Chains and Lorentz Geometry
A Dissertation presented
by
- Lisa Katherine Koch
to

- The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy
in
Mathematics
State University of New Yogk
at

Stony Brook

August 1986




STATE UNIVERSITY OF NEW YORK
AT STONY BROOK

THE GRADUATE SCHOOL

Lisa K. Koch

We, the dissertation commitiee for the zbove candidate for the

Doc:or of Pn;losophy deg e, her’“y,recommeaédatcep;ance of
the dissertation,

Marle Loulse Mlchelsohn, Assoc1ate Professor of
Chairman of Defense ‘ Mathematics

C. Denson Eill, Professor of Mathematics

Pierre wvan Baal, Post-Doctoral Research Assoclate,
Institute for Theoretical Physics
Outside member

This dissertation is accepied by the Graduate School.

Roton Bt

Graduate School

August 1986

ii
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|
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1986

2n+1

Fefferman and others have shown that if M is a pseudo-

convex CR manifold (of hypersurface type) then a certain circle

bund1e over M carries a conformal class of Lorentz metrics in-
variant under CR diffeomorphisms of M. The conformal geometry
of these Fefferman metrics gives rise to the CR geometry of M,
In particular, the null geodesics of these metrics project to
an invariant system of curves called chains, originally defined
by Cartan, Chern, and Moser.

Jacobowitz has recently proved, by analytic methods, that

any two sufficiently nearby points of a CR manifold are con-

nected by a smooth chain. This dissertation provides a




geometric proof, exploiting the Fefferman construction, of

Jacobowitz' Theorem.
More generally, this work is a study of conformal Lorentz

manifolds L2n+2

which admit a geodesic nuil conformal Killing
field K such that curl (K) is hondegenerate and <C{K,X)X,K> = 0
for X L K (where C is the Weyl conformal curvature tensor of L),

2n+l of sﬁch manifolds by their null con-

and of the quotients M
gruence. These Lorentz manifolds are shown to include all
Fefferman manifolds. Al1 such L induce a CR structure on M
related to the geometry of L. The system of curves on M
obtained by projecting to M the null §eodesics of L is studied;
such systems of curves are shown to connect pairs of nearby
points of M, even if L is not Fefferman.

An example is given of a four-dimensional Lorentz manifoldﬁ
with the properties described above, but which is not Fefferman.
Its quotient CR manifold is identiffed, and the projections of

its null geodesics are shown to be gualitatively different from

the standard chains.
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0. Iintroduction.

The boundary of a domain in t" is a real hypersurface.
Such a boundary is of odd real dimension 2n-1 and therefore
cannot carry a complex structure, but for n 2 2 it inherits
the shadow of a complex structure, a CR structure, from the
ambient ¢". A CR structure of this "hypersurface type" may
be defined on an abstract odd-dimensional manifold, but the
resulting CR manifold may not be Tocally realizable as a
hypersurface in a complex manifold, [Nirenberg
1,2]. CR manifolds, even thoge whicn are boundaries of domains
in m”, are in general Tocally inequiQa1ent. They may be dis-
tinguished by various biholomorphic invariants; one such in-
variant is a system of curves called chains. |

Very 1ittle is known about chains. To this author's
knowledge, the CR manifolds whose chains are completely known
are all locally equivalent to the Heisenberg group, which is
the standard "flat" CR manifold in much the same way as R"
is the standard "flat" Riemannian manifold. Recently, H.
Jacobowitz showed that chains on a strictly pseudoconvex CR
manifold connect pairs of nearby points [Jacoﬁawitz}.

It is the purpose of this work to present a different
proof of Jacobowitz' result which makes use of a correspond-

ence between CR geometry and pseudoriemannian geometry due to

C. Fefferman and others. MWe hope that the techniques we use

may yield further new insight into the behavior of chains.




We begin with a definition of an abstract CR manifold
of hypersurface type. We then sketch briefly a construction
due to [Lee] of the pseudoriemannian Fefferman manifold as-
sociated to a CR manifold, and discuss the special properties
of such pseudoriemannian manifolds. Much of this discussion
applies to a stightly more general class of pseudoriemannian
manifolds, _ |

We then proceed with our proof that chains on a strictly
pseudoconvex CR manifold connect pairs of sufficiently nearby
points. This proof applies also to tbe "pseudochains" as-
sociated to the more general pseudoriémannian manifolds dis-

cussed above. Finally, we discuss an example of a CR mani-

fold with a system of pseudochains which are not chéins.




I. LR manifolds and chains.

An abstract almost CR manifold of hypersurface type is

2n+l

an odd-dimensional orientable manifold M (which we shall

always take to be smooth) together with a field of tangent

hyperplanes H2n

on which a (smooth) complex structure J,
I H o+ H linearly, 3% = —id},, is given. This J is called
a CR structure tensor on M. An almost CR manifold is called

a CR manifon.if its Nijenhuis torsjon tensor,

N(X,Y) = [0X,dY] + 02[X,Y] - J[X.dY] - J[IX,Y],

4

vanishes for X,Y & H; a CR structure Satisfying this condition
is said to be formally integrable.
Let 8 € T*M be a one-form which annihilates Q, A choice
of such a one-form is called a pseudohermitian structure on M. o
The almost CR structure on M is said to be noridegenerate if
o A (De)" # 0; this condition is independent of the choice of 8.
There is another way of describing a CR structure to

Zntl b an odd-

which we will heed to refer later, Let M
dimensional orientable smooth manifold. An almost CR
structure on M is an n-dimensional complex subbundle

TI 0 of the complexified tangent bundle LTM of M such that
E

Tl,O N TO,l = {0}, where TO,} = Tl,O' ke set H = Re(Tl,O 0,1);

H is a real 2n-dimensional subbundle of TM. It carries a




natural complex structure J given by J(V+V} = i(v-V) for

vV € T1 0° The integrability of the almost CR structure is

equivalent in these terms to the requirement that

[Ty 0°T1,0d €Ty 0

With respect to a choice of pseudohermitian structure
& on M, the Levi form Le of M is the Hermitian form on Tl 0
given by |

Le(vsw) = TdB(V,W), l

The form Le.depends on the choice of 6, but it changes only
by a conformal‘mu1tip1e if & is changed. If Le is (positive)
definite,'M is said to be strictly pseudoconvex. The Levi
form Le gives rise to a real symmetric form on H which we

also call Le.

It was first observed by [Poincaré] in 1907 that there
is no analog of the Riemann mapping theorem in several complex
variables. That is, real hypersurfaces in " may be ltocally
inequivalent under biholomorphic transformations. Poincaré
conjectured that real hypersurfaces in t"” have certain biholo-

morphic invariants associated to them. The signature of the

Levi form is one such invariant. [Cartan] solved the equivalence

problem for real hypersurfaces in Ez; that is, he found a system

of invariants on such hypersurfaces whose equality is necessary




and sufficient for biholomorphic equivalence of the hyper-
surfaces.

Cartan also defined a bjholomorphically invariant system
of curves on hypersurfaces in Ez, called chains. On 53, or
on the hyperguadric H3 = {{X,Y) ¢ EZIX—Y—iYV = 0} (also called
the Heisenberg group), the chains are the intersections of the
hypersurface with affine complex 11nes.l In general, chains
are the solutions of a system of differential equations. Through
any point of a'hypersur?ace in Ez, in any direction transverse
to the holomorphic tangent plane H, t?ere passes a unique chain.
Chains carry a distinguished parametef which is defined up to
a real projective transformation.

The work of Cartan was extended by [Chern and}Moser] to
arbitrary abstract CR manifolds of hypersurface type. They
also discuss a normal form for the equations defining a CR
manifold M, produced by osculating M by an image of the hyper-
quadric. This osculation takes place at a point p along a
chain passing through p.

Another way of describing chains is due to [Fefferman].
For a strictly pseudoconvex hypersurface MBCZ 52, he constructs

1

a Lorentz metric on M x S°, defined up to a restricted con-

formal multiple; the conformal factor is required to be a func-

1 factor. The fibers S1 are null geodesics

tion constant on the S
~of the metrics in this conformal class; the other null geo-

~desics project to the chains of M.




[Burns and Shnider] and [Burns, Diederich, and Shnider]
give an intrinsic construction of the Fefferman metric, there-
. by generalizing the correspondence to apply to any nondegenerate
CR manifold of hypersurface type. For a CR manifold M of Levi
signature (p,q), they obtain a pseudo-Riemannian manifold L of
signature (2p+1, 2q+1) on a certain circle bundle over M. If
M is strictly pseudoconvex, this pseudoriemannian manifold is
.of Lorentz signature. Burns, Shnider, and Diederich's con-
struction invoives embedding Chern's CR structure bundle for
M in the conformal structure bundle of L. In this way, they

show that all CR invariants of M may be recovered from the

(restricted) conformal geometry of L.




Il. Construction and characterization of the Fefferman metric.

[Lee] has found a more direct construction of the Fefferman
metric of an abstract CR manifold, which we shall review here.

For a nondegenerate CR manifold M2n+1

of Levi signature (p,q),
the Fefferman metric is a canonically defined pseudo-Riemannian
metric of signature (2p+1, 2g9+1), defined up to a restricted
conformal factor, on a certain circle bundle over M. This
underlying circle bundle is the quotient C = k*/RY of the
canonical bﬁnd1e K of M with its zero section removed, by the
natural action of R*. Lee's construction of the Fefferman
metric on C gives a particular representative of the conformal
class in terms of a choice of pseudo-Hermitian structure on M,
Lee shows that the restricted conformal class of this metric
is invariant under change of pseudo-Hermitian structure on M.
Choose a pseudo-Hermitian structure on M; that is, choose
a (real) one-form 6 on M annihilating the hyperplane field H.
Let T be the unique vector field on M so that 6{T)} = 1 and
T de = 0. Choose n complex one-forms 6% on M so that the

1,0

§7, restricted to 7T form a basis of T R and spo that

1,0°

These choices determine a (Tocal) section Ly = BAB%\..}Bn

of K*, and thus also a section of C. Let vy be the variable
{mod 27) on the fibers of C such that {eTYcO] = [¢], where [z]

is an equivalence class of (n+l1,0)-forms at a point of M. Let

V be the vertical (ie., tangent to the fibers) vector field




such that dy(Vv) = 1.

For a CR manifold M of Levi signature {(p,q), the Fefferman

metric on C will be the pseudo-Riemannian metric d52 = LB + 280

of signature {2p+l, 2q+1), where o is a canonically specified
real one-form on C with o{(v) # 0. To this end, let n be an

s Ny

n-form on C satisfying ¢ = 8 +n, Ty 0 for any 1ift T of T

to C. Lee shows that n is unique. The one-form ¢ is then

chosen to satisfy

1) dz = i(n-2)0 A ¢

2) oAdna n=Tr(do)ica 8 AT A M.

Lee shows that conditions 1) and 2) determine o uhique]y, and

that the resulting metric d52 = L, + 260 agrees with the one

g
defined by Fefferman on nondegenerate CR  hypersurfaces in En+1."““

[Sparling] has shown (see also [Graham]) that a pseudo-

2nt2 ¢ signature (2p+l, 2q+1) is locally ;

2n+1l

Riemannian manifold L
the Fefferman manifold of some nondegenerate CR manifold M
of Levi signature (p,q) if and only if L admits a null Killing

vector field K satisfying

1) K_JC=0, K_JSCh_=O
2} Ric(K,K) > 0,

where C is the Weyil tensor of L, Sch is the Schouten tensor,
and Ric i1s the Ricci tensor. These conditions are jnvariant

under conformal changes of metric on L for which K is a Killing

field of both the new and old metrics. lIn the presence of




condition 1), Ric(K,K) is actually constant [Graham]. If L
is of Lorentz signature, then for any null Killing field K
we have Ric(K,K) = 0, and the significance of the striﬁt
inequality in the second condition is to make rot(K) non-

degenerate, where
rot(K)(X,Y) = ${<v,K,¥> - <v.K,X>} for XY 4 K.

This follows from an examination of Raychaudhuri's equation

for null geodesics [Hawking and E17is] (note that a null Killing
field is geodesic, shearfree, and diyergence—free), or from

some calculations we shall make in tﬁe next section. Observe
that rot(K)(X,K) = 0 for any X ¢ ¥+, and that k! has odd
dimension 2n+l. Since K is a null Killing field, rot(K)(X,Y) =

<VyK,Y>. Thus rot(K) is nondegenerate if and only if, for
each X e K*, X ¢ span(K), there is a Y ¢ KL, V ¢ span(X),

such that <VXK,Y> # 0. This means that VK is a nondegenerate

linear transformation from K-/K to KL/K. We show later in a

2 o Ric(K,K)-id , and thus
K-/ K
that VK projects to (a multiple of) a CR structure tensor

more general context that (VK)

on M.
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ITI. Lorentz metrics and pseudochains.

2n+2

More generally, let L be a real Tine bundle or circle

bundle (with Lorentz metric <,>) over an odd-dimensional orient-
able manifold M2n+1, such that the vertical null vector field

K is a null Killing field satisfying the conditions

1) vrot(K) is nondegenerate

2} <C(X,K)K,¥> = 0 for X e KL,

where C is the Weyl conformal curvature tensor of L. We shall
see that the restricted conformal class of (L,<,>)determines an al-
most CR structure on M, together with a\system of curves (given
by projecting the null geodesics of L onto M) which we shall
call pseudochains, |

The holomorphic tangent plane field H2n is given, as
before, by projecting K‘L onto M. In general, however, the CR
structure tensor J will not be simply the projection of vK.
To define J, we must recall the definition of null sectional

curvature and make a few observations about null sectional

curvatures of vertical null planes.

Definition [Harris]: Let N be a null tangent vector at a

point p to a Lorentz manifold L; Tet X be any spacelike vector
perpendicular to N at p. (Then NaX is a null plane containing

N.) The null sectional curvature KN(NAX) of the null plane

NAX with respect to N is
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o <R{X,NIN,X>
ey {NAX) = ==y

This curvature is independent of the choice of X in NaX, but
it depends quadratically on the choice of N in NaX.

- The Weyl confermal curvature tensor C is defined by

<C(X,YYZ,W> = <R{X,Y)Z W5

# Lof<XNSRIC(Z,Y) - <X,ZsRic(M,Y)

+ <Y,Z>Ric(W,X) - <Y,WsRic(Z,X)}

1
* ey (mo2y R

(<X,Z5<Y,U> - <X, Ws<¥,Z5).
In particular, for X,¥ 1L K we have
COGKIK,Y> = <ROGK)K,Y> = 2= Ric(K,K)<X,Y¥s.

Therefore, if <C(X,K)K,X> = 0 for all X 1 K, we see that

H

€ (KAX) = 5= Ric(K,K).

Thus the sectional curvatures of all vertical null planes

are equal. To show they are positive, write
<R{X,K}K,X> =<VXVKK,X> - <VKVXK,X> - <V[X,K]K’X>'
Assume that X is extended so that [X,K] = 0. Then

<R{X,K)K,X> = -<VKVXK,X> (using VKK = Q)

1l

-K<VXK,X> + <VXK,VKX>.




12.

But <vyK,X> = 0 since K is Killing, and [X,K] = 0, so

<R{X,K)K, %> = <VXK,VXK>

In terms of null sectional curvature,

Now VXK £ KL, since <VXK,K> = % X<K,K> = 0. And v, K is not

X
a multiple of K, since the assumption that rot{K) is non-

degenerate means that <VXK,Y> # 0 for some Y ¢ Kl. There-

fore, VXK is a nonzero spacelike vect?r, and

o - ROGKK X _ STxETxKe
K <X, K> <X, Kh> ’

We are now ready to define the CR structure tensor bn M.
1

PROPOSITION: J = w(jfz vK| J_) is a CR structure tensor on M.
K .

PROOF: We must show that J%(X) = -X for all X e n(K%); that
is, we must show that (VK)Z(X) = -y X (mod K} for all X ¢ KL.
It suffices to show that <(vK)2(X),Y> = —KK<X,Y> for all X,Y
in KL.
2 _ . . . fam
<(VK)T{X),Y> = <VVXKK’Y> = —<VYK,VXK> (since K is Ki1ling)
= —X<VYK,K> + <VXVYK,K>
= 0 + <R{Y,K)X,K>

-<R{Y,K)K,X>
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= - f% Ric(K,K)<X,Y¥> (since <C{X,K)K,¥Y> = 0.)

<X,Y>,

- K

K

Here we have used the identity VAVBK—VVAB

K = R{A,K)B, which
holds for any Killing field K and any vectors Aand B, in the
fourth equality; we have also assumed during the calculation
that [X,Y] = 0.
B

The CR structuré tensor we have just defined may or
may not be integrable. [Graham] shows that the curvature
conditions K ; € =0, K4 K_ Sch = 0 are sufficient to ensure
integrability (where C is the Weyl tensor and Sch i§ the
Schoyten tensor of L}. Of course, every CR structure tensor
on a 3-dimensional manifold is integrable. If Ky is constant,

1
then K may be replaced by the new Killing field K, ='/EE K, and

then the CR structure tensor becomes just w(vKl] ¢).

Since the flow of L along K is isometric, 1% takes null
geodesics of L to nu11 geodesics of L. This ensures that, by
projecting null geodesics of L to M, we obtain_.a system of
curves on M determined by initial point and initial tangent
direction. This initial direction must be transverse to H,
for curves tangent to H cannot be the projections of nulil

geodesics of L.

These curves are just the chains of M in the CR structure

induced from L, if L satisfies Sparling's conditions; if
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Sparling’s conditions are not satisfied, then they will gen-
erally differ from the chains. We shall call curves of such i
systems pseudochains. It is the object of the next section |
to show that pseudochains connect nearby points of strictiy
pseudoconvex CR manifolds. This induces the result of
[Jacobowitz] that chains connect nearby points of a strictly
pseudoconvex CR manifold, as fhe special case where the pseudo-
cthains are derived from a Lorentz manifold which is locally
Fefferman.

So far, we have been considering Lorentz manifolds L which
are line bundles or circle bundies ovér the base M. However,
if the fibers of L are circles, we may replace L with a line
bundle L over M {or, at least, over an open neighbarhood U of M),
so that ' is a covering space of L. That is, we may “"unroll" o
the circular fibers into lines. To avoid confusion, in the
next section we assume that all our Lorentz manifolds are line

bundles over M. Since the theorem we wish to prove is of a

local nature, we may make this assumption without loss of

generality.




156.

1v. Connectivity theorem and lemmas.

2n+l

THEOREM., Let M be a strictly pseudoconvex CR manifold,

with pseudochain structure derived from the conformal class

of the Lorentz manifold L2n+2.

Then, for any point p ¢ M
and any neighborhood U of p, there is a neighborhood V of p,
VcCU, so that p can be joined to any distinct point q ¢ V
by a smooth pseudochain remaining in v,

The idea of the proof is to show that the lightcone of
a point p of L, where w(p) = p, is shaped so that the pro-
Jection map n : L » M takes an appropriate portion of it onto
a neighborhood of p. Since the lightcone of p consists of
those points of L which can be reached from P by a smooth

null geodesic, this is equivalent to showing that p can be

joined to every point of the neighborhood by a pseudochain,

We begin by recalling that null sectional curvatures of
all vertical null planes along a given fiber y = ﬂ'l(p) are
equal to the same positive constant.  From Jacobi's equation,
a point p ¢ Y muﬁt then have future and past null focal points
along y of order 2n. Now choose a vertical hypersurface T
tangent to the lightcone of p  along v; Lemma P enables us to
show that every fiber near v in T enters the future and the
past of p. By Lemma N, we see that this happens in a normal

coordinate neighborhood of ﬁ, for fibers close enough to .

But, in such a neighborhood, the boundaries of the past and




16.

the future of B are the lightcone of 5, so we may conclude
that fibers close to y in T intersect the past and future

Tightcones of p. From topological considerations, we then
see that every fiber near vy = w'l(p) intersects the 1light-
cone of p, and we are done.

The firstlleﬁma is a generalization of part of Proposi-
tion 7.27 of [Penrose], and our proof follows its proof closely.
Before stating the lemma, we recall the notions of null focal
point and null coordinate system as set forth in [Penrose].

Let Yo be a null geodesic orthogonal to a spacelike (n-2)-
surface DI at a point p. A point g ¢ Yoo A # p, is said to be
a focal point to I, along Yo of order k if and only if there
exist k nontrivial independent Jacobi fields along %0 which
vanish at q and which arise from a k-parameter varjation of Yo
through affinely parametrized null geodesics orthogonal to-zo.

For the construction of the null coordinate system, let
a, be the null hypersurface (near zo) generated by the family
(v} containing Y, ©f null geodesics orthogonal to I, Varying

L, smoothly in some one-parameter family (L) such that the

direction of variation is not tangent to 2, we.obtain a one-
parameter family of null hypersurfaces (9). The null genera-
tors of () form a congruence extending {v). Let T be the
null vector field tangent to this congruence; then T = -vu,

where u is the variation parameter whose level sets are the

hypersurfaces (). The vector field T is geodesic (VTT = 0)
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and rotation-free. Let v be the affine parameter on y with
5y - 1 and v = 0, u = const. on (z). Choose the remaining
(n-2) coordinates X; so that each geodesic y is given by

u,xl,...',xn_2 = const. Then the metric may be written as

ds

- 1 A AdxH -
2du(dv+2 adu+bkdx )+ rludx dx®, A,u 1,...,{n-2).

This éoordinate system is valid near Yo until a focal point
to Z, is reached ([Penrose], Proposition 7.26). The surfaces
(r) may be allowed to degenerate to points. In this case the
focal points of Ly = {p} are called c?njugate points to p

along Yoo

LEMMA P. Let X" be an n-dimensional Lorentz manifold of
signature (-,+,...,+); let p,qg ¢ X. Let v be a future-null

geodesic from p to q.

a) If the first internal point of v which is con-
jugate to p is conjugate of kth order, 1 < k = n-2,
then there is a k-parameter variation of v through

timelike curves from p to q.

b) Let £ be an {(n-2)-surface which is sﬁ%ce11ke and
contains p, such that vy is orthogonal to £ at p
and there is a focal point of I along vy between p
and q. Assume that the first such focal point is

th

of k order, 1 s k £ n-2. Then there is a k-

parameter variation of v through timelike curves
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from I to gq. If k = n-2, every point of £ in a

neighborhood of p is in the past of q.

PROOF. Let r be the first conjugate point to p, or focal
point to I, beyond p along y; by assumption, it is of kth
order. By Proposition 7.26 [Penrose], there is a null co-

ordinate system & valid in some neighborhood of the portion

of v between p and r, and valid also at p in case (b).
Let T = y. We may choose the u-cbordjnate of & so that
3 3
<—,a—

au u
on yv. (T = §%= where v is the affine'parameter on v.)

> < 0 along y. Scale u so that -vu = T, and take u = 0

Choose a point w. on vy to the future of r, close enough
to r so that rw contains no pair of conjugate points. Then,
if r' precedes r on vy and is close enough to r, the point r' -
wf]? not be conjugate to w eiéher. Thus the segment r'w of

:
]
vy is covered (except at w) by another null coordinate system !
|

(é_, Choose & so that T = j% = gL = T along v.
3V v

Since r is a kth—order conjugate point of p (or focal
point of ) along v, there are k independent nontrivial Jacobi
fields Xl""’xk on v which vanish at r, and which arise from
a k-parameter subfamily containing y of the congruence (y) of
null Tines of & continuous with y. We have DX, # 0, X; =0

1

at r. So, the Xi have the form Xi = (v_-v)Y., where Vo is

the value of v at r. The Yi are smooth vector fields defined

along v which are orthogonal to v (but not tangent to vy), and




19.

nonvanishing at r, so the Yi are spacelike at r (<Y1’Y1>|r

We may assume that the Yi are mutually orthogonal at p'

(<Y1,Yj>|r. =0 if i # j).

a b _ a b
Now (Yi) (Yj) Va lpu = -(Yi) (Yj) v, Ty

= "<VY1T’Y3>

= - (v —v)'1<v

o X-T’Yj>

i

-1

= —(vo-v) <VT(V0-V)Y1,Yj>

= (v _uy-ll '
= (VO V) <¥i,Yj> - <VTY1’YJ>

near r, this quantity being large and positive just to the past
of rony if i=j. Thus, if the point r' is sufficiently close

to r and just before r on y, we have

(Yi)a(Yi)bVavb(U~a) > 0 (formula P1)

at r', since Vavbﬁ is continuous at r. In fact, the matrix

_ a b ~ . s ..
By = (Yi) (Yj) vavb(”'m!r' is positive definite.
Now set U = é% at r', and consider exp . applied to the

(k+l)-plane I spanned by U’Yl""’Yk' Write the general ele-
ment of T as xU + y1Y1+"'+kak’ and consider u and a as

functions of the coordinates (x,yl,...,yk). We have u = u = 0

: . 1 - _ay.... = _.._aa = !
at the origin r' = (0,0,...,0), and also 5. 3y 0 at r

(since du(Yi) = '<Y15T> = 0, and similarly for a). Also

> 0).
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AU _ Eﬁ - : . - _ = = . Ty = o
X - 3x 1 at r' (since U{u) <U,T> 1 <U,T> U{u),
and U{u) = %% = 1). Finally, formula (P1) states that
~ 2
. g — _ a-u
Aij Aij ts positive definite, where Ajj = 5“_3_—’ '
yi yj r
Consider the hypersurface
k A
4x + 2 (A .+A ) y.y. =0
i,3=1 W 1T

(hypersurface (P2)) in 7. Taylor's theorem gives

k ~

.1 i .
u = i 3 §$1(Aij Aij)yiyj + O(yiyj) 1«3 <k,
p K.
= = .o }
u 4 121(A1j Aij)inj + O(yiyj)s

so for small enough H(yl,...,yk)H > 0, we have G < 0 < u.

Thus, eXP .1 applied to this value of (x,yl,...,yk) ines us

a point r" for which u > 0, so r" << w, and for which u > 0,

so (in case (a)) p << r", That is, there exists a broken
causal curve from p to w passing through r"., In fact, for each
value of (x,yl,...,yk) on the hypersurface (P2), su;h that
H(yl,...,yk)" is small enough, there exists such a curve pass-

ing through r“(yl,...,yk) = expr.(x,yl,...,yk) Therefore,

there exists a k-parameter variation of v throdéh broken cép;a]
curves from p to g which are not null geodesics. By Proposition
4.5.10 of [Hawking and E114s], such curves can be varied to give
timelike curves joining p and q, so case (a) is done.

To complete the proof of part (b), recall that r' is

covered by the null coordinate system G for“(yl,...,yk)"
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small enough, r”(yl,...,yk) will be covered by & also. Llet
(u,v,wl,...,wk, Zk+1""’zn-2) be the n-tuple representing
the coordinates of r" in&. We have shown above that u(r")
and v(r") are positive for each r". By construction, u = v. = 0
on L. Therefore, r" = (u,v,wl,...,wk, Zk+1""’zn-1) >>
(0,0,wl,...,wk, zk+1,...,zn_2) e Z. So there exists a broken
causal curve from the point (G,O,WI,...,wk, Zk+1""’zn—2) of
L to q passing through r"(yl,...,yk) = (U?V’Wl""’wk’
Zk+1""’zn-2)‘ By Proposition 4.5.10 of [Hawking and E114s],
this can be varied to give a timelike curve. Thus there is a
.
k-parameter variation of vy through timelike curves from ¥

to g. If k = n-2, each point of £ in a neighborhood of p can

be joined to g by a timelike curve.
=

For the second lemma, recall that a neighborhood U of
a point p in a pseudo-Riemannian manifold X,<.> is called a
normal coordinate neighborhood of p if there in a neighborhood
U of 0p in TpM on which the exponential map expp is a diffeo-
morphism onto U. A normal neighborhood U of p is geodesically
star-shaped with respect to p {but not necessarily geodesically
convex).

We derive the second Temma as a consequence of the follow-

ing proposition.

PROPOSITION: Let X, Y be manifolds. Let A be a compact sub-

manifold-with-boundary of X. Let f : X > Y be a local
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homeomorphism such that f|A is a homeomorphism. Then f is a ‘

homeomorphism on some neighborhood of A in X.

PROOF: We must show that there exists some neighborhood

Uof Z = f(A) in Y such that f has an inverse on U. If

3L = ¢, let % be an extension of Z to a submanifold without
boundary of Y (of some dimension as Z); if 3Z = g, take % = 7.
Choose a Riemannian metric on Y. Then, for small enough ¢ > 0,
% has a tubular neighborhood (Té,ﬂe), where TE is the set of
points of distance less than e from % in Y, and the projection
Tt Te - % gives TE the structure of! (the total space of) a
vecfor bundle over 7 whose zero section is the inclusion

Z+T_ [Hirsch].

Let {W§} be a cover of Z by open sets such that f has an
1nvérse on each Nu. Choose a finite subcover {wi} of Z. Note
that, at any point z ¢ Z, there is a basis for the oben‘sets
of Y containing z of the form ﬂ;l(V), where V is an open set
of % with z ¢ V. Therefore, we may choose a good cover {VB}
of Z in % such that, for some ¢ > 0 and for each g, ng(vg)
is contained in some Wi (A good cover {VB} has the property
that finite intersections of the VB are contractible; see [Bott
and Tul.) Let {Vj} be a finite subcover of Z in %. Then the

sets U, = ﬂgl(vi) have the properties that

(1) f has an inverse on each Uss

(2) finite intersections of the Ui are contractible,
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(3) finite intersections of the Ui with Z are contractible,
(4) UifW Uj N L =g = UiIW U‘j = g.

1

By assumption, f has an inverse f = on Z. But since an

inverse of f on a connected set is determined by its value at

one point, we may choose inverses f;l for f on each Ui so that
-1 o o=l
f'i (p)‘fj(
by setting f;

p) if p ¢ Ui N Uj, and these choices are determined

S Uilﬂ Z. Thus we have constructed a

well-defined inverse for f on U = UUi, and this ﬁ is the re-

quired neighborhood of Z. in Y.
_ ! -

{

COROLLARY (Lemma N): Let y([a,b]), 0 ¢ {(a,b), be a segment

of a geodesic in a pseudo-Riemannian manifold Y, such that
y([a,b]) has no self-intersections and contains no point con-
jugate to y(0}. Then there is a neighborhood U of vy([a,b])

which is a normal neighborhood of y(0).

PROOF: Apply the Proposition with X = Ty(O)Y’ A =
-1 _ . .
ipr(O)(y([a,b])), and f = epr(O), to obtain a neighborhood
U of y¥([a,b]) on which epr(O) is invertible. Then choose a
- A
neighborhood of A = exp'1 (v{[a,b]})) contained in exp 1 (U)
¥(0) (0)
which is star-shaped with respect to 0 ¢ TY(O)Y; this 1is
possible because A {s star-shaped with respect to 0. The

image of this star-shaped neighborhood is the required normal

neighborhood U of v(0) containing y([a,b]).
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PROOF OF THEOREM. Fix a point p ¢ M, and a point

P e n'l(p) € L. Let y(t) be a parametrization of n'l(p)
such that ¥ = K and v(0) = p; then v{t) is an affinely
parametrized null geodesic of L.

We know that sectional curvatures of all vertical null
planes K A X in Tv(t)L are egual and positive, for all t. An
examination of Jacobi's equation shows that all Jacobi fields
J(t) along y(t) with J'(0) = 0 and J{0) = X, where.x is some

spacelike vector perpendicular to X, vanish simultaneously

at a point y(—=%) to the future of v(0) on v, and at a point
2/ k ‘ -
y{—= ) to the past of v{(0) on Y;‘where e = KK(KAX).
2/ x |
Let Eznfbe a portion of a wavefront of the lightcone

"%y at p = v{(0). Then ¥ is a spacelike surface

2/?.)

of dimension 2n, perpendicular to vy at p, and having past

of v{

and future null focal points of order 2n along vy at affine

distances —— and —1 respectively.
2/ K 2/ K
Zn+1l . .
Next, let T be the vertical hypersurface in L

consisting of those fibers of w which pass through Zzn, i.e.

let T = n'l(w(E)). Let v(a) be a point of v to the past of
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E = v(0), which lies between the first past-conjugate-point
of B along vy and the first past-focal-point of £ along vy.
Choose also a point y{b) between the first future focal and
conjugate points of 5 on y. Since the vertical null vector
field K on L is a Killing field, the hypersurface I is foliated
by the past and future translates of ¥ under the action of K.
Let L, be the past-translate of £ on which the point y(a) lies;
let Zb be the future-translate of I containing v(b). By Lemma P,
every point of Za close enough to y(a) lies in the past of B
(denoted J7(p)), and every point of L, near y(b) lies in the
future of p (denoted J+(E)). In terﬁs of T, this means that
every fiber of m in T near ¥y entérs the future of ﬁ and the
past of ﬁ before reaching Zb and Za’ respective]y.j |

By lTemma N, there is a neighborhood U of v([a,b]) which
is a normal coordinate neighborhood of 5 = v{0). 1In such a
neighborhood, the proof of Proposition 4.5.1 [Hawking and E11is]
shows that the boundary aJ+(p) of the future of 5 is the future
Tightcone of p (which we will denote LC+(§)); also 8d (p) =
LCT(p). We now see that those fibers of 7 which enter Ji(ﬁ)
before leaving U must intersect LCi(E). SincéhU is an open
neighborhood of y({a,bl), we may say that every fiber of 7 close
enough to y in T intersects both LCT(p) and LCT(p). Now, the
lTightcone of 5 is ruled by the null geodesics which pass through

B. By the "conservation lemma" (also called the "constant-of-

motion Temma"), any geodesic of L has a constant inner product
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with the Killing field K which is tangent to the fibers of 7.
Thus the lightcone of ﬁ is transverse to the fibers of 7,
except along y = n'l(p). That is, n restricted to LC - vy is
a local homeomorphism.

In fact, 7 restricted to (LC+—y){\ U-is a homeomorphism.
If any two points g4 and Go of (LC+—Y)fW U Tay on the same
fiber, then the one (say g,) to the future could be reached
from p by a broken null geodesic consisting of the Tight ray
from ﬁ to qq > followed by the section of the fiber {which
is also a null geodesic) from G4 to P This curve is not a
smooth null geodesic, since the first‘segment is nonvertical
and the second is vertical, so by Proposition 4.5.10 of
[Hawking and E11is], 9, can be reached from p by sohe timelike
curve. This curve can be made to Tie pointwise close to the
broken null geodesic from p to q,, and thus to lie in U. But
then 45 could not have been a point of LC+(§),'since

LC+(§) C13J+(E) in U. So no two points of (LC+—y) N U can 1ie

on the same fiber, and w| + is one-to-one. Thus
(LCT=y)NU

7 | is homeomorphism. Similarly, «| _ is a

(LC+-Y)ﬂU (LCT -y )NY
homeomorphism. |

Finally, we must show that = maps a suitable subset of
the lightcone of p onto an open nheighborhood V of p in M. To
this end, define a subset L+ of (LC+—Y) M U as follows: din-

clude in LT the open segment of each future-null geodesic
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through 5, from p to the point where the geodesic either
1) leaves U, or 2) interesects T, whichever comes first.
In case 2), include also the intersection point. Define a
set L~ similarly.

From t* and L” we shall construct a new set S. Choose
t7, t" eR, tT < 0 < t’, so that v(t7) is to the past of the
first past-conjugate-point of y(b) along v, and so that Y(t+)
is to the future of the first future-conjugate-point of y(0)
along v. Let S be the union of 1) a copy of Lf, past—franslated
an affine distance t~ under the action of X, 2) a copy of L,
future-transiated an affine distance tf, 3) those segments of
fibers in T intersecting both the translates of L¥ and L~ which
lie between the interesection points, and 4) the cfosed ségment
of v from v{(t™) to y(t+). S is homeomorphic to an open'(2n+1)-l
ball; p = v(0) is in the interior of S.

Now define an equivalence relation R on S by declaring
two points o and g of S to be R-equivalent if ﬁ(a) = q(g).
Then the set B = S/R is still homeomorphic to an open (2n+1)-
ball, and the equivalence class [p] of p is in the interior

of B.
» . - (\)
The projection map m : L - M induces a map m : B - M
which, by the above discussion, is manifestly one-to-one and
continuous. By the invariance of domain theorem [Spanier],

the set V = %(B) is an open {2n+l1)-ball in M, and w(B)-= p is

in the interior of V.
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Since every point of the sets L™ and L~ can be reached
from p by a null geodesic, and since the image of LT U L~
under m is the same as the image of B under T (that is, V)
by construction, we have shown that a point p of M admits a
neighborhood V such that every point g of V, g # p, can be

reached from p by the projection of a null geodesic of L.

That is, p and g can be connected by an L-pseudochain.
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V. Example of a nonstandard pseudochain system on the
Heisenberg group.

We now turn to the study of an example of a three-
dimensional CR manifold with a system of pseudochains which
are not chains. We have noted that Fefferman metrics satisfy
K1 C= 20, where C is the Weyl tensor; thus a four-dimensional
Fefferman metric must be of type N or O in the Petrov classi-
fication (see [Kramer, et. 61.]), and Lorentz manifolds of
other Petrov types cannot be Fefferman. We shall study such
a metric with a rotating null KiTling field, identify its
quotient CR manifold, and show that the pseudochains of the
induced system differ qualitatively from the standard chains
on this CR manifold.

The Lorentz manifold we wish to study is thé Godel uni-
4

verse [Godel], which we label 6. This spacetime is homeo-
morphic to R4, and carries the Lorentz metric
ds? = di% + d3% ¥ LePXa5? - (atre’ad)?.

It is a solution of the Einstein equations (with cosmological

constant) for a pressure-free perfect fluid, and it is of Petrov

type D [Kramer et. al.]. Let us write T = JL, X = j?, ¥o= 2

~ a ~ A a§ ~ ax 83\/’

7 = 57. The two null congruences T + Z and T - Z are in fact
i

commuting null Killing fields with nonvanishing rotation. Let

K1 =T+ Z and K2 =T -~ Z. We shall consider the quotient CR
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3 4

manifold M™ of G by the null gecdesics tangent to the Killing

field K=/2 Ky -

The space M3 can be realized in G4 as the subspace Z = -

jm >

, an

D>

we give it the coordinates {t.,x,y)., where ¢ = t - E, X =
y = &. The holomorphic tangent plane field on M is found by
projecting K¥ to TM; it is spanned by X = ﬂ*(i) and _
Y = ﬂ*(%—EFQQ). (i and T - e'gY are orthonormal spacelike
vector fields of G.) The CR structure tensor J on M is given
by J = n,(VK); we see that J(X) = Y and J(Y) = X. 7

The Godel universe is a completg]y homogeneous space-

time. It has the five symmetries [Godel]:

o>
+
o

+ b
+ b

<y
3
<>

+ b, ¥ =+ e—by

bt

-5

B W ™
— e e e
>y N
¥
N>
+
o

a rotation {(best described in other coordinates).
These induce the following four symmetries of M:

1) 7 +1+ b
2) y~» y+b
3) X+ x + b, y~ e_by

4) rotation.

Thus M is a homogeneous CR-manifold. Symmetries (1) - (3)

leave invariant the wvector fields
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1) 7T
2) X

w*(Kz)
W*(i)
3) W=, (/Ze*Y)=/2T-Y.

It

These vector fields form a Lie Algebra with the following

product relations:

(7.x1 = [T,W]

0; [W,X] =W

Thus we see that M is a Lie group isomorphic to R x Pz, where

P2 is the non-commutative upper-half-plane. The identity ele-

ment is the point (t.X,y) = {(0,0,0). \

The homogeneous 3-dimensional CR manifolds have been
classified by [Cartan]. The space M we have been considering |
i |

is called g in Cartan's classification (see no.37 of [Cartan]),

B = ((u,v) e €%|U - T - 4VV = 0). In fact, M is the universal

and it is locally equivalent to the Heisenberg group 1
|
cover of the Heisenberg group with a chain through infinity,

Y = 0, removed. The map from M3 in three real coordinates

{T,x,y) to H3 given as a subset of Ez in two complex co-

ordinates {(U,V) is given by

(Qur coordinates (T,x,y) on w3 correspond to Cartan's coordinates

(a,b,c) on Ip as follows: T =Db, x = ¢, y = a.) The point
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2

(0,0,0) of M is sent to the point (i 1) of H in C°,

5
The null geodesics of G4 project to a system of pseudo-
chains on M. MWe have shown that two sufficiently nearby points
of M are connected by a curve of this system. However, these
pseudochains differ markedly in their local and global behavior
from the standard chains. We shall map the G4—pseuhocha1ns of
M to the Heisenberg group, where the standard chains are we1d~
known, in order to make the comparison. There we shall find
that 64-pseudocha1ns are never closed in sufficiently small
neighborhoods, and that they do not c9nnect pairs of points
globally. This, of course, is in str%king contrast to the
behavior of the standard chains of H3, some of which are circles
in any neighborhood, and which do connect any pair bf points.
To show the difference in the global behavior of chains
and G-pseudochains, consider the function r on G given by

P

2X

1 + " + 22X

¥e

roj—

cosh{2r) =

~

2eX

[Chandrasekhar and Wright] computéd the geodesics of the Godel
universe G, and they found that this function r is bounded

an{1+,/2) on the null geodesics which

H

above by the value s
pass through (%,X,y,z) = (0,0,0,0). Projecting r down to a

v —_
function r on M, we see that ? is bounded by an(l1+/2) on the

G-pseudochains passing through (t,x,y) = (0,0,0). Thus

1 + ™ + 5 y e

3 2 cosh(2r) =
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Now passing from M3 to H3 via the correspondence given above,

we find that

5, L v+ 2re?(uy i)
< =2
2( V]
on the G-pseudochains passing through the point (%,1) of H.
Since 2 Im(U) = |V|2 on H, we may rewrite this inequality as
1+ 4 Im'Z(U) + ereZ(U)Im-Z(U)
3 4 2
2 ) .
Im ~(U)

Simplifying, we have

-2 ReZ(U) > 4 Imz(U) - 6 IQ(U) + 1.

In order for this inequality to have solutions, it -is necessary
that —/hg < Re(U) < /-g. Even if Re{U) = 0, which allows

Im{U) to takg on the widest possible range of values, we find

that 3275 ¢ nuy ¢ 2255

Im(U) = %[V|2 of H, we see that the coordinates (U,V) must

Using the defining equation

remain in a compact subset of mz on the pseudochains passing

through (%,1), and so these pseudochains remain in a compact

subset of H., Thus most points of H cannot be joined to (% 1)
by a G-pseudochain. The standard chains of H3 join any pair
of points (even making allowances for the absence of points
on the line V = 0), and so the standard chains through (%,1)
do not remain in any compact set.

The pseudochains of this system also differ locally from

the standard chains in thaf they are not closed in smalt
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neighborhoods. To see this, consider the function f giVen

by restricting the z-coordinate of the Godel universe to

any affinely parametrized null geodesic. Since g% is

parallel, f is a linear function of the affine parameter of

~the geodesic, and therefore it is strictly monotone and un-
bounded above and below. Since g% is also nonvertical, f
projects to a function F on pseudochains wiﬁh the same pro-
perties; F is the t-coordinate of a point of a pseudochain
in the coordinates (7,x,y) on g discussed above. Mapping
to the Heisenberg group, we see that Arg(V) is always de-

creasing on every pseudochain. Thus, no pseudochain of this

system in a sufficiently small neighborhood of H - {V = 0}

can be closed.
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