ]et‘cl(g) be the first Chern class

of €. Then cl(E) = 61(5), where £ is viewed as an element of

"Hl(X;Ez) by Theorem (A.3).

(A.6) TCérollary. Let X = sm"

be the reduced suspenéion of
the n-torus T". Then the first Chern class ¢y defines a one-
to-one and onto natural isomorphism from the set of all
isomorphic c]asses-of complex line bundles over ST" to the

y
set of the first Cech cohomology group Hl(Fn;Z),

Proof. Since HZ(SFn;Z) is naturally isomorphic to Hl(ﬂn;z),

the corollary follows from Theorem (A.5} -and Proposition (4.4).

(K.7) Theorem. The CHe¥n chardcter ch: K*{T") = H*(T";0) is
—;1ntegra1,—and'it-maps-K*GFn)~naturally and isomorphically

onto H*(Fn;z).

Proof. Clearly K*(Wn) and H*(Tn;Z) both are isomorphic to

n
2 By the second corollary of (2.5) in [2] ch is injective.

It suffices to show that the image of ch contains HI(Wn;Z).

Because, if so, then ch(K*(Wn)) contains H*(Wn) since ch is a

ring isomerphism and Hl(ﬁn) geherates H*(Wn;z) by Proposition
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(A.1). Since éh is injective and K*(Wn) and H*(Wn;Z) have the
same rank as free abelian groups we must have ch{K*(T")) is
equal to H*(T":Z) considered as a subfing of H*(T":@). The
natﬁra]ity of ch is also known as a theorem in [AH]. |

Let [£] -~ [1] be the formal difference of the complex _
- | "Tine 'bundle & and the tfivia1 complex Tine bundle 1 over STV,
’ﬂ;___ muﬁm,By"the natural isomorphism“K%(W) g_kﬁ(SWn), where K° is the
reduced K°-group {see [A]), we can view [£] - [1] an e]emenf
in K'(T"). Since ch is additive, ch([£]-[1]) = ch([£]) - ch([1]),
where ch[g]-= ch £ and ch{1] = ¢ch I are both in H*{ST";g). Since

all higher powers of elements in Hl(Wn;Z) are equal to zero,

i.e., if x is 1in Hl(Wn;Z), then x" = 0 in H*(T";Z) for n 2 2,
by Theorem (A.1}), and we have ch &= rank £ + cl(g) =1 + cl(g)

and ch 1 = 1. Here we have used the fact that the Chern classes

ci(g) = 0 for § 2 Z,Ebecause g is a complex line bundle (see

~[311). Hence, ch([£1-[1]) = c,(g) is in HE(ST":Z). Let g be
the natural isomorphism ?fom'Hz(SFn;Z) onto Hl(Wn;Z). We have,

':'¢ocho¢::.w'l(ﬁg]:tﬂj)'+"¢(cifg))"13"the‘usua1 Chern character
defined on w'l([g]-[ﬂ]) as an element in Kl(ﬁn) (see [2]).
According to Coro11§ry (A.6), 4 is a natural bijectibn between
isomorphism classes of complex line bundles over ST" and
Hl(Wn;Z). Letting £ range over SWn, we get all of the elements
in Hl(w”;z) since ¢ is an isomorphism. In other words,

ch(Kl(Wn)) contains all elements in Hl(ﬂn;z), which completes




