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Abstract of the Dizseriation

Projective Structures on Riemann Surfaces

by

-

Jharna Dana

boctor of Philosophy
Mathematics
|

State University of New York at Stony Brook

Let T be a Fuchsian group acting on the upper half-

plane U and having signature (p,n,O;vf,v?,---un);

[t o

2p - 2 + (l—l/vj) > 0. B2(U,F) is the space of bounded

i=1
guadratic differentials foxr I'., There 1ls a complex vector

bundle B(T(l")) over the Teichmuller epace T{I') of T suct
that the fiber of R(T(T')) over the point representing the

group I' is the space B, (U,T).

2

A given (t,e) € A(T(T)) defines an equivalence class

19846 _
- v * . EI 3 - 3 4 ‘
0f bounded projective structures with Schwarzian derivative |

|
.
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all homomorphisms of I' intc G. Then we have a well defined
map

¢ : B{T(I) - JomiT,C)/C.

We prove that the map ¢ is a holomorphic losal homeomorrhisnm.
AT

Earle, Eethal and Hubbard proved this result for compact
! - gy

We also formulate a unigueness theorem for bounded

reflectable deformations of a Fuchsian group of the second

]

gl

ind., This gives a generalization of a uniqueness theorem

[ty]

by Kra for cdeformations of a Fuchsian group of the first

kin
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Chapter O

Introduction

A projective structure on a Riemann surface M is an equi-
valence class of a coordinate coverings of M where the
transition maps are projective maps (that is, Moebius
transformations);

By Keebe's Uniformization Theorem, any compact Riemann
surface M of genus > 1 can be exprassed as the quctient of
l1ts universal covering U by a group of covering transforma-
tions T; U is the upper half-plane and [ ig a discontinuous
subgroup of the group G of Moebius transformations.

"Given ¢ € Qz(U,F), the space of quadratic differentials

for T, let f be a meromorphic soclution in U of the Schwarzian

differential eguation Sf£ = . Then f is a holomorphic local
- N < A

homeomorphism from U into the extended complex plane £, and

there exists a homomorphism ¥ from I into G such that

(0.1} f{v(z)) = xi{v)(£f(z)), for all v €T, =z € U,

The mapping £ can be viewed as describing a projective struc-
ture on M. Kra defined the pair (f,%) as a deformation of T.
Modern writers who have investigatad projective structures

include Earle, Gunning, Hejhal, Hubbard, Kra, Maskit and others.

1.
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Most of their attention has focused on the Monodromy map.
There are two versions of the Monodromy map in the literature. |

We define the simpler one first.

Any mercomorphic function g on U with Sg = » is given by
g ='A0f, A € G, where £ is a unique, suitably normalized,'
function such that S£f = . Replacing Ff by Rof ha; the effect
-of conjugating % by A in (0.1). Let Hom(T,G} denote the set
of all homomorphisms of T into G, Then, we have a well de-

fined map

®M : 0.(U,T) = Iom{l,G)/G.

a% is called the Monodromy mnap.
X -

Another version of the Mcnodromy map involves variaticn
in the guadratic differentials on a varving Riemann surface.

Let Tp be the Teichmuller space of compact Riemann surfaces

of genus p > 1, There exists a complex vector bundle TQ of |

W

rank 3p -3 over ‘I‘p whose fiber over a point reprssenting M
is the space QE(U.T) (5].
For a given (t,#) € TQ we get an equivalence classz of

projective structures and a coniugacy class of % € Hom(T,G)

as beflore. Therefore, we have a map

¢ : TO - Hom(T(G)/G.
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$ is also called the Monodromy map. This map restricted
to the fiber ovex the point in Tp representing M iz just

the map ¢M'

$ has been shown to be a holomorphic local homecmorphism

by Heihal first [12], then by Earle [7] and Hubbard [i47.

7}

In this disserxtation, we extend this result for surface
with punctures and ramification points.
We have also focused on the map ¢W' Kra has proven

that ¢ is injective [15]. He has alsc proven the injec-

hot
tvity in the case of surfaces with punctures,, of course,
restricting the domain to the finite dimensional space of
bounded quadratic differentials [17]. One can, naturallvy,
think of generalizing this result for‘borde“ed Riemann sur-
faces. Gallc and Porter have constructed examples in [9]
to show that the restriction of ,, to the space of bounded
reflectable guadratic diffesrsntials B;(U,F) mav not be in-
jective. They have also generalized the injectivity for a
some what differsnt Monodromy map for surfaces with one
boundary curve [(9]. 1In this direction, we formulate a
uniqueness theorem for bounded reflectable projective struc-

tures.

In Chapter I, we include some preliminary definitions

and discuss gome well known interesting properties of




Hoekiue transformations,
In Chapter II, we find the set of regular pointz in

Hom(l,G). This techn
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main theorem in Chapter IIT.
In Chapgter IIT, we prove the Monodromy theorem. In

£71. Earle derived variational formulas from which the re-

&)
o]
P
-
Hh
0
=]

lowed easilv. A simple extension of his work gives
us the desired generalization,

Finally, in Chapter IV, we prove a unicguenesgs theorem

of the second kind. We obtain a splitting property of a
wall known short exact sequence which associates to a

Fuchsian group of the second kind its Schottky-double. We

also study the menodromy cf bounded reflectable deformaticns.




Chapter T

Preliminaries

§0. We start with some properties of Moebius transforma-
tions. We define Fuchsian groups, their regions of dis-

continuity,limit sets and Fundamental domains.

§1. A Moebius transformation g is a conformal self-mapping
A .

of the extended complex plane € = C U {w}; hence it is of

the form

_ az+b

g(Z) - CZ"‘d' a'b'C,d E G: With ad—bc=l.

We dencte the group of all Moebius transformations by G.
We have a natural isomorphism

_ SL(2,T)

G /x1,

where SL(2,T) is the group of 2 ¥ 2 complex matrices with

determinant 1 and I is the identity matrix (é g).

- . :azth . . .
2 transformation g € G, g(z) = cmiat 9 not being identity,
AL

I3

is called parabolic if and only if trzg = (a+d)2 = 4; is

)2

called elliptic if and only if tr2g = (a+d € {0,4); is

called loxodromic in all other cases. A loxodromic trans-

formation g for which tr2g > 4 is called hyperbolic.
A transformation is parabolic if and only if it has one

fixed point. All other transformations have two fixed points.
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For a loxcdromic transformation g, of these two fixed points
one, we denote by X, is repelling, the other, we denote by v,
. : -n n
is attracting; g (z) » x and g (z) » y for n=1,2,... .

Any g with two fixed points x and y may be written in

the form

(1.1) gle)ox _ 42 z=x
: g(z)-y z-y '

, 2, s an . .
k is a constant. Xk~ 1is called the multiplier of g. If

k2 = -1, we can not distinguish between the fixed points
of g.

If g is loxodromic, ‘kzi > 1:

Iif g is hyperbolic, k2 > 1;

If g is élliptic, [kzﬁ = 1.

§2. SL(2,C) is a complex 3-dimensicnal iLie group. We
dencte the Lie Algebra of SL{2,C) by G. The Lie algebra
G is identified with the tangent space to SL({2,&8) at I as

follows. We consider a one parameter family of elements

w(t) of SL(2,C) such that ®(0) = I. Then
. olt)-T _ B
e T 2t £=0

determines a vector u € . Now it is easy to check that 8




consists of 2 x2 complex matrices with trace zero.
The adjoint representation u = uA of SL(2,€) in § is

defined by

A

u = AdA(u, u € G, A € SL{2,C),
where

AdA: G = G

is the differential at I of the map

SL{z2,C)2x P> A_loXUA € SnL(z2,T).

Explicitly

-1, ‘tuo
WP = 1in & s Bzl - a7howa, A € sn(2,0), u € g .

At this moment it is necessary to introduce some notations

that will be used throughout this section. If p € M i

in

a
point on a complex analvtic manifold, then we denote by

TP(M) the tangent space to M at p. If
£ :M-N

is a complex analytic map between two manifclds M and N,

then we denote by

(df} (p) : Tp(M) = T ()

£ (p)




the differential of £ at p € M.

Let us consider a holomorphic one parameter family of

elements

¥(£) = Bet™®, B € SL(2,C), u € G,

such that {0} = B. Then %%‘L_O = Bu is a vector in

TB(SL{z,E)). The left translation
G 3 upP Bu € TB(SL(2,§D))

is an isomorphism between G and TB(SL(z,E)). Hence, in
practice, we shall identify TB(SL(2,¢)) at an arbitrary
point B with G. We define the differential of £ at B as

follows. For u € G,

£{Be"™) ~£ (B)
kol

(df) (8) (u) = lim
t-0

A parabolic transformation with fixed point x £ = can

be written as an element of SL(2,T) as 1+px P ): P + 0,
P 1-px

which is unique up to multiplication by -1 [17]. We con-

sider the natural map
T : SL{(2,T) =G

which is two-to-one and unramified. Let P be the set of



parabclic transformations in G. Each parabolic transforma-
tion corresponds to two matrices in SL(2,EC}, one of which

\ -1 )
has trace 2 and the other has trace -2. Thus n (P) consists

J._ —_
of two disjoint sets P and P , where

+

v
1l

the set of elements in SL{2,T) with trace 2\{11,

vl
I

the set of elements in SL(2,C) with trace -2\{-1I1.

We prove the following Lemma which has been proven by Gardiner
and Kra in [10] in a slightly different manner. We shall adopt

the calculations from [10].
Lemma 1.1. Let £ : SL{2,C) = C be the mapping defined by

V£ {x)

tr x.

b

If u € ker(df)(B) with B € P, then there exists a v € G

such that

. " s + .
Proof. f is holomorphic., Let B € P . Then there exists

an A € SL(2,T) such that

-1 _ {1 p
A BA = (O 1).

We consider the function



10.
SL{2,T) 3> B P A"lBA € SL(2,T).
Since F is a ho;omorphic isomorphism,
u € ker d(f&F)(B) o (dFj(B)u € ker(df) (FB).

Moreover, for v € G, B € SL(2,¢}, A€ sn(z,c)

u = VB-—V & uA = VBDA—VA = A—lBA-—ﬁ : *-VA
V] 17 VISV,
) A
and (dF) (B) (u) = u .
Thus it suffices to assume that B = (- p) Fo = (a b)esg
- a O l - I' 11 - c _a r
tu
(d£) (B) (u) = lim (B t}‘f(B)
=0 ,
/1 p)(l+at bt ip
_ I{(o 1/\ct .1—at>+o(t)}_f(0 ;)
= lim t
t=0
+oot c+ -
£{ l+atlpc~ bet+p (1 atg‘+o(t)}-2
. ct l1-at .
= 1im "
-0
-+ -
= 1im 2 th 2
£-0
— Pc -
. . a b
Thus if u € ker(df)(B), ¢ = 0; that is, u = (O —a)' We
) a' b' .
check that there exists a v = ( . ,) € G such that
e -a

(5 2)=s7C 2)s-(C0 2



since
: 2 .
_ {1l p -l,a' b’ ‘a' b'\ _ /pc' —c'p“+2a'py.
B = (o 1)' B (c' —aJ B (c‘ —a') . ( 0 c'p
We choose ¢! = - g. a' = %é?g + and b"arbitrarily. This

completes the proof of the Lemma.

In the above calculation for (df) (B) with B = (S ?)

we notice that, for u € G,
(df) (B} (u) = pec.

Since p # 0, ¢ % 0, (df)(B) is surjective. Again the dif-
ferential of the map F : x = A_le, X € SL(2,T), A ¢ s8n(2,T)
is suijective. Hence (df) (2) is surjective for any B € P ,
Therefore, df has maximal rank at each point of P+: that is,

+ . . L -1 - .
P is the set of regular points of f in £ ~(2) and hence P is

a submanifold of SL(2,T) of dimension 2 by the Implicit

+

function theorem, Moreover, for B € P .
TB(p*) = ker (df) (B).
Hence from the above Lemmza we conclude that

+ B
TB(P ) = {u€G; u=v -v for some v&G}.

Similarly, we can show that P is a submanifold of SL(2,C)

e




T (P) = {uéq; u=v -v for some v€0ql.

+ - . . . . -
Since P and P project to P in G, P is a submanifold of G

of dimension 2. Thus we prove the following

Corollary 1. P is a submanifold of G of dimension 2. Morae-

over, for g € P,
Tg(P) = {ueqg; u=vI -v for some v € Gl.

An elliptic transformation g with the fixed points x

and y can be written as

where k2 is the.multiplier of g, k2 + 1. Choecsing a positive
2 i 2 %/ )
sguare root of X7, we write k© = 1/%. Then solving the

above equation we can write in the matrix form

o 1 (=/k-yk xy (k~1/K)
x-y\1/k-k xk-y/k
which is unigue up to multiplication by -1 [20], 1If K° = -1,
the above expression for g is symmetric in x and vy.

Let E be the set of all elliptic transformations with

the multiplierrkz.. Each elliptic transformation in E



-t
93]
»

corresponds to two matrices in SL(2,T), one of which has
trace k+1/k, and the other has trace -(k+1/k).  Hence if

- + -
k2 + -1, n l(E) consists of two disjoint sets E and E ,

E = the set of elements in SL{2,8) with trace k +1/k,
E = the set of elements in SL{2,I) with traée —{k+1/%) .

if k2 = -1, n*l(E) is just one set: we denote it by

o 0 . .
E , where E = the set of elements in SL(2,C) with trace

zero. As before, we have the following.
Lemma 1.2. ILet £ : SL(2,8) = C be the maprping defined by
CE(x) = tr(x).

+
Then 1if u € ker(df)(B), B € E, then there exists. a v € §

such that

Proof. The idea of the proof is same as it is in the Lemma

k O
l.1. Without loss of generality we assume that B = (O 1/k>'
Then for u = (a b) € G,
o -a




AT 2 oo 0,

(d£) (B) (u) = lim t
£-0 |
k(1+at) kbt X 0

- 1in £ me 1meeae)) LG )
£-0 ¢

- pi UL/K) vak (em1/%) #O( £ ) - (b1 /K)
£-0 ¢

= a{k-1/%) .

0 b

Hence if u € ker(df}{(B), a = 0; that is, u = (c o

). We

1 L)
check that there exists a v = (2, _Z') € (G such that
e 0
'k 0 -1 0 b (1/x°-1)
Eince B = (O l/k)' B "vB—v =( 5 ).
’ c' (k7-1) 0
: b - bt
We choose b' = ¢ ¢ = and a' arbitrarily.
1/k7-1 kT-1

This completes the proof of the Lemma.

Once again, we observe that (df) (B) is surjective for
+ ) 2 , +
B &€ E, since a + 0 and k + 1. Hence at each point of E

. + - \
df has maximal rank, and hence E = f l(k+l/k) is a sub-

manifold of SL(2,€) of dimension 2. Morsover,

TB(E+) = ker (df) (B).

Hence.

TB(E+) = {u€G; u=v -v for some v € G}.
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Similarly, we can prove the same results for E as well as

2 + - .
for EO. When k" % -1, E and E~ are submanifolds of SL{2,C).

2

Since E and E project to E in G,E iz a submanifold of G

2 \ . - :
When k& = -1, % is a submanifold of S5L.{(2,C}. Hence

E = E°/+I is a submanifold of G. Thus we prove the follow-

ing.

Corollarv 2., E 1s a submanifold of ¢ of dimension 2.

Moreover, for g € E,

.Tg(E) = {ué€ G u= vI -v for gome v € GJ.

§3. We shall be studying groups I whose elements are Mosbius
transformations. Let T be a subgroup of G and z be a point

A L . s - \ s
in €, We denote by Fz the stabilizer of z in T; +hat is,

Tz:= {verl; y(z) = 2},

We say that [ acts discontinuously at z if

{1) Tz is finite, and

(ii} there is a neighborhood V of z such that
y(V) =V for all v € r_ and

vy(V) NV is empty for v & T\TZ.




A .
Let Q(T) = {z € €; T acts discontinuously at z}. We eall

Q(T) the region of discontinuitv of I'. The group T' is called

A
discontinuocus if Q(I') is not empty. We call C\Q(T) the limit

set of T and denote it by A(T). 0 is an open T-invariant
A ' -
subset of €. The cardinality of‘A(F) is 0,1,2 or =, If the

cardinality of A(T) is 0,1 or 2, T is called elementary; T

is called nen-elementary otherwise.

‘ A
If T is discontinucus and there exists a circle ¢ in T
such that T fixes the interior of ¢, then T is called Fuchsian.
In this case A (T} €8 ¢c. If A(T) =cC, T is called the

Fuchsian of the first kind , T is called Fuchsian of the

second kind otherwise. We shall work with finitely gen-
erated Fuchsian groups fixing the upéer half-plane U. For
such a group U, the quotient space U/T is a Riemann surfacses
of finite genus with a finite numbér of possible punctures
and ramification points and with a finite number of possible
analytic boundary curves. ILet the:genus of U/T be p. Let
the total number of punctures and ramification points be n
and let the number of boundary curves be m. Then we say
that the surface U/T, eguivalently the group T, is of type
(p,n,m). If T is of the first kind, m = 0; m > O otherwise.

The surfaces with m > 0 may also be called bordered Riemann

surfaces. Letr[xl,xz,...,xn} be the set of points on U/T




that are either punctures or ramification points. Let Vv

: . . . -1
be the ramification index of = (xj), where
m: U > U/

is the natural projection map, and we set vj = = for punctures.

Then we call the seguence
{Pl ntm?")lr \’2': ‘e -:Vn}
the signature of the group T.

Definition. By a fundamental domain for a finitely generatesd

Fuchsian group T acting on U we mean an open subset D of U

such that

(1) whenever vz = (¢ for some v € T, z € D, ¢ € D,

then v = I4d,

(ii) for every point ¢ € U, there is a v € " and

a z € CLD such that v{z) = ¢,

(111} the boundary of D in U, 8D, consists of a finite

number of piecewise analytic arcs, and

(iv) for every arc ¢ € 8D, there is an arc c' € 8D

and an element vy € T such that v{c) = c'.



18.

In U we introduce the Poincaré metric based on the line
element ds = (ﬂnz)_l\dz!; this makes U into a model of the
non-Euclidean plane. The geocdesics of this metric are arcs
of Euclidean circles or:straight lines orthogenal tq the
real line. The above metric is invariant under T'. Thus it
can be projected to U/T %o obtain a metric which, of.caufse,‘
has singularities at the ramification points and the punc-
tures. But these singularities are not toc bad in the

sense that the Poincars metric on U/T is locally square in-

tegrable at ramification points as well as in a deleted

neighborhood of each puncture [8].




Chapter IT

The set of regular points in Hem(l',G).

0. 1In this chapter T is a Fuchsian gr@up of signatures
n
NV o,eee,u Y: 2p-24% (1-1/v.) > 0. Hom(T,G)
2 n 1 =1 J
J
igs the set of all homomorphisms of T into G. In this chapter

{p:nlOF\)l

we prove that a certain subset of Hom(l,G) is a manifold.

The case n=0 has been studied by Gunning [11].

’oooc

§1. Let a.,b

:b se e 'b C
1 p’p’

1'a2 o ---,cn be a fized

1 w’ “me1’

set of generators of I satisfyving the following relations.

d ]
an cJ_zjh 3 =1,2,-++,n-m,

'l
v
o
o
o2

and c_,¢C

where Eai,bi] L

gt taC are the parabolic

generators, and ¢ seee,C  are the elliptic generators with

periods Vv, ,V_ ,**=,V , regpectively. We also assume that

172 n-m

the multiplier of c is k?, j = 1,2,¢0¢e¢,n-m.

m+
Let Hom®(T',G) be the subset of Hom(Tl,G) ceonsisting of

those homomorphisms % which preserve the parabolic trans-

formations and the multipliers of the elliptic transforma-

tions of . A homomorphism ¥ ¢ Hom(I',G) is completely de-

termined by 2p +n Moebius transformations



%(a,) = s,
1 1
x(b,} = &,
ha L
x(cj) = s (1 <i<p, 1<3 <n)

satisfying the following relations

) n
Nls,,t,] Tw, =1
i=1 * tj=11
and
v,
wmij = T, i =1,2,+¢.,n-m.

P is the set all parabolic transformations and Ej is the
set of elliptic transformations with the multiplier kg:

9 =1,2,cs+,n-m. If % € Hom*(I,G), x(cj) = Wj € p for

J = 1,2,¢0.,m; x(cm+j) = wm#j £ Ej for §J = 1,2,++.,n -m.
Hence (51,52,---5 .tl,tz,...,t ,wl,w2,...wn) is a point in
: GszPmXE XE Kewso¥ E We denote (S =+ t ese,t
1777 ~n-m " 1! :Spr 1’ ’ p!

: ) ap
w :---:Wn) by (si,ti,wj) and G

m
P YE,%++e% E by G
1 XP xE x-+-xE Dy G

m 2p,n

for short. We introduce a function F on G2p n defined by
r’

n
rtlnw.

P

Cle

e
This is a complex analytic function from Gzp n into G.
. r
The subset
R = {(si,ti,wj) € Gzp,n’ F(gi,ti,wj) = 1)}

is then a complex analytic subvariety of ¢ P 0’ the mapping




Hom*(r'G)- 3 NOE (X(a):%(b):x(c)) € G
1 A J 2p,n

identifies Hom*(TI',G) with this subvariety and thus establishes
a compiex structure on Hom™ {I",G}. Our goal is to find the
set of regular points in R.

From the Lemma 1.1 and the Lemma 1.2 we conclude that
GZP,n is a complex analytic manéfold of dimension 6p +2n.

The set of regular points in R consists of precisely those
pocints where the differential of F has rank 3, and Hence it

is a submanifold of G2p n of dimension %p +2n -3 by the
14

Implicit function thecrem. In the next section we study the

differential of F.

§2. Let dxF denote the differential of F at a point

¥ = (si,ti,wj) € G . Then dXF is the induced linear map

2p,n

from the tangent space of G at the point %, TV{G ), to

2p,n Y, 2p,n
the tangent spacz of G at F(Xx). We know that

n

2p )

= ¢ T

T 4 (Gzpf Il) ! " j_..r—]_(:{';"i . !
]

where, for 53 = 1,2,+.-m, Qw is the subspace of (§ iscmorphic
3
to Tw (P}, and for § =1,2,...,n-m, Qw is the subspace
3 w3
of G isomorphic to TW (E.). We have already discussed
m+ J
T, (P) and T (Ej) in Chapter T.

3 Vit




22,

Let (xl.xz,---,xp,yl,yz,..-,yp,zl,---zn) be a point in

n
G- x 1

5 G, - We denote (Xl.xz,--..XP.Yl.---.yp.zl.-.-zn)

15
by (xi,yi,zj). Then, by definition,

: txi tyi tz,
F(sie ,tie ,wje j)-—F(s;t;W.)
d Fi{x.,v.,z.) = 13 = .
X (Xl Yyt ]) tig t

In other words, dxF(Xi'yi'z ) is the coefficient of t in the
, tx tyi tz,
Taylor expansion of F(sie ,tie ,wje j).

Ul

'—l.

We check the following results
ta tb
e e

= T +t{a+h) +o(t)

and

ta -1 tsas
ge "8 T = @

which we shall use in our calculations.

We begin with

bid ty
1l 1
[sle ,tle ]
t -t3 -t
= g e Xlt etyle tcls—1 ylt_l
1 1 1
tx ty -tx -ty
_ 1 -1 1 -1 1 -1 -1 "y
= s, 55 Sltle (Sltl) sltle (sltl) Sltlsl

-1, - 1
(sltlsl ) Sltlsl tl



N2
(W3]
%

-1 -1 - -1 -1 -1, -1
) tslxlsl etsltlyl(sltl) . tsltlal(sltl) letlsl yl(sltls1 )
L -1 -1 , -1 1, -1l
=(Irteyxys) THs by (s ) Tos Bixy (s ) Tosp sy Ty (s ) )

+o(t)) s ,t,]

, -1
=[s ,tl]-!-tAd(sltl) ({I-Ads )yl-{I—Adtl).»:l)[sl,tl]-i-o(t).

1 1

It is convenient to let

-1 '
Q, = Ad(siti) ((I-Adsi)yi—(I—Adti)xi).

Then we can write

tx tyl

s_e ,t.e 1 =1[s.,t ]+t0rs,tl]+0&).

1771 171

e ls,, e 00008 )) (Isy, 8,14k, Us, , £ J+0(e))

= + L -] 5 T
[sl,tl}[sz,tzj t:Qlle,tlJ[sz,t2]+~t[ l,tljgzts ,t2]+0(t}

2

| I RS
o

2
= Elﬁsi.ti]441Q1+Ad(isl,tl]) (Q,))

\ L1+t o(t),
. sl,tl] {t

At the next step we have




3 tx{ tyl 3 1
- = 1 ++{Q. + -
.H [sle ,tie ] ' [Si'ti] t\Ll Ad(fsl,tll) (Q23
i=1 i=1
: 2 -1 3 .
+ Ad( 1 [si,ti] (93))_n Esi,ti] + of(t).

i=1 i=1

Therefore, generalizing this result we have

3. ti7 .,
tcl 7 2

[

P
(2.31) 1 (= !
i=1 i=1

Similarly,

tz t=z tz tz
w.e 1w e “ =w.e lw_lw w_e (w.w Tw,w
1 2 1 1 7172 172 172

-1
twlzlwl .twlwzaz(wlhz) Wi,

Wy, +t(w,z w_1+w W zz(wlwg) _l)wlw + o)

1 111 12

L)

L

, T |
W W‘t(Ad(Wl) \zl)+nd(wlw2) (22)}w

= A + t -
W1¥s ¥y T o)
Hence we have
n tz, n n i _1 n
(2-2) Twe 7= 1 wott T AA( M) T (z) 0w, Folt).
j=1 > j=1 j=1 k=1 J 3= ]
Mutiplying (2-1) and (2+2) we get

D tx ty, n Lz, P n
I [sie Lee T] Twe = 10 [sl.tJJ n w,
i=1 j=1 7 i=1 z=1
P i-1 -1 D n
+ & T Ad( 0 [s, .t ]) 7{0,) T [, £,7 0w,
i=1 k=1 F K Fi=r Pt 3= d
p n 3 _1 n
+t 0 [siti] T aAd( 0 Wk} (z,) T w, + o(t)

i=1 j=1 k=1 J g=1 ]




e n P i-1 4 P n
=M le,,t,] 0w, +£t S ad( s, £ 1) (Q) 0 I[s.,e,] 0w,
F 7k \ i
i=1 * l4=17 0 ge1 k=1 B T N
P 1. B 3 _1 P n
+tad{ T {s.,£.]) (£ ad( 0 wk) (z.})y 1 [s.,t4] T w, +o(t)
i=1 - j=1 k=1 L A
s iﬂl -1 n P J -1
= ¥ A F =] N 3 r * L- \7-r ‘ . t\
I*t?hd&ﬂ [k,tk]) {C )+t‘E AQ(lII (s, . lj,ﬁvﬁ) (7_])4"0( ),
i=1 =1 j=1 i=1 k=1 -
gince
P n
= = T
.I'i [Si"i].n.wj I.
i=1 3=1
Hence we have
p i-1 _1 n P j 1
a F{=x,,v.,2z,) = EAd( U ls ,t. 1) "(@)+ Z2ad( 0 {s,,t.7 Tw) (=),
. . k7] i . . 1% 71 Jid 3
i=1 k=1 9=1 i=1 =1

[£p)
}-ﬂ’l
o]
0
(]

i-1 _ P
{ ? [sk,tk]siti) = s, &, ? {s

k=1 ol k=




o}
)

n
* -1 -1
(2+3) aFlx,,v.,2.) = T Ads, t, e , ¢ ]
) 15177 . i T i
=1 k=1i+1
n n
({T-ad s, )v,- (IT-ad t,)x,}) + £ ad 1 (z.).
’ 1 L 1 =1 Traeeg L9 3
| 7 H= A
§3. We define an action of T on  as follows. |
For u € G and v € T, we define
usy = u.y(y) = Ad % (v) (u}.
We rewrite (2¢3) in the follcwing wav.
P 11 B ;
2.4 T, L2, = X.° Iy ty, e (I~a.)}a, . L b,
(2.4) Iy (,,7, 23) igl({l (b;-T)+y,+(T~a,))+a b, k—?ﬂ[ak’ o

We want to check whean dRF is surjective, To do that we
follow Ahlfors' method in [2,§5]. We introduce notatiocns

R =TI and
o

-1, -1 -1, -1
Ri alblal Dl ---aibiai bi
Rp+j = R_clczo--cj
—_— - -1
a, = R. b, R,
i i=-174i 71
ET = R.aTlRT1
i i i-1
c. =R CR_l (1<i<p, 159 <n)
37 Tp+ 3 S
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‘Then a,,b.,c. are generators of . Moreover, the equation
1 i j

{(2+4) becomes

A F(x,,¥.02.) = T x -3, R, (I-a,) + T vy,b. R.(5.-T)
% i "1 3 i i-1 . i
i=1 i=1
n
+ % z.*R i -
j=1 3 P*3

We suppose that the map
n - _
ar ¢?® x G, -G
is not surjective. Then there exists a nonzero linear func-

tional v* on G that vanishes on all the subspaces Q-(ai—I),

— 1
Q‘(bi-I) and Q-(cj—I)R = (-R

p+j (c-_I) = Q' (C,—I).

= B 3
If v* annihilates v.({a-I) and v-(b-I) for all v € G, it an-
nihilates v. (ab~I) % v.a(b-I)+v. (a-I). Since {a.,b
a system of generators of T, it follows that v* annihilates
ve{a-I) for all v € G and all a € T.

We assume first;that there is a loxodromic element %(a},

a € T, We may take

x(2) (z) = ¥°z; |x°] + 1.
0] q{—]'?— 1)
For v = (P q) € G, ve(a-1}) = k .
t P r(x%-1) 0

Therefore, v* must be multiple of the linear functional that



maps any v on its first entry. It follows that the first
entry of v.(h-I) is zero for all v € G and all b € T. We
az+f

take % (o) (z) = yzis ! and apply the above result on

/0 1y 0 0 o .
= (O O) and (l O)' Then we get ®f = y& = 0, This is
true only when %(b) is a multiple of z or 1l/z.
Next, we assume that there is a parabolic element

x(a), a € T. We take
¥{a)(z) = z+1.

Then for v = (i _g) € G, v.{a;I) = (_g gﬁgr). Therefore,

v* must be a multiple of the linear functional that maps
any v on its third entry. It follows that v.{b-I) has

zerc third entry for all v ¢ 0, all b € T'. As before, we

o

assume that ¥(b) (z) = 246

yzib * and apply the above result on

v = (g 8) and (g é). We get v = 0, a2 = 1, This is true
oniy when ¥(b) (2} = z+38"'; B'+O.

Finally, we assume that there is no loxcdromic or para-
bolic element in % (T); that is, all elements of ¥ {(T) are
elliptic. Hence %(I') is finite,.

Combining all these we conclude that dXF is surjective

if none of the following statements holds.

(1) x(T') is finite;




g
Xe)

(ii) all elements of %{I) are multiples of =z or %;
(iii) all elements of % (') are of the form z = z +8, B=+O.

Now we are in a position to prove the following

Theorem 1. Let RO be the subset of Hom™(l',G) consisting
of those homomorphism ¥ for which %(T') is non-elementary:
that is, %(T') is not a finite extension of an abelian group.

Then Rb is- a complex manifold of dimension 6p +2n - 3.

Proof. We recall that

Hom*(T',G) = R = {(s.,t.,w.) €
1 bR

3 GEp,n’ r(si,ti,wj) = I}.

We have shown above that dXF iz surjective if % € RO: that

is, dXF has rank 3 for % € RO. Hence RO is a submanifold
of G2p n of dimension 6p +2n -3 by the Implicit function
L]

Theorem. This completes the proof of the theorem.

Remark. It follows from the condition (iii) that the above

theorem also holds when %(T') is some of the elementary groups.




Chapter IIT

The Monodromv map.

$0. In this chapter we work with a Fuchsian group T actiﬁg
cn the upper half plane and having signature [p,n,o;v1,v?,-o-,
EN e
! 44
v:}; 2p - 2 + T (1-1/v.) > 0. We studvy the varia-
j=1 ]
tion of projective structures on a varying Riemann surface

corresponding to I, associated with the bounded gquadratic

differentials. We prove that the Monodromy map iz a holo-
morphic local homeomorphism. The case n =0 gives the pre-
viously known result by Hejhal [12], Earle [7] and Hubbard

[14]. we shall adopt with almost no change Earle's argu-

ments in [7].

ion. Let a group I' act discontinuously on a

. We denote by QZ(Q,F) the complex vector
space of guadratic differentials for T: QZ(Q,F) consists
of function e, holomorphic on 0 satisfying

(apv)v'z = ¢ for all v € T,

We denote by BZ(Q,T) the subspace of QZ(Q,F) consisting of
bounded guadratic differentials for T; BZ(Q,T} consists of

P € QZ(Q,T) for which

-2
‘EE%EXQ la(z) |1 < o,




93}
-4
*

where XQ is the Poincaré metric on Q.

The Schwarzian differential operator 8§ is defined by

S 1.£%72
Sf f') 2(f') .

We shall use the following properties of & [137.
(i} For meromormorrhic functions f and g,

S (fog) = (&‘,foc_:r)g'2 +8g

—
i~
[
—

8f = Sg if and only if g = Bof for some

Moebius transformation 2A:

(1iii}) 8£ = 0 if and only if £ is a Mcebius trans-

formation.

In this chapter, T is a finitely generated Fuchsian group
acting on the upper half-plane U (and the lower half-plane

U*), and T has signaturs {p}n,07v1,v0,...,u 1,
n —_— = Y

Zp -2+ £ (1-1/v.) > 0.

1 J

.
i

Definition., A deformation of T is a pair (f,%), where £ is

. . A
a holomorphic local homeomorphism of U into € and ¥

=
1}

a
homomorphism of T into G, the group of all Moebius trans-

formations, satisfying

(3+1) fov = %(y)of for all v ¢ T.




83 ]
A8
&

The apove local homeomorphism f also describes a projective
structure on the Riemann surface U/T (provided T is torsion
free). So we also call f a projective structure on U/T. We
call two projective structﬁres £ and g.equivalent if

g = Acf for some Moebius transformation A.

Using the properties of the Schwarzian differential
operator we can establish a one-to-one correspondencé between
the set of equivalence classes of projective structures on U/T
and the space of guadratic differentials Q2(U,T) in the fél—
lowing way.

Let & € QZ(U,F). Then a solution of the Schwarzian dif-

ferential egquation
(3'2).-.8f =

. . . - . A
is a complex analytic local homeomorphism of U into €.
L 2 - A
Since Z(foy) = (Sfov)y'"™ = 8f for all vy € T, fovy = vof
A A ,

for some v € G. The correspondence v = vy defines a
homomorphism of I inte G which is denoted by ¥%. Hence £
satisfies (3.1}.

Conversely, if f is a complex analytic local homeo-

. . fa) . . .
morphism of U into € and f satisfies (3.1), then &f ¢ QZ(D,L .
For A € G, Aof and £ both satisfy (3-2}. Thus we have a one-

to-one correspondence between the set of equivalence classes



of projective structures and the space of quadratic dif-

ferentials.

82, We need to develop some more definitions before we.staﬁe
the main_result in this chapter. |
We denote the set of all quasiconformal automorphisms

cof U by Q. Every glement w € Q can be extended, by continuity,
“teo an automorphism of U U}ﬁ;Iﬁ is the extended real line. We
call this extension w again. ‘The set of elements w € Q
normalized by the conditions w(0} = 0, w(l) = 1 and w{e) = =«
will be denoted by Qnorwf W& Q is called compatible with

the group T if wovow_l iz conformal for every y € TI. We
shall denocte the set of elements w € Q compatible with T by
Q(T). Let Qnorm(r):z () n Qnorm' Two elements w,,w. £ Q

172
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111 a ] 1.F = !
will be called equlva?ent if WILR Yol

space T(T) of T is the set of eguivilence classes [w] of

elements w £ Qnorm(F), Let L_(U) denote the complex Banach space

¢f bounded measurable functions U on U. Let Lm(U)1 be

unit ball. Let L _{U,T) be the subspace of L_(U} consisting of

{4

ts open

K satisfying

Hiviz)) yiz) _ pwi(z), for all vy € T, a.e.z € U.

v'(z)

LetZLé{U}F)l = Lm(U) n Lm(U,F). For every w € Q, its

1

€ L (U)

Beltrami coefficient u = - 1°

Every u € Lm(U)l



{d
I

determines a unigue quasiconformal selif-map w of U, fixing

0,1 and =, and satisfying w_ = MWW [1, Chapter V]. We
z

denote this w by wu. We notice that wp £ () i

I-h

and only'
if p € Lm(U,F) for the following reason.

If WU € g(T), then Q = w“pvowu is a Moebius transforma-—

tion for every v € I'. We write wuov = Qowu. We have

3 J —
pu——— . —— r —_—
aEﬂquY) -3 wu(y)y : v'
3 =3 = U(V);T’ and
—— —_— 1
5 (wuov) oy WQJ(V)Y
I e 9
azlvow ) _ Y (Wu)aE p) B
8 A Ay 3 He
——{vow ) v (w )z—(w )
=z W Bz i
Thus, u(y)%T =p for all vy € T, Hence p € L_(U,T).

Conversely, let y € L_(U,T). wuoy has the Beltrami

coefficient Q(Y)ET' which equals y, since u € L_{U,T), There-

fore,'wuoy and Wp have the same Beltrami coefficient., Hence
they differ bv a conformal map; that is, WH £ Q(T).

Therefore, there is a canonical bijection

Lm(U,I")l - Qnom(r) .

We endow T(T} with the guotent topology associated with the

surjective map p - [wu]. T(T'), with this topology, can be




[¥3]
Lt

realized as a bounded open set in B2(U*,F). A proof can be
found in (1, Chapter VI]. Since it is an open set in
BZ(U*,F), T(T) is a complex manifold modelled on Bz(U*,F}.
The space BZ(U*,F), and hence T () hasrdimensiop 3p-3+n
when T is of type (p,n,0).

We take y € L (U,T). and extend it to be zero on the

o 1

rest of é. There exists a unicue quasiconformal self-map
of Q, fixing 0,1 and =, which has the Beltrami coefficient

1 on U and which is conformal on U*[1, Chapter VI]. We de-

A

note this w by w-. ‘wuhp, henca wulu* depends only on [wu]

fi, Chapter VI]. Therefore, w () depends only on [wu].
We denotse wu(U) by D(t), where t = [wu] € T(I'Y. The boundary
of wu(U) iS‘quﬁ). ‘The group qu(wu)—l fixes this boundary,

. R e, t4, =1 . .
which is a Jordan curve. Hence, w L{w’) is quasi-Fuchsian:
a discontinuous group is quasi-Fuchsian if it fixes a direct-

ed Jordan curve., We denote qu(wu)-l by T'{t).

The Bers fiber space F(I'}) over T(T) is the set of pairs

(t,z) with ¢t € T(T), z € D(%).

§3. As we have seen in the last section, for each ¢t € T(I),
there exist a quasi-Fuchsizn group T'(t) and a Jordan domain
D(t). To each point t we associate the complex vector space

BZ(D(t),F(t)) of bounded quadratic differentials for (+).



J
)
.

We form

BR{T(T)) = U B_{(D(£),T(£))
teT (T)

as a fiber space over T(I'), Locally, the space Bz(D(t),F(t))

. , . 3p—-3+ i
can be supplied with a basis {mk(z:t)]kzl3 7. We can fix
t6 such that ?(to) = T and D(to) = U. We express the basis
{e, (2% )}3p—3+n in t rm- of the Poincare series of rational
oy (zrt )l in terms he Poincare series ationa

functions Rk as follows [197.

' 2 '
iy (z0t)) = qu‘tk(v{Z))v (z)", z €U, k=1,2,+--,3p -3 +n,
yeI
Then
t ', 2 ‘
o (Z:t) = T R (v (z))vy (2)7, 2z€D(t),kx=1,2,<-+,3p -3 +n
- ‘{er K

shall yield a basis for Bz(D(t),F(t)). Hence locally,

3p-3+n

g(T(I))} is just T(T)xC . Since T(T) is contractible,
we actually have [21]
—3+
a(T(T)) =m(r) xg- P >0,

® is a topological iscmorphism. Thus 8(T{I')) forms a complex

vector bundle of rank 3p -3 +n over T(T). We denots the

points of B(T(T)) by (t,w(t)) where w{t) ¢ BE(D(t),F(t)).
Each (t,®(t)) € B_(D(t),T(t)) determines a hoclomorphic

2

local homeomorphism

F(z:t) : D(t) - B



(€]
~1

and a homomoxrphism %X : T(t) » ¢ satisfying

(3:3) £ = x (v (@), T e T, z € D),

. t - .
where v~ = w ovyo (w™) ! for a fimed p € Lm(U,T)l. Let

' t . ' . .
oM . vy = v be the isomorphism of T onto T (t) induced by

i"l'
6]

the quasiconformal map wp. We +tzke Y% = xoo@U. Then %y
a homomerphism of T into G induced by fow” and we have form

(3.3},
(34} fow”ov = x{v)ofowu, for all v € T.

£ and Acf, A € G, have the same Schwarzian derivative .
Since replacing £ by Acf has the effect of replacing %

by ARA_l, we have a well defined map
¢ : B(T(T)) = Hom{l,q)/G.

We call ¢ the Monodromy map. Our main result in this chapter

iz the following.

Theorem 2. The Monodromv map is & holomorphic local homeo-
morphism.

We want to study the local behaviour of ¢. For this

I

purpose, we fix the origin t € T(I") so that D(to) U and
F(to} = T; we set £, = [idl. We consider the vector space W

of functions gy : € - € satisfving the fcollowing conditions



it

y JR—
u(z) (Imz)“epl{z), z € U, for some ¢ ¢ B, (U,T)

0, outside 1.
Tet W, be the subset of W consisting of y with Hull <1,
[+

For each y € W, there exists a unicue quasi-conformal seif-

1

map w = wH of e,fixing 0,1 and &, and such that w has the
Beltrami coefficient u in U. Moreover, w”(U) is a Jordan

. e, Uy =1, . . .. 3l
domain and w '({w") is a quasi-Fuchsian group fixing w (U).

There exists a neighborhood WO of zero in W, which provides

1

2 local coordinate at tO in such a way that for every t in
a sufficientlyv small neighborhood of to’ D{t} is the Jordan
: . | . : . e oo By =1
domain w"{(U) and T(t) is the cguasi-Fuchsian group w I'{w )
for some u € W . We choose W, so small that a point

Z € wu(U) for all y € W_ vhenever zZ £ U,

o

Now for u € VO and o € B (wu(U),wur(wu)_l), we consider

2

the ordinary differential ecuation
(3.5) 2n" + en = O

and n

1 5 be two linearly in-

in wu(U). Let Zg € U. Let n

dependent solutions of (3.5) satisfving the initial conditions

il
o
il
|l

nl(zo) ﬂl(zo)
(3+6) .
nz(zo)

il
'_.l
-
3




Let
g

3 |l—‘j

o]
2
Then g = gm is the unigue function whose Schwarzian derivative

is ©[13], and g satisfies the normalization

(3-7)  glz)) =0, g'(z) =1, g"(z.)) = 0.

The deﬁivative of 7 - nlﬂé with respect to z is zero.

]
2™
Hence nzﬂi - ﬂ1ﬂ; is constant a@=s a function of z. Since at

z_ its value is 1, it is identicallyv 1. Hencs

n, {z)
g'(z) = "1%“—'and g'{z) = -2 '%%“*— R
ﬂ;(Z) ﬂz(z)

and the normalization (3-5) gives the normalization (3.7).
Any function f satiszing 8f = o0 is given by £ = Rog
. . u THRETI |
for some A € G, Hence for y € Wo and o € Bz(w (U),w' T{w)} 7),

we have from (3.4},

M
5

Aogowu(v(z)} = K(Y)OAOgowu(z), for all vy ¢ T, =

We take

h = Aogowu.

In our setup, wh is a C®-function on U; w has all higher
order continuous partial derivatives in U. Hence h is also

a C®*-function on U, h satisfies

“hey = %(y)eh, for all v & T.



. ‘ u , .
Since g depends on o and w depends on the Beltrami coeffi-
cient u, h is a function of A,u and @. Hence so is ¥. We

denote the map
Gx a#(T(I)) 2 (A,u,m0) P % € Hom(T,G)

by $¥. We shall show that 6% is holomorrhic in the next

section.

84. The Lemmaé in this section have been taken from [7].
These Lemmas do not need any adjustment for the parsbolic
and elliptic elements. But, for the sake of completeness,
we include the proofs. First, we prove that h depends holo-
morphically on A2,u and &; if A,u,® are holomorphic functions
of a complex variable r, then h is also a holomorphic function

of rT.

Lemma 3.1. Let A,u and ¢ be a functions of a complex variable

v such that A(z,7) € G, uyl=z,7) ¢ W, and w{%,t) is in

: . _ l
BZ(WU(U),qu(wu) ) for all 7; [=| < &. We assume that

Az, T} = Ao(z)-+fé(z)-+o(f)
(3-8} ulz,r) = mi{z) +ol(T)
wiz,r) = mO(Z) + rep(z) +olr) for |x] < ¢,

where AO(z) = aA{z,0), mo(z) = w(z,0) and the dot denotes the



derivative with respect to = at 1 = 0., We set
P

uo(z) = pn{z,0) = 0. Then h has a power series expansion

b (z) + thiz) + olr), for tel < &,

(3-9) h{z, )

Lo dh
where h_(z} =h(z,0) and h{z) = _, -

Proof. From the theory‘of differential equations we know

that the solution g = gCD éf the differential equation Sg = o0

depehds holomorphically on eo. It is known that if |4 depends
holomorphically on 7, then wu depends holomorphically on =

(3]. Thus,
w(z,7) = z+rw(z) +o(r), for |+| < ¢,

where w is given by the following integral [1, Chapter V1.

(3.10)  o(z) = 2lz=l) pp uleydeadc
1 I

2mi o el 1) (C-z}

whicli satisfies w_ = \.
zZ

Finally, h = Aogcwu is 2 holomorphic function of r and

hence h has a power series expansion
hiz,r) = ho(z)-+¢ﬂ(z)-+o(¢), for |+| < ..

This completes the proof of the Lemma.
We notice some results from (3.10) for further use.

From {(3-10), we get that w=0 if u = 0. Moreover, if



Z2

w = 0, ﬁ'= Q_ =

0. Therefore, we conclude that

{3-11) w=0eeu=0.

We take h™

perties of h¥*.

h .
= hv We also observe some useful pro-
o)

We have

h = fo‘-i‘fu ’

where £ = Aecg;

Then

é(z) =

(3-12) £(z)

i

where the prime

Again,
h{z) =
(3°13) h(z) =

since wu(z,O) =

We define f£* =

£
£

that 1is,

flz,r}) = A{g{z,7),7).

3fF S . .
e lnmg = A'(2(2,0),0)§ +2(g(z,0));
' - -
+A ,
A (g_{(z))g +2alg_{(2))
denctes the derivative with respect to z.

2

¥ Ut’ - - :
Sty = £ (W (2,0),0)0w +£(w’(z,0));

f;(z)w-+f(23.
Z. We know that
h =Aocg =f .

Then (3+13) gives
o)

(3-14)  h* = w+ ¥,



From (3.12) we get

Flz) _am Rl

f*(Z) 1 S ] 7 t »
fo(z) go(z) AO(gO(Z))gO(a)
We know that
(o) = ﬂl(Z.T)
ERE n, (z, 1)
Thus . .
. M, (2,001, (2) -1, (2,0} n, (=)
g(z) = 5
(z,0)
My
and
L} | R
' _’12(2'0) ﬂl(Z-O)-ﬂl(Z-O) 'ﬂ2 (zto)
g'(z}) = 5
nz(Z.O)
1 \ 1 ’ -
= —5—"~——-, since nzﬂl - nlnz =1 for all z € U
ﬂz(z,O)

. g . ' . A, :
We see that 57 is helomorphic on U, "G 13 algo holomorphic.
o 0

Hence £* is holomerphic on U, From (3.14) we conclude that
h* is a C®-function on U, As a consequence of all the azbove

results we have the following.

Lemma 3.2. h* =g o pa =01 = 0w = 0.

Proof. ©Since g depends holomorphically oneg, g = 0 if o = 0.

Thus if A=y =®= 0, (3-11), (3-12) and (3-13) together

imply that h*

0.

Conversely, let h™ = 0. Then from (3.14) we have




44,

* -
h = w_ = 0r and hence
z z

Q:ng, since | = &_. But then w = 0 from (3.11). Hence
z
from (3.13) we have £ = 0, and hence Sf = 3£+ o(r); that
is, o = ¢0-+O(T) which implies that éLfLQ: Consequently
g = 0. Finally, from {(3+23) we have é_f;g,
Next we shall show with the help of Lemma 3.1 <4hat

%X depends holomorphically on 2,u,®. To show this we'prove

the following.

Lemma 3.3. Let A,u and ¢ satisfy (3.8) and let h satisfy
(3.9). Then ¥%{v), v € T, has the following power series

expansion
(3:15)  %(v) = x_(v) + 7%y} +olr) for [«] « &

and for all v € T, where

T

(3+18)  %{v) (b (2)) = (hOGw'(z)th*(v)v"(z)'l—h*(z)}, z €U,

for 211 v ¢ T,

Proof. We fixa v€ I'. We chocse a compact domzin DO o U

gsuch that h(DO) and h(y(DO)) are bounded regions in € for
[rl < &, Using analyticity of %(v) on h(Do) and hO(DO) we

get, in Do'

(3:17)  %(v) (1(2)) = x{¥) (b, (2)) + rhl2)%(¥) ' (h_(2)) +0 (),

f ]
since hiz, ) =‘ho(z) + th{z) + c{r). We alsc have



hb
%)

—
iad
"
i~

2

[

nlv(z)) =h_(v(z2)) + A(y(z)) +o(r).

Since hoy = w{vy)oh for all y € T,
we have from (3+17) and (3-18}
¥(v) (b (2)) = h (v(z)) +1(alv(2)) ~Rlz)n(v) ' (h_(2))) +o();
that is,
X(V) (b (2)) = % (¥) (b (2)) +1(Blv(2))Al2)x(y) 'kho(z))) toln),
since h oy = % _(y)oh_ . Since h (D) is open, we have

x(v) = x_(¥) +1%X(¥) +o(r)  for |r] < ¢ =nd

for all v € T with

X(¥) (b (2)) = x_(¥) (b_(2))
T

%(v) (a_(2) = Lim
T-0

= hiv(z)) ~R(z)x_ (V)" (_(2)

Il

h¥(v{z)) B (v(2)) -x_(v)'(h_(2))h*(z) n!(z)

RE(v(2)) hl(v(2)) - (% (v)on )" (2)h* (z)

fl

b (v(2)) Bl (y(2)) - (b ov} ' (2)h" (z)

-1

i

(hoov)'(z)[h*(v(z}w'(z) -h¥(z)], z ¢ D_.

Once we show that both sides of the above egquation are mero-
morphic functions, we have (3+16) since DO is open in U,

We rewrite the above eguation in the following form.



X(v) (k_(2))

. = ' Th* (v ’ _l__ *
(3-19) XO(V)'(hO(Z}) h (z}Th (v (z))v' (=z) h¥(z) 1,
cince h ov = % (¥)ech . ii‘—"—}-—"-'J'.s a polynomial. Thus we

o o) c xo(v)' g ’

just need to éhow that the right hand side of (3.19) is a
meromorphic function in U,

We shall show that h*(v(z))v'(z)_l-—h*(z) is meromorphic
as follows.

-1

=¥ (v () v (2) T -n* () ]

hij(Z))v'(z)Y!(z)_l-—hsz}
Z . z

v'({z)

v (z) - H-(Z)r

= ply(z))

since h* = y. When y € W u € W: that is,

Z
po= gmlz)zm(z) for some o € 3,(U,T).
Thersfore,
- Y' ) -
Wy (2) oy = 1(z)

and hence
3,y = -1
S (v(z))y (2) T -n¥(=2)] =0
Z -
This completes the proof.

§5. The Lemma 3.3 has the following.

Corollarv 1. %({y) = 0 for all v € T if and only if

h* = 0 in U.
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Proof. From {(3-19}) we have

% (v) (h_(z))

_ 1 & ' -1 X
XO(,{)I(hO(Z)) - hO(Z)[h (v{z))y (2) —h*(z)].
X () (z) .

Since % ) (=) is a polynomial, and hO(U) is open, % (v) = 0

if h* = 0 in U.

Now we assume that ¥%(v) = 0 for all v

M
—
.
=
fey
®
o]

n* (v (z) )y (z) T = h*(z), for all v

M
—
L
™
M
]
L]

Hence h* is a C® (-1) differential for . We shall show
that h* ig actually‘holomorphic in U under the assumpticn
that i(?) = 0 for all ¥ € I'. We intend to apply Stokes'
Theorem on U/T. Since U/T has punctures, Stokes Theorem
cannot be applied directly. We follow Bers (4] to handle
this situation.

Let us recall that I is finitely generated and has m
parabolic generators. Thus the fundamental domain D of T
is bounded by finitely many arcs pairwise identified by
elements of T and D contains m cusped regions. Let AD be
the positively oriented boundary of D. Let C and C' bhe two
sides of 3D that are identified by an element v € T, For

convenience, we relabel C and C' and assume that

v(Cc) = -C"',




We draw in each cusped region a smooth curve © ’
s

s = 1,2,.--,m so that (i) CS joins two pcints ¢.and (!

on oD which are identified by an element of T, and (ii)

Cs and CS, do not meet, for s + s'., In this manner we
obtzin a relatively compact subset D¥ of D which is bounded
by part of 3D and the curwves Cl'CQ'...'Cm'
For anv ®n & Bz(U,F), h¥p is a C®-differential for T,

Let o be arbitrary. By Stokes' Theorem we have

i
[[ dm*odz) = [ h¥wdz = ¢
D;f aD* g=
the integrals aleng two identified sides € and C' on 3D

cancell each other since v{C) = ~C' and h¥*wdz is T-invarizant.

The integral ff d (h¥*edz) is verv close to the integral
D*
ff d(h*edz) whenever gs - a i ag is the fixed point of the

parabolic transformation As identifying (_ and g;- Hence
we can show that

[ ath®edz) = o
D

by showing that lim I h*wdz = 0, for s = 1,2,++-,m.
 »= C A
s 5 s

Tt suffices to assume that s =1, As(z) = =z +1 and a_ ==,

Then the cusped region belonging to = is the ragion

u, = {z €0; 0 < Rez<l, Imz> cl.




f1a
W0

Hence
o . rl * . .
(3-20) fn odz = | h™ (sx+ib) o (x+ib) dx,
Cl 0
where ¢, = ib: b:> ¢, hence gi = 1+ib. Since w ¢ Bz(U,F),
w(z+l) = w(z) which implies that e@l{z) has a Fouriar series
expansion
w{z) = I 92ﬂ1nz' z € U.
n=-m o

Since sup{(Imz)zlm(z)[} <e,a = 0 for n £ 0. Therefore,

Z&U
= 2ming
w(iz) = T za_e ’
n=1 1 '
and hence
: -2-h
(3.-21) lo(x+ib) | < const. e Zm,.

From {3+15} we have.

where

Sioy = 2zl gy %{g)dgaa?

2mi U c-z)¢(c-1)°

It is known [18, Chapter IV] that

w(z) = 0(lz]lloglz) as z » =,

and hence
- . 2,2 2,,.2
(3-22) W {x+ib) | ¢ constdx"+b“)log(x“+b") as b - =.

Finally, we shall find a growth condition on £f*. For this



purpose we study the behaviour of £¥ in the cusped region Qc.

From {3-4) it follows that

fowqul = M(Al)cfowu;
{(3.23) fow!'l'oAlo (wu)ul = '}{(Al}of.
Let

A_ = w“oAlo (wh 7t

. . , . . . t .
AT is parabelic, since A, is parabolic. Since w“L fizes 0, 1

1

and o, A¢ fixes =, and takes 0 to 1. Hence A?{z) =z +1,

for all r. Horeover, X(Al} is parabolic if 3, is parabolic
1 . . ; .

{15]. . Let BT(z) =73 where PT is the fixed point of

IT

X(Al). Then

A, “;1! Y =
Box(n)eB "{z) = z+b_, b_ + 0.

We replace £ by B of go that %!

o2
i"“
6]
a1
6}
g
b_.l
1]
0
0
o 7]
s
e
vy
o
[N
g
o]
[¥s)

r
and we get from (3-23)

L oo—1
324 2 oafoA = R ov{A cB o of .,
{(3-24) LR LO%(ByjoB ToR of

We take
F =R of
T
and check that
F_ £
' g !
o 0
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since B = 0, From (3.24), we have
-1,
)OBw oF{z);
LY L ~ U-
Plz+l) = Fiz) +b , =z &€ w (u).

Differentiating with respect to z we get

’ 1 . v . ' ' "
Therefore, F (z) 1s pericdic in = and has a Fouriler series

expansion

{3-25) F'(z,r) = % an(f)e - . Z E w (U).

has only double poles

- . . . ~1/2
and all its residues vanish. Hence y = (F') / is a well

zero meromorphic function of z. F

- . . . vl 14 .
defined holomorphic functicn ih w (U). An easy calculation

shows that y satisfies

(3-26) 2v" + wlz,r)y =0, z € wH(U), 1€ b, = {r:]-] <el.

. -1
Since o € B?(WU(U),WHT(Wu) ),

wlz+l) = w(z),

and hence

it
H-
]

~
N
L—
.

v {z+1)



m
(%]

We may assume, without less of gemerality, that

v{z+l} = y(z);

2

L2 2 .
by mlpand Al will be new Al.

Hence there exist functions ® and ¥ in A\ {0}: A is a small

otherwise we shall replace Al

disc (in a guasi-dise¢) such that

yviz} = v{e T2y and wlz) = ewle -2y
Let ¢ = eZﬂlz. Then (3-26) becomes

5217 13V 1 &lc,n) ~

i i e ma AR

ac? £ 9% gx? ¢

Two independent solutions for the above differential equaticn

are
it n
v.{C,7) =1+ T a (v)¢
1 ’ n=1 n
and
> n
YZ(Q;T) = yl(z,T)log t+ S b (=)C,
~.n
n=1
where yl(O,r) = 1 for all » {16]. Thus the general solution
is given by
@ h o)
7 = { - . oy,
viC,T) clur)yl(z“) +c2('r) (yl(a.w)log ¢+ nzlbn(f)g )
¢ € M0}, and + € A_-
Since §(§:T) is a single valued function in ¢, c2(¢) = 0 for

all ¢ and we have




wn
o
N

Tic, ™) = cl('r)yl((;,"r): yl(O,'r) = 1 and cl(fr) + 0.

Thus as z = o through a cusped region belonging to = in wu(u),

1 - » » ]
F has a nonzero finite limit. Hence we have

an(T) = 0 for n < 0O and

a {7} % o.
(o]

Thus from (3-25) we have

(3.27)  F'(z,1) = a_(r} + T ay (r)e? E,
. © k=1
where ao(T) =D_ + 0. Moreover,
z +1
o
aO(T) = f F'(z,mdz and
z
o
zo+1
bk(¢) = I e—zk"le'(z,T)dz, zZ, € whiu).
z
<

Integrating (3°27) we get

" . a_ ()
2mike n

.28 i ) = + T ¢ < =

(3-28) (o) = bz = lrle T = ot

bw and Ck(T) are holomorphic in r, hence they have

power series expansions in t which are uniformly convergent

in ﬁe. Thus from (3-28), taking derivative with respect to




(9]
RN

We know that

-1

3 (= == + H I i
Bro&(Al)oBT (=) z bT, that 1is,

4 3 = ER
BTOA(AI,(Z) B (z) +b .

Differentiating with respect to 7 at 7 = 0 we get
B' \ A A i -:é = .=.
O(\O( l);(Z)?(Al) (z) +b =b,

gince B = 0. Thus i{Al) = 0 implies that 5 = 0, and we have

- LA e e
F{z} = T ckezﬁl]z, z £ T,
k=1 X
From {3-27) we also get
fee] T 1=
F'(z) = F'"(z,0) =b + T a (D)ezﬂlhz,zé13.
o o L=1 k
Hence
* =) o tY. =) . -
gfz) - é?e2flxa(% - a](o)eQﬂlk%) 1
Folzl  x=1 kK °© k=1 ¥
o T -
= Z ezﬂlka.
k=1
Hence we have
* * - Zrikez
(3+29) £%(z) = F"(z) = kZldke , % € U,
From(3-29) it follows that
(3+30) |£% (x+ib) | < const.e 20,

We recall that in the integral (3-20)

‘h¥e = (sF4w) e = £y +we.
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From (3-21), (3-22) &and (3-.30) we conclude that

2
251 00 (x24b2)

21h

Ih*(x+ib)w(x+ib)l Scostienéﬂb-+(“

and hence

il
o
.

lin [ h'eds = lim 1 h* (setib) o (s+ib)
To=seo 1 bo= "o '

Thus we have

I d(h*edz) = 0 that is

€ —

[ n* wdz rdz = 0,
Z

ol o

)} » 0 azs b » o

since d(h*uwdz) = é%ﬂh*w)d%ﬂ&dz = hiﬁdiﬂﬁdz. From {(3-14) we

z

know that h* = w_ = u, hence we have

zZ =

{3-31) If dezfﬂdf =0 for any o € Bz(U,F).

D
ﬁé??if u £ Wb. Thus
1(z) = (ImZ‘zfc (z}, z € U, for some € B,_(U,T)
u ¢ o LN | : - r B 2L CPO = 2‘ Fi -

We now take o = 0, in {(3-.31). Then we have
2 2 —_
[Ham=2)" |g (2) |"dz rdZ = 0
D

=5CPO=O=&£L=O:>{\;=O=>}}_*E=O.

abe
iy

*. Thus

I
Fh

Hence h* is holomorphic in U. TFurthermore, h

h* is a (-1) differential for T.




[9)]
[0}
'

Following Kra [18], we define

ord_h*
r

3

red ord h* =
P

e/

and for each cusp a of T,

red orda-h* = r
5

. ' ’ N * .
if the Fourier series expansion of h™ at = .is

. 0 s
h"ﬁz) = % ezﬁlkz, a = 0, z € U.

k=1 r

Since h* is holomorphic in U,

red ordph* 20 if P £ U.

red ord_ h* 21 fors =1,2,--,m.

s
Thus
T red ord h* > 0, where D_ is 3 fundamental set
ped P ©
o N
in U for T.
But
* n 1
£ _red ord h™ = -(2p-2+ T (1---)) by Kra [18],
o
g 1
and it is negative since 2p ~2-+‘El(1-;—? > 0. This con-
3__.. »
]

tradiction leads to the conclusion that h* = 0. This com-

Pletes the proof of the Corollary.




tn
~l

Proof of the Theocrem. For an arbitrary point & £ T(T),

there exists a map taking t to a given point to e T(r).
This map is a holomorphic homeomorphism [5]. Hence it
is sufficient to prove the theorem in a neighborhood of
the origin tg e T(D).

In §3 we have seen‘that, in a neighborhood of tor ®
is induced by ¢*., ¢* is hclomorphic bv the Lemma 3.2 .
The Lemma 3.2 and the Corollary of the Lemma ‘3.3 together
imply that the differential of ¢* is injective. It is known
that X preserves the parabolic elements and the multipliers
of the elliptic elements in T. Moreover, % () is non-
elementary by Kra [16]. Hence the image % of #* iz a mani-
fold point in Hom(T',G) by the Theorem 1. Since G x &(T(T))

als

and Hom(T,G) have the same dimension 6p + 2n -3, ¢” is a local
homeomorphism. Replacing (I,t,®) by (A,t,9) in G x®{T{(T) has
the effect of conjugating X by A. Hencs we conclude that ¢ is

holomorphic and a lecal homeomorphism in a neighborhood of

e This completes the proof.
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Chapter IV

Proiective structures on bordered Riemann surfaces

§o. XKra [15) defined the concept of & deformation of a
Fuchsian group in order to studv projective structures on

a Riemann surface without using cohomology theory. He pro-
ved a uniqueness theorem about deformaticns of‘finitely gen-
erated Fuchsian grcoups of the first kind [15]; [17]. 1In
this chapter we prove a unigqueness theorem about deforma-

tions of a finitely generated Fuchsian groupr of the second

kind. We also study the Monodromy of such deformations.

§1. Let T be a Fuchsian group acting on the upper half-

plane U and having signafure {p,n,m:vl,vz,---vn?:
n .

2p ~ 2 +n1+,21(1—l/vj) > 0. Let Q be the region of 4
J=L

continuity of I'; O is connected and we assume that O n R\

S—

{1

is not empty., Let 11’19""’Im be a maximal set of in-
. . A
equivalent components in O N IR.
Let us recall the definition of a deformation. A pair

(£,%) is a deformaticn of T if
A
f : U=1C

ig a holomorphic local homeomorphism and




5%.

is a homomorphism satisfying

fov = %{v)of for all vy € T.

Definition., Let Bg(F) denote the space of bounded re-

b

l.l-

flectable quadratic differentials for T; BY(T) consists of

[\ ]

functions holomorphic on U, which have holomorrhic exten-
©, » L

. A . . . tras
sions to 0 N R and which satisfy the feollowing conditions

cp(*()v'z = for all v €T

-

——
=
H-

L

sup{(Imz)2 lw{z) ]} < =

piz) €R, z € O ﬂiﬁ.

—~
=
-
-
S

We shall call the deformationsarising from BS(T) hounded

raflectable deformations of T ..

B

We observe that a solution of the differential equaticn

(4.1} 8Ff = e, w € BY(T)

k.
2
- s . A . s .
maps eacn interwval in O NR into a circle; this will be
shown below.
. A .
We choose an interval Io = 0 NR. Let X be an arbi-
trary point in IO. Let ¥y and v, be two linearly independent
&

sclutions of the ordinary differential equation

n

{(4-2) 2y t oy =0

satisfying the initial conditions
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= ' =
vy (XG) 0, yl(xo) 1
—_ 1 - =
Y2 (/{O) e l' Y2 (AO) O -
Then g = 7= is the unique solutien of (4.1) satisfyving
2

g(xo} = 0, g'(Xo) =1, g"(xo) =0

as we have seen earlier in §3 in Chapter III. Hence anv

solution £ of (4-1) is of the form
£f = Rog,

for some Moebius transformation A.
Since w has a holomorphic extension to Io' in a neighbor-

hocd NK of X Nw < Q, ¢ has the following power series

o ' o]
expansion

w(z) = £ a {(z-=z ), z €N

gince ® is real on Io' every a is real.

Let

I
ne18

. m n
v, = E bn(z—xo) and Y,
Since Yy satisfies (4.2), we have
. ] + = .
(43} 2y, Y, oF

1}

¥y

S a{n-1)p (z—x )n_2
n=2 n ©

» n
nEo(n+2}(n+l)bn+2(z—xo) R




(%)
ot

Subgtituting the series expansion of y;, Yy and o in (4.3},

we get

2 § (n+2)(n+1)bn

n=0 n o

BEgquating the coefficients of powers of z to zero we find bn

in terms of a_. We get the following eguations

4+ a b
2 o 0

0
o

12b_ + a.h + a b, =0
] o 1

+ aob2 + albl + alb2 = 0

LI B B B BB IR A A A A B I A ) -
LR B R IR IR I B A B B I I K B B I N ] -

and so on. With the help of the initial conditions b_ = o

and bl = 1 we can express bn: n=2,3,-- in terms of a :

L

n=20,1,2,+e+, Since each an'is real, each bn is also real.
Similarly, we find e and see that each c is real. Hence

i .
g is real on IO. Since £ = Aog for some Moebius transforma-

tion A, f maps IO into a circle.
§2. We prove the following.

Theorem 3, Let (f,xl) and (g,xz) be two bounded reflectakle

deformations of a Fuchsian group T of signature {p,n,m;vl,vz,
n

...,vn]: n>0,m>0and 2p - 2 +m + I (1-1/v.) > 0.
3=1

We assume that.f(Ij) and g(Ij)lie on the same circle C

’

3



3
Ny

j =1,2,+++,m. Then % =%, implies £ = g.

Proof. We take

l; s Z € UL

Then F(z) is holomerphic in U. Let

%, (v) = Xz(Y) =2 , Fforvy €T,
Then
ﬂv=A¢f;
(4.3)
(o] = A
goy Yogr

from which we get

£' (v)

|

HEd
& -
th
,—h&
™~
)

(4-4)

g'(v) = A;(g)gyv’ .
It is easv to éheck that, for a Moebius transformation
(4-5)  (mof-Rog)}® = (£-g)2a'(£)a’(g).

Using (4.3}, (4-4) and (4.5) we get, for z € Uand v ¢ T,

(£(v(z))-g (¥ (z)))?
fr{y(z))g' {v{(=z))

F(v{z))

(Ay(f(z))—Av(g(Z)))zv'(232
A (F(2))A] (@ E (25" (2)

(f(z)-g(z))2a;(f(z))a;(g(z}}v'(z)z
A;(f(Z))A;(q(z))f‘(z)g'(Z)

2
v (2)? = Fz)y' (2)°.

£{z)-g(=))
'

(
friz)g' (=)

A,




A .
f and g map Ij < O NIR into the circle Cj' d o= 1,2,e00,m.
. . . A
= a Moebius transformation Aj mapping Cj onto:ﬁ, We

'_ll

There

have, from (4.5},

(a of~A,og)2 2
|

y _ {f-a)
(B.of) (Bog)' = £'g’
‘J N

A,of and Ajog are re=al on Ij. Hence F is real on every I
3 :

Since

-

J

2
F(y(z))vy'(z)" = F{z), for all v € T,
, . . A -
it is clear that F is real on 0 NR, Therefore, F extends
to zall of 4.

We study the behavicur of F in a cusped regicn belong-

ing to each puncture on Q/T; Q/T is a surface of type

3
i
o
n

(P,2n,0), P = 2p+m~1. We assume that v{(z) = z +1 dete

o
—
0]

—
w

a puncture, We use the fact that xlfv) = xz(v) = AV is

parakelic since $f and &g €;B2(U,F) 16 . We replace £ and
g by Cof and Cog, respectively: C is a fixed Mcebius trans-

formation. Then AY is replaced by CoAyoCﬁl sc that
-1
CoAyoC (2} = z+Db, b + 0.

By the same reasoning as in [1s ], which we have gone through

in Chapter IIT, we conclude that




[
fiaN

' [==]
£ (z) = T ae
n=0 o
ahd
= 273
g'(z) = Tbe % a =b_=b<o.
n=g N c o)
Hence we have
e 27inz
f(z} =bz + T a " 77
n=1 1
2 27inz
gl{z) =bz + T B e” .
n=] 1
Then we have
( ; A 2winz E-B e21'rinz)2
n=1 n=1 I
F(z) = - - " -
S o 2ninz s b e2w1nz
n=0 - n=0 o
2 in 2 2ninz,2 = ming, -1 2
= (%A Zminz v n64n1 z} (a + T nﬁez in ) b + T b
n=1 n=1 O p=1 o O p=1 1
_ § a eZwinz
n=2 1 '
Therefore, the order of F(z) at = is at least 218]. Hence

ord F 2 2 at each parabolic Ffixed point.

We already know that ¥ is holomorphiec in

E__red ordQF > 0O
QEDO

DO is a fundamental set for I': that is, 56 is in one-to-one

correspondence with the points in Q/T.

But, from [13],
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~

Zn
T red ordOF = =2(27-2+ % (1-1/v.))
QeD = =1 ]
O
n
= -4 (2p-2+m+ T (1-1/v.))
j:l ]
< 0,

n
since 2p ~ 2 +m +_§fl—l/¥? > 0. This contradiction leads
j:

te the conclusion that F = 0, Hence f=g¢.

§3. Let

be a holomorphic universal covering map. Let

A
£ - {v € aut U; hof} = yoh for some v € T}

. A
We call I the Schottkv-double of I'. The correspondence

A B v -
u: vy = v defines a2 homomorphism of f onto T; (h,u} is a

/

A \ . .
deformation of I'. We alsc sav that (P,h) uniformizes (T,Q).

Let

K= {k£autU; hok = nl.

Then X is a subgroup of which is the covering group of h.
We have an exact sequence of groups and group homomeorphisms

(1a3].
(4-6) {11 » x o I R {r3.

We shall show later that this sequence splits.




We chocse a connected component U0 of hil(U). Let T

o}

be the stabilizer of Uo in P. Since h is a covering wmap,
1o L S = _l
the restriction of h on each ccnnected component of h ~ {(U)

is a homeomorphism onto U, Hence

h : U -»71UT
o

is conformal. We call this restriction map ho. ho induces

an isomorphism

' -1
L R ho avwoh

\ U . " .
of T onto FO. Moreover, G/FO is conformally equivalent
to U/T. We prove the fcollowing,

. . ) A ]
Lemmz 4.1, Every element v € 9 can be rspresented uniguely
as ¥ = koy_with k € K, y_ € T_.

o c o

Proof., We have the homomorphism

A
vauzl"-al"
o
that satisfies
(4-7) vcu(yo) = Y for all Y € FO,
gince, for =z € Uo' Yo € Fo'
vou(vo)(z) =h Ou(YO)oh (z)
~1
= ho ohooyo(z)



)
~d

el

Usinag {4-7) we can show that K N TO = {1} in the foliowing

A ,
way. Let v & X. Then

vou(¥) = v(1) = 1.

A
Let v € TO, then by {(4-7),
A A
vouily) = vy.
AP A
Thus if ¥y €E ENT , v = 1,

C

. A .
Ifow we shall show that every v € 9@ has a vnigue representa-

= kovO: k ¢ R, Yo er .

We notice that, for Yo € FO, and z € UO

h oy (=) = u(vo)ohc(z).

Hencoe
u(? ) = h ovﬁh“l for v €T .
o o o O o]
R -1
Since ' =h " h *, for any v ¢ T,
o 0 0 4
v =h oy oh T for some v_ £ T
o ‘oo’ o o*
Hence
Y = u(vc), for somea Y £ FO.

\ A
Again, for every vy € 9,




Hence
’A\ .
wly; = u(vo): that is
A =1 )
u(vao ) = I; that i=
M -1 N
YOYO = Xk for some k € K,

A _ )
and hence v = koYo for some k € ¥ and Yo e T .

O
Lat
A~kv € K T
VT Ry KSR,
and also
A—'k k. € K £ T
Y" 2V2t 2 :Yz O.
Then k = %k v.; that is k‘lk =vv'1 Since k_l'k: € X
en Ky¥y T Sp¥pr thac 2 1 2’1 ¢ & Ky By F B
-1 i e
vovy €T, andI\ﬂFO—-{J.},
Ky =k
Y, = Y-

Hence the representation of iz unigue., This completes

the preof of the lemma.

(&1}
',.-l .
s}
(0]

Let K * TO denote a product of X and FO. We de

the product of (kl,vl

) and(kzvz) € K % T by

¥ v .

1 1, -1
5 'Yly2)' k = vik,Yy .

(gvy) (y,v,) = (kX )

2

Under this operation, K #* FO becomes a group. We call K * FO

the gsemi-direct product of K and TO. We have the following.




Corollary, PrE K % T ; the seguence (4.5) is split exach.

Proof. We define z map

o K% T _)f\
o)

by w(k,vo) = kvo. ¥t is well defined. We prove that | ig an

Y iz a2 homomorphism

Y1
(klk2 PYeYs

'
2

¥ (k.

1Y) (k) ) §

= k. %k

1 1 2 |

-1
= ¥

kivika¥y ¥y

1°2

=k vﬂx

1 22

Pk v ) V.Y,

is one-to-one

. A a
Let w(kl,Yl) = w(kz,v y = v € T» that is,

2
A
= e .
Ry = %%, = v -
A \ .
By the Lemma (4.1), ¥ has a unigque representation,
hence
k, = k = .
R OGS TS

A
Y is onto: Again by the Lemma (4.1), any ¥ € 9 can be

represented uniquely as
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A )
¢ =k : & . .
¥ R k K, Yo e To

A
y € 9

A .
Then for s ¥ = @(k,vo) for a unique k £ ¥ ard a unique

Yo € FO. ‘ B
§4, Starting with a bounded reflectable deformation (f,%)
' _ A A A4
of T, we shall construct a deformation (f,%) of T; T is
the Schottky-doubkle of T'. Our goal is to find a relation
between them. We proceed as follows.
We fix a pecint 2, in U, Let (£f,%) be a bounded re-

flectable deformation of T and f gatisfies the normaliza-

tion

We define

A H
5(z) = Sfoh(z)h'(z)? +8h(z), z € U.

A . " . .
We claim & £ BE(U,P). Since (e,n) uniformizes (7,0},
2h € BZ(U'?) (16]. Thus we just need to show that

(Sfoh)h'z € B (U,?). It is easy to check that

2

2

A A
v = (3fch)h'2, for all v € P.

A 2 A
(Sfchoy)h' ™ (¥v)

Let ) and Q be the Poincareé metrics for Q and U = h_l(Q)p

respectivelvy. Then we have

A(h(z)) mz) ]| = Q(z), z £ U,
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Hence

P sup {2 (0 (z)) "% |8goh (=) |
U A

oo
—
P
4
da
Ih
[w]
DJ
o
—
N
I,
[
1l

= sup{K_z(w)lgf(w)|}
weQ

sincs 8F € BfQ,F). Hence (gfoh)h'“ ¢ BZ(U,F}. We choose

bO € UO such that h(bo) = a,. We solve the Schwarzian

differential eguation

1

32(z) (z), z €U

with the initial conditilons

>

(b)) = foh(b ), 2'(b )

. (foh) ' (b)), 2(b ) = (£oh}" (b ).

'

A
We get a deformation (f,Q) of ?. Since
3%(2} =g (foh(z)); =z € U

we have, for some Moebius transformation &,

. . ey mra s - A . ,
But, the initial conditions for £ implies that aAlz) = =z

and we have

We notice that




AOA A 3 A A
¥{viof{z) = @ov(z), for all v €

Therefore, for Yo Tl , z¢& Uo' we have

Xy o f(z) = ov_(2)
= fo;;oYO(Z)
= foyoh(z), v+ = h c'\'oh—l.
0 O
Hence
A

X(YO)OL(Z) = %(y)ofoh(z)

which implies that, for Y eTr.,
A -1
= : v = o1 €
x (v _} x{v): v hovoh = € T.

‘ A ,
By the Lemma (4.1), every v € P can be written as

A
Y = kov_, k € K, v, € T -

Therefore, for ¢ €T,
ALA A A
¥{y) = x(Klox(vy_ ):
A LA A , ]
(4.2) Wiv) = X{(Iox{v): v =}mvom1 .

. . A
We want to investigate K‘F'
N
Let Hl(Q,ao) denote the fundamental group of O relative
to the base poilnt 2. € Q. There is a natural isomorphism

between K and ﬂl(Q,ao). In the next section we study the
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analytic continuation of f along the elements of n (Q,ac)

1
. . . A
which will help determine le.

§ 5. Every @ ¢ B;{F) extends holomorphically to all of O

by reflection in R. Due to this fact, any local solution of

{4410 gf(z) = ol{z), =z € 0

can be extended meromorphically along any curve in Q in the
following way.
Let C be any curve in O with the initial point Z € 0

and the end point z, £ O, We tazke intermediate points

srer, on C and discs N ,N ,+-.,N in O centered
n-1 z z z

at 2z ,2,,+.+,2 ,respectively, so that each disc intersects
o 1 n? = -

.the preceding one. We solve the equation (4.10) in Nz . Let

£ be a solution. We solve (4.10) again in NZ with the
“o _ ) 1

initizl conditicns

il

£ { = £ - £ _— .
{w_) £, (WO), f (wo) fz (wo) and £ (wo) £ (wo),
o) o o

w_EN AN . We call this solution £ . We notice that

o s z z

o 1 1

£ and £ agree in N AN ., Thus £ is an extension

Z, z - il z Z

1 o) o 1 1
of £ to N_ . Continuing this process we get £ which
o %1 “n

gives a continuation of f? along ¢. However, if we continue
fz along a closed curve C: zZy = Z, in this case, function
o)




fz does not necessarily agree with fZ inX NK . Buk.
. 24

-
n o o n
these two Ffunctions differ by a Moebius transformation since

they have the same Schwarzian derivative.
‘Let nl(Q;zo) denote the fundamental group of Q relative

to the base point at z_. Continuing £ along C € m(Q,z),

o}
wa get fz . Let us denote fv by £ and fZ by £, This
n A “o - n
continuation depends only on the homctopy class of C by the

Monodromy Theorem. Let [C] denote the homotopy class of

C. Then we have

f{z) = A[ € G.

-C]Of(Z)’ z G_Nzﬂ Nz and AE

) n ¢

We notice that the Moebius transformation we get depends
on the function £ in the following sense. We choose another

sclution g such that g{z) = Bof(z); z€N_, B€ G. Continuing

[ N o
g along C we obtain g. Let
~ ~4
gl(z) = A (z z £ W n§ .
J( ) [C]Og\v)r ZO Zn
Then
~ -1 .
A = Bod oB as will be shown below.
le “lel

First we ghall show that

g(z) = Bof(z), =z ¢ N nm.

In N nw .
z Z
o 1




~}
W]
[

and
£ = £ = £,
z z
1 0
Thus
gz = BOfZ in NZ n N_ .
1 1 0 1
Similarly,
=B S .o —l
gz. sz. for 1 1,2, n .
i i
and finailv,
T = Bof 1+ that is,g = Bof in N nN .
z z z z
n n o n
Then we have, in Nz N Nz .
o) n

Hence

A. . = EoA
(cl Te?’

[
3

Let us recall the group cperation nW(Q,zO).' For

N T~ . + - 3 " —_—
Cl’CZ € ﬂl(Qﬁ%), Cl*C2 denotes the closed curve in ﬂl(Q,zO)trac

ing C, first and then C,. For a fixed £, [(Cl=1 defines a

1 2 rcl
homorphism
W ﬂl(orzo) = G,
as follows.
r 1 . L ~ -
Let [Cl] and fc,] € wl(n,zo). Continuing £ aliong [Cll

‘ -
we obtain fl satisfying
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jxd

g =3 2)s 2 £ K nx
fl(Z} A[Cl]of( ) . Jz gz .
O n

e

- =g - L) .
Then continuing fl(z) further along [cz] we oObtain f

X
iz
o
F
0]

i

fyving

r s~ —l Pk .
10w’0230*,<[c1] 0fl(z). z €N A
' ~ o~ =1 ~c
= xicllox[C9]OT4EC1] o}t{cl]of(z)

= Xfe.JokTe Jof(=).
1 2

~

We could also cbtain £, continuing £ along fc,*C,] satisfy-
-— L
ing

F(z) = §lc*C_JeoF .
2(’) Al N ZJDL(Z) in hzq 0 Nzn

Thus we have
C = = NIC NIc. 1.
Kic 02] x[c]_]ox_ 2]
$§6. We prove the following.

Lemma 4.2 Q!F = 9 .
A

-1 AL,
Proof. FEach connected compeonent of h ~(OPR) is a half-
circle orthogcocnal to the real line. We choose Uo to be

-1 .
the connected component of h ~{U) whose boundary contains

», as shown in the diagram below.
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1

A : -
Let Il C Q NR and 0, be a connected component of h (I ).

1

Let Ug be the component of h_l(U*) sharing the boundary oy
with u,- U; is bounded by e. and infinitely many half-

ol

1

- A
circles in h " (QNR) lying inside ¢

; let o, be one of them.,
1 2

There will be a connected component U, of h_l(U) bounded by

1
62 and infinitely many half-circles lyving inside oo Th%s
process will go on.

We recall from §3 that we have the bounded refliectable

deformation (£,%) of T with f satisfying
= ' = " = . '
fla)) =0, £ (a]) 1, £7(a) 0; a, € Q.

We choose bo € UO such that h(bo) = a- We have the deforma-

tion (%.Q) of 9, % normalized at bo in such a way that
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%lU. = foh .

Every element k € K, k + I, maps UO onto a connected com-

ponent U, *+ U_ of h_l(U). For, if U, = k(U_) was a com-
i 0 ik o)

ponent of h—l(U*), hk = h would:im§ly that h(Uo) = U¥,

which is a contradiction. k(bo) = bk € Uk such that

h(bk) = a_- We join bo and b, by an arc 4, : h(4, ) =¢C

k k k k’

We extend £ along C._ and obtain f satisfying

k
Flz) = Ny lof(z); = = .
We define

fk(z) = fohiz), g € Uk'

Then fk is a coantinuation of feh to Uk along Lk; the continua-

tion of f across the intervals h(c1), h{cq),---ﬁﬁn}) justi-

ry the continuation of feh across 0y, 0 ---,Uk. But, % is

2l

the continuation of foh tg all of U. Hence

%ah(z), z £ U

£(2) -

We know that, for k € K,

A A
Lx)of(z) = Pox(z), z euU
Therefore, for z ¢ Uo'

%Bhok(z),

i

L x)ok (2)

since k{z} ¢ Uy. Hence we have, for =z € U,




~J
W0
[

Lot (z) = e, Jofohok (2)
= gcck]ofoh(z)

= &lc, JoE(2),

which implies

!

ik} = g[Ck], for k € XK,

We notice that k = [Ck] iz the natural iscmorphism of K

onto wl(Q,aO). Hence we conciude that

A‘ = lod
X K ’{l

Remark. There existsz a relation between the elements of
the groups x(F).x(9) and x(ﬁl(Q.aon. From (4-9) in §4, it

A
follows that, for v € ?,

A A
vy

) = Q(x)ox(v), kK €K, vy eT.

Using the Lemma (4.2}, we can write

A A ~
2{v) = XLCk]ox(v), for Eck] € ﬂl(Q'ac)’ v € T,
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