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An F-structure is essentially a collection of commutative
local Killing vector fields. For a (4x-1)-dimensional
. . . i .
manifold N with a nonsingular P-structure §h,, its secondary
invariants are defined and proved to be topological invariants of
the pair (N,%i) . We generalize Bott's residue theorem to the
case of an F-structure. The generalized residue theorem is then
)

4
applied in the calculations of the secondary invariants of the

pair (N, T .
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0. Introduction

The secondary geometric invariants of Riemannian manifolds

were studied in the work of Chern-Simons, Cheeger-Simons, and

-Atiyah-Patodi~-Singer [1], [8], [9], etc. 1In the presence of some

auxiliary topological structure on a closed oriented (n-1)-
manifold nP71 r the secondary geometric invariants can be made
into topological invariants of the manifold N1 and the
auxiliary topological structure on it.

Assume that Nn_l is a boundary, say, Nn—1 = aMn for some
Nn~1 ;

compact oriented n-manifold M7 . The orientation on is

chosen so that Stokes' theorem takes the form

(0.1) f do =] »

n—l(

for all smooth (n-l1)-form o ¢ A M)

Let n be even, say, n 2k . Let g be a Riemannian

structure on Nn_l . For any invariant integral polynomial

P e IS(0(n)) , set

(0.2)  P(M,N,g) = —— [ P(q)

(2m) ™ (M, )

where g is any extension of the Riemannian structure g on

N to M such that the restriction of § to a collar

)

neighborhood of N "in M is the product metric ac? + g .

Hald

‘This curvature integral is independent of such extension




since the Pontrjagin number P(Y) of the double Y = MU - M‘ is
‘alﬁéys Zero.

The associated secondary geometric invariant SP(N,g) is by
definition the residue class wmodulo Z of the above curvature

integral, that is,
(0.3) SP{N,g) = PfM,N,g) mod 2

which is independent of the filling ™ .

~

Let (M',g') be another such filling. . Let
the closed oriented Riemannian manifold obtained from M and
M' by identifying along their boundary, thus

(0.4) - P(M,N,G) - P(M',N,g) = —1—[ P(Q) e Z

(2m) % ¥

since P ¢ I:(O(n)) is an invariant integral polynomial,

However, these secondary dgeometrical invariants do depend on

the metric g on N .

In 1967, R. Bott developed a residue formula for

.

;aracteristic numbers of a closed orientable Riemannian

anifold M in terms of the data provided by a Killing field.




(see [4], [5]. There was also a complex counterpart for a

‘hoiomOrphic vector field, but we will discuss .it elsewhere.)

'Proposition 0.1 [Bott, Baum-Cheeger]. Let Mm%k be a closed

oriented even dimensional Riemannian manifold equipped with a

nontrivial Killing vector field X . Let P ¢ IK(O(n)) be any

invariant polynomial of degree k . There is a (2k-1)-form ¢

defined on M\Zero{(X) , such that

(0.5) * p(aX)+dn = 0
o . -1
. (29)7 %

where the summation index % runs over all the connected

-components of Zero (X} , and Res(n,z) is a topological

invariant of the tangent bundle.and the normal bundle of Za< M
and the action induced by L, ——the bracket operation, on the

normal bundle.

Bott's idea was to manufacture a canonical locally.

computable (2k-1)-form n out of the killing vector field X

M\Zero(X) such that

'5) P(p) + dn = 0  on M\Zero(X) .

_dues at the singular set Zero(X) . 1In fact, the residues




wgre_estiméted by Bott when X has only isolated zeros; thé
'estimétion for the general singularities was carried out
immediately after Bott's work by Baum-Cheeger (see [2]). These
three papers ([2], [4], [5]) we just cited are part of the

motivation for this thesis.

Bott's idéa can be applied immedia;ely in the estimation of
the secondary geomefric invariants és long as (M,d) admit a
Killing vector £ield such that XLN is nonvanishing and tangent
to N . Let X be such a killing vector field on (M,g§) then,
n is well-defined on N = 3M and the equation (0.5) remains
true since p 1s constructed by local forms. It follows from

the residue theorem that

(0.7) P(M,N,g) = S [ P(a)

(2} % (M,3)

= —:1~E Z ReS(n,Z) - 1

% n
(27)7 2 (27)7 (N,g)

According to Bott and Baum-Cheeger, the residue Y Res(n,Z) is a
' %
- topological invariant which is independent of the invariant

metrics g and g . Thus, the modified curvature integral

““l—i [ [ pl)+f n} = - ——l_E Y Res(n,Z)

(0.8) P(M,N,g) + —=

is a topological invariant. Formula (0.8) suggests the following

'definition.




€0.9) - R(MN,x) = —E_ [

= P(Q) + [ n}
(2n) {(M,q) M

Note that. P{M,N,X) 1is already well-defined when X is a
kKilling vector field defined only on a neighborhood of aM =N .

‘Corollary 0.2. Assume that (Nnml,g) is a closed
orientable Riemannian manifold which is the boundary of a compact
oriented Riemannian manifold (M,J ) , here g is any extension‘
of g to M (but g 1is not required to be the product metric
near the boundéry aM = N as we did before). Let X be a
nonvanishing Killing vector field on (N,g). Then, the modified
curvature integral P(M,N,X) 1is a topological invariant of
{M,N,X) as long as X can be extended to a global killing

vector field on (M,g) . Moreover,

—d— 7 Res(n,z) .

(0.10) x P(M,N,X) = - —*
i (24)° %

Proof. This is a consequence of Bott's residue theorem and

definition (0.9).

HoweVer, a transgression argument (see §8) shows that the
extendability of X to all of (M,§) is superfluous. We have
the following Gauss—Bonnet type theorem for the invariant

- P(M,N,X) and the associated secondary invariant.

2k_1,g) be a closed oriented

Theorem_O.j. Let (N




Riemannian manifold which is the boundary of a compact oriented

‘manifold M2k | fet X be a nonvanishing Killing vector field
for (Nzk*l,g) . Then
(0.9) POM,N,X) = —2— [ [ p(a) + [ ]

(29) (M,g) (N,g)

depends only on (M,N,X} and P ¢ Ik(0(2k)) , where § is any
extension of the metric g onto Mzk such that g 1is invariant

under X in a neighborhood of N = 3M . 1In particular,
(0.11) SP(N,X) = P(M,N,X) mod 2

is a topological invariant of the pair (N,X) for

P e I}:(O(Zk)) )

This thesis is essentially a generalization of the above
three ‘theorems to the case where (M,J) admits a collection of

commutative local Killing vector fields.

As a global torus action is the underlying topological
structure for a collection of commutative global Killing vector
fields,_there is also an underlying topological structure for a
coilection of commutative local Killing vector fields, it is the
;so called F-structure recently introduced by Cheeger and Gromov
i(see [6]1, [71). A collection of commutative local Billing vector

fields gives rise to a local integrable distribution. It is

?called a polarization of the underlying F-structure if the leaves




of the integral of the distribution are not all closed
'submahifolds. Compare with [7] section 1. We will, however, not
distinguish an F-structure from a polarization of an F-structure,
and call them both an F-structure. But the fact that an F-
gtructure has or has no singularities is essential to us,

The topologicalization of the secondary geometric invariants
assoclated to a nonsingular F-structure is not discovered,
nevertheless, by the above modification to the curvature form

P(@) . It is originally discovered instead by Cheeger and

Gromov via their collapsing idea.

Proposition 0.4. (Cheeger,Gromov, see [7], theorem 5.2.)
1. If Y admits a nonsingular F-~structure S: , on the
complement of a compact subset, C , then YU admits a complete

invariant metric g , with |K_| < 1 and Vol(Y',g) < « .

g
2. If C 1is empty, Y" admits a family g, of such complete
metrics, with  |K_ | < 1 and lim Vol(Yn,gS) =0 .
Is s+0
Let Nn_1 = aMn be a closed manifold with a non-singular F-
(‘-—-/
structure &“ . Let ¢ be a complete invariant metric for

N x R as in Proposition 0.4. Attach the collapsed tail N x R+

‘to M" along their boundary Nn-1 ; we obtain a complete

manifold




integral

(0.13) P(M,N,F) = —— [ p(q)
(2“) (Y rg)
is thus well-defined for P ¢ Ik(O(n)) ¢ N = 2k . It turns out

to be independent of the invariant metric g as long as
]Kg|h< 1, Vol(Y,g) < w which justifies the notation

P(M,N,§~) in equation (0.13) (see [6]). 1Instead of modifying
the integral P(M,N,g) = ——l~i fN P(p)} by some boundary

(ZW) (Mrg)
integrals, as in the above theorem, the collapse kills these

boundary integrals. A detailed computation will be carried out
in section 10 where ${ is a pure F-structure without

singularities. If P ¢ IE(O(n)) '
[ £l 3
(0.14) SP(N,§~) = P(M,N,T) mod z
is the secondary topological invariant of the pair (N,§~) .
An immediate corollary of the collapsing proposition 0.4 is

that if the nonsingular F-structure 3:, on N can be extended

to a nonsingular F-structure on all of M , then
(0.15) Pp(M,N, ) = 0

In particular, if there is a filling M for N such that

I can be extended to M without singularities, then

sP(N, §2)




In general, these invariants may assume any real numbers,

{S5ee section 12, example 4,)

In the way of computing the toplogical and secondary
topological invariants P(M,N,?:) and SP(N,@Z) assoclated to a
nénsingular F-structure }@: which is defined on a neighborhood
of N = 3M , we find that there are certain exotic characteristic
classes P(M,¥~) for manifolds with corners which are equipped
with a non-singular F-structure 4= on its boundary. These
exotic characteristic classes can be identified as cohomology
classes of the De Rham cohomology with compact support for the
interior of M. 1In particular, if dim M = 2k , P ¢ I:(0(2k) ’

P(M,N,@i) is the functional of the exotic characteristic class
P(M,?Z) on the fundamenéal class of int M . The secondary
-topological invariant SP(N,§~) is then defined by equation

(0.14), which 'is the modulo Z functional of P(M,§<) .




§1.. Manifolds with Corners and Stratified sets

‘This section is taken, almost without change, from [10].

Let MP be a Hausdorff topological space. An n-dimension

chart with corners is an open subset UM together with a

continuous map p: U + R" which
a neighborhood of the coordinate

Two charts pﬁ' u + rR"

.compatible‘if the map o' -'pﬂlz
diffeomorphism (we note that the

.can be different).

Definition 1.1: The space

takes U homeomorphically onto

origin in RS x (R )™

n
ot
+ R -

u' » R” are said to be
p(U U') » p'(U U'") is a

values of k for the two charts

M is said to be an n-dimension

of M there is a

A charts with corners which is compatible with

o

ll.the charts of this set is said to be smooth.

Example 1.1. The standard g-simplex

. [terT | ¢

inifold with corners. Manifold

q
(to,tl,...,t }oore >0, ¥ t,= 1} is a
4 i=0

1

with corners is actually

odelled after the standard simplexes.

Example 1.2. Let V be a smooth n-dimensional manifold and

a set of n-dimensional submanifolds with boundary in v,

?e each boundary Vj

lies in general position. Then

o i

s T g



is a manifold with corners.

- Let M be a manifold with corners. Define the tangent

bundle TM and the cotangent bundle T*M as follows: If

k n-k

UM . and p: U + R x (ﬁ;) — r" is a smooth chart, then we

t

.k n * ko koo
put TU = p (TR) v+ TUOU=p (TR) . If p and , are two

smootﬁrcharts defined on U and U' , respectively, then the
restriction of the bundle 7TU and TU' (or the bundle

T*U and T*U’ ) are canonically isomorphic on UNU' . Hence,
the bundles TM and T*M , for which TMLU = TU and

.T*MLU,; T*U are well-defined. A Riemannian wmetric on M is é
positive definite quadratic form oﬁ the tangent bundle TM .

Let A9U) be the set of all smooth.q—forms on the open
subset UwM . If VcM is a subset of M , then AYV) is
defined to be the set of all g—Lorms on Vl which can be exténded
“smoothly to an open neighborhood of Vv . '

Note that if V is open, this definition coincides with the
one for open subset,
| We shall say that a point x ¢ M belongs to the k-
.dimenéional skeletoﬁ M(k) of the n-dimensional manifold with
corners M if there is an open set U containing x and a

k x'(ﬁ;)n_k, k' < k , such that

¢hart with corners p: U » R
E(XJ.¥ 0 ; ~The closures of the connected components of
M(K)\M(k-1) are called the k-dimensional faces of M . The
. of M is defined to be the (n~1) -skeleton

= M(n-1) .




Definition 1.2, By a smooth map of manifolds with cbrners
"we mean a continuous map f: M » M' , satisfying the conditions:
1

(a) If p: U » Rﬁ and p': U =+ r" are smooth charts with

corners. in M and M' , respectively, then .the map

p' o £ opml: p(Uﬂf—l(U')) » r?

T
is smooth, i.e.,, it can be extended to a smooth map V » rR"

where V:Jp(Ufﬁf_l(U')) is an open set in R" .
(b) 1If ‘Mi is a face of M and Mi is a face of M"

such that f(intMi)f\Mi # ¢ , then E£(M )My .

A manifold with corners N is a submanifold of the manifold
with corners M 1if there is a smooth regular inclusion
i: N » M, which is a homeomorphism from N to 1i(N)
‘(regularity means that the natural map i,: TN + TM is an

inclusion).

Definition.l.B. A stratified set is a Hausdorff space M
'togétﬁef with a locally finite decomposition into nonintersecting
-connected subsets M; (the strata) which satisfies the following
conditions:

(a) If ﬁir\Mj # ¢ , then ﬁi:JM. .

]
(b) The closure Ei of each stratum M; has the structure

of a manifold with corners, the interior of M

i is equal to

the strata Mj , contained in Mi




interiors of faces of the manifold with corners Ei , while. the

" smooth structures on ﬁi and M coincide.

j

Manifolds with corners are naturally stratified by the

|
interiors of the faces. ‘

Definition 1.4. A map of stratified manifolds f: M+ M

H

1s said to be smooth if the image of each stratum MM is

contained in some stratum MBC:M' and £ ﬁi + M3 is smooth as ‘
: M

[

a map of manifolds with corners.




§2. De Rham Complex for Manifolds with Corners

This section is a refinement of the De Rham complex as

introduced by Gabrielov-Gel'fand-Fuchs in [(10], section 1.

Definition 2.1. A stratification {Mi} of a smooth
oriented manifold with corners M! is gaid to be subordinate to
a locally finite ordered countable open cover {Uq}aeA if the
following conditions are satisfied:

(a) Each stratum M; is orientable.

(b) The n-dimensional strata {m } are indexed by the

. alach
same index set A for the open cover {u } A such that
3 S )
M cuU for all o ¢ A -,
o o

(c) » ¢ A . The order on AU~} 1is induced from the one

on A such that o < » for all o ¢ A . For convenience, put

Moo = 4, ﬁ; ='39M = M\M . for £ =1, ntl, let An be the set
£ all g -tuples (al,...,ug)C:A[J{w} such that

oy Ca, < vee <o, , M AT M N...NM contains at least one
1 2 [ ay o, o, ,

(n+l-2) ~dimensional stratum. We put

ional strata Mi which
NM N...0M |
) ®e

M ' = U{all (nt+l-g)~dimens
3 St (Ulr-°~fuz) _
2.1) Y are contained in Ma




where " 1) " is the disjoint wunion.
(d) The set of all connected components of the

M o 's recovers the stratification {M.} . We will
(al:——-pag) N 1

thus not distinguish the stratification {Mi} f rom

[u } - In fact, by choosing a finer open cover, we

(al}...,ax)
may very well assume that M contaings exactly one
. (ul,.-.paa)

connected components for all (al""'az) £ Az, £ = 1l,n+l , and

n+l

thus [Mi} is actually indexed by u a*
. =1

Let MU be an oriented manifold with corners and

{M(a " )} a stratification subordinate to an open cover
1t I}

{U } for M" . The orientation on M is the one such that .
a'oel o

the natural embedding into M preserves orientation. Let

) 15

(al,...,uz)-e At ; each connected component of M
' ’ L

(0’.11--01(1

an (n+l-3) Qdimensional submanifold of the (n+2-gp) -

‘dimensional manifold M . The orientation on

(al""'ml—l)

M(u "~ is so chosen that if Vv is a representationg of
1 .

'oaorag)

: @) and is the outside normal direction
Fe s ey
2

< M , then, vaAvV is a
) (Of.l;...,ctg’_l)
representative of the chosen orientation on

M .
. (alrt--faﬂ_l).
‘hus equipped, {M( } will be called an oriented
X . alf.--f(ll)
‘atification subordinate to {U }
g o'aeh

For convenience, we use the following convention. Let

*,...,al)‘e A£ r tet o e 8(2) be a permutation of g




letters, set

= sgn(g) - l.e.,

M
(aa(l)rad(2)r...ra¢(z)) (al,az,...,ak)
ad(l)l‘-ooluo‘(m.) al"..'aR,

orientation with the same orientation if ¢ is an even

permutation, opposite orientation if ¢ is odd. Set
Tvi( ) if
C\‘.l,-..f(xk .

{(“c(l)""'ag(i)) o es)lna® =4 .

Remark. In this convention, Stokes' theorem states that

I de = ) f e
M(alr---ra ) uEAU{w}

£

M
(Cﬂlr--l- ;ag;a)

is an (n-2) —-form on M .
((11'---;02)

We now define the De Rhanm complex and state some of its
basic properties.

Set

g+l : Gl —
2.4y 29w = o ® , AT

: )
£=1 V(al,.--,az)EA (al’...'af,)

where AN .y} is the bundle of exterior differential
(al,...,az)

g-forms on M( y - A section ¢ of the bundle Aq(M)
alf--a,raz

is given as a set of forms
Aq+l_£(ﬁ . Finally, set

9 )
(al"“'az) ((11100-:(12’)

n
(2.5) \ A M) = @ A% (m

g=0

Definition 2.2, The De Rham doubie complex associated to




.7)

the stratification | )} for M 1is the complex of

M

(a rees QL
L : 1 2 +1
~bundles A (M) with differential operation d: A9(M) » 29" (m)

defined by.the formulae:

. _ l.
(2-6), . . '(de)(a) - de(a)! o e A

(—l)i+le

S i
d = -_— d + ~ b
( B)(alr---raﬁ) =1 e(al,--‘fa ) 2y (aly...,ai;---rug?

L 1

it

for g2 = 2,q+2, 0 ¢ Aq(M) + where the restriction operation on

the right hand side to M y has been suppressed and the

(al,...,ag

cargtrdenotes omission.
rPropositioﬁ 2.1, d? = o .
This proposition verifies Definition 2.2,
.Proof., ‘Let 8§ ¢ Aq(M)‘, by definition,
241

(-1) (de) oot
;l (ul;..-;ui,...pa£+l)

= (—l)gd(de)( )+ 1+1
ql]---ra£+l i

f‘..{a£+l}

2+1 .
(-1* df(-1)*do, SESD IR CIREARYS - )
’ ‘ al,...,al+1 j=1 al,...paj,...;a£+l

20 SR

7o it
i=1

{("1)2—1d8( ~ )
) al,.-.pai,.-.pa£+l

i-—
!

1 . .
+ .
("l)J 19( ~ ~ )
1 . al;...,uj;...,ai,...,a2+l

J

al,...;ai,-..,aj,...,a£+l




TS| . i-1 .

o, + +

since  § (-1 v (o1 1@(a P o, o« 1)

l=1 J=1 1'-,...' ]'.--( lylo-f £+1

-+ . + .

+ Rzl(ml)l’*“l ﬂ';'l ("'l)Je ~ ~ = {0 .
Lo ' L (o Fos e g0 g o vayrOsrean @ )
i=1 j=i+l 1 i i g+1

Definition 2.3. Let ¢ and 4 be sections of the bundles
AP (m) énd A9 (M) r respectively. The exterior wedge product

8 A w e Ap+q(M) ls defined by the formula

(2.8) . (6 A m)( ' )
' . alr"'lal

y lp+Hl—-1) (g-1) _
1( 1) _ B(al,...ai) A w

|
120

1 (ai,---—;a )

L

Proposition 2.2. The wedge product A is assoclative,

(BAm)A‘y=9A(wA~{)

Proof., Straightforward computations.

Let 9 e AP(M), w ¢ A%y, v e AT(M) , then

2 (ptgtl-1i){g-1)

ai,...,ai) AY((xi_;..-fotE.)

)(§+q+1—i)<z—i) + (p+l-j) (i-3)

B(al‘,.-.—,uj) A-m(aj,...,ui) A Y(ui,..'-pag)




§ | § CAprgHl-1)(2-i) o (prl-§)(i=j)
= ) (— ) N 2] . ' .
351 =5 (ayreeeray) A Magreeera) M Vo)
£ 2 (p+rg+1-3)(e=3) + (p+l-i)(j-i) ,
= (-1 : ] A w Ay
iél jgi (al,-..,ai) (ai,...,aj) (Olj.r...;otk)
while
( ‘ ' : % (p+l-i)(g-1i) ( )
{9 A (wAy)), = (-1) G A {w A v
(alj"oo'up’) 1=l ((Ilf.o-orai) ' (Of.ir-cordg)
§ § (p+l=1){g-i} + (g+i—-3){(e=-7)
{=-1) 8 A w Ay
i=l j=i . (alrv-orai) (Uif-.-opuj) (ajl--c:a'@)
thus ((o A w) A Y)(ul""'az)‘= {0 A (mAY})(al""'aE)

nce | (-1) (PPAH=I(em3) + (pH-D(G-D) L) (e (am8) + (rimd) (a-))

Remark. The wedge product thus defined is not skew—

commutative,
Proposition 2.3. The fbllowing equality holds
d(o A w) =do A w + (-1)P ¢ A dy

for all ¢ ¢ AP(M) and 4 ¢ 2%(m) .

By definitions 2.2 and 2.3




“ﬂfl)nnld(BAw){

(-1}

H
Il oi 2=

i=]

(~1)PFri=i

+

e‘aly
;-1

(=1)

3 ; L
+1

DR R

= 1+1

1 j=

meanwhile

(de A w)(
%

(_l)(p+2_i)

'(ul)P+(p+l”i)(l—i)

1) (Pr2-1) (i)

)+
i’...'a,Q,

i’...'al)

(d(oru))

2=1+(p+i-i)(a2-1i)

;o;.,ag)

(al,...,ai)

(=1)

al;-.-rug)

..-,ai

y A Qg

prl-3){(e~-1-3)

O
Ctlpooo;a-

(pF2-3)(e-3) n
(aly...,ai,...paj

+ (-1)P (g )

(E—i)(de)(
- al;-

8

(Gl;. -rﬂi)

(-1) " tag *

(Glf- -;Gi)

F(e1)PH(REL=1) (2-i)
=1

i

+ ) (—l)jJr.l 0
j=i-

i+l

(Glr-ﬁorai).A m(ﬂir-o-fa )

A

o

,...,a.,.-.;a»)

(Bhw)( .
‘ L] i )l

1

era]

~

A
J) w(aj""'ai""'dg?
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We introduce the Functional

f. A" " » R

M

‘ n+1
(2.11) Jo = ¥ ¥

L B(ﬂ re e yQ )
P %=1 (al,...,al)sA 1 [

M(ul,...,aﬂ)

every 9 ¢ AH(M)'.

Theorem 2.4, d(a™ (™)) ker I

MH

Proof., It is a corollary of Stokes' theorem. Let

n—l( n

A M) .

n+1l ‘
: ? — [ (de)
=1 (a,7ee.sa )eAL M (ul""'al)
.1 ,Q, (Cf.lp---r(l ) .
R

n+1 -1 ' ‘
yo(-1)* ;o . i de
, (Otl;...,otk)eA M( )
- al,...pal

i+l
f

(arlfloofag}

~

e(uly.-.;ai'..-r(ltl)

¥ ' (-1)
‘2—2 (alréf-lum)EA 1=1 M(ulr-;-rag)

' theorem, i.e., equation (2.3), to the first sum.

0 ‘ = 0 since M is simply
_(alro-nrun+l) (al;..-pan+1)

an isolated point set if it is not empty. One has

) ) — / ®(

(alr---,a YeA' aen’ [}

. 1""’“12,)

M({xl;...,a la)

£
2+1

X Z | (- l+1,£

H e "
2=1 (al,...,a2+1)eA (“1""'“"""“g+1)

1

B )
al,...,ak+1




o ' ;

8, N

-+ L b o s u l e 0w

A(G rees 00 )EAE 1 i=1 M ~ ) ('al' 'al, r&
1 R,"'l . (alroo-f(li;---,(ll_l__l'ai)

b B

n ..
] (-t 1

2=1 a+1

n ' I | R
) 7 L Loty
i=1

~

B(U. o o )
IR A A 2 |

+
2=l (al'...-.’al‘i‘l)EAg

M
(alf...,a£+l)

Here the summation is rearranged and the orientation convention

is used.

Let AE(M) be the set of all smooth g-forms which are
supported in the interior of M . There is a homomoxrphism

is A?(M) + A%(M) , where for any 0 g A?(M) '

(2.12) (ie)(al) B(ai) - Blﬁ(a )
Sl

(2.13) o (i0) y =0 forall g > 1
Ctlp---,ral

where 9 = g|= is an element of A%(M ) such that
7 T (ay) M (ay)
-1 (al) 1

is a representative of o The diagram

o)

‘Ag+l(M)-————i—hAq+1(M)
a4 | a
e P

AO(M) A (M)




o ‘ ' o %
. - (iod(a)) = 0 for all ¢ > 1 .
g:{? ‘ (al,...,aﬂ‘)'
. while (doi(o)) = de,. ' ‘ |
, (ay) (o ) ‘
1 1 ‘
o |
{doi(sg)) = (~-1) d(i(e)) : :
i (Glr---rdﬂ) ((llr--'.raﬂ)
o
& N 1 .
+1, .
. + ) -0 e . )
. ) j=1 (Il;--.f jroo-r ]
| ; : = 0 for all g > 1 . 17
1 induces a homomorphism in the cohomology level, :
: , Qep™ q
(2.15) i,: o (AO(M),d) + H{pA(M),d4d) .
. . i
. |
-~ 10 - |




§3.. Pure F-structure and F-structure

‘The main reference for F-structure is the paper, "Collapsing
Riemannian Manifolds while Keeping Their Curvature Bounded," by
Cheeger and Gromov ([see 7}). Also see Appendix 2 of [11]. For
the convenience of our exposition, we will take a more geometric
point of view and define first a pure F-structure as a sheaf of‘
germs of mugually commutative Killing vector fields on a
manifold, an F-structure on a manifold is a number of compatible
local pure F-structures, |

\Let' (M,g} be a Riemannian manifold with corners. A local
Killing vector field X defined on an open subset UcM is an
infinitesimal isometry on U , it is equivalent to the condition
thét the Lie differentiation of the Riemannian metric g with
‘respect to X is zero, i.e.,

(3.1) : L =0 on U

whefe Lxr-is the Lie differentiation with respect to X .

Definition 3.1. Let g) be a sheaf of germs of smooth
‘tangent vector fields on an n-manifold with corners M . ﬁb
will be called a pure polarized F-structure of rank r if it
’aﬁiSfieqathe following conditions:

(a), Each_stalk gbx at X ¢ M is an abelian algebra in

+

x 18 thus a finite dimensional

fhe Lie bracket operation. :&




vector space for all x ¢ M , the dimension of gbx is equal

to r > 0 .

“(b) For all open subset U(c M) diffeomorphic to

Rn, F(@)(U)) is a vector space of dimension r . The r—

" dimensional integrable distribution (might be singular)

determined by §)® c”(M) is complete, where P(g)(U)) is the

set of all smooth sections of g) on U .

(c). There exists a Riemannian metric g on M such that

for all open subset UM and all section X elr(¥>(U)) , the

equation (3.1) holds on U , i.e., Lxg =0, on U , the

restriction of X to the faces of M are tangent to the

faces, Thus, any local section . X of the sheaf g) is a

Killing vector field with respect to g . Such a Riemannian

metric g will be called an invariant metric for jb

(d) 55 will be called a pure Frstructure of rank r if,

'in addition to the above three conditions, each leaf of the

r -dimensional integrable distribution determined by

_,g)ﬁ c” (M) is compact. Compactness and completeness imply that’

each leaf is actually a closed submanifold.

Remark. If N is a face of M , the completeness condition

_impligs that 1¢|N is a pure polarized F-structure of rank r .-

Definition 3.2. A polarized F-structure g: on a manifold

ith corners M is a countable locally finite open cover

U} and a pure polarized F-structure f5 of rank
a’oeh . a

on Ua _for each o £ A such that




(a) There exists an invariant Riemannian metric g on M

.subh that gLU is an invariant metric of g)a for all o ¢ A .
' o
{(b) For all x £ M , all germs of {£) } o at ® commute
. oalael

» to each other. Thus for all nonempty intersections ‘ f

U . =Uu Nu N...Nuv q&@,{f_)- ;
(U.l'-cofag) al uz al ai ;Q(al,...faﬂ)

dgenerates a pure polarized F~structure f@(al,...,ag) on

2

U( ) of rank- r( )
_-al,...p(xg' 0.1;-0-,()(.

L

(c) @1‘_w111 be called an F-structure if all leaves of

{g)( )} are closed for all nonempty intersection
(xl,...,az

U( y r &> 1. ) .
O(l".,..,ccﬂ

- Remark., If ?:. is a polarized F-structure on a compact

, . : . =
manifold with corners, there exists an F-structure §— such

I

O — .
that &» is a substructure of ¢~ in the sense that if

— _ ' :
§~ = {(UB'ﬁBB)}BeB ! ;:,m {(Ua’éba)}aeA ! th?n' {Ua} 1S

och
flner‘than‘ {UB}BeB . @?u is a subsheaf of ébB’Ua for all

UaC:UB - However, we will not distinguish a polarized p-

structure (pure polarized F-structure) from an F-structure (pure

F-structure) since they make no essential difference in our

context, We will call both of them an F-structure (pure F-

structure),

Let @) be a pure F-structure of rank r on a manifold

with corners M" , let 0UcM® be an open subset of M which is




Xl(X),...;Xr(x)C:TXM is in general not an independent setde
'tanéeﬁt vectors at x . x is said to be a singular point of

£> if the rank r(x) of the set 'Xl(x),...,xr(x) is
strictly less than r . We denote by Z(gb)c:M the set of all
singular points of gB ocn M . js is called a pure F-structure
of rank ‘r' without singularities if Z(g)) = ¢ , i.e., the rank
function r(x) = r fér.all X e M.

Given an F-structure g:: = {(Ua,gila)}OCEA on a manifold with

corners M , the singular set Z(@i) is defined to be the
disjoint union of'the singular sets Z(g)(ulr-..,a )) -éf the

pure F-structures g)( y i.e.,
. al,...,ot

(3.2) 2 - L1 2

IRARENT N )
(alfuc'l’a ) # rj)

M(al,...;aﬂ’)}(ul,...pug)eAf',ﬂ,:l,n"i-l Of M SUbordlnate to

{Ua}aeA 1s said to be compatible with @Z- if

@{a ;..-;Ot )

is a pure F-structure of rank

(al,...,a )

(agrevarn,) 0

. (al,...,ag)

for all (al,...,a at r Where is the rank of

(U.lf--.;(lz)
_the pure F~structure %? on U Hence,
(Otlf---,ot ) (alyuuu

‘any integral leave of the dlstrlbutlon

g) ® c”(u which intersects with
(al’o--rag} (al;.-.;ug)




M is entirely contained in M .
([11'--.;(1 )

M :
-(al,.‘.,ak) i I3

Compatible stratifications alﬁays exist., Given an F-

o N . . :
structure §~ = {(Ua,jBG)}aeA r & compatible stratification

{

. P . - h .
M(Glr---ral)}(alr---(G£)€A£ will be chosen without being

=1 s+ S _ - |

specifically mentioned. g will always be a fixed invariant

Riemannian metric of (M,?i) .

For examples of F-structues on manifolds, we refer again to

[7]. However, there are two kinds of typical examples of F-

structures which are especially easy to describe.

Example 1. 1If M" is a compact, flat manifold, by the
Bieberbach theorem, there is a finite normal covering n"  which

is isometric to an n-torus. The isometric action of this torus

‘ . .
on itself induces a pure F-structure '@b of rank n without P
singularities on M" . éﬁ ® Cm(Mn) is the sheaf of germs of _ -

: - (I
all smooth tangent vector fields on m" , - !

'Example 2. A torus bundle T E + Sl on a circle with L

holonomy A e SL(k,Zz) 1is obtained as following. Since
‘A e SL(k,Z) is an automorphism of the”torus Tk , we identify

the two copies of *  of the boundary Tk x [0,1] by A, i.e.,

(3.3) (y,1) ~ (Ay,0)




acts on the fibres by

i

(3.5) -~ :t(x,s) = (x+t,8), for t ¢ Tk = Rk/zk

by equation (3.3), the automorphism A induces a new action of
Tk on Tk x {0} by (x,0) + (x+aAt,0) . The two local actions
(x,8) + (x+t,s) , and {x,8) =+ (x+At,s) are easily seen to

commute. They define a pure F-structure ﬁS of rank k without

singularities on E . Each fibre of the bundle E is a leave of

the integrable distribution f§)® C”(E) . If A: Rk + Rk has

nontrivial invariant subspaces, then, each invariant subspace
of A defines a pure polarization of é& without singularities
in-an obvious way. 1In general, if Tk + B » ! is a torus
‘bundle over a torus, the Tk action on the fibres induces a -pure
F-structure of rank k without singularities on E .
'/
Example 3. F—struétures on the unit 3-sphere
53 = {(21,22) E‘CZIL’EIJ% + l?g'? = l}C:C2 . There is a
canonical T?-action induced by this embedding in C2',

2TT ltl

R o 2rit,
,(3.6) (tl,tz)(zl,zz) = (e 7 '

;e Z

)

1 2

Let us denote by T? this pure F-structure of rank

‘The singular set




(3.7) - oz(r?) = {00,208’} U [ (2, ,0)es”)

is the union of two circles. T2‘ has a global basis 50° ' 30
' 1 2
of Killing vector fields, where 81,92 are defined by the
‘ ip ip
multipolar coordinate Z)= r,e 1 v 2, = e 2 . For any

a'b e R r a'b# 0 r

(3.8)

defines a pure substructure of T2 of rank 1 without

singularities. The leaves of X are not closed if a/b is

irrational,

There are also nonpure substructures of T2  on s3 .

al’az'bl sz E R r bl‘a2 ?'"' 0 r SEt
(3.9)

X,

Xy 1is a pure F-structure of rank 1 without singularities on

. ;
(3.10) U = [{zg025) e 87 |z, < 1}

N . . .
&vé_{(Ul,Xl),(Uz,Xz)} defines an F-structure without

singularities on g3 , which is not pure. The secondary
topological invariants associated to this F-structure on

will be computed explicitly in section 12.




§4. Preliminary

We will wofk in the real, smooth, and orientable category
throughout unless otherwise indicated. Let t: E + M be a
vector bundle over the manifold M , and let T* T*M be the
cotangent bundle of M . A conneétion on E is differential

operator,
' *
L (4.1) ‘ _ v: T(E) » r(T ®E)
which, relative to smooth functioné,‘satisfies the derivation law
{4.2) K v(fs) = df@s + fys , s ¢ T(E)

‘where T denotes smooth sections.
One extends V as an antiderivation to the whole exterior

complex of forms on M with values in E . V2 is easily seen

to be linear over the module of smooth functions c”(m) . V2
can be realized by a 2-fom g with values in the éndomorphism

bundle of E , that is, for all Vv ¢ r(E)

(4.3)

* .
where 9.5'P(A2(T M) ® End E) and A2 denotes the second

exterior power. Moreover, one has the Bianchi Identity




(4.4) ; | ve = 0

Q@ is called the curvature of the connection v , If

e'=”{ei} is a frame for E over UcM » then § determines a
matrix . qg(e) = [gij(e)] of two forms on U , it is given by the
formula ' _ ‘
(4-5) er = :{;‘ ﬂij(e)ei
or
(4.6) ne = eqle)
.
if e' = eB is another such frame, then - }
1 |
(4.7) a(e') = B "ale)B

wle) = [w

of one-

The connection v determines a matrix j(e)]

i

U , it is defined by the formula




We will often suppress the specific local frame e . and

write w0 for. w(e), af{e) , respectively. The local connection

and curvature forms ¢y and § are related by
(4.11) 2 = do + whAw

Let VO’ Vl be two connections on the same bundle

7: B+ M, the difference Vl Yy defines a one—~form with

values in the endomorphism bundle of E . Moreover, the set .of

all connections on E is a convex set, i.,e., for any smooth

'function £: M+ R

(4.12) Ve = (I-F)vg + £y,

is a connection on E.

Let eﬂ ‘be the Lie .algebra of the Lie group G , 1let
é% 'é% {2 ® 63 . Polynomlals of degree k are
deflned to be symmetric, multilinear maps from (ka R. G
pts on 421 by inner automorphism. Polynomials invariant under
his action are éalled invariant polynomials of degree Kk , the
et of all these invariant polynomials of degree k 1is denoted
I™{G) ._‘The poelynomial product gives a ring stfucture on

(6) = ext(q) .

The Weil homomorphism

i
|
[
i




~can be defined by evaluating an invariant polynomial P of
‘degree k on the curvature form . of a connection v on the

bundle, and resulting in a closed 2k- form P(Qk) on the base

manifold._ Set
(4.13) 15(6) = (P ¢ 1) [w(p) ¢ n?*(8e,2)]

where BG is.the classifying space of G . An integral

invariant polynomlal is an invariant polynomlal in I?(G)
Slnce we will deal with oriented vector bundles with a Riemannian
metric structure, the group G will always be the special
prthogonal group 80(n) . 1In fact, 1I(sS0(n)) 1is generated by
the Euler poiynomial x and the Pontrjagin polynomial P;'s
which in order represenL the Buler class and the ith Pontrjagin
'class under the Weil homomorphiém. (see [13]1.)
Let M 'be a Riemannian manifold with a Riemannian
Structure g , there is a unique Riemannian connection D on the

tangent bundle TM of M such that

(4.14) dg(v,W} = g(DV,W) + g(V,DW)

(4.15) | D,W - DV = [V,wW]

where [.,.] is the Lie bracket operation, V,W g r(TM)

ot

A local frame e = {ea} of TM is said to be invariant

with respect to X ¢ r(TM) if [X,euj = 0 . A connection on




TM is invariant with respect to X 'if it is invariant in the
_oné parameter'transformations generated by X , in terms of local

“invariant frame e and its associated local connection forms

_w r
(4.16) L Luw = 0

It is thus clear that the local curvabure form ¢ associated

to e is also invariant, i;e.,
{(4.17) . ‘ Lo =20

Theorem 4,1. Let X be a Killing vector field of (M,q),
the Riemannian connection associated to (M,g) 1is invariant.
Proof. The one parameter ttansformations generated by X

are isometries and the Riemannian connection is uniquely

determined by the metric

g .

A Killing vector field X also defines a skew symmetric

!

endomorphism Sy on TM

x 18 skew-symmetric since

(LXg)(V,W) = Xg(V,W) - g([X,Vv],W) - g(v,[X,W])




]

g(DV, W) + g(vV,D W) ~ g([X,v],w) - glv,[x,w])

I

—g(sx(v),w) glv,s,.(W) .

Let ';1 be an F-structure for M , and g 1is an invariant

metric for T |, p differential geometrical object on M isg

said to be inﬁariant with respect to @: if it is locally
invariant for all local sections of E:‘ - In addition to
invariant-Riemannian metric g , the associated Riemannian
connection D of g and its curvature transformation are

invariant. For each X e <(U) , s is invariant on U .

X
The existence of local invariant frames associated to an p-
structure guarantees that we can always work locally in the

invariant category.

For any p e M, let U be an open neighborhood of

Ip "Xl"" Xr € ;:(U) .+ Suppose that Xl(p),...,xr(p) are

.linearly independent, then, on a possibly smaller open subset

V&U , one can choose a coordinate system x = (xl,...,xn) '
| _ 3 . D d
such that x(p) =0, 7x, =X s 1=1,r. ( E;I reeer wy

is therefore an invariant frame. Furthermore, by use of the
Gram-Schmidt orthonormalization process, we can construct an

invariant orthonormal set {e on  V such that

r+1""'en}

[Xi,ej] =0 , g(Xi,ej) =0 for all i < r < j + and

{Xi""’xr'er+l""fen} “forms a local invariant frame_on v




§5. Bingular Basic Connections Associated to a Pure F-structure

In this section, g) will always be a pure F-structure of

rank r on a compact oriented n-dimensional Riemannian manifold

with corners (M,g).

Definition 5,1. A singular basic connection vb assocliated

to ? is an invariant connection ofgj + Which is defined only on

the tangent bundle TM restricted to the complement M\Z(g))

of Z(ﬁ) ) , and singular on Z(ﬁb ) . Moreover, for all local
section Xer(ib (U)) of the pure F-structure @5 and all

- ' L
invariant vector field Yer(TU) , Y is parallel along X i.e.

[X,Y] = 0 implies that
b, _

: *
Definition 5.2, A differential form 0ec¢A (M) 1is said to be

basic (with respect tc>§5 ) if o is invariant and for all local
section XeP('@)(U)) r

(5.2)
Where i{X)}) is the contraction in the direction X

Remark, By definition, © 1is invariant means that for all local

éction xEr(g,') (ay) ,




(5.3) L, = 0

Also note that : : '

(5.4) LX = i(X) od + d o i(X)

Thus a form © is basic if and only if the contraction of both

® and de along all local section X of g) are zero, A d-

closed form which satisfies equation (5.2) must be basic.

‘ * n-r %
Let A (M, g) ) = @ Ap(M,g) ) be the set of all smooth ‘ i
p=0 |

basic forms on M with respect to %). It is clear that the

*
exterior differentiation of a basic form is basic. A (M,r§)) is

. *®
a graded differential subalgebra of A (M)

We introduce the coéncept of a basic connection because it

- has the following basicness property,

Theorem 5.1. Suppose that Vb is a singular basic

connection associated to %? which is defined on M\Z(gb ) . Let

0y and 2, be the local connection and curvature forms

assoicated to an invariant local frame e = {ea} on

IIC:M\Z(g) ) . Then both Wy and gb are basic,

roof. First, the discussion at the end of section 4 shows the

Xistence of invariant local frame e = {ea} .

The local connection forms ®y is defined by




(5.5) vPe = oy

b
wp is invariant since both vb and e are invariant., Since
e = [ea} is an invariant frame, equation (5.1) implies that
vi e = 0 for all XeF(@)(U)) . It follows that
. b
ewb(X) = i({X)ve = v; e = 0

i.e., mb(x) = 0 for all XeP('g)(U)} .
The basicness of 2, follows from the structure equation

IS A W

*
and the fact that A (M,gb ) is a graded differential subalgebra

*
of A (M) .

Let g be an invariant Riemannian metric on M for 3).-
Note gs definés a singular integréble distribution of dimension

r = nmﬂcgb . A tangent vector on M\Z(g) ) will be called
horizontal if it is g perpendicular to the distribution %}. We
ﬁow construct a canonical singular basic connection vb for gs
associated té the invariant metric g such that the covariant
ifferentiation Vb along all horizontal tangent vector coincide

ith the Riemannian covariant differentiation D determined by

.

Theorem 5.2. The following formulae define a basic

|
|
,




b

v(x)w = Dv(x)W

(5.?) v

for all herizontal tangent vector vér(T(M\Z{%}))} and all

tangent. vector field Wer (TM) .

(5.8)

for all germs . Xe @?x ’ xeM\Zf g) ) . vb is then extended by

linearity to all tangent vector Ve TX(M\Z(ﬁ))) .

Proof, vb is well-defined since for all

st\Z(@) ) VETXM + there is a unique germ xegbx + such that

(5.9) vz v(x) - x(x)

is horizontal, the decomposition v{x) = X(x) + vh is unique.
- Let Xl,..., Xr be a basis of gj(U) for some small

'neighborhood U< M\Z(g) ) of x , extend it to an invariant

Xr ’ er+l""’ €, @8 at the end of section 4,

e = 0

ir J]

g(Xi, eJ) =

' r
1 be the dual 1-forms of {Xi}i




that

(5.12) . 'ﬂ'i(Xj) = 6.
(5-13) ) Tl'i(e.) = O

We will call {ui}f=l§§t the metric dual of {xi}?

It is obvious that the local 1-forms {ni}f -1 are

invariant since

(L 73 (X = X Gry(x0) = my (1%;,% 1)

i
(Ly w3)leg) = X (nj(e)) = w (I e ])

i

by the equations (5.10), (5.12), (5.13), and the commutativity of
‘the sections of @(U).

Set

{(5.14)

is invariant since

S is a skew symmetric endomorphism valued 1-form on TM[U . It

1s easily checked that




. r
{5.16) o S =3 7w.8

t
where §(y) = X nisi(Y) is a vector valued 1-form. vb is
i=] ' '

thus a derivation and is invariant since D , Ty o and Si are

all invariant. For an invariant vector field wer{(TU)

and for
all ngb(U) + [X,w] = 0 , by equation (5.8), one has
. b
(5.17) Vg W = [X,w] =0 .
vb will be called the cannonical singular basic connection

of gs associated to ¢ because of its canonical relations (5.7)

and (5.8) with the Riemannian connection D , It is completely

determined by the pure F-structure gb and the invariant metric

g .




§6.. Transgression and the Associated Difference-Differential

Formula

'The transgression idea was first introduced by 5.5. Chern

and A, Weil. It serves as a standard argument both for the

theory of characteristic classes and late for the theory of
secondary characteristic classes in the differential geometrical
appfoach. In these cases, it was used only up to the first

Stage. We find that the compleﬁe transgression has already been: '
used in. their computation for a combinatoric Pontrjagin number in

1972 in a series of papers by Fuchs-Gabrielov-Gel'fand [10].

Let #: E + M be an 2 —-plane bundle with a family of
connectiong Vi smoothly parametrized on a compact oriented

manifold with corner V. Let £: Vx M+ M .
(6.1) _ flt,x) = x

be the prbjection map. The pullback of the family of connections

V. defines a connection V. on the pullback vector bundie

t
%
£ E=VxE by the formula

1 * *
(6.2) (v(f W)(t,x) = f (t,x)(vtw) for all W e T'(E)

L

For each local frame e = {el,ez,...(ez} of E on U, the

- * * *
Pullback £ e = {£ €yrees, £ eg} is a local frame of f E on




V.x U . Let wyew and 2, ,0 be the local connection forms and

*

lodal curvature forms of Vt and v for E and f B with
' . *

respect to the local frame e and f e ,‘respéctively. Let d.

and d' be the exterior differentiation on M and Vv ,

respectively. Then d' + d 1is the exterior differentiation on
Vx M. We will identify the differential forms on M with its

pullback under £ .

Theorem 6,1, These local connection and curvature forms ?

Wy r0 and nt,n are related by the following formulae:

wl"('trx) - wt X I

(6.3)
(6.4) S 8= Ve = (d' + de + whe
(6.5)

(6.6)

Proof. - Bquation (6.3) follows from equation (6.2) and the

identification of forms on M with its pullback under ¢

Equations (6.4) and (6.5) are the structure equations of

- ‘
- (£ E,v) and (E,v.) , respectively.

Equation (6.6) results from equations (6,3), (6.4) and




of degree k , then

'?6.7) o dp(gt) = 0

(6.8) - (d'+d)p(eX) = o

Proof. This is the fundamental lemma in the Chern-wWeil
description of characteristic classes. They are proved via the

Bianchi identity,
(6.9)

k-1

e )

k
dP(Qt) kP(tht,ﬂ

(k-1)

k-1
] o= P(tht,gt,...,n

t ) .

rwhere . P(vtnt,ﬂ t

. . *
The graded differential algebra (A (V. x M), d'+d} is
naturally split into a dduble differential complex
* - ,
A (vxM) = o© AP'YvxM) by the product structure of vV x M .

P:q
The diagram

APy 2 aPtlratl g

(6.10). | ar a

AP 9 (vxm) —g— A Pratl g u
pommdtes._

Equation (6.8) implies that all of its {p,q)-components of

(d‘+d)P(nk), in the splitting must bé Zero.,




Corollary 6.3. The (i,2k-i) -forms

(6.11) (?)P(Ufwt)iiﬁt—i) . i=0,K

. | | -

are well-defined on V x M . Moreover,

(6:13) @' {(DrC(@w ok )+ ap( K p(ary )1t gkinL)) =0

Let m = dim.V. < k+1 . fThen,

)m'9k~m)}

ok -1 k-mtl k .
M) G PO )R o T (ul)md{é () P((dw

Let {Vi}T=O be (m+l) connections on the bundle

nt E o> M . The linear interpolation

‘(6.15} | : = (to,tl,...,tm) e AL

defines a family of connections smoothly parametrized on the

standard m-simplex A Let

(6.16)




"be'fhe ith face of A, ¢+ Set A g
. _ k m _k-m
(6.17) P(O,l,...;m) = f () Pld'e ) Qe )
: A
n _ k ' m-1 _k-m+l
(6018) P(O,l,...,i,.-.,m) - f,.: (In"'l)P((d {ﬂt) :ﬂt )
: : : A (L)

| T
Note that dA = (-1) Amfl) .

o153

i=0
' Corollary 6.4. (The Difference-pifferential Formula)
| - m i m
(6. - T + (-~ a o= 0
(6.19) 120( 1) P(O,l,...,l,...,m) ,( L) P(0,1,...,m)

Equation (6.19) is a special case of equation (6.14) with

V= Am *

When the (m+l) connections in equation (6,15) are linearly

dependent, i,e., there is a nonzero vector

(aO'al"";am) 4 Rm+l r Such that

: m
. (6.20) ) a

then, the 3(2k—m) -form P(O,l,.,.,m) defined by the equation

(6.17) vanishes, -

-

Theorem 6.5. Assume that the (m+1) -connections {V.}?zo
are linearly dependent, i.e., equation (6.20) is true for some




_(ao,al,..:}am) # 0 , then

- ' ' - k ' m _k-m .“

(6,21)  P(O'l'.-_ﬂm = [ (JP((d'wt) 2L ) =0
. m i

(6.22) LTV P, T O

Proof. Equations (6.19) and (6.21) imply (6.22). To show

that P = 0 , we first note that equation (6.20)
(Ollrclnlﬁm) . 7
implies that ) a, = 0 . Without loss of generality, we may
i=0 - .
assume that a, # 0 . Now consider the nonsingular linear
transformation
£e Rm+l R Rm+l
,23)

.0’51""'sm) + (tO,tl,...,tm) = (s +a.sg +a

0 70 m""’sm—l m—lsm'amsm)

One has
' m m—1 m m-1
v, = ¥ t.y, = } sV, + s y a v, = y 5.V,
t 150 171 120 11 m 120 L1 120 11
m-1
= VO + 'Z s.B,
i=1
“where Bi =V - Yo is a one-form with values in Hom(E,E), since
_ . m m—1 m . m-1 ‘
. 1= Jt,= Ys, +s Ja. = Vs .
i=0 T j=o 1 Mi2p ' 2ot
m-]
t ] — ] . .
herefore d Wy 'zld sy A By

!




A t
m
- Koot d
] (P drs, m,ogk-
R NN R PL-P R B SUNE




§7. The Generalized Bott Forms A55001ated to a Sequence of Pure

F Structures.

Let ?:
Oriented n—dimensional manifqld with corners MM R
—_— t tific i £ M
{ (al,..-;a )}(al;...;u )EAEf f,—]. n+1 a stra lfl atlon ©

which is compatible with § as defined in section 3.

{(U p g) )} be an F-structure on a compact
o o ‘oel

. A
Let (al,.o.'GR)SA

roa.e Al ; l.e,, o, # » , for

£
simplicity, we will often write (1,2,3,...,2) for

(al'az"'°'ag) while there is no confusion, then,

(1,2...,9)e &) for J=1, 2 by the deflnltlon of

g)(l,...,j) is a pure F-structure of rank r

(1,2,...,5) 0

U .y +. The restriction of the sequence
(llzr'OOIJ)

,gb(l)’ @)(1'2),..., g>(1,2,...,£) of pure F-structures onto

§] is an increasing sequence, i.e,
(1,2,.0.,8)

: is bstructure of
g)(1,2,...,3)|ﬁ 1s a substructur
(1,2,...,2)

(j)y _
gj(l 2,...,3+1)‘U - Put gb - g)(l,z,...,j)
(1,2,...,2)

*

_ . b
r(l,z,...j) v 1 =1,2,...,2 to save notation. Let Vj

on

(1,2,...,j) «  Set VO = D the Rlemannlan connection of g ,

{ = 1l,2 « Let 'PeIk(O(n)) . Define the

2k-2)-Fform

P by equation (6.17). Similarly, for
(Orlr--orﬂ) .

¢h rearrangement

Yo(1) %o (2) 1%y (g)) 0 OF (agseiia))




where oeS{g) , the corresponding sequence

%7(0(1))7 gb(a(l),c(2));“;?(U(l);.--;c(ﬂ)) r restricted onto

. . . b
U(l,2,...£) 18 an lncreasing sequence. Let Vg(j) be the
canonical singular basic connection of gb (0(1),ee,0(5)) on
. _ _ _b
Ye(1),0(2),...,0(3)) + The connections v_ =, Y9 T V(i)

define a (2k-g)-form P(O,g(l),...,g(g)) by equation (6.17) on

Yo 1) yens,0(2)) = U1,2,...,4) - Set o

(7.1) P, . =3 sgn(o )P | !
(al’...'aﬂ,) O'ES(,Q,) ('O;U(l)rc--;U(f’)) ‘

will be

P ' called the generalized Bott Fform
(alfno-]ul)

associated to the pure F-structures | g)a }§=l - It will serve

as the basic building block of the exotic characteristic classes

for manifolds with corners which admit a nonsingular F-

structure
in a neighborhood of its boundary.
Let p - ' be the generalized Bott Fform
(Ctlp.o-r(lsfnuurag‘)

associated to the pure F-structures | §) }E on

*ii=1
U( - ' . b i#s

al;o-o'asf--o;a‘q’)

. Note that

: o i ts
(7.2) P(alr---,asr°"’“z) -y UES(E)Sgn(U)P(OfU(l)f---rU(ﬂ_l))
o{2)=s

h i . - -
ere P(O,G(l),...,u(ﬂ"l)) 1s the . {2k-g+1)~-form on

[, ]

U de:Eined by the increaSing sequence of pure
g
(a]'--.’aspooorﬂn)

~-structures

%)(c(l))’ g?(o(l),o(Z))""' ?p(c(l)"°" ol2-1)) °*

- 2 =




The difference-differential formula (6.19) gives

2 .
' 1y 1 ‘ AN :
T3 PG ,0(2), e () STV P, LT e

L .
PR Gy, ey = O

i -34+1)-f defined b
where P(o(l),a(2),...,c(g)) 1s the (2k-g+1)-form efine V4

. b .
the connections Vo(j)' 7 = 1,2 on

N - h ti
U(al,...,ag)’-P(O.U(l),...c(i),...,6(2)} by the connections

b

D, Vc(j)’ J# 1 on r Via equation (6.18).

§)
(al,...'ul)

Remark, If ra> r >0 for all geA , then, by
b
al(j)

‘dimensional basic. Thus, the restriction of P _
(o(1),e0i,0())

i i 1 t
basicness of vy ' P(g(l),...,c(z)) 18 at leas

onto vanishes if 2k + r > pn .

.M(al]no?rag)

Take the alternating sum of equation (7.3) over §(g)

r

(7.4) 7  sgn(o)p

ceS{1) (0(1)10(2),..,,0(2))

.

+ (-1)* ¥ sgn(e)p .
i 1 GES(K) (0;0(1);0--,0(1)r0"'U(g))

+ (-1)%ap = 0

(al,...{aﬂ)




that (-1) Y sgn(g)p -
. UES('Q) (O,o’(l),..-;d(ﬁ l))

UEg(f?“(")P(o,g(l),....c(z—l)

olg)=s

( 5 )
(Ilf-oofasrootfaﬂ'

g

Vt , then

B(G’rj)

be the permutation

r 1 < g5 < 2, let TSeS(ﬂ)

sis) = s+ 1, T {s+l) = s , 503) =3 for j #s, s+ 1

§(g) ———» 35(3)

glf_—_~§00'l'

5

tnes an automorphism of §(g).




(7.9) sgn(og o TS) = —sgnig)

moreover, as a subset of (1,2,...,2) ,

(7.10) i U(-l’zf...’j) = o o Ts(lfz,...,j) for j ?é S
Note that vb = vb if and only if | g
. alj) ' () Y

U(lyZ,o--’j) =0'(1’2’-.Ifj)

therefore B(o,3) = B(o o Tgs3) for j £ s, while on Az{g) ’
ts = 0 . thus
gorT
| M S|
(7.11) Ve ‘-_A (8) 7V 4, (8)
9 g
. 1 goT
L B -
(7.12) Alay l;%(’s‘) dwe I;A_Jl(s)

It foilows that

(7.13) P(o,gu),...,a(s),...,gm)

(O,UOTS(l),...,Uors(s),...,Uors(n))

combine equation (7.9) with (7.13), one has

P
(7.14) X Sgn(U)P(O,U(l),...,U(S),-..,O’(R)) = O
geS(g)

R SR R R A ST




for

0 < s <32 on

(Otlr---rot )
We have thus proved the follow1ng

Theorem 7.1

(al,...,a

& s P
(7.15) }o(=1) P( ~ y + (-1) dP( )

S=1 al;...,asf--.al al"..’aﬂ,

A Ueg(gfgn(o)P(o(l)fc(2),...,U(E))
In particular, if n < 2k + in r ¢ then

i=1,y i
: E‘ <] . 2
+16) Y- P( - [L‘ + (~1) dP( ' . _L
S=1 al,...,asy...,%’ m alr...;aﬁ-
(aly...;aﬂ’)

—_— A : ' 1

for ¢ =1, 2k + 1 , Pla;) = PlR) |, for o,eA” . ror
(o)
£=1,2 , we have 1
(7.17) P(aX) + ap =0
(al)
7.18 -p + p + dp = 0
(7.18) () " Flap) ¥ o ey
Theorem 7.2, Let g)a fesoy g)a be g pure F-structures
1 2
n (u @ ) which are commuted to each other, Let
lr--o' R

%)(a 0. ) be the pure F-structure generated by
'ouof 4

J
1 %i.
Substricture of Jgj

s ) (al;.-.,

3

1

if for all

r

N

) then
aifIOOfalQ’

r




(7.19) P y =0
Otl;.-.,(x,m

Proof.

. R b . ——
Under the assumption, Vo =D, vc(j) ’ J =1, ,

are linearly dependent. it follows from the vanishing

theorem 6.5 that

(7.20) P0,6(1),.00. 6(0y) = O |

for all ges(y) . Thus

(7.21) p = ¥ sgn(g)p =0
. (Otl,..-,otz) O'ES(,Q,) (OfU(l);o-'fU(z))




§8, Nonsingular F-structures and Characteristic Classes.

Let g: {(U ' g)a)}aeA be an F-structure on a compact,

oriented manifold with corners M" |, which is either nonsingular

in a neighborhood of . 9M or a nonsingular F-structure defined

only on a neighborhood of M, in the later case, we put

U =0 = the interior of M » and  {u | u {u }  is thus an
~ea _ a'aech —o

open cover of "M . 1In both cases, let ( )} be a
(xl,...,aﬂ

Stratification of § compatible with @Z. Let

(8.1) r= min r(x)

Xed M

where r(x) - is the rank function.

For each invariant polynomial PeIk(O(n)) with

2k + r 3 n

r We now introduce a Characteristic class P(M,g:,)

of (M, ) Wthh Is represented by cocycles in the pe Rham

complex A(M) , i.e., we will assign to each (al,...,az)sAg a

(2k + 1 - ¢)-form B (g) bn M such that
. (al;...,a ) (Ollp---pa )
co i £ L
theAphaln
N 2k+1
(8.2) P{g) = ¥ )

2 P (g}
1=l (ulro'-rak’)EAE (al'..-'aﬁ)

is d-closed and the associated cohomology class is 1ndependent

Of the 1nvar1ant metric

M, and 3:.

Let

9 + which depends therefore only on

-~

g be a Riemannian metric for M which is invariant




for @:,in a neighborhood of 3M

the (2k - f)-form defined in the previous se

gl

Proof, By definition, for all

dB(g) ,

)(aly...,a£+l)
L+l .
Fo-nitt g
l .

~

(Cf.lp-.-,a‘i;...;ag’_i_l)

. Let § be the Riemannian
'curbature forms for (M,g) . set
(8.3) B y(a) = p(a)| for all o, gal
(Otl) H 1
(o)
1
-~ 0 for aﬂ+f¢% co
P, o (g) 041
177 7% 41 {(-1) P( ) |= for
alluon:az ‘M( Otz_'_l = o
. al,...,u2+l)
for all (al;...,q2+1)sA”+l , 2 > 1 , where is

P
(Otl,...;(xl')

ction,
co .

Theorem 8,1, Thejghaln

2k+1 2K
(8.5) P(g) = 7§ ¥ g By , (g)er”" (M)

2,:]- (Otl,..-;ot )EA al'.-.'a»@)

A

is d-closed. ' The cohomology class
P{M, @:) = [ﬁ(g)]gHZK(A(M),d) represented by B(g) is

r




(‘ dr(q) ‘ for ¢ = 0

- W (_1)22+ldP

((1110_-0:&2) il (al,..-;ai,.-.,(xg)
for Gogp1 T ¢ R > 1
—dP( y P(q) for g =1 , A, = g
= ) i
Since dpr(g) = ¢
20+1 % i+1+yg
(-1 lap )t T (1) P, - :
(11,.--;0!.2 i=]. al,.-.;ai,.-.,ag

= (-1) “g(f?”(“w(c(l),...,gm) - 0

(al,...,ag_i_l)

by the assumption that 2k + r » pn .
To prove the second part of the theorem,

tp . co . 2k~1
ransgression ;chain TP(gO,gl)aA (M)

we construct a

such that

-
ar ~ G

(8.6) Plgy) - Blg,) = drp(g_,g;) i
!

. o~
Since bhoth do and ¢g; are invariant metrics for §-in a




neighborhood of gM + 50 is their linear interpolation

(8.7) 9 = (1 - s)g  + sg,

4 1 -
Let (Q'.lf---pam)EA r Q'.R’EA . Let VS_,O = DS be the
Riemannian connection of the metrie

_ b .
9g Vs,i = V., . the basic

connection defined by gy and g)(l iy i=1,2 . Put
F e s

(8.8)

Eor (s,t)el x AE = [0,1] x AR . We note that

(8.9) (I x A,) =3I x Ay = I x v,

Let o , Rl be the Riemannian curvature forms of the

metrics Yo r 9] r respectively. TIet Og ¢ 1 fg N be the local
r r

connection and curvature forms of V(s £y ! respectively d’
r

he exterior differentiation on I x AR . Put

- _ K
§.10) ®0,1,...,0 = (01

f

] 9;+1 k—'
A P((d ms,t) r g
LA

I

S Z i+l .
DT e LoV T 00, )
k 2 ok=2y Kk ' L k-2 _
+ (’Q')Af P[(dlwlrt) f 91 ) ('Q’)AJ’ P((d wo,t) r Qo,t] =0
. )




where e(

k 2 k—g
N = : IR
Urlro--;;;...,ﬂ) (ﬁ’]I){Al(i) (( ms’t) r ert
Similarly, we define 9 o by exactly the |
: _ ¢

(1)7" = r9yy)

C
. " _b . : : TR
same procedure with Vs,g(i) = stg(i) + the basic connection
determined by .d. and g) r and
5 (0(1)'...'0(.1))
. 3
(8.12) Tisat) T L ETs o0y oty Vg L
for each ¢eS(1) . Take the alternating sum over g(y) r we
have
1+1 ,
(8.13) (=1)""7d Y sgn(o)e
GES(!’,} (0,0’(1);0--'0’(2;))
2 .
i1+1
+ - S
,EO( 1) Oeg(l?gn(d)e(o,a(l),...U(l),-.-10(2))
+ P =
(ul;o-orag')(g’) P(alr...,aﬂ,)(gO) 0

= DMy Sanie)e

oeS(g) (O."U(l)roo-rG(Q))

be the corresponding form

structures




o

D

Thus

(8.15) ¥ sgn(g)e
ogeS(g)

Lemma 8,2,

By b
i-1 i+l @

A

(O,U(I)p-ovpﬁ(ﬂql))

-
[ e 0

(-1) g
1

8.16 o 0 1 i <
(8.16) oeg(iign(U’e(o,g(l),...,0(1),...,0(1)) ro by
8.17 d + P P,
( ) e(al,-..,az) (Glr-o-pag)(gl) (al’.‘-'aﬂ)(gO)
L g+i+l
+ ¥ (-1) 0 - y =0
i=l al,.-.,ai,‘.--al
Proof. See the argument in section 7.
co
We now define the transgressionlghain TP(go,gl) r set
‘ _ rk k-1 _ 1
(8.18) TPy = [1) { P(d'wS; oy )1 =900 I r agA
M M
(o} ()
8.19) TP, . = 0 %] ¥ e
[+ Freeeyg + = o
. 1 L 1) 9(a1;--.pag)lﬁ' ! a2+1

+
(al,.-.p(x2+l)€A£ .




Note that by the basicness and assumption on the rank

. I
‘function,

. |
(8.20) ) sun(o)oe | = 0 |
(0(1);---r0(2)) v £
UES(R’) M(Glr--—'a r°°)
2
It follows from Lemma 8.2 and the equation (8,20) that
(dre(g ,q,))
(Glr-o-,a£+l)
’ 2+1 .
= (-1)*arp N (—~1)1+1Tp( A )
al'...’a£+l j.:l al;...rai,...,aﬁ_'_l
~ _ 1
dTp L =0 , o.eghA
(ul) 1
_defal) TP ) =1, Yor1” ™
%1
O :Qo > r a£+l;£ w©
£ ,
(-1)*do, N P ( A )
alp-.-;otn, i=l al’...'{xi'.."aﬁ
L>1, a1+l =
- B - B
(ul,...'u£+l)(gl) (al,--.;a£+l)(go)

: +1
for all (“1"‘°’“g+1)€A£ since

dTP(al) = (Pla;) - P(Qo))lﬁ(

T a9 T By e,)
;)




Flap) = P91 7 Py yte,) = Tlayen 19 7 By Ly (o
2 .
ot]_,-..,otz i=l ﬂlro--;airo--ag‘
4+ TR o | '
) P(al,...,aﬂ)(gl> (=1) P(al,...,az)(go)

fad

_P(al,--orcf.nf‘”.)(gl) P(Otl;-..,otﬂ,w)(go)

us Blg;) - B(g ) = darelg .g,) .

- completes the proof of theorem 8.]

cQ

Remark: The pchain PB(g) is simply the form P(p) modified

g , the F-structure ¥, and »

§:== {(Ua' ﬁ)a)}aeA is nonsingular on all of n : then

e the following vanishing theorem,

rollafy 8.3. The cohomology class P(M,@Z) is trivial

:PeIk(o(n)) r 2k >n - r, if $isg nonsingular on M

2 r > 0 for all xgM

We construct again by the transgression formula and
0 -
sAZk 1

AFhain 1 (M) such that




(8.21) B(g) + dn = 0 .

For each (al,...,a-ﬂ')gAg ; set

(8.,22) Fla )'
. 1 = 1r---;u v
(alr---;(xl) L M(alf...,a ) ’ aﬂa%m
2
0 ’ 6 =T
2
2k
(8.23) n = & 8 n '
=1 (aj,e.o,aent lopreeeray)
then
(ﬁ(g) + dn)
(alt"olaz)
P(a) ). + d =
lﬁ P(al) r 2 1
- (al)
41 L .
(-1) SLI y v (-1)+*lp .
C@lro-o,aﬂ i"—:l (ul;.-.,ai,-..;aﬂ)
'= 0 for (al,...,aﬁ)EAl roa, # oo o,
(B(g) + dn)(
. al,.-.,azym)
- +1
= (-1)* P, + (~1)%an
al'...'uﬂ.) (alr...,asz)
g :
1
Oy (=0t . + (-1)*
124 Coyreveragieesia, o) Magreaiiia,)




S +1
= ) fOr (alfnuofaﬂfm)EAR -

It follows that P(M,‘;:) is‘trivial for all PsIk(O(D))

as long as 2k > n - r .

When M7 jis a closed manifold, the cohomology theory of the
De Rham complex A(M) and the usual De Rham complex are

canonically isomorphic.

Corollary 8.4, rLet M" bpe a closed orientable manifold
which admits a nonsingular F-=structure of rank r(x) > r > 0 for
all xeMn + then, the Euler class of M" vanisﬁes, the real
Pontrjagin classes of M" , Ponﬁ(M)gHZk(M,R) ; vanishes for

2k > n - r ,

However, -if ';;is only nonsingular in a neighborhood of the

boundary aM , y ig defined only away from the singularities

20 of . 1f

(8.24) o ”g)(ql,_”,%))n M(al,...,al)

('al,...,az)eAR » are all closed submanifolds of M, we have the
ollowing residue theorem which is a direct conclusion of the
esidue computations in [2], [4] and'corollary 8.3,

Corollary 8.5. Assume that dim M° = n = 2k ,




PeIk(O(2k)) ' @Z = {Ua ' 'g)q)}Ot A is an PF-structure which is

non31ngular in a neighborhood of the boundary g3m . Assume that

Z( g)(alr---,a }) N M(al,...,a )} are all closed submaﬁlfolds-

L
of M . Then, the characterlstlc number

(8.25) PIM, 2T = | Blg) = = § Res (n,2)
Z

where the sum is over all connected components of the set of

-
} . ' -

closed submanifolds {2¢ yv) N M -
(Ctlr---rafﬁ*) - |

Remark: The residue theorem remains true even for more ' -

complicated structure of Singularigtes. However, we will only

carry out the resgidue computations for isolated second order

singularities 1in section 13.




§9. Characteristic Numbers and Secondary Characterlstlc Numbers-

Assoc1ated to a Nonsingular F-structure

Let N be a closed oriented manifold of dimension 2k-1

which is the,boundary_of a 2k dimensional compact oriented

manifold M, i-GOI N = M * Let 'g: = {(Uu' g:)oa)}er:A be a

nonsingular F-structure on N . @:_‘thus defines a nonsingular

—-structure in a neighborhood of N = oM

. For each

PeIg (0(2k}) , the secondary characteristic numbetr associated

to g: is defined by the following formula

(9.1) SP(N, §~) = —L o pru, (o mod Z
(21)

= % P(g) mod Z
(21)

where Pp[y, ;i] is defined by equation (8.25),

This modulo Z number SP(N, g:) is independent of M and

“dependent only on N and @:, since for a closed manlfold Y ,

its characterlstlc number associated to . p is an integer, i.e.

P[Y]eZz . 1In general, SP(N, ?:) can arrive at any modulo 7

However, if gz-is a nonsingular F-structure with all of

then for all PeIg (0(2k))

r

Corollary 9.1. Assume that M is a filling of N r loe,,

M = N , suppose that g:-extends to an p-

structure of M




(possibly with singularities),

(9. 2)
where

(9.3)

which lives away from the singular set of @:

the residues of the%?hain

sp(N, )

{2m)

. co .
n is the/Fhaln such that

r‘].5(9) + dn

Then

Res fM, &:,n)

0

mod 27

r Res(M, i;:,n)

n at the singular set.
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§10. Collap31ng Rlemannlan Manifolds and Secondary

Characterlstlc Numbers,

The fact that the secondary characteristic number

SP(N, @:J is a topological invariant of (N,'@Z) is first

revealed by collapsing an invariant riemannian metric along the

nonsingular F-structure g: In [C&), Cheeger and Gromov proved

the following: -

Proposition 10,1

a)., If M" admits a nonsingular F-structure ~

on the f

complement of a compact subset ¢ , then M1 admits a complete

- ;
-g'»< 1 and Vol(Mn,g) < w ‘ r

i |
by, If ¢ is empty, M" admits a family dg of such .

|
omplete invariant metrics, with |K | < 1 and -

oo
s .
lim Vol(M 19 ) =0 ‘

S+ o

Proof. see [£8].

Let M? be an oriented compact manifold with boundary
=1 aM" ., Let g:.be a nonsingular F-structure on N . put
1) MY = MOU(Nx (0, 4e))
2)

M: = M'U(Nx(0,s))




Mg- satisfies the conditions in Proposition 10.1.a). Let

g be
a complete invariant metric on M: with |K | < 1 and
Vol(M:,g) < += . PFor all PEIE(O(ZK)) r N = 2k , the curvature
integral
{10.3) , [ P(a)

(1, g)

is well~defined, The secondary characteristic number

SP(N, <) is originally defined by the following formula ;

o -
(10.4) SP(N, ¥~ ) = L [ P(Q) mod 7z :

k 1 ’

We claim that the two definitions by equations (9.1) and {10.4)

for the secondary characteristic numbers are the same, i.e.,

(10.5) =~ [ pra) - B(g)] = 0 mod 7
| (2m) (M, g) (Mg ,g)

Fix a stratification {Ni} for N which is compatible

with @: + Let g, be the induced invariant metric on

N= BMS + Choose a stratification

{MS'(al""'aﬂ)}(ul,...,az)sAﬂ’, 2=m for MS ¢ which is

Compatible with g: and the restriction onto the boundary




(10.6) B_(g) = ) [ B

{(g)
(al""’ag) —_ Sr(ﬂlr---:ag)

Sp(al,.-.,ag)

P (g)
ot 2+1 4 Sl(u Fese 0 ,m)
(MZ.q) P ogseeavag o) en M ! *

= § e+ 3 ) [

%(al'-..’uﬂ'm)

Note M < 9M_ = N . Equation (10.5) exactly means
S:(alro--:asz) =]

that

Lim
S+ +w L

ey

PS,(al,...,agrm)(g) = q

T~

)

1 (al,..-,a

f
z’m)SAE M

S,(al,r---,agfm)

i.e., as the metric on the boundary N =

= aMg collapses, the

contributions from the boundary terms in ﬁs(g) become

negligibie,

if the F~structure on N

is a nonsingular
pure F-strUCture gs of rank r > 0

r the collapsing is especially

The following is a detailed computation which shows that

squation (10.7) is true for & nonsingular pure F-structure,

Sc let ib be a nonsingular pure F-structure of rank

» let g be an invariant metrie,

r on

There is 3 natural

+ v

@
{
=




where' h vanishes on vectors tangent to the orbits of ?)énd v

‘vanishes on vectors normal to the orbitsg,
s

! . . n
reimannian metric on Mm

Let g be a

such that the restriction on Nx(0,+w)
is

(10.9) e~25V + h + ds2

g 1is thus invariant on Nx (0, +ew)

a stratification of Mg compatible with g). By our convention,

we label

(10.10) I

MS!(O)z 3

(10.11) A My (0,e)= Mg = N

thus

(10.12) Pl = Py 0@ + B (o Lyt

P (g) = p(q)| = P{q) |
s,(0) - -M
s, (0) 5

k-

1
~ N . 1
. PS'(O'w)(Q) = k fo P{d we Ry )LaMS

wt'ﬂt' are the local connection and curvature forms of

Note that since g) is pure, the stratification {ﬁs,ams} is




Vi TYespectively.

(10.15) b

Ve = (1-t)p + g, t e [0,1]

D is the Riemannian connection of

g and vb the canonical

basic connection of 35 associated to 9 . We shall show that

(10.16) lim [ B

(g) =0 .
S+ BMS S’(O’m)

For any point p ¢ n ¢ let {Xi}igl be a local basis of

g) in a neighborhood ye of P . Choose a local coordinate

(xl,...,xn_ll with (0,...,,0) as the coordinate of P, such

that 5%— = Xi p 1= 1,7 ., Choose e; small enough, we may
i
assume that Uy = p (0 x B (0) r where B (0)
£ E 4
1 2 1
_ r 2 ’ _ n-r—1 2 _
= {xeR |7 xi<el} . Bez(O) = {yeR I3 Yi<e, o Yi=Xi, s
i= L,yn~r-1 } - The coordinate tangent vector fields 5%" is
i
naturally decomposed as a sum of a horizontal component and a.

vertical component,

o _
ax.—Y.-I—X
i

-~
-
il

1,n-1

here Y, 1is the horizontal component ,

rbits of jb_ + and  X;  is the vertical component which is
angent to the orbits of ?) + Thus

i.e., orthogonal to the

= 9 i

, 1= 1,r
X, i
i 3 i




S .
(10.19) = x. = ) a

5 - =
i ) Ji(y) ‘a—}‘('— ' 1 = r+1,n_1
j
(10.20) Y. =0, i=T1,%F |
(10.21) 9lx;,¥5) =0, i3 = T,nm1 j
(10.22) [Xi,Yj] =‘O R 1 =1,r [xi,xj} = 0 [

Xl""'xr’erl""'Yn—l r forms a local Invariant basis on

U . The matrices

N [P ?
(10.22) Aly) = (Aij(y)) = (g( 3%, ' 3%

J

(10.23) B{y) = (B;5(y)) = (5in'Yj”1,j=r+1,n—l

are both independent of (xl,...,xr) .

Let "l""’“n—l be the dual basis of

T 1 3 -—
Xl""'xr’Yr+l""’Yn—l * M, 'S are invariant smooth 1-forms

U . L dyi_r_ for i > r . Consider the basis
S S, 3 .
Xl,...,e Xr'Yr+1""'Yn' 3s  °n Ux(0,+w) , whose dual basis
-s -5 . . , ,
€ Myree.,e “r’“r+l""’“n—l’ds - The matrix of g in this
sis isg
(y) 0 0
0,25) (gly)) = 0 B(y) 0 = (gi-(y))
0 0 1 J




Theorem 10.1, The matrices (g(y)}, (g(y))“_1 and the local

connection forms ¢ Curvature forms g

in the local basis
esxl""’esxr’yr+l"“'Yn—l' 5} on U x (0,e«) are uniformly

bounded, Hence, the sectional curvature Kg over M is
uniformly bounded, The volume of M is finite,

Proof. The volume form is given by

/Aot gy (e %r ) A (6755 ) p ... 4 (™1 ) Am iy A ... Aw o, A ds

o "S/ASE(Gly]) 1, 4 Tp A ees Awp A wes Aw, LA ds., ]

(gly)) uniformély bounded and N is closed imply

Vol(M ,g) < +» ., Also the uniform boundedness of

(gly)),
(g(y™1 | ana g

imply that the sectional curvature K is
uniformly bounded,

It is obvious that (g(y)) ang (g(y))~1

are uniformly bounded since they depend only on Y - In view of
the structural equation

(10.26) Q = dw + g A g

we need only to verify that w and dy are both uniformly

bounded,
For convenience, set

s s 3
{el""’en} = {e Xl""’e Xr'Yr+1""'Yn—l’ s }
¢ * * {e_'STr e""S
lr-oo r

I

{el,..-ren} “r’.."ﬂr”{'l,...'ﬂn_l'ds} * Clearly'

* *
_ei} ' {qei} are all uniformly bounded on U x (0,+=) . sget




-theh

(10.28)

(10,29)

(10.30)

where

(10,31)

both g(D e
Zm

‘However, gince

From equations (10.29) and (10.30),

e, j,em) and dg(Deiej,em)

g depends only on

.9+ (¥) , ¢ = i, n-1

)

i
{el'...’en} (wj

o 4
):w.(e.)e
i g=1 4 10

) S am
wile,) = . 97 g(b_ e.,e )
IRk °p 3’ m

1

(a*™ = (g(y))~

3 *
le(ei)ei

=
)
o1 3

i

it is enough to verify that

are uniformly bounded since
*

%
¥ and ey dei are uniformly bounded.

(g(y)) = (g(ei,ej)) = (gij(y)) depends only on

engij(y) =0

r depend only on Y + Moreover,
[en,ei] e, 1 =1,r
[en,ei] =0, i = r+l,n




i

(10,35) [ei,e.] 0, i=1,r, 3 = 1,n

(10.36) . [ei,ej] depends only on y if i,j > r.
(10.37)" ‘ g([ei,ej],en) =0 .

)y = 1
(10.38) g(Deiej,em) =3 {eig(ej,em)+ejg(ei,em)

' i
- emg(ei 'ej )+g( [el lej] rem)'"g( [el rem] leJ )+g( [em'ej] ,ei)‘} ) g

i
‘ |
To estimate g(De ej,em) r we divide it into five cases., i
i |

I

B

- _3 i
Case 1, e, = 5F € {ei,ej,em} .

Equation (10.38) reduces to

(10'39) . ZQ(Deiej!em) = g([eifej]rem)

—g([ei,em].ej) + g([em,ej],ei)

if jm< o, by equations (10.33), (10.37)
2g(Denej,em) = g(ejrem) - g(em;ej) + g([emrej}ren) =0 .,
If jm> r , by equations (10.34) and (10.37),

2g(De ejhem) =0 . If J<r<m or me¢ p < 3 , by equations

]

(10,21), (10.33), (10.34), and (10.37}, 2g(De ej,em) 0 .

n




Case 1,.b.

if img r, by equations (10.33) anad (10.37),
g(Deien,em) = —gim(y) . IFf
{(l10.37), g(Deien,em) =0 . If i< r<m orm < r<i, by

equations (10.33), (10.34), and (10.37),

i,m > r , by eguations (10.34) and

1
g(De ®nrlp) = - 2 9inlyY) .

i

Case 2, i,j,m < r .

all three brackets of ei,e.,em vanish
=1 -
Q(Deiej'em) =2 (e ly) + ejoy (v - *n9ij (¥} = 0

Case 3, n > i, j,m, > r

g(De ej,em) depends only on Y since everything involved
: i

depends only on Yy

Case 4, 1 ¢ r < j,m < n

g(De.ej,e ) = g(Demej,e.] = »g(De'em,ei) = g(Deje.,em)
1
_2' g ({emre ]re-)
ote e =y 3 - X ,e. = Y, = 8 - X,
moLTmo oAy m ] J aﬁj_r J
] ]
e = [ 2 x] - [ & X
mre;l [ Vi, () [ Yy, 51




Case 5, i, < r<m«<n

g(Deiej,em) = g(Dejei,em] = ~-(_:;(Demei,,ej) = -g(D

1
= —g(Deiem,ej) = —g(De_em,ei) = -= g

3

aym—-r

= "% gi4y)

Thus both g(De.ej,em) and dg(Deiej,em)
w and g

are uniformly

bounded, It follows that

are both uniformly
bounded, Thig completes the Proof of theorem l10.1.

Note that by equation (5,15)

is given by equations (5.14) and (5.16), i.e.,




. r r s
(10.41) s = iglwisl = 1£19 ile’s;}
(10.42) S, = ~DX,
thus
(10.43) | Ve =D+ t§ |
in terms of local connection forms | , i:
(10.44) | we = w + t§
(.10.45) Q. = dmt + 0 Aw

2

= 9+ t{ds + yas + SAw} + t“gas

k-1

" 1.,
(10.46) Ps,(0,0)(9) = k[T a'ep(s,af )laMS

Let '(Si,g) be the matrix representation of Si in the

basisg {el,.{.,en} y i.e.,

10.47) Si{egrnanre ) = {egreere }(8;.4)

quation (10.16) follows if we can verify that

0,48) k]




-(10;49) ]qSi,gng C.e” %

where C is a constant independent of g

Indeed, ;
(10.50) Si(ej) = -D, Xj= [xi,ej] - Dy ey = —Dx.eJ
J 1 1 .
-s -s v am |
=-e "D_e. = —¢ P LT o g(n. e.,e Y}e
e, ] 021 'mdy e, m [} {
-
. !‘ |
L -8 o ,ém -
(10.51) Si’j =e "{-Vg g(De e.,e )} ‘ f:'
2 -s; o Lm Lm
(10.52) a8, % = ™% 1. 19779(Dg e, ) - d(g 9(D, e.se )1}
s I3 L ,
@ S.,j and e dsi'j are unifromly bounded. It follows

that there is a constant C > 0, such that

e . * * *
lLPSf(O,m)(g)l‘laMs < Clel A ez A!o-Aen

L
= Cemrs I'—TT.l A']T

gheeetn

< ce”" " ¥vo1(N,q)




Theorem 10.2, rLet 3: be a nonsingular pP-structure on

N = aMn . Then

(10.55) B(g) = [ P(2)

(m7,g) (M2 ,q)

The above argument is a proof for ;: being pure.

- When the pure F-structure ﬁ) is of rank 1 r @ direct

computation shows that locally/

k ) . .
~ _ k b k=3 -1
(10.56) Blo,») (@) = vljzl(j)P[Sl, 2" 1) (dg )7L - Plo) lam,

which is exactly the Bott form constructed in [4],




§11. The Explicit Bott Forms Associated to a Pair of Pure p-

Structures of Rank One

Let g)111?2 be pure F-structures of rank 1 on U ., Let
g) be the rank 2 bure F-structure generated by 1§) 9

g be an invariant Riemannian structure for

1 r . Let

(U,gp) . We compute

explicitly the Bott form P(1,2) in local coordinate system,

Let X1+1¥Xy be local Rilling vector fields which represent

§P1,§52 locally, respectively. [Xl,X2] = 0 . PFor simplicity,

|
we use <.,«> for the invariant metric g , Let L be the ' {
'

canonical dual of Xi associated to the metric g defined by

<X ¥
(11.1) i (Y) = KXS 1 =1,2, i
i i
Put
11.2) gij = <xi,xj> r 1,3 € 2
g2
1.3) A=1 - 12
911922
12 _ -1 _ Y12
11.4)_ Ty = A {'ﬂl 9., 1T2}
12 _ -1 912
.5) T[2 — A {'""2 g22 ﬁl}

2

rﬂ%z} is the canonical duat of {Xl’XZ} associated to the

riant metric g, i.e.,




, 12 _ _ L, if i=j
(11.6) EERE D PR - i
(11.7) P2V = 0 if <x.,vs - 0, 3 =1,7 .

Solve for Tyrm, from equations (11.4) and (11.5)

g
(11.8) " = “i2 + 12 v§2
911
| g
(11.9) v, = 22 12 12
2 g22 1 2

{11.10) T A Mo = A'IT% A

Let V?,vg be the canonical basic connection associated to

§b 1'?52 » respectively, v?l 2) the canonical basic connection
. r
~associated to &) . Set

(11.11) A(1) b

=V1 — D

_ b
11.12) A(2) = V, - D
1i.13) A(l1,2) \7(1'2) D

i
;




_ 12 12
(11,15) A(1,2) 1 )

Note that miS; is independent of the local representation X

for ﬁji and thus depends only on gbi i=1,2

r

' k
(11.16) P, = 7ok

J k=] j-1
(i)" 7 it J)P(SirQ )(dﬂi)

' )
is the Bott form associated to ﬁ) i « 5See equation (10.56),

By equation (7.1),

(11.17) P(1,2) T Pro,1,2) 7 Plo,2.1) | if

To compute P(O,l,2) r Set

_ b b | i
{(11.18) Ve —ltOD + tlv1 + tzv(l,z) !

= D.+ tlA(l) + tzA(l'z) , £ o= (to,tl,tz) € A,

the local connection forms of V. are given by

, S 12 12
(11.19) we = @ * tl“lsl + tz(vl Sl + Ty 82)

its curvature forms are

11.20) Qt = dwt + Wy A Wy
1.21) Ry = @+ (& dr, + tzdﬁiz)sl + tzdw;282




g
_ 12 1 12 12 . 12
=0 + tl(dwl + 5;; dn, )s1 + oty (dng 8y + dr, 8,)
i : 12 12
modulo the ideal generated by Ty oMy
' ' . , 12 12
(l11.22) d W, = d tl A ﬂlSl + d t2 A (wl Sl + L 52)
By equation (6.17),
_ k . 2 k-2
Ay
. . 12 12 k., 912 2 k-2 k-2
d'tp A d't, 4 T Ty 20 EII P(Sy.ac ™) P(S) /8,00 %)}

2

12

12 k-2

12 12, 912 12 12 12 k-2
A 'JT2 A P(Si,Sj,{ﬂ + tl(d'rrl + _EE;I d'rr2 )Sl + tz(d'rrl Sl+d1r2 52)} )]
- 0, o g o
=2 el (k Dy e, (a1 212 dny?) !
la|=k-2 @ 11
4.1 o 43
0 1 12 12 2
P(Si,Sjrﬂ rSl ,(dnl Sl+dn2 Sz) )
here 4 = (uo,al,az) is a multiple index, la] = o tay ta, o,
k=2 _ {k-=2)1
( o ) T .
C!O-Cﬁl-az-
Lenma 11.1. Let 3 = (Bl""’Bg) be a multiple index,
2 > 0 Let t = (t t ), tB = tBltBZ t82 ;
E r Bj - 1'.0.' 2 r l 2 LI £ r




81 =

BJ r d't = d'tl A.. At . Then
]

1 s

1

(11,25) [ tfdre = 8L _

Proof, Induction on g .

' B = (lil-ty ] L : |
.26) [ tPde = [y ceof d A AT T |

£ |

(11.27) J

‘ 1 = _ 2=-1 '
1 +-- @ tg (1 tz) d's

into equation (11.26),

1 v d's d't2 r Substitute




- o )31+°"+Bz—1+“"iﬁnd.t BrlBo! o gt o |
0 . 2 : L 2 (n—l+sl+...+g£_1)1
o B !, !...8 !

= 1°°2 g—1

- B(Bf,+l'81+ ces *+ B£_1+£) (£_1+Bl+ .. + Bﬂ_l)!

‘here we used the induction hypotheses for -1 « B is the Beta

function, recall

- a-1,., . b-1 _ f(a)r(b)
(11.29) B{a,b) é s (i-s) ds = T(atb)
Thus

|
+ . » !c * » - [
[ Bare - r(ﬁjl 1)r(31+32+. B, +e) . By By 1 |
.Az F(Bl+32+"'+82+2+1) (g—1+3l+...+32_1)! ;
1 - g |
_ 32-(31+...+32_1+g 1)t 311...32_1. ;
L] _ l :
(Bl+32+...+3£+g)! (2 1+31+...+B£_1)_ 3
_ __ 8! | :
© (e[ . o
o
|
here r(a) is the gamma function, rfa+l) = al for g5 £ Z+

Y induction, thisg proves the lemma,

By lemma 11.1, we have

g o
Pi0,1,2) niz Ayt oy (K ) (cn 24712 dr %) !
e [a|=k=2 %0 911
91 2 % o 12 12 %2
11




g o
= 312 ) ﬂ§2 A ;o )(dﬂ%2+ 22 4, ;2) by
la |=k-2 % 11
g a,t+2 0 o+l a o
22 ps, 17 g dr) %5, +anl2s )"2) "B sy 0, (ay)] S +dn3%s ) 2))

: +i+ i
.32) (0,1,2) = "1° A 722 4 o e ) (123 g 1 3t
’ 0<i+jck-2 J
g - bi4e I - " ot
[( 22,1 Yo(g 24T gk-2-i-j) p(s, )71, g1t ok-2-i )

911

P(0 1,2) is obtained by interchanging the subscripts 1 ang 2,
r

12 | Ee) T a1y g, 125

| 12
33) p = wy" A1 A (i
: (0,2,1) = b civSerog 2t

g . .. P . . ISP : !

[« 12 )l+1P(82+1+J,Qk 2-i Jy P(SJ+1’SI+1'QK 2-1i J)} !
g _ 2 2 1 i

22 L

- _ 12 12 k T+i+j 12,5 121 |
T[l A 1T2 A )( . )(d'ﬁ'l ) (d'ﬂ'z ) 1

g . s s P
[ 12 )]+l 2+1+J’ﬂk 2-1i J) _ P(S

- j+1 S;+1’ﬂk—2—1*3)}
22

P(S2

t follows from equation (11.17) that

12

: ) 12
t1.34) P(1,2) =0 oA T,

A

iy an 2 F g, 12)
O<i+jck-2 J

A g . . —D i
{(1+;+J)( g12 )1+1P(Sf+l+J,9k 2-i J)
11

[N

g . P PSR R . . ot
) ( =12 )j+lP(82+l+J'Qk 2-i J) _ (2+1fJ)P(Sj+l'Sl+l’ﬂk 2~1 j)}
. 95, 2 1+i 1 2




" If it happens that §>1 and #)2 are perpendicular to each

other, i.e., locally, 91, <Xy yX,> = 0, equation (11.34)
reduces to ' .
12 12 ki 12,5, 12, | !
35) p = —17% A nn? ) y : ST (dri?)J(apl?)
{1,2) 1 2 0<itick-2 (l+J)1(l+l)!(k 2-i-3) ) ] 2

i+ gk=2-1-3,

i+
p(s] 1.82 ,

In general, if ¥>1""’§>r are r orthogonal pure F-

structures of rank 1 locally represented by Xl,...,xr  then

the canonical metric dual niz"'r,...,wiz"'r of Xl,...,Xr

associated to g = <+y+> coincides with Miresosm defined by

<X, ,Y> T
1

m;(Y) = Zoxs o i l,v . set
i
{11.36) 7 o= Ty A o Aol A L
(11.37) dy =‘(dw1,dw2,...,dnr)
(11.38) 5 = (51'52""'Sr)

It

for a multiple index 4 (al,...,ar) r set

o o o
(11.39) (am)® = fanp) Tean,) 2 (e )"F
. ] o a
11.40) = s* = (811,322,...,Srr)




Equation (11.35) has the following generalization:

11.41) P

(1,2,...,r)

- (_11r+lw

C
k! + k- - |
o R

lg[ﬁk—r %

™
|

(l’livfl) ERIE | -

However, the orthogonality is a very strong assumption, most L

set of commutative local Killing vector fields does not admit

smooth metric such that under this metric they are orthogonal,

For example, consider killing vector fields in R4

= J__ _2 i =
(11.42) X; = a; g5~ + b, 50, * L= 12 . apeo.

then, [Xl,X2] = 0 , for any smooth metric g

r

_ 3 5 3 9
g(xy,x,) = aja,gf 50, 55; ) + (alb2 +tasb,) g 53; ' 55; )
g 3
* byby o 26, ' 39, )
92y x50 | =y =0 2187 90 35— & E%_ My =y =0 * 0
F27Y5 1 1 17y

Nce g is positive definite,




§12., Examples,

Let X; be a Killing vector field on a Riemannian

manifold (Mn,g) - Let Z be a compact connected component of

Zero(Xl) . Define in a deleted neighborhood of 2 a one-form

™y by wl(Y) = g(XI’Y)/g(Xl’Xl) . Let v(Z} be the normal

bundle of 2z and let QV be the curvature of v(Z) . The Lie

derivative of X) induces an automorphism SI on  v{Z)

1
e > 0, let N€ be the set of all points of n whose distance

. For

from Z is < e

Proposition 12,1. Let ¢ be a differential form on M

*®
. Let i (8) denote the restriction to =z

L4
degree ¢ = n - 2¢

of 9 . Orient Ne cohevrently with M and orient aNE as the

boundary of NE . Orient 2 and v(Z) so that the resulting

;direct sum orientation of v(Z) @ T(Z) 1is coherent with the

orientation of M . Then:

*

(12.1) Lim fowpa (dn)*7h g = (2t g —2

- e+0 3N - Z x(s. +a")
_ € X

£ 1 ¢ is a closed form, then

*
12.2) Lim [ oa p (an)* 70 0 e = w(2n)? —ﬂé"——‘;’—{)’- (2]
e+0 3N x{s, +a")
£ Xl

5 LK *
here ce (i 8) is the cohomology class represented by i9 , [2]

the fundamental class 6f z . X( ) denotes the FRuler




characteristic class of ( }
Proof, See [21.

2
Example 1, (R4n,X = ¥ a T

14 i aei . alaz....a2n # 0 .,
Equip R4n with an invariant metric g which collapses along

Xy « For example, let dg be the standard metric on R4n r9
the standard metric on S4n—1 « Then, g7 has a natural

decomposition

(12.3) g; = h + 91 (X, X)) v, @

1™

where h vanishes along Xy Let ¢1(s),¢2(s) be a partition
©of unity for R+

¢l(s)'= 1 for s <1 , ¢2(s) =1 for s » 2

Let P e'IgYSO(4n)) - By equations (8.21), (8,22),

:'5)‘ P(Q) + dP(l) = 0 on R4n\{0} .




where 'S|= —-DX; . Thus

' 1 +1 .
(12.7) [ P(g) = lim p
‘ (200%™ 4n (212" 220 4£~1 (1)
R sE
- lim f P
(21r)2n B+ S4n—1 (1)

=]

equations (10.16), (10.56), and (12.2) show that

_ P{L_ )
L [ P(a) A
(12.8) { =
(2q)°20 AN X‘Lxl’
P(Lx )
(12.9) ' sp(s?™ Ly y 1 mod Z.
. 1 x(LX )
1

where’

_ 0 A
(12.10) . Ly = (_A o)

%
(12.11) A = a2 .

%2n
if n = l/ P is the first Pontrjagin class under the

Chern-wWeil homomorphism., X, = a, —0 4 a, —2— + Then

1 1 ael 2 9,

x(Ly ) = aa,
1
a a
12,12) SP(S3,X) = 1 + _2 mod Z ,
\ a2 1




Formula (12.12) was obtained in

[6] by a direct computation,

Example 2, rLet ¢% , E + M4n“22 be a complex vector bundle

on a real closed manifold M*P™24 - Let J be the complex

structure on E ., J induces a canoenical Sl action which

perserves fibre, i.e,.,

(12.13) _ e'fy = coseY + sineJy

Choose a local frame Vl""’vg of type (1,0) such that

(12.14) vy =dvy, §=T,0, 1= /7T,
set
12,15 .=V, o+ v,
( ) . XJ V5 V5
12.16 Y. = __.._"'
( ) ; 1(vJ vJ)
then

Xl”"'xg'Yl""'Yg is a local frame for the underlying

real vector bundle Ep . The 51 action is defined locally by

the following formula

| FLIRAS RS AAE LS =1

S1 action is the zaro section

be an invariant metric of the gl action, which

ollapses at infinity. TrLet

X be the Killing field given by




this action. Identify MiN~2% with the zero section of ER , we
- _ LAn=2g
have Zero X = M . Moreover, under the local frame
Xl'.."xﬁ,'Yl"-."Yﬂ, r
0 I
(12.18) ‘ Ly -1 0 J
' b2
v
LX: X 0 = 0
0 0]
thus
] P(LX+K)
(12.20) —on [ Pla) = — 5 [MI
(2r) Bo - x{(J+k")
where KY is the curvature of the normal bundle of M r K 1is
the curvature of v(M) & T(M) .
If E 1is the tangent bundle of a complex compact manifold
M2" | then
J+K 0
' ] f. P({ 0 K))
(12.21) — P(g) = M}
: (2“)2n ™ x (J+K)
where J is the complex structure of TM and K is the
Cﬁrvature of TM .
If E 1is a complex line bundle over M4n—2 r let e be the
ﬁler class of E . Let Pl’Pz""'Pn—l be the Pontrjagin
asses of M2"2 x the Euler class of M*"™ 2 | |[et g,; be
ith symmetric polynomial of Af,xg,...,kgn r
Allz"'lzn r then P = P(02'04'.i"02n“2'0) is a polynomial

Or0 reeesd,. 510 o  Since TE’_M = E ® TM , by the product




- 2 ; _
(12.22) 954 | =P, + Pi_l(1+e) r 1 £ n-1
0 K
: +

' (—g—e loe) 0

(12.23) o = (l+e)y
0 K

where K

is the curvature of the tangent bundle of M

Equation (12.20) gives

(12.24) S [ Plo) -
. n I -
(2%) ER
P(P +(1+e)?,p_+p. (1+e)2 P 4P (1+e)2,(1+e)y)
1 T2 A T B ’ X dn-2
5 [M 1
e
if P =46 , then
(12.25) - L [ oela) = 2
(27) ER
if P = P(02'04f¢--102n_2) ’ then
(12.26) - L [ P(a)
T | (27)%" g
T R
2 2 2
(P1+(l+e) 'P2+P1(1+e) '.."Pn—l+Pn—2(l+e) )—(Plr--ofpn_l) [M4n__2]
l + e

ince p(p

N

1'0..,Pn_1) = 0 .

Example 3. rLet c%* , g, ¥P—22 be a complex vector




3 1s a complex vector bundie

i be the complex structure on Ej . Let

Xy Dbe the vector field of the gl action determined by the

complex structure Jj

m
. For (al,...,am) ¢ R, al...am # 0,

set
m
(12.27) X = X a

Let g be an invariant metric on the total space

E , which F
collapses along x . Then F
: . h
. ] P (L +K) L
(12.28) n [ Pla) = — [1] _
(2m)" Ep I yx(a,J,+K.)
j=1 J 1 3]
where Kj is the curvature of Ej + K is the curvature of
m
(® E.) & ™™ .
j=1
Example 4. (Nonpure F-structure on g3 ).
Let (xl,yl,xz,yz) be the standard coordinate of R4 = C2
-(Yl'el’YZ'ez) the multipolar coordinate of R4 ¢ l.e,,
X, = y,cosg,
¥y T vysine,
Let Dgc:R4 be the 4-dimensional disc with the standard
tric g of radius 2 . S3 = BD4

5 + Consider the nonsingular

3

ﬁtructure g:-= {(Ui’xi)}i=l,2 on 57 , where

_.L + h _ﬂ_

2 . = . . ’ 4 =
30) X a 391 YA 1,2 a ‘b, # 0

i %




(12.31) | Ui = {a e s y,(a) # 0} .

4 —

4

set M, = Dy » My ={gepD, | 1c« ry(al < r(q) < 2} .

— 4 : .
My="laeD, [ 1<y () < Y,{q) < 2} . They determine a
stratification of Dg .

'{Mo'Ml'Mz'M(o,l)'M(o,2>'Mtl,z)'Mtl,m)'M(z,w)'M<0,1,2>'M(l,z,w>}

where M : ) N...0M . Extend
(11,.-.,(12 2 AGR

X; to a neighborhood of ﬁi,i =1,2 . Let

= interior of M N M
CCl o

1

| = 9 o
(12,32) Xy 59 + 7o,
: . — (o anl
on a neighborhood of M, « The F-structure §*— is thus extended
Y 0
: O
to an F-structure g: on D; .+ The stratification is compatible




4

with the extended F-structure on D2 .
metric on R4 restricted to Dg . Let P be the invariant

Let g be the standard

polynomial which represents the first Pontrjagin class under the
Chern-weil homomorphism, Recall equations (8.2), (8.3), and

(8.4), we have

{12.33) P(i)(g) = P(g) _ﬂ'.: 0, 1i= 0,1,2

since ¢ =z O .,

(12.34)

(12.35) 9(0'1’2)(g) = 0
(12.36) ,P(i'w)(g) N P(i)lﬁ-. yi=1,2

(1:°°)
(12.37) P (g) = -p -

(lfz'm? (1'2)I'M(1r21°°)
thus
(12.38) B(g) = p — P = - P T
Wl . g, i,

the singular set of ¢ is g = ZOLJZ(O,l)U 2(0’2) , where

fo T OFSMy 2o ,0y = Ha e mg gyt = jemg |, |
“0,2) T {@ e Mg 5)lvata) = 1jem ) . By equations (8.21), 5
Co

(8.22), and (8.23), there is affhain n e A3(D§) r such that away

from the singular set 7 , G

(12,39) B(g) + dn = 0




(12.40) "= P(0)|_ﬁ(0) + P(l,ljg(l) + P(z)l-jﬁ(z) TP, (m

‘(Ofl)

+ P = + P M P M
. (012)'ﬂ(0'2) (1'2)‘M(1'2) (0'1'2),M{011r2)

let N (27 ) be the set of all points in
e (ulr.-.,ag)

M(ul:--.ra )

. £
Z < e . Apply theorem 2.4, take
(Glr--oraz)
care of the orientation, we have

its distance from

(12.41) JB(g) = -fay
= +lim f P + / -p + f -P ]
(0) (0,1) (0,2)
e+0 aNE(O) 3NE(Z(0,1)) BNE(Z(O,z )
set
(12,42) Hi(Y)'= RIS 1 =90,1,2
1 1
(12.43) Si(Y) = —DYX1 i=o0,1,2
;Noté that g = ¢
- 2
12.44)‘ P(O) = HOdHOP(SO)
Equation (12.2) shows that
| : , P(sd) ,
12.45) Lim [ Py = 4(20) Loy = tlem ‘2
>0 8N _(0) X X,




Note'that k = 2, use equation (11.34), we have

. - g : g
.. 01 01 01 2 01 2
(12.46) P(O,l) = HO A ]‘[l { g—'o-aP(SO) +'{J_1""]'-P(Sl) - 2P(Sorsl)}

_ 02 02 ., Y02 2 902 2 ]
(12.47) Plo,2y = Mg~ A m,” [ === P(sy) + .- P(sy) - 2P(s8,,5,) |}

900 22
where g = g(X.,X.) HOi HOi is the metric dual of X, X
ij A R (ALY ] 0"%1i
. 0i 0i i
Beeer Myt (X = 1 wugtxg) =0, w8k = 0,
Hgl(xi) =1, Hgl(Y) = Hgl(Y) = 0 for all Y perpendicular to
XO,X « Note also

] ] ] ] ] )

- = —_—— _— = — —_— —_— _— —_
48) Xl a4 28 bl a0 al( yl X +Xl ayl) * bl( Yy 3x + x2 3y2 )

3, = = = ——a._.._.—- _..8...._ ._a.__ _.a.._
.49) S; = DXi ai(dyl X dxl 3y ) + bi(dy2 X dx2 5y

1 1 2 2
. d g 9 ]
under the standard basis { —— — - )

3 ) ) 9 i
(12.50) . Si ( X —_—, = - )

0 a. 0
1
= _““r——'r_ﬁ'r"‘*
X ayl 3x2 3y2 0 bi
0 _bi 0
12.51) P(S;,85) = aja, + b.b,




{12.52)

{12.53)
22
(aib.—a.bi)ylyzdelﬂdﬁz
(12.54) W, Am, = —3 0 3
, i 3 (aZy 2,2 2y (42 2,2 2,
1Y17P3vp (agyy iv2
set
2
(12.55) A =1 - —Eii—— i+ 3
1] giigjj
then ‘ ' '
(12.56) pid - Aﬁl{n - 2ij .l
* ‘ i igthg g:. j
11
(12.57) ‘ nid - A l{n - 24 0.}
] ijth g.. 1
33
' . ij ij - -1
(12.58) Hi A Hj Aini A Hj
(a;b.-a.b.)y2y2ds nde
- 173 “37i7Y1¥,90,4de,
2,22 72 2 3 3 2 2.2
(ain+blY2)(anl+ij2) — (aia.yl+bib.y )
) delAde2
_—L 2
94 b,
(12.59) lim 11 - Bl
. ' yl+0 9ii i
g.. a
(12.60) lim —~%J -
v,+0 9ii 3

combine equations (12.46), (12.47), (12.51), (12.58), (12.59),

and (12.60), we have




; de, Adp b b
(12.61) Lin pg gy = — 2 5o (a2+b2) 4 . (aj+b2)
71*0 qpbyma,by 0 -2

*2(a0§2+b0b2)}

' ' .de, Adg a a
(12.62)  1im p 1) T pe [ L (ag+bd) + 0 (aj+b?)
v,»0 'O 0°17%1%9 © ag ]

~2(a0al+b0bl)} .

Integrate equation (12.62) on the 2-dimensional torus

E)NE(Z(0 l)) ¢+ hote our orientation convention, we have
4
a a
1 2,2 0 2,,2
, a—o'- (ao+b0)+ 'a—l- (a1+b1)-2(a0al+b
e+0 IN (gz ) (041) 3Py ~ apby
£ (Orl)
a.b b

oPy)




imilarly,_

Add up equations (12.45), (12.63), and (12.64),

a.b.-a.b a.b,~a_b
(12.65) [B@) = 2n? (24 20 T e 02 270
o071 - G2
b a
= (2ﬂ)2[ L BE ]
1 2
. 3 3 -3 3
slnce X. = a,. =%~ 4+ p = + .
0 0 ael 0 aez ael 892
Therefore
b a
(12.66) se(s3, ) = 1 7 [Bo) = L4 2
(21) 1 2
When Xl =_X2 ; We obtain formula (12.12) again.

}

mod Z

| . ot + 12 (a§+b§)—2(a0a2+b
12.64) ° 1lim Plo,2) * 4q2% 0 . b2 L
| , -
_ 44,2 2022730
bob,




§13. - Residue at an Isolated Singular Point of a Pure F- Structure

of Rank Two

Let (Mn,g) be a Riemannian manifold with a pure P-

structure 35 of rank r ,

be of g

A singular point de M is said to

dimensional isotropy, s >0, if for some linear

Xl"f"xr of 'gs at g , rank
{xl(q),...,xr(q)} = r-s, q

independent germs

is said to be an isolated singular
point of s —dimensional isotropy if there exists a

ﬁeighborhood U of g such that for all

q' e U\{q} r q' 1is a
point of strictly less than

8 -dimensional isotropy. 1In the

we will always assume jb is a pure F-

qe M

rest of this section,

Structure of rank 2, an isolated singular point of 2-

dimensional isotropy,

Let vl,v2 be two local kKilling vector fields on a
‘neighborhood UeM of q , which generate ﬁb on U .,

According to g, Kobayashi (see {121y,

note also that

\
[vl,vz] = 0 , we can choose a normal coordinate

(13.1) 4 = (x

‘\
1:Y1rX2rY2:---errykrzl ro--rzg)

such that $(qg) = 0,

¢ PpPreserves orientation, moreover,

k
(13.2) v, = ¥ a, (~y, 3 .

(13.3)

[N
Q2
<>

e




- (13.4) a

N

+ bf # 0 for alil i

m
There are positive integers kl'kz”"'km’ m> 2, iilki = k ,
such that
{13.5) Aij = aEi+1bj - ajbEi+l = 0 for j e {ki+l,...,ki+l}
(13.6) Aij = a—Eiﬂbj - aijq-i+l # 0 for all j ¢ {ki+1,...,ki+;}
where
(13.7) ki = ‘Z kj r 1= 1,m .
1=1
Since q 1is an isolated singular point of 2~dimensional
isotropy, we must have L =0, i.e., 4 = (xl,yl,...,xk,yk) ,

and n = 2k = dim M . We may, by a local change of the invariant

|
|
; thus |

metric, assume that g 1is flat on U |
. 3 p 3 3 !

(13.8) gl —0— 4, == ) = g( 22— r T ) = 5. . j

ax; " ax STIT? ij ;
: ' 3 2

Set .
k ) | .

(13.10) Xi = J;lAiJ 5"6— = aE—.+lv2 - bEi'*'lvl r 1 = 1,m .




‘Noté that the X, 's are local killing vector fields uniquely

determined by @) up to a nonzero. scalar multiple. sget

(13.11) . X - X (.._ L —— 4+ ox. T ) = 5‘ P
s 0 \ g X, ., L 9g.
j=1 Yj 5 J oy, ja1 295

X9 1s a local Killing vector field (even before the possible

local change of the invariant metric.). Moreover, the Xi 's

commute to each other, i,e., [Xi,xj] =0, 1i=0,1,...,m .
Set
k.,
= i+l
—2 2 2 2 2
13.12 r,” = T ro o= x4+ oy,
( ) i ?_: it i YJ
]=ki+1
(13.13) 2, ={q' c U [__?j‘(q') = 0 for all j # i}
-then
(13.14) {a} = M 2, .
R i=1
It is clear that Xj vanishes exactly at Z, -
The residue contribution at g is now computed as follows:
2k, 2k, 2k 2k
Let B (g) =B x B X «vs x B < U , where B is a
£ € E E E

Zki—dimension.ball of radius ¢ centered at 94 . We use the

Killing field X; on Be(q) + which vanishes only at q .




The residue of XO at

q 1is then
(13.15) (2m) “p(sk)
since X(SO) =1,
For each pair (XO,Xl) restricted to
2k 2k, 2k, 2k,
13.16) 3.B (gq) = B 1x oo x B 1 lx 3B 'y p 1F1
1 e £ € £ 54
- the singular set ig a sphere of dimension (2ki—1) ;
. - ] - ' =
(13.17) Z(O,i)(EJ [a' e BiBE(q) | rj(q ) 0
The idea is first to compute the residue of P(O,i)

A .v{e) and then take the limit as
(0,i)*%’

e tends to

of these residues Plus the residue of

XO at

g
residue contribution of the pure F-structure

that from theorem 7.1,

(13.18)

at

0

2k
» X B m

The sum

is then the

45 at g . Note




(13.19) p dp
- (uz) (ul;az)

Let - ﬁgl,ngl be the metric dual of XO,Xi » Since g is

flat on U , g = g « Formula (11, 34) simplifies to

(13.20) Po,iy = mormot g (dngh) I (ar0hy2
- Jjte=k-2
k-1, 90i g41. . x k-1, Y01 341, & Lk G+l g+1
A oo )TUTR(s) + ()¢ g, )7 R - ees] Sy )}
. 11
where gij = g(xi,Xj) .

The following computations are carried out on aiBE(q) .

k
(13.21) dgg = J r = F T2 ¥ = 2y 2
00 T Lo i
J=1 J#1
: k
_ 2 2
(13.22) 9i; = -;lAijrj
J
. K ,
(13.23) dgi = J A,.r%
0i 321 1373
_ 2 2
(13.24) gU <9 i




(13.26)

(13.27)

(13.28)

(13.29)

(13.30)

(13.31)

Note that

(13.32)

(13.33)

(13.34)

(13.35)

(13.36)

llTOAOi = 1]
£i
g .
lim ~gi = 0
e;+0 Y00
0i -1 Y90
T = A -{ﬁ - T }
0 0il%g 9o 1
0i _ -1 01
T bgidmym g gl
11
0i 0i _ e
o ™4 0i"o" 4
1im lwa lim # . q
.-)-0 0 1 €.+O 0
El i
k
Z A..r5do
- 3=




(13.38)

: g. . i‘
(13.39) lim _9i )
: g.,+0 gOO . l
1 i
‘ k k
2 2
[-ElAijrj] [-ElAijrjde']
= lim -4 ﬂq = 0
.0
£i7 [ef+e?] [ 7 a2.42
jil 13 ]
(13.40) lim ¢ " = lim 5. = ¥0
e.+0 e.+0
1
, 0i g -2 Y01 2
(13.41) Hoﬂi(dﬁi )t o= AOiWOWi fdp, - 3, dﬂo}
(13.42) lim Okye _ "
. T (dno )Y = 1lim noni(d'no)
€.+ e.+0
1 1
Lemma 13.1.
. g
(13.43) (525 )% (d ) KKy
' S2(k—ki)--l ii
£
_ _(27) “{i,a)
+k-k, -1} *
a kl 1 X(Sz)
k—-k.-
1
where
s £ o A -0
1 2 k
13.44 . = ‘
( ) Z(l,a) lo za Al Ais ven Agy
@, =0v2=ky+1,k;




Ai2 LI ik. iE."‘l LY

Aiki+l LI I ) Aik

- v, _
fl3.45) X(Si? = Af

is the Euler polynomial of 5j restricted to the normal bundle

of Z(O,i)(E) ra = (alr...,ak) is a k-tuple index,
K | 2(k-k,)-1
'ﬁlhz X a. , caret denoteg omission, [ is the
j=1 £y

sphere of dimension 2(k—ki)—1 with radius e; and the standard

orientation in the fibre of the normal bundle of Z(O i)(s:) .
r
Pfoof. This is lemma (6.21) in {2].

Now keep track of the orientation convention, we have

1lim j P .
(13.46) ei*0  2(k-k )-1 (0ri)
~ ..
_ , . , R _ g..
y lim nfl(dﬁgl)ﬂngl(dwgl)J pekoly o Zod )2+1P(s§)
J+2=k=2 .40 2(k-k.)-] J 900
1 1
3
€y
os .
k-1 0i | j+1 k, _ k ~J+1 g+l
+. . 5;; ) P(s7) (2+1)P(b0 'Sy )}
k-2 k=k.=1 g . g-k+k.+1 e=k+k.+1
= lim PG U I Y G L A b1 1
2=k-k,~1 .50 2(k=k,)-1 9ii
1 1 1
S
€
k,-1 gn .
2. i k-1 0i | k-g-1 ky _ k k=2-1 _e+1
k—ki—l)“ zdno) {( . )¢ 5;; ) P(Si) (E+1)P(SO 87 )}




kwky v v kgl
(21) ﬂo(dno) i ki—j+l K j k=3 o
x(8) j=0 J T
Note also
k.-1 k.
(13.47) f Toldng) © = (2q) 1,
| 2(0,1)te)
It follows that
(13.48) lim f lim f P(O i)
e+0 7 {(e) 5i+0 2(k—ki)—l r
(011) ""SE
k. . i
1 k,-j+1 . .
_ 1 k +J k=]
= (2m)% 4 =

It is clear that the exXpression on the right-hand side of formula
(13.48) is a homogeneous rational function of degree 0 of -

Ail,Ai2,...,A-

].T{-i'!'l'...'AiE ’oo-rAik -

i+l
Apply the formal eXpansion formula

-1
T%g —9~:T = —{a—l+a_2+am3+ vee )

to the product

(13.50) o, = (1-a, )1




(13.52) ' Q

i,s e rByy)
K-k, | ~(a7+1) =(a,+1) “‘“Eﬁl) '(“Ei+1+1+1) ~ (o) +1)
{(-1) A, A, oo AL A, .se A,
|g§=s il i2 lki 1k1+1+1 ik
a2=0’£=ki+l'ki+l
thus
kuki
-1 L(i,8)
(13053) Qi's(Ailr--l'Aik) - v
set Qi,s(Ail""’Aik) = 0 for all s < 0 , |
Then ' {
(13.54) lim [ lim [ P, . i
e+ 0 Z(O,i)(E) ei+0 ﬂSZ(k~ki)—l (0,1)
i
- k
= ~hom[P((5)-5,)%)0.}
where hom/ } is the homogeneous component of degree (0 of
1. |

Theorem 13.2. The residue at an isolated singular point
q of'2?dimensional isotropy of a pure F-structure gB of rank 2

is given by the following formula:

(13.55) Res(P.f).q) |




. k
P((84-5;,))0, }

m
= 20" {p(sf) ~hom J
i=1

where ib is locally generated at q under an appropriate

normal coordinate system by

K 3 | 3 K 3
(13.56) ve = ¥ a,(-y, —— +x, ) = ¥ a
bogsr b Thexy Ty T L% o)
k R R k
(13.57) v, = § bi(-y, =% + x, 9y = 7 b,
20 g5 b T exg T ayy i=1 120y
{13.58) Xi = Z Aij 'é—e‘"' = aE.+1V2_bT€.+lvl’ 1 = 1,m
J=1 ] i i
(13.59) Aij = aEi+1bj ajbfi+l
(13.60) Aij = 0 for all j = ki+1, i+l
- (13.61) Aij* 0 for all 3§ 2 ki+1, it1
K 3
0 L b ,
j=1 29y
(13.63) Si = —Dxi

Remark. The X; 's are determined a priori by #b up to a
cdnstént multiple, i.e,, up to a constant multiple they are
| 1,V2 .
It is clear from the expression on the right-hand side of formula

independent of the choice of the local representatives v

(13.55) that Res(P,i),q) is independent of this constant

multiple and thus a topological invariant of ?b at g




o associated to P , which is a homogeneous rational function of

- degree zero of the Aij 's.

Corollary 13.3. Let y be the invariant polynomial which
represents the Euler class under the Chern-Weil homomorphism,

Then, in the same assumption as in theorem 13.2,
~ _ k
(13.64) Res(x,@,q) = (1-m){(2q)

Proof. Note that

. + k..q.' .
(13.65) x(Sa,Si J) = 0 for all j < ki
k. k—k, k,{k-k.)!
i i i i v

Formula (13.64) follows now from formulae (13.48) and (13.55),

Example 13,1. Let v_,v as defined by equations (13.56)

1772
and (13.57) be two vectors in R2k + let X. be defined by

1

equation (13.58), Aij 's satisfy conditions (13.60) and

(13.61). Let g be an invariant metric such that g is the

standard metric of R2k in a neighborhood of the origin and g

collapses along, say, c vy + C,v, + such that claj + Cij # 0

for all j . Such metric always exists since one can average on
R2k

r

the torus determined by vy and Vo + Decompose




_ 2k,
identify R, ' with the canonical embedding as the ith

component in’ the decomposition (13.67). rLet

(13.68) 91 T 9| ok,
Ll
13.69 ' -
( ) 2 ngi
2k

(Ri rd;) is naturally collapsed along ,(Clvl + C2V2)j 2k,
Note that Ry
(13.70) x(8;+0) = x(a;)x(si+a")

The residue theorem and formula (13.55) and (13.64) show

v

that
(13.71) : L © [ x(a) = Res(x,%B)
(27} 2k
R
) ? 1 x(Si+Q)

+ ReS(X,’g) ,0)

. v
(2q) * 2Kjxi8itan)

o 1
= § —=— [ x(2.) + (1-m)
& k. 2ki i

Example 13.,2. Let P be the invariant polynomial which
D 1 poly

represents the first Pontrjagin class under the Chern—-Weil

homomorphism, Let k = 2 .




(13.72)

' ' _ 9 9
(13-73) . V2 = bl 331 + b2 58—2'
(13.74) o A12 = alb2 - azbl £ 0
2 2
(13.75) Res(py, D ,q) = (2m) [p,(s2)
2, . -1 2, =1
. Pl(sl)Alz"zpl(So'Sl) . Pl(bz)Azl 2P1(SO,82) |
A12 A1
" A, _-~2A A, ~2A
= (21)2 [2 4 1; 12 2; 21 b =0 .
12 21

Example 13,3, Let M2k be a closed oriented manifold,

let ﬁS be a pure F-structure of rank 2 on M with only
isolated 2—dimeﬁsional isotropy. It is not difficult to see that
the singular set z(g)) is a number of immersed closed totally
geodesic submanifolds in M (see [12]). Let 21"';’Zm1 be
these immersed closed totally geodesic submanifolds, which
selfintersect 6r intersect to each other only at isolated points
ql,...,qm . ql,...,qm are precicely these points where the

2
isotropy of és is of dimension 2. By the residue theorem,

' 1 K _
{13.76) P(e7) = Res(p, P20
(2q1) K M£k 1P ib
™ p(s.+q) My

1 1

(2,1 + y Res(P,}),q.)

i=1 x(s]+a") iZ1




canonicaily determined by %5 .

where S; is defined by the’ pure F-structure ‘§)i of raﬁk51 on

a neighborhood of Zi ébi is singular precisely at Z; and

Remark., 1f M2k is a compact oriented manifold with

boundary N = M . gb is a pure F-structure of rank 2 on M

with only isolated 2-dimensional isotropy. §5IN is :

nonsingular. We obtain a similar residue formula for the

secondary characteristic numbers of (N,@Jhﬂ .
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