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Abstract of the Dissertation
On Null Hypersurfaces and Spacelike

Surfaces in Spacetimes

by

Demir Nuri Kupelil

Doctor of Philosophy

in

The Department of Mathematics

State University of New York at Stony Brook

1985

Null hypersurfaces in spacetimes are studied.

Necessary and sufficient conditions for the separation

and foliation of null hypersurfaces by spacelike

surfaces are obtained. The deviation of null congruences

in null hypersurfaces are discussed. A canonical

definition of the second fundamental tensor of a null

hypersurface is obtained and its properties are investi-

gated.

The future null cut locus of a spacelike surface

is defined and its properties are investigated.

The influence of curvature on the existence of

closed trapped surfaces in 4-dimensional spacetimes 1s




discussed. In cosmological and black hole circumstances,
necessary and sufficient conditions for a spacelike
surface to be a closed trapped surface diffeomorphic to
82 are obtained. Sufficient ;onditions for the evolution

of closed trapped surfaces from marginaliy trapped

surfaces are obtained and discussed.
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INTRODUCTION

It is known from the Hawking-Penrose singularity

theorem1 that the existence of closed trapped surfaces

in strongly causal3 spacetimes yields non-spacelike

geodesic incompleteness. However, the crucial ingredient

of the theorem is not the existence of closed trapped

surfaces but rather the existence of a future trapped

set4 in the presence of the strong causality assumption

(see also Figure 1}. {Note that a closed trapped

surface requires only the weak energy condition6 (in

the case of null geodesic completeness)to be a future

trapped set.)7

In the literature, the future convergence property2

of a spacelike surface H 1s considered to be related
with the curvature of spacetime in that H is contained

-1n such a strong gravitational field8 that the light

rays (future directed null geodesics) which are emanating
orthogonally from H are dragged back and in fact, are
converging. However, the future convergence property

of a spacelike surface H may be not a consequence of the

urvature but rather of the way H sits inside the

 otnoteS to the Introduction are found on pp. 6-7




spacetime (see Figure 2). In fact, in any spacetime, one

can construct a spacelike surface H with the future

convergence property.
We note that a compact spacelike surface H in a
spacetime M is a Riemannian surface which is complete

in the induced metric. Therefore, each closed trapped

surface H is a complete spacelike surface (in the
induced metric) with the future convergence property.
It seems reasonable to question the influence of curvature
on the existence of élosed tra??ed surfaces both from
the viewpoint of the relation of curvature to the compact-
ness of future converging complete spacelike surfaces
and from the viewpoint of its influence on future
convergence.

We shall first investigate the influence of

curvature on the compactness of future converging

complete spacelike surfaces. We shall obtain 1n cos-

mological and black hole circumstances necessary and
sufficient conditions for a future converging complete
spacelike surface H to be diffeomorphic to S2 {2-sphere).
Ye shall then obtain sufficient conditions for the

evolution of closed trapped surfaces from marginally

trapped surfacest’ in the above circumstances. (In

smological circumstances, necessary and sufficient




conditions involve energy density and in black hole

circumstances, they involve the surface gravity11 of H.)
These results will appear in Chapter IV,
We shall devote Chapter I to a brief review of

' 2
Jacobi tensorslz and the Raychaudhuri equation™~ along

null gegdésiﬁé, which provide a convenient way of studying
conjugate and focal points. Furthermore, we shall
generalize some theorems of [BE] concerning conjugate
points to focal points of spacelike surfaces aleng null
geodesics and we shall discuss the equivalence of Jacobi
tensors (along a null geodesic vy} from the viewpoint of

the spaces of Jacobil classes (along y) induced by these

Jacobi tensors.

In Chapter II, we shall study null hypersurfaces13

and develop the necessary machinery for Chapter IV.

In the literature, null hypersurfaces have been studied
 either as a part of achronal boundaz‘ies5 or as hyper-
‘surfaces constructed from null geodesic congruences
 Qrth0gona1 to spacelike surfaces [cf. [P], pages 21

‘and 60). However, not every null hypersurface in a
Sﬁacetime can be constructed by using the above methods.

| The major difficulty in the study of null hyper-
rfaces appears to be that the restriction of the metric

" a spacetime M to a null hypersurface S in M is




.
1

degenerate and therefore there is no well-defined pro-

jection of T™M g onto TS {comsequently, it is not
possible to define an induced connection on S). We
shall partially overcome this problem by observing
that the normal bundle N(S) of a null hypersurface S

is a null line Subbundle14 of TS which defines a unique

null direction in each TpS for every p € S. Then, by

quotienting out N(H) from TS, we shall obtain a canonical

Riemannian vector bundle G(S) over S which will enable us

to study null hypersurfaces uéing the methods of Riemannian

We shall obtain a cancnical definition of the

= 0 iff

geometry.

second fundamental tensor L of S and show that L

S is a totally geodesic submanifold of M (that is, L = 0
iff the restriction to S of the connection of spacetime
defines a connection on S). Furthermore, we shall
investigate the relations between L and the deviation of
null geodesic congruences in § by relating I with

acobi tensors along null geodesics in S.

In Chapter 111, we shall generalize the definition

Hh

. .15 . ;
of {future) null cut locus of a point in 4 spacetime
: P

to {future) nuil cut locus gf a spacelike surface

n a spacetime. We shall show that, in a globally

:.perboliéjspacetime M, the future null cut locus Cg(H)

 a compact, acausal® spacelike surface H is a closed




subset of M and each p € C;(H] is either a focal point

of H along some future directed null geodesic which meets
H orthogonally or there exist at least two future

directed null geodesics from H to p realizing the distance

between H and p.




1cf. [BE], page 394.

ZA spacelike surface H is called future converging
if the null normals of H are everywhere converging into
the future. A compact future converging spacelike surface
is called a closed trapped surface.

3A spacetime M is called strongly causal if each
p € M has a neighborhood V such that no nen-spacelike
curve in M intersects V in a disconnected set.

4Let H be a subset of a spacetime M. The chronologicatl
(respectively, causal) future I7(H) (respectively JT(H))}
is defined to be the set of all points in M which can
be joined to H with a past directed timelike (respectively,
non-spacelike) curve. H is called a future set iff
IT(H)Y = H. The future horismos ET(H) of H is defined
to be the set E*{(H) = J¥(H) - It(H). H is called future
trapped if E*(H) is compact H is called achronal
(respectively acausal) if I¥(H) nH = # (respectively,
J¥*(H) nH = #). Boundary of a future set is called an

‘achronal boundary.

5In fact, the essential ingredient of the Hawking-
Penrose singularity theorem is the following: :

Theorem (Hawking-Penrose): A strongly causal spacetime
M cannot be non-spacelike complete if

i) M contains a future trapped set H
ii) every complete non-spacelike geodesic which meet B (H)

fails to realize distance between its peints.

Sketch of Proof: Since M is strongly causal and EY(H)
1s compact, there exists an inextendable non-spacelike
geodesic v which meets E*{II) and realizes distance between
its points (cf. [BE}, pages 208 and 390). But then,
since every complete nen-spacelike geodesic which meets
E*(H) fails to realize distance between its points, ¥ is

necessarily an incomplete geodesic. &

(This spacetime is flat and does not contain
ny closed trapped surface.)

6The weak energy condition is defined to be Ric(u,u)>0
T every null vector u.




7However a compact Spacelike surface need not
necessarily be future converging to be a future trapped
set (see Figure 1). In fact, the topological structure
of the spacetime may play the crucial role in forcing
a spacelike surface to be future trapped.

8Physica11y, the curvature of spacetime is manifested
in gravitational tidal forces (cf. [SW], page 55).

9A~spacelike surface with the future convergence
property can be constructed in any spacetime as follows:
Let V be a geodesically convex, normal neighborhood of a
point p of the spacetime. Consider V as a spacetime.
Let v and 8 be future directed null geodesics in V
emanating from p with non-proportional initial direction.
Let v # p and s # p be points on y and B respectively.
Then Sr = 3J (r)-{r} and S5, = J7(s)-{s} {in V) are smooth

null hypersurfaces in V which are transversal to each
other since vy and @ have non-proportional initial
directions (where J-(r) and J (s) are the causal pasts

of v and s in V). Since the null generators of these null

hypersurfaces are expanding into the past direction in

some neighborhoods of r and s, by choosing r and s
sufficiently close to p, we can obtain a future converging

spacelike surface H which is contained in S nsg (Note
that S_nS_ is also a spacelike surface but it may not

be future converging everywhere.)

10The definition of marginally trapped surface is
technlcal See Chapter I for the formal definition.:

' 11The surface gravity of a spacelike surface H at
P € H is defined as the sectional curvature of the fiber

of 1ts normal bundle at p.
12

cf. [BE], Chapter 11.

13 °A smooth connected hypersurface S in a Lorentzian

manifold is calTled a null hypersurface if T_S is a null
ctor space at every point p € H. P

: 14A vector bundle with l-dimensional null fibers is
alled a null line bundle.

ct. [BE], page 230,
16c£. Chapter IIT.

17A strongly causal spacetime M is called globally
perbolic if J-(p)nJ*(q) is compact for every p,qéEM.




CHAPTER I

JACOBI TENSORS AND THE RAYCHAUDHURI EQUATTION

In this chapter, we shall briefly review some con-
cepts of the Lorentzian geometry which will be frequently
referred to in later chapters.

We recall that a spacetime M 1s a connected,

orientable, time oriented n-dimensional Lorentzian

manifold M with metric g of signature (-++...+}. (We
shall also use the notation <,> for the metric g.) A
non-zeroc vector v in T™M is said to be null (respectively,

timelike, non-spacelike, spaceiike) if g(v,v) = 0 (respec-

connected, spacelike submanifold of codimension 2 in M is

called a spacelike surface.

In this chapter and thereafter, we shall always
‘denote an n-dimensional Lorentzilian manifold by M and by

I, we shall always denote an interval in the real line.

Definition 1.1: Let v: I - M be a null geodesic and let

N(Y) and [r] be the vector bundles which are defined by

= U N(y(t)) where N(Y(t)) = {vETY(t)M|g(v,+(t))=o}
tel

[Y] = U {s§(t)ls€IR}. Then the Riemannian vector
tel )

tively, g(v,v) <0, g{v,v) <0, g(v,v) > 0). An embedded;f':l 




bundle G(y) along vy with the metric g is defined by

N(y)/[Y] and g(X,¥) = g(x,y) where x,y € H(y) with

G{r)
I{x)

It

x, I(y) = y and I: ¥(y) + G(y) is the projection.
(cf. [BE] page 294).

The.covariant derivative of a section of G{y) is
defined as follows:

Let X € TG(y). The covariant derivative

Definition 1.2:

of X along Y 1s defined by f = V%Y:=H(V%X) where X € TN{v)

and I(X) X. (cf. [BE] page 297)

The generic condition along a null geodesic vy can

be formulated using the following ~homomorphism:

Definition 1.3: The bundle  homomorphism ﬁ(-,%)%;G(T)-+G[Y)

is defined by R(X,Y)Y:=I(R(X,v)¥) where I(X)

It is immediate from the curvature

= X and R is

the curvature tensor.

-identities that R(-,Y)Y is self-adjoint (cf. [BE] page 298).

Definition 1.4: X € I'G(y} is called a Jacobi class along

if X + R(X,v)Yy = 0 where § is the zero section of T'G(Y)

(cf. [BE] page 310).
We recall that the normal bundle N(H) of a spacelike

urface H in a Lorentzian manifold M has 2-dimensional

melike fibers each of which contains two well-defined
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null directions (cf. [BE] page 382). Therefore, if u is a
null vector which is orthogonal to H at p € H, then u is
in the direction of one of the above null directions at

p. Then ul {=orthogonal space to span{u}) contains

T H and the restriction of the projection I: ut - G(u)

to T_H is an isomorphism of TpH onto the quotient space

G(u) where G(u) = ui/span{u} {cf. [BE] page 382)}.

Definition 1.5: Let H be a spacelike surface in M. The

second fundamental tensor of H in the null direction uiH

at p € H is defined by Lux = -(VXU)T where x € TpH, U is
an extensiocn of u to a null vector field orthogenal to H
and (VXUJT is the component of va tangent to H. The

second fundamental form of H in the null direction ulH

at p € H 1is defined byjﬂﬁ(x,y) <Lux,y> where x,y € TpH.

To show that Lu is well-defined, it suffices to show

that (VXU)T is independent of the extension U of u.
Indeed, if U and U; are two such extensions of u in a
neighborhood of p € H in H then there exists a smooth
function £ on this neighborhood such that U = fUl and
= 1. Thus
(. fu) T = (x(E)U+EV U T| = £(p) (7 U;)"

x 1 1 x 17 |p P x1

Pt
<]
b
=
—3
|

T
(VU7

ince £(p) = 1 and (x(£)Uy)' = 0. =
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Let H be a spacellike surface in a spacetime M.
Then, at each p € H, there exist two future
directed, non-proportional (linearly independent} null
vectors u,w orthogonal to H with the normalization <u,ws
= -1 (c¢cf. [BE] page 382). Then, H is said to be future

T converging (respectively, strongly future converging) if

(trLu)(trLW} > 0 and trLu > 0 (respectively, Uﬁ(x,x)ﬁ%(y,y)
> 0 and]ﬂu(x,x} > 0 for every x,Y € TpH) at every p e H.
A future converging spacelike surface H is called a

closed trapped surface if H is compact.

Let H be a spacelike surface with trivial normal
bundle ¥(H). Let U,W be future directed, non-proporticnal
(linearly independent) null sections of ¥(H). Then H is

said to be marginally future converging (respectively,

strongly marginally future converging) if trly > 0 and

trly = 0 (respectively, if triy > 0 and LU = 0} (or vice versa)
along H. A marginally future comverging spacelike surface H 1is

called a marginally trapped surface if H is compact.

efinition 1.6: Let H be a spacelike surface in M and u

e a null vector orthogonal to H at p € H. Let G(u) =
-L/span{u}. Then the linear map fu: G(u) - G(u) is defined
LXx = m(L x) where x € G(u) and x € TpH such that

X.

It

Note that fu is well defined since I T H is an
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isomorphism of TPH onto G{u) ([BE] page 383).

Definition 1.7. Let H be a spacelike surface in M and

let yv: [0,a) » M be a null geodesic with y(0) € H and

vy(0)L1H. t € (0,a) is called a focal point of H along ¥y

if there exists a Jacobi class X € TG(y) such that
X(0) # 0, X(0) = "T: 0yX(0) and X(t) = 0 (c£. [BE] page

384).

Definition 1.8: Let y: I - M be a null geodesic. A

bundle 'hbmdmorphism K& G(y) » G{y) is called a Jacobi

tensor along v if it satisfies

(i) A + (R(-,v)v)A

1l
ol

,_,.‘
|.l.-
}..I-
=
9]
—
=
o
=
[0
—
=
I
=l

where A(X):=7 (A(X)) - A(V,X) for X € 1G(y) (cf. [BE]

page 310).

Remark: The condition (i) implies that if E € IG(y) is
a parallel section then X = A(E) is a Jacobi class in
G(y). The condition (ii} implies that if Ei € TG(y) are

R(E;)

inearly independent parallel sections then Ei

are linearly independent Jacobi classes in G{y).

Proposition 1.9: Let y: I - M be a null geodesic and let

G(y) -» G(y) be a bundle homomorphism satisfying

+ (R(-,7v))E = 0. Then

ker A n ker A = U iff ker A(t) n ker A(t) = 0
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for some t € 1I.

Proof: [BE] page 311. =

A Jacobi tensor A (along a null geodesiﬁ
® ke

A=ARA

Definition l;lG:

v) 1s called a Lagrange tensor (along v) if (ﬁ)

where * denotes the adjoint.

Proposition 1.11: Let Y: I - M be a null geodesic and

let A be a Jacobi tensor along Y. Then X is a Lagrange

tensor along Y if (i(t))*iﬂt) = (K(t])ﬁﬁ(t) for some

tel, =

Proof: [BE] pages 312 and 313.

Suppose that A is a non-singular Jacobi tensor along

-4 null geodesic vy and let B: G(y) - G(y) be the bundle

homemorphism:. defined by B = A(R) *.

d>roposition 1.12: The bundle ~homomorphism B is self-

adjoint iff X is a Lagrange tensor along v.

of: [BE] page 350. =

emark: It is immediate from Proposition 1.11 that B(t)

¢lf-adjoint at some t iff B is self-ddjoint on G(¥).
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Now, we shall introduce the concept of the neighbors

of a null gecdesic Yy induced by a Jacobi tensor along Y.

Definition 1.13: Let vy: I - M be a null geodesic and A

be a Jacobl tensor aleng y. The set of neighbors of vy

induced by A is the set

M'onbor (Y) {XeTG(r)|X=A(E) where E is a parallel class

in G(y)}.

Remark: -Note that FK?nbor(T)-lS (n-2)-dimensional vector

space of Jacobi classes along v.

Proposition 1.14: Let vy: I - M be a null geodesic.

Suppose that A and C are two Jacobi tensors along y with

K[to) and @(to) non-singular for some ty€ I. Then

(1) = Tgopper (1) PFE ACt ) (R(t D) H =T(e, ) (Tre,))

Proof:

=: Assume Tg_ .y . (v) = Ty oo.(v).

let X ¢ FK—nbor(Y}' Then, by definition 1.13, there exist

parallel classes E and F along y such that A(E) = X = C(F).

Thus it follows that

.tto) W(t,)) Ret,) =t JEct) = T gy BB -KT, 0B = Xee,)

d
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= - -1 I _ — — — -
Cleg) (CLe)) TX(E,) = CCEIFCE,) = Ve gy C©0)) - AW, (yF) = X(ep)

since V%(to)E = (0 = V%(D)F. Therefore,

Kt ) (&t ))h = Te ) (Tee)) .

<! Assume ﬁ(tO](K(tO))_l = é(to)(ﬁ(to))~l.

Let X € Tg_pop(r). Then there exists Y € I e nbor ()
such that Y(to) = T[toj. Let E and

along v such that A(E) = X and C(F) = Y. Then

¥ be parallel classes

Rt VECt,) = Alr) (R(r ) IX(e,) = e ) e )) 'Kee)

i

X(t,)

f{“‘(to) .

Il

Tle,) @Ce N 7 ex) = Tle)TCe,)

Thus, since X,Y are Jacocbi classes

and f(to) = Y(to), it follows that X = Y. 1In other words,

Xe Fﬁ—nbor(Y) and thus ﬁK—nbor(T) c—:-Fffﬂ.bor(\r)‘

Similarly,'rC:nbor(Y) < (Yy) and therefore

. = . .
I'C-nbm"(TJ FA~nbor“Y)'

As a consequence of the Proposition 1.14, we have the
following Corollary:

Lorollary 1.15: Let v: I » M be a2 null geodesic. Suppose

that A and T are Jacobi tensors along v with K(to) and

along vy with K{tn)'=T(tO)"'“
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6(t0) non-singular and ﬁ(to)(ﬂ(tojj_l = é(to)(f(to))-

1
for some t € I. Then A{t) is non-singular for all t € I
iff C(t) is non-singular for all t € I. Moreover,
dim{ker A(t}} = dim{ker C(t)} for all t € I and

L |
Aty (A(t))

and C(t) are non-singular.

= é[t)(C[t))—l for all t € I whenever A(t)

Proof: From the Proposition 1.14, Tx . . (y) = I abor (Y)

1 1

since A(t ) (K(t,)) ™t = €(t,) (€(t)) ", Therefore, if

"A(t) is singular at some t € I then there exists a Jacobi

class X € T (y) with f(t) = 0., But from Proposition

A-nbor

is in TI'=

C—nbor(Y) and therefore T(t) is also

=l

1.14,
singuiar (and vice versa). That is, A(t) 1is singular -iff
C(t) is singular. On the other hand, since dim{ker A(t)!}
is equal to the dimension of the space of Jacobi classes
in FﬂlnbOT(Y) vanishing at t, it follows that dim ker A(t)

< dim{ker C(t)} because TK-nbor(Y) (vy}. Similarly,

' E-nbor
@&im ker T{t) < dim ker A(t) . Finally, it remains to

show that A(t)(E(t)) T = T()(C(t)) ! for all t € I. Let

X be any vector in G(y(t)) at some t € I. Let

X € Tﬁ?nbor(T] Cfrﬁ—nbor(Y)) such that X{(t)} = x. Then

(£) (B(t)) 1% = X(t) = C(t)(T{t)) X as in the proof of
'foposition 1.14 since X is in both FK—nbor(Y) and
tbop(¥). That is, K(t)(K(t)) % = T(t) (T(e)) %

T every X € Gy(t)) and for all t € I. =
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Remark: We note that the condition K(toj non-singular
is only for definiteness. 1In fact, A is non-singular
except on a set of isolated points since zeros of

Jacobi classes are isolated.

- Theorem 1.16: Let H be a spacelike surface in M and

Y: [0,a] * M be a null geodesic with Y {0} € H and
Y (0}LH. Then the following are equivalent:
i} t € {0,a) is a focal point of H along Y.

ii} there exists a Lagrange tensor A along Y such

1l

that A{0) is non-singular, ﬁ(G) A(0) and

1 (0)
ker A{t) # {0} where E&[O} is the second fundamental

tensor of H in the direction v (0).

Proof: We recall that t € (0,a) is a focal point of H
along v iff there exists a Jacobi class X along Yy with

X(0) # 0, X(0) = -L; yX(0) and X(t) = 0. Om the other

hand, if A is a Jacobi tensor along Y and X = A(E)} where

E is a parallel section of G(¥y), then X = V?CO)K =
V. (A(E))} = ﬁ(E) + A(V.E) = ﬁ(ﬁj = ﬁ(K]ul(T} whenever
A . .
X is non-singular. In particular, X(0) = A(0) (X(0)) *X(0).

Therefore, by comparing i(O) = —f#(O}K(OJ and f(O) =

1

A(0) (E(0)) "*X(0), we see that the set of neighbors

(v), induced by the Jacobi tensor satisfying the
A-nbor

nitial conditions A(0) non-singular and ﬁ(O) = _EQEO)K(O)
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1

{that 1is ﬁ[O)(K[O)_ = _f#(ﬂ)) are the Jacobi classes

along vy with X(0) # 0 and X(0) = ‘E}(O)K(GJ' &

Now, we shall obtain the Raychaudhuri equation for a

Jacobi tensor A along a null geodesic y.

Lemma 1.17: Let y: I - M be a null geodesic. Then

.. n-2 .o >
Ric(y,y) = g(R(X;,v)v,X;) where X;, i=1,2,...,n-2

i o~ 1

1=1

are orthonormal sections of G{yv).

Proof: [BE] page 352. a

Proposition 1.18: Let y: I - M be a null geodesic and A

be a Jacobi tensor along y. Let B = ﬁ(ﬂ) whenever A

is non-singular and

§ = tr B (expansion)
— _ les.m%y . B =
g = ?(B+B ) 7 1id (shear)
1 = .
w = 5(B-B") (vorticity)
Then
. .« . 7 5 @2 . _
0 = -Ric(y,Y)-tr w™-tr © 7 (Raychaudhuri equation for A).
If A is a Lagrange tensor then ® = 0 since B is self-

Therefore, the Raychaudhuri equation for a
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Lagrange tensor A is given by

. . . —2
5 = -Ric(y,y) - tr 5° - f%— .
Proof: [BE] page 351. =
Remark: Since § = tr B = tr ﬁ(K)"l = éEE_é (cf. [BE]
det A
0

page 351), lim |8(t)]| = = iff det K(to) = 0 iff ker A(t )#{0}

t+t0

for tO € I.

Therefore, if v: [0,a) = M is a null geodesic

orthogonal to a spacelike surface H at Yv(0) and A is a

Jacobi tensor along ¥ with A(0) non-singular, i(OJ(K(O})_l =

'I?(Q) then, t € (0,a) is a focal point of I along v iff
lim [6(t)] = = where § = tr A(K) 7.
t+t0

Lemma 1.19: Let v: (a,b) = M be a null geodesic,

satisfying Ric(%,%) > 0 for all t € (a,b). Let A be a

_ 1

Lagrange tensor along Y and § = tr A(A) ~. Then

i) if ?(tlj < 0 for some t; € (a,b) then det A(t) =0

LI oy

t -E;E__), provided that ty -~
5(ty)

1
T(ty)
ii) if §(t1) > 0 for some t; € (a,b) then det A(t) =0

D2 t.), provided that t; - 2 f.>a.

 Or some t € (tl - s
G(ty) g(ty)
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Proof: [BE] page 355. =

The above Lemma can be extended to the case where

g(tl) = 0, provided that the generic condition

ﬁ[-,y(tl])y(tl) # 0 holdSA at ty.

Lemma 1.20: Let v be a null geodesic and A be a non-

singular Jacobi tensor along v. Then B = -R(+,v)y - 52

where B = ﬁ(K)_l.

Proof: [BE] page 345. =

Proposition 1.21l: Let v: (a,b} » M be a null geodesic,

satisfying Ric(&,y) > 0 for all t ¢ (a,b}. Let A be a
Lagrange tensor along y and 6 = K(K)_l. If 8(ty) =0
but “ﬁ(-,&(tl))yctl) # 0 for some t; € (a,b), then
n-2
_ 9 (t,)
:Efz—-<b. 2
8(t,)

det A(t) = 0 for some t € (tz,t2 for each

t provided that t,

nce 5(t;) = 0, Ric(y,y) > 0 and tr 5 > 0
- -2
: - 2 g-(t
Ric(y(ty),y(t)) - tr a(e? - LD

(=]

ocof: &

= —Ric(y(tl),YCtl)) - tr E(tl)z < 0.

we have two cases when §(t1) = 0.




21

Case i: If ﬁ(tl) < 0 then g(tz) < 0 for each t, > by.
Thus, from the Lemma 1.19-(i), det A(t) = 0 for some

t € (t,,t, - wﬂ;é_), provided that t., - 12 < b where
2?72 = 2 =
6(t,)

Case ii: If §(ty) = 0, let t] = sup{t>t |8([t;,t,))=0}>t;.

If ty = i then g(tz} < 0 for each t, >ty and it

follows that @[tzj < 0 for each t2 > ty. Thus as in the
n-2

—)
8(t,)

case (i), det A{t) 0 for some t € (ty,t, -

provided that t, - n-2 . b where t, > t;. Therefore

LBty

it suffices to show that ty = ti. Assume not, that is
=2
2

. T _ =
' = = = - - —
ty >ty Then 0 g Ric(y,v) tr O -,
T2

[

on [tl’ti] and ‘therefore - Ric(%,v) 0, tr = 0,

and 3 = { on [tl,ti}. However, since o is self-adjoint,

tr G2 0 implies that ¢ = 0 and therefore ¥ = 0 {since

I id + @). But this is a contradicticn with the

assumption ﬁ(i,Y(tl))Y[tl) # 0 since

=
3]

0 = B(ty) -E(-,&(tl))%(tl) - B%(ty) (cf. Lemma 1.21)

SR,y (t))Y(ty) .

o
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Corollary 1.22: Let y: (a,b) = M be a null geodesic,

satisfying Ric(%,%) > 0 for all t € (a,b). If @(tlj = 0
but E(-,Q(tl))«}(tl) # 0 for some t; € (a,b) then

a(t) <0 for all t > ty and 9{(t) > 0 for all t < tl‘

Proof: Immediate from the proof of Corollary 1.21. =




CHAPTER II

NULL HYPERSURFACES

We recall that an embedde& hypersurface S in a
Lorentzian manifgia M.ié called a2 null hypersurface if
T.S (tangent space of S at p) is a null vector space for
geach p € S, By definition, the restriction of the metric
g of M to S is degenerate with signature (G++..+).

In the literature, null hypersurfaces have been
studied either as a part of achronal boundaries or as hyper-
surfaces constructed from null geodesic congruences
orthogonal to spacelike surfaces (cf. [P], pages 21 and
60). However, not every null hypersurface in a spacetime
can be constructed by using the Above methods.

In this chapter, we shall study null hypersurfaces,
in general. In section A, we shall investigate some
elementary properties of null hypersurfaces in Lorentzian
manifolds. In section B, we shall obtain necessary and
'sufficient conditions for the separation and foliation
f null hypersurfaces by spacelike surfaces. In section

we shall discuss the deviation of null congruences in
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a null hypersurface S. Furthermore, we shall obtain a
canonical definition of the second fundamental tensor L
of a null hypersurface which is useful in the analysis of
the deviation of null congruences in S. We shall show
that L = 0 iff S is a totally.geodesic submanifold (that
is, thé restriction of the connectioﬁ of spacetime defines
a comnection on S). We shall then relate L = 0 with the
deviation of null congruences in S and with the induced

metric on S.
Section A: Elementary Properties of Null Hypersurfaces

Definition 2.1: An embedded, connected hypersurface S

in an n(>3)-dimensional Lorentzian manifold is called a

null hypersurface if TPS is a null vector space at each

p € S.

We recall that if W is a subspace of a Lorentzian
vector space V then dim W + dim W = dim V but WonwWt £ {0}
unless W is a non-degenerate subspace of V (where Wt is
the orthogonal space of W) (cf. [0], page 49). If W is
a l-dimensional null subspace of V then Wt is a null
hyperplane which contains W since no non-spacelike vector
is orthogonal to a null vector unless they are pro-

portional (cf. [SW], page 21).

24
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Proposition 2.2: Let S be an achronal hypersurface in a

Lorentzian manifold M with the property that for every
P € 5, there passes a null geodesic Yp: (-2,a) - M with
Yp(D) = p and Yp((—a,a)) < S for some a » 0. Then S is an

(achronal) null hypersurface,

Proof: Let L be the vector bundle over § defined by

L= y{ty (0)]teR and y_: (-2,a) > M is a null
pes P P

geodesic with Tp(O) =p and Yp{(-a,a))::S}

(To show that L is well-defined, it suffices to show that
there passes precisely one such Yp (up to parametrization)

at each point p € S. In fact, if there passes another

null geodesic N, from p with the properties of Yp but

not a reparametrization of y_, then YP(O) and np(D) are

P
not proportional and span a timelike vector z tangent to

S at p. Thus, if o is a curve in S with v (0) z then
o is a timelike curve in some neighborhood of p in $ in

contradiction with the achronality of S.)

Let LT be the orthogonal bundle to L. Since L has
l-dimensional null fibers, L is a vector bundle along S

with (n-1)-dimensional null fibers. We shall show that

Ll = TS. Assume TS # L; for some p € S. By definition,

p
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I1 contains all vectors which are orthogonal to Yp(O)

pS 7 Lé, there exists a vector

v in TpS which is not orthogonal to YP(O). On the other

in TpM. Therefore, since T

hand, since L%ryTpS contains YP(G), v o+ typ(O] € TPS

for every t ¢ R. In fact, we can choose t such that

v o+ t;p(O) is a timelike vector. {Since v is not ortho-
gonal to {p(o], we may assume <V,+p{0)>>0. Then,
<V+t+p(ﬂ),V+t+p(0)> = <V,V> ot 2t<v,{p(0)> since %p(O)

is a null vector. Therefore, we can choose t ¢ R such
that v + t+p(0) is a timelike vector.,) As before, if_

q 1s a curve in S with &(O) = v + t%p(O), then o is a
timelike curve in some neighborhood of p in § 1in

contradiction with the achronality of S. =

Remark: The achronality assumption in the above propesition
cannot be removed. That is, a hypersurface which admitsra
tangent null vector field U is not necessarily a null
hypersurface (see Figure 2).

We recall that if W is a null hyperplane in z Lorentzian
vector space V then Wt is a 1-dimensional null subspace

of V which is contained in W.
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Definition 2.3: The normal bundlékN(S) of a null hyper-

surface S in a Lorentzian manifold M is defined by

N(S) = U {ueT Ml<u,x> = 0 for every x € T_S}
PES P p
Note that N(S) is a subbundle of TS with l-dimensional null

fibers since N(S) = (TS)l.

Lemma Z.4: Let § be a null hypersurface in a time

oriented Lorentzian manifold M. Then N(S) is orientable.

Proof: Let Z be a future directed timelike vector field
on M. Then, the section U of N(S) which is defined by
<UP,ZP> = -1 at each p € S is a (smooth) future directed,

nowhere vanishing section of N(S). =

Remark: Since H(S) = TS, 1£ U is a nowhere vanishing
section of N(S) then U is a null vector field on S.
Therefore the above lemma implies that there exists a
future directed null vector field U on every null hyper-
surface 1n a time oriented Lorentzian manifold. In fact,
the vector field U is unique up to rescaling, that is,
“here exists no other null vector field U on S which is
not a scalar multiple of U. Indeed, 1t ﬁ is such a vector

field, then some linear combination of U and U is a

N{S) is isomorphic to TMIS/TS, but not canonically.
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timelike vector field on S in contradiction with S being

a null hypersurface.

We recall that a connected, orientable, time oriented

Lorentzian manifold M is called a spacetime.

Corollary 2.5: Every null hypersurface S in a spacetime

M is orientable.

Proof: Let Z be a unit future directed vector field on M
and w be the volume form of M. Since S is a null hyper-
surface, Z is transversal to S and therefore, the

restriction of izw to S 1s a nowhere vanishing (n-1)-form

on S. =

Corollary 2.6: Let S be a compact null hypersurface in

a spacetime M. Then the Euler characteristic x(8) = 0.
Proof: Immediate from the proof of Lemma 2.4 and the
theorem of Hopf (since the vector field U is a nowhers

vanishing tangent vector field on S). "

‘Definition 2.7: Let U be a future directed null vector

field on a null hypersurface S in a spacetime M. The
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bundle homomorphism vU: TS - TS is defined by
(vU}x: = VXU where x € TS.
To show that vU is well-defined, it suffices to show

that v,.U e TS for all x € TS. Indeed, for any x € TS,

<VXU,U> = % x<U,U> = 0 since <U,U> = 0. Thus VXU € TS.

Corollary 2.8: The bundle homomorphism vU: TS - TS is

self-adjoint.

Proof: Let X,Y be any two vector fields on S. then,

since <U,X> = <U,Y> = <U,[X,Y]> = 0,

Y

il

<VXU,Y> X<U,Y>-<U,V

X
_<U’VY_X+ [X,Y]>

il

1

-<U,V,X>-<U, [X,Y]>

Y
-Y<U,X>+<v

YU,X>

G, X> . ]

Vy

Proposition 2.9: Let U be a future directed null vector

field on a null hypersurface S in a spacetime M. Then

VUU = fU where f: S - R is a smooth function.:

Proof: It suffices to show that VU is orthogonal to every

vector on S. Let X be any vector field on S. Then
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<VUU,X> = U<U,X>—<U,VUX>

= —<U,VXU>—<U,[U,X]>
= —%X<U,U> =0

since <U,X> = <U,U> = <U,{U,X]> = 0. Thus, VUU

is a scalar multiple of U at each point. =

Remark: Let U be a null vector field on a null hypersurface
S in a spacetime M. Then U is a null pregeodesic vector
field on S unique up to rescaling from the remark below

the Lemma 2.4, Since each integral curve y of U ié a

null pregeodesic, vy can be parametrized to be a null
geodesic. Therefore, an integral curve vy of a null

vector field U on S is called a null generator of S

and if vy is parametrized as a null geodesic then y is

called a null geodesic generator of S.

Section B: Separation and Foliation of Null Hypersurfaces

by Spacelike Surfaces.

We recall that if H is a spacelike surface in a
Lorentzian manifold then N(H) has 2-dimensional timelike
fibers, each of which contains two well-defined null
directions. If H is contained in a spacetime M then,
we can choose two future directed, non-proportional null

vectors in each fiber of H. (In fact, using local
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triviality of N(H), locally, we can find two future
directed, non-proportional null sections of N(H).)
Suppose H 1s a spacelike surface with trivial normal
bundle N(H). Let U and W be two future directed non-
proportional null sections of N(H). Define a subbundle
of N(H) with l-dimensional null fibers by ﬁatﬁj ¥‘

U {tUp|t €R}., Let e}cpJL be the exponential map of N(H}.
p€eH

Then, there exists an open neighborhood V of H in NU(H)
where the restriction of e:cp'L on V is an embedding into
M. In fact, S = expl(V) is a null hypersurface in M with
the property that each null geodesic in S8 intersects H
at precisely one parameter value (this is the method of

constructing null hypersurfaces that we have mentioned

on page 23). This null hypersurface has the property

that there exists a geodesic null vector field U on S

which is obtained by taking the velocity vectors of the
null geodesics emanating fromVH in the direction Up
at each point p of H.

In general, a null hypersurface 5 may not have this
property, that is, the null vector field U on S may not
be rescaled to be a geodesic null vector field. In this
section, we shall obtain sufficient conditions for a
spacelike surface H in M to have the property that each

null geodesic in S intersects H at precisely one
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parameter value. In this case, we shall show that it
is possible to rescale any null vector field U on S
to be a geodesic null vector field on S. Furthermore,
we shall obtain necessary and sufficient conditions for
the foliation of null hypersurfaces by (immersed) space-
like surfaces.

First, we shall show that every spacelike surface
in a null hypersurface of a spacetime has trivial normal

bundle.

Proposition 2.10: Let H be a spacelike surface in a null

hypersurface S of a spacetime M. Then N(H) is trivial

vector bundle and it follows that H is orientable.

Proof: .Let U be a future directed null vector field on
S. Since ULH, U g € TN{H). Since N[H)p is a two-
dimensiconal timelike subspace of TpM at each p € H, we
can define another null section W of N(H) {which is not a

scalar nultiple of UIH) by <W’U[H>} = -1 at each p € H.
p
Thus, UIH and W are two future directed, linearly

independent null sections of N(H) which give a trivial-

ization of N({H). ]

Corollary 2.11: Let S be a null hypersurface in a 4-

dimensional spacetime M. If H is a compact spacelike
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surface i1n S then H is classified topologically by its

genus.

Proof: Since a spacelike surface H is by definition a
connected submanifold of M and H is orientable from the

Proposition 2.10, it is classified by its genus. =

Definition 2.12: Let S be null hypersurface in a spacetime

M and let H be a spacelike surface in S. S 1s said to be

causally separated by H if there exists a diffeomorphism
g: S » HxIR such that, for each g € I, g_l({q}xﬂﬂ is a

null generator of S.

Theorem 2.13: Let S be a null hypersurface in a spacetime

M and let H be a spacelike surface in S with the property
that every inextendable null generator of S intersects
H at precisely one parameter value. Then H causally

separates S.

Proof: Let U be a null vector field on §. Then, U can

be rescaled to be a complete null vector field U on S.
(That is, there exists a positive function f on $ such
that U = fU is a complete vector field and therefore,

each integral line of E is a reparametrization of an
integral curve of U (cf. [BJ], page 85, ex. 2)). Let ¢ be

the flow of G. Then the map h: HxIR - S which is defined
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by hip,t) = mt(p) is a diffeomorphism since every integral

o~
curve of U intersects H at precisely one parameter value. =

Now, we shall obtain sufficient conditions for the
causal separation of null hypersurfaces by spacelike

surfaces.

Lemma 2.14: Let S be a simply connected null hypersurface

in a spacetime M and let H be a closed (in S} spacelike
surface in S. Then, no null generator of S intersects

H at more than one parameter value.

Proof: We recall that if H is a closed connected sub-
manifold of codimension 1 in a simply connected manifold
S then H sepavrates S (that is S-H is disconnected (cf.,
fH], page 108). Let U be a future directed null vector
field on S. Since H is a spacelike surface in S, H is
orthogonal to U. (In particular, U is transversal to H
in S.) Therefore U points into the same connected
component of S-H everywhere along H. (By this, we mean
that the future directed integral curves of U emanating
from each point of H enter the same connected component
of S-H.) Assume, a future directed integral curve of
U emanating from v(0) = p € H hits H in the future at

y(t) = q € B (t>0). Since {y((0,t)}} is contained in
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a connected component of S-H, y(t) would point to the
other connected component of H-S in contradiction with
the fact that U always points to the same connected

component of S-H. a

Corollary 2.15: Let S be a simply connected null hyper- -

surface in a spacetime M and let H be a closed (in 8)
spacelike surface in S with the property that every
inextendable null generator of § intersects H. Then H
causally separates S. In particular, since S is diffeo-

morphic to HxIR, H is simply connected.

Proof: Let U be a future directed null vector field on
S. Then from the assumption that every inextendable nuil
generator of S intersects H and Lemma 2.14, each inex-
tendable null generator of S intersects H at only one
parameter value. Then from the Theorem 2.12, H causally

separates S. =

The above results can be summarized for 4-dimensional

spacetimes as follows:

Proposition 2.16: Let S be a simply connected null hyper-

surface in a 4-dimensional spacetime M. Let H be a closed
(in S) spacelike surface in S. Assume each inextendable

null generator of S intersects H. Then H causally




separates S and is topologically either S2 oT RZ depending

on whether it is compact or non-compact.

Proof: From Corollary 2.15, H causally separates S and

is simply comnected. Thus, it is topologically S if it

is compact or R™ if it is non-compact. u S

In general, one cannot causally separate z null
hypersurface by a spacelike surface (for example, the
Cauchy horizons in the Taub-NUT spacetime). However,
the éséumptions éf Proposition 2.i6rhold on the event
horizons of the Kruskal, Reissner-Nordstrom and Kerr
black holés which are simply connected and causally
separated by spacelike surfaces topologically Sz.

In the study of deviation of integral curves of
the pregeodesic null vector field U, we shall handle
problems which do not involve the whole null hypersurface
S, but only a-tubular neighborhoed of v in S. For such
considerations, we shall introduce the concept of
elementary neighborhoods of an integral curve v of U [(which

is locsglized ver

i

ion of the causal separability of a null

av}

hypersurface).

Definition 2.17: Let S be a null hypersurface in a

spacetime M and U be a future directed null vector field
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on S. Let y be an inextendable integral curve of U.

An open subset VY of S containing v is called an elementary

neighborhood of v if there exists a spacelike surface H

(=]

in S and a diffeomorphism gt VY - HYxD{ such that, for
: -1 . . ) .

each q € HY’ g “({g}xIR) is an inextendable integral

curve (up to parametrization) of U passing through q.

Remark: By definition, an elementary neighborhoocd of an

inextendable null pregeodesic in a null hypersurface 1is

also a null hypersurface.

Proposition 2.18: Let S be a null hypersurface in a

strongly causal spacetime M. Then each inextendable null

generator of S has an elementary neighbothood.

Proof: Let U be a future directed null vector field on

',S and let y be an inextendable integral curve of U. Let !

p be a point on v and L be a local causality neighborhood

(93}

of p in M (cf. [P], page 30). Let H be a spacelike
surface in L NS containing p. Then, no integral curve of
U emanating from HT gever returns to Hy. Therefore, the
open subset VY of S which is traced.by the inextendable
integral curves of U megting H‘r is an elementary neighbor-

hood of Y in S. =



Theorem 2.19: Let S be a null hypersurface in a spacetime

M and U be a future directed null vector field on S. 1If
an inextendable integral curve y of U has an elementary
neighborhood VY in S then the vector field U can be

s

rescaled to be a geodesic null vector field along VY

Proof: Let HT be a spacelike surface which causally
separates VY' Then, by taking the velocity vectors of
the inextendsble {(in VY) null gecdesics n emanating from
“each D E HTiwith HCO) = U(p), we obtain a future directed

null vector field on V . "

Remark:-'Bf definition, if a null hypersurface S in a
spacetime M is causally-separated by a épacelike surface
H then S is elementary neighborhood of every inextendable'
null pregeodesic in S and therefore there exists a future

directed geodesic null vector fizld U on S.

Now, we shall discuss the foliation of null hyper-

surfaces by (immersed) spacelike surfaces.

Definition 2.2Z0: Let S be a null hypersurface in an

n-dimensional spacetime M. Let D be a subbundle of TS

with (n-2)-dimensional spacelike fibers. Then the

orthogonal bundle DL

to D in TM,S is defined by
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pt = U pt where pL is the orthogonal complement of
g P P
P&
in T_M.
Pp P

1 is a vector bundle over S with 2-dimen-

Note that D
sional timelike fibers and by definition, every future
. \ . . . L
directed null vector field U on S is a section of p—.

Also, using U, we can determine another future directad

null section W of pT by <W¥,Us -1. (Note that W is
not orthogonal to S. Thus, U and W are linearly inde:: .

pendent and therefore pt is a trivial vector bundle.)

Remark: Let S be a null hypersurface in an n-dimensional
spacetime M and let D be a subbundle of TS with (n-2)-
dimensional spacelike fibers. Let U and W be non-
proportional (linearly independent) null sections of .

(Thus either U or W is tangent to §.) Then the vector

bundle W& is defined by W= UW? where—Wé is the orthogonsal

space-to W@f Note that W has nuil fibers of codimension
1 in TM S and since W is a null.section of DL; D is a

subbundle of WT. Moreover, every v £
written as the linear combination of arvector in direction
W and a vector in D. That is, if y € Wé then v = aOW(p)+v

where v € Dp. To show that this decomposition is unique,

it suffices to show a, is unique. Indeed,



_ <y, U>

a, RN since U € TD and <U,W> # 0.

Thus, the projection of a vector y € Wt into D is defined

by projw(y) = v where v is the component of y in D.

Definition 2.21: Let S be a null hypersurface in an
n-dimensional spacetime M and iet D be a subbundle of TS
with (n-2)-dimensional spacelike fibers. Let W be a null
section of Dl. Then the bundle homomorphism (VW)T: D ->D
is defined by (VWJTX::(VXWJT where {VKW)T is the component

of VXW in D.

To show that {VW)T is well-defined, it suffices to
show that VXW e wt for all x € D. Indeed, <VXW,W> =

Fx<W,i> = 0 since <I,}> = 0. Therefore vW e wh

Theorem 2.22: Let S be a null hypersurface in an

n-dimensional spacetime M and let U be a future directed
null vector field on S. Let D be a subbundle of TS with
(n-2)-dimensional spacelike fibers and W be a null ssction
of p1 with <U,W> # ¢ everywheré. Then, D is integrable

iff (VW) ': D - D is self-adjoint.

Proof: We shall use the fact that D is integrable iff,
for X,Y € TP, [X,Y] € I'D, that is, iff [X,Y]L0Y. Tet

X,Y L I'D then

40
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<{X,Y],U>

H]

<V, Y-V_,X,U>

X Y

= <v,.Y,U>-<v,X,U>

X Y

= X<Y,U>-<¥Y , v Us-Y<X,Us+<¥,v,U>

X Y
= <X,VYU>—<Y,VXU> = 0 from Corollary 2.8.

Also,

<{X,Y],W> =<V Y-V, X, W>

Y
Y, W>-<v

<V L, W>

X Y

X<Y,W>»<Y,VXW>+Y<X,W>+<X,VY

' T ’ T
<K,(VYW) >—<Y,(VXW) >

i

W>

Il

0 for all X,Y € Tp iff (VW]T is self-adjoint.

(In the third step, we used <Y,W> = (0 = <X,W>).

Therefore, [X,Y] € I'D iff (vW)! is self-adjoint. =

Corollary 2.23: Let S be a null hypersurface in a space-

time M. Let U be a future directed tangent null vector
field on S and let W be a null vector field along S with
<W,U> # 0 everywhere on S. Then the vector bundle

D = spalr:HCU,If\I}'L is integrable iff (VW)T: D = D is self-
cint. If D is integrable then S can be foliated by

{(immersed)} spacelike surfaces.

Proof: Immediate from the Frobenius theorem and Theorem

2.22., =
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v

Section C: Deviation of Null Generators of Null Hyper-

Surfaces

Let U be a nowhere vanishing vector field on a
manifold S, ¢ be its flow and y: I - S be an integral
curve of U, We recall that a vector field X along vy is

called Lie parallel (with respect to U) iff X(s+t) =

©. X(s) whenever s € I and s+t € I. (cf. [SW], page 39).
&

In fact, it can be shown that a vector field X along v is
Lie parallel iff for each t € I, there is a neighborhood
J of t in I, a neighborhood V of v{t) in S, and a vector
field Y on V such that LUY = 0 and X = Xey on J. Thus,
it follows that the Lie parallel vector fields along ¥y
form an n-dimensional vector space (cf. [SW], page 39).
In the context of this study, we shall also indicate

the condition that a vector field X along vy be Lie
parallel by L,X = 0.

We Tecall that there exists a future directed
pregeodesic null tangent vector field U on every null
hypersurface S in a spacetime M. Let ¢ be the flow of U
and y: (-a,a} =» S be an integral curve of U. Let
a: (-b,b) - S be a spacelike curve with «{0) = v (0).
Then, we can define a variation of ¥ to nearby integral

curves of U by v(s,t) = mt(a(s)). Then the variation
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vector field X = w, ey = wt(a(G)} is Lie parallel

0,t
along y since 1y, g% = Ulimtpand [wﬁg%,wkg%] = 0. The vector

field X (the variation vector field), by definition,
measures the separation of a congruence of integral

curves of U. Using the fact that integral curves of U are
null pregeodesics, we shall investigate the relations
between the topological structure of null hypersurfaces
and the curvature by relating'Lie parallel vector fields

along integral curves of y-with Jacobi fields along y.

Definition 2.24: Let S be a null hypersurface in a

spacetime {M,g). The canonical Riemannian vector bundle

(G(s),g) over S is defined by

G{8):=TS/N(S) and g(x,y):=g(x,y} where mM: TS -» G(S)

is the canonical projection and T(x) = X and T(y)

t
<

(We shall sometimes denote both metrics g and g by <,>.)

g is well-defined: Let x,x' and y,y'! be vectors in TS

with M{x) = x = Ti(x') and NM(y)} = y = 0{y'). Then,

X = xi *ouy and y = y'+ u, for some uy,u, € N(S)., Thus,

3]

(x,7) = glx'+uy,y'+u,) = glx',y") + glx',u,) + gluy,y')

* glug,uy)

glx',y") since g(x',u,) = glup,y') = g(u,u,)




which shows that ¢ is well-defined. a

&

Definition 2.25: Let S be a null hypersurface in a space-

time M and U be a future directed null vector field on §.
The bundle homomorphism vU: G(S) » G(S) is defined by

(5U)§:=§§U:?HLVXU) where X € G(S), x € TS with m(x) = X.

Note that since U is a pregeodesic null vector field,

YU is well defined,

Proposition 2.26: 9U: G(S) - G(S) is self-adjoint.

Proof: Since vU: TS - TS is self-adjoint (see Corollary

-2.8), it immediately follows that VU is self-adjoint. 5

Definition 2.27: Let S be a null hypersurface in a

spacetime M. The covariant derivative of X € 7G(S) in

the direction u € N(S) i1s defined by
5uf:=ﬂ(vuX) where X € I'TS with m(X) = X.

To show that ?ﬁf is well-defined it suffices to show
that 1if Y € 7TS with (Y) = T{X) then ﬂ(vuX) = ﬂ(vuY).
Indeed, since Y = X+U for some pregeodesic null vector

field U on S, n(_vuY]’_) = n(vu(X+U)) = n(vuXJrqu) = n(vuX).

Definition 2.28: The second fundamental tensor

L: G(S) x N(S) - G(S) of a null hypersurface $ in a

spacetime M is defined by

14
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f(f,u):=—V£U where U is any extension of u to a

section of N(S).

To show that L is well-defined, it suffices to show
that §§U is independent of the extension of u to a section

of N(S). Let U be another extension of u. Then U = fu

I

for some function f with £{p) 1 where p € S is such that

n(x(f)§+f(_p)vXU) = 7

u € N(S)p. Thus VEE = H(Vxﬁ)

since T(U) 0 and f(p) = 1.

Definition 2.29: Let U be a null vector field on a null

hypersurface S of a spacetime M. The divergence of U is

defined by

div Us=-tr LU where LU = L{-,0).

Definition Z2.30: Let U be a null vector field on a nuil

hypersurface S in a spacetime M. The Lie derivative with
respect to U of X € I'G(S) is defined by
fﬁf = H(EUK) where X € TTS with T{X} = X.

A section X of G(S) is called Lie parallel with respect

to U if fﬁf = 0.

To show that EU is well-defined, it suffices to show
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that if X,Y € ITS with m(X) = X = m(Y) then m(LyX) =

n{LUY). Since X = Y + fU for some function f on §,

MLyX) = my{Y+£u))
= M{LyY+U(£)U+£L,U)
=.1(LyY) since m(U) = 0 and £yU = 0.

Remark: Note that ff X = foK for any function f on S.

U
For X € TS with n(X) = X,

EfUY = T{LeX) = M£LyX-X(£)U) = ffﬁK since TM(U) = 0.

Lemma 2.31: Let X € TG(S) and UeTrN(S). Then

Procof: Let X € ©TS with m(X) = X. Since V-7 = o X,
UCVUX"V oy = H(LUX]. Therefore from definitions
2.25, 2.27 and 2.30,
EUK. - 5——U = EU:-‘_{.. E]
Definition 2.32: Let S be a null hypersurface in a space-

time M and U be a null vector field on S. The Lie derivative
of g (of the Riemannian metric of G(S)) with respect to

U is defined by
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(EUEJ(E,fj:=ﬂ[(EUg)(x,y)] where x,y € TS with n(x) = X

and f(y) = v.

To show that EUg is well-defined it suffices to show
that the above definition is independent of the choice of
x,y € TS with T(x) = X and T(y) = ¥. But this is immediate
from the facts that g and fﬁ are well-defined (cf.

Definitions Z2.24 and 2.30).

Proposition 2.33: Let § be a null hypersurface and U be

a null vector field on S. Then
(Ly8) (x,y) = 2g(V_U,y) for every X,y € G(S).

Proof: Let X = m(X) and Y = n(Y) be any local extensions

of X and v on G(S) Tespectively. Then

,ﬁ
™
c
09
Fan)
=
<
p—
[

ML(Ey2) (6,¥)]

= mlglvXLY) + g (X, - g(5,X,Y) - g(X,L,¥)]

= g( UK;_: ) +§(Y56UY-) _ECEUK;Y} ‘@(Y,EU,?)
- EEU,T) ¢ BT F)

= 2§(§iU,T) since v

EUY = E?U = fﬁ? (cf. Lemma 3.31) and VU is self-adjiont

(cf. Proposition 2.26). "
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Definition 2.34. Let S be a null hypersurface in a

spacetime M and let v: I - S be an integral curve of the
null vector field U on S. X € v"G(S) is caliled a Lie
parallel class along v if there exists a Lie parallel

(with respect to U) X € Iv*TS with m(X) = X.

Note that X is Lie parallel along vy iff for each
t € I, there is a neighborhood J of t in I, a neighborhood
V of v{t) in S, and a section Y of G(S)‘V such that
fﬁ? = 0 and X= Yoy on J (cf. page 42 ). 1In the context
of this study, we shall also interpret the condition that

a section X of G(S) along y be Lie parallel by EUK = 0.

Definition 2.35: Let S be a null hypersurface in a

spacetime M and let U be a future directed null vector
field on S. The set of U-neighbors of an integral curve

v 1if U in S is defined as the set

Ty-nbor 0¥ {XeTY G (S) 1L X=01.

Proposition 2.36: Let S be a null hypersurface in a

spacetime M. Let Uq and U, be two null vector fields on

S. Then

(PU1~nbor(Y1))°h - I‘Uz-nborwlz) where
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Yy 1s an integral curve of Ul and Y, = Yth 1s reparametri-

zation of Y, as an integral curve of UZ'

Proof: Since Uy = fU2 for some nowhere zero function £ on
S, vy can be reparametrized to be an integral curve

Y, = vy°h of U,. Let Xer (ry) and Y be a local

Ul—nbor'
extension of X to a Lie parallel section of G(S)} with

respect to U;), by so, X = ?OYI. Note that Eﬁ Y =20
Z

fU, and £, Y = 0 (cf. the remark below the
1 2 U, ¢
Definition 2.30). Therefore Xoh = TOTloh = YOYZ is a

since U

Lie parallel class along 1P (with respect to Uz). a

Remark: Note that if X € T (v) and X # 0 then X

U-nbor

does not vanish along vy (since X is Lie parallel along ¥)

and that FU—nbor(T) is an (n-2)-dimensional vector space

of Lie parallel classes along vy (c¢f. Definition 2.34).

Proposition 2.37: Let S be a null hypersurface in a

spacetime M and let VT be an elementary neighborhood of

an integral curve vy of a null geocdesic vector field U on

VY' (cf£. Theorem 2.19). Then every X € T

Jacobi class along .

U—nborET) s 2

Proof: Let X be a locally defined Lie parallel vector
field (with respect to U) with M(Xey) = X (c¢f. Definition

2.34) .  Then
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=]l
—
>l
=
—
=
Il

MROGUIU |

MV TyU-7x Uy 0D |

(VUVXU)IY+ THV‘KU)IY

= - VU YU’ since VUU = 0 and LUX = 0.

On the other hand, from E?U = My = mvyX) = 7, X
Gince [X,U] = 0), it follows that §U€UK + R{X,0NU
Thus, X is a Jacobi class along v since UIY = vy, =

]
o]

Now, we shall show that there exist a Jacobi tensor

A along y such that Ty . (y) =T

U—nbor(Y) (cf. Chapter I).

Proposition 2.38: Let S be a null hypersurface in a

spacetime M. Let VY be an elementary neighborhood of an
integral curve vy of a null geodesic vector field U on VY'

Let A be a Jacobi tensor along y. Then FU—nbor(Y) =

TT-nbor Y] iff A satisfies the initial conditions &(0)

non-singular and ﬁ(O)(K(D)J_l

1

= 7 .M
VU[Y(O) Moreover,

R — -1 s < - -1 _ =
if ACO) (A(0) VU|TC0) then A(t) (A(t)) VUlT[t)
along v. (Note that since VU is self-adjoint, A is

a Lagrange tensor.)

Proof: We recall that if E is a parallel class in G(y) then

X = A{E) is a Jacobi class along y. Then
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A(E) = Ty(RE) - KB = 7% - ¥ since V.E = 0.

In particular,

I

A(0)E(0) = X(0).

«: Assume A satisfies the initial conditions A(0)

non-singular and ﬁ(O)(K(O))_l = U v (0)
From Proposition 2.37, FU—nbor is a vector space of
Jacobi classes which has the same dimension with I'+— (v).

A-nbor

Moreover, since every Y € T (y) 1s Lie parallel,

U-nbor

EUY = ??U along y and in particular ?(0) = ?ﬁ? =
v (0)
6?(0)U' Thus, it suffices to show that each X € FK—nbor(Y)

(y) then

satisfies X(0) = VT(O]U' But, if X ¢ Tﬁlnbor

X(0) = &(0) E(0) = (ﬁulyoK(OﬁE(O} = GU&Y(O)Y(O) ﬁftﬁ)U‘

=: Assume Ty . (y) - I T-abor (Y1~

Since no non-trivial X € T (v) vanishes aleng v,

U-nbor

A is non-singular along y. In particular, A(0) is
-3] o X =1 — ﬂ!q:?
non-singular, Let X € Pﬁ_nbor(y)( rA-nbor(Y)) and E be a

u

parallel class in G(y)} such that A(E) = X. Then
E(0).(R(0)) !

Xer

T(0) = K(0)E(0) = X(0) = To ()T = Tx(o)V since

U-nborp (Y). Therefore j(O)(K[o)}'l -

Moreover, for any X € FU—nbor(Y) = FK—
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1

X(t) = X(t) =

[

A(t) (B(t))" (U = U] X(t), we have

fK y(t)

A(t) (A(t)) *

= gUlY(t) along Y. =

Remark. The above proposition shows that we cannot use
arbitrary-Jacobi tensors along the (geodesic) integral
curves of U to analyze the deviation of a (geodesic)
congruence of integral curves of U. In fact, a Jacobi
tensor which does not satisfy the above specified initial
conditions does not measure the deviation of a geodesic

congruence of integral curves of U (see Figure 4).

In general, it may not be possible to find an elementary
neighborhood of a null pregeodesic in a null hypersurface. |
(For example, each closed null geodesic in the Cauchy
norizons in Taub-NUT spacetime returns the same point with
different velocity and therefore, we cannot find an
elementary neighborhood of these geodesics.) Now, we
shall extend our discussion to the case when there is no

elementary neighborhood of an integral curve of U,

Lemma 2.39: Let v be a smooth curve and X he a vector

field along y. 1If ; = yoh is a reparametrization of y and
X = Xeh then

i ‘7.'-1;5(12 }.1"7'}( ah
) > ( 5 )

.. . s 2
cVaAX = *X)oh + h™(v:v:X)oh
1) viveX h (7:X) (V7. X)o
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Moreover, if v is a pregeodesic (that is, VY? = f¥)} and

¥ = voh is a reparametrization of vy as a geodesic then
h

satisfies h +(foh)h% = 0,

Proof: The proof can be obtained with a straight forward
computation of V?X and V#V#X (cf. [Of, page 93, ex. 3

and page 95, ex. 19). a

Proposition 2.40: Let S be a null hypersurface in a

spacetime M and let Yy be an integral curve of a null

vector field Uon S. If X €T (v¥) then X = ¥oh is

U-nbor
a Jacobi class along Y where ¥ = vyoh is a reparametriza-

tion of v as a null geodesic.

Proof: Since U is a pregeodesic vector field on S,
VUU = fU where £ is a smeooth function on S. Therefore, if
Y is an integral curve of U then V%% = (f°Y)+. Let ¥ = yeh
be a reparametrization of vy as a null geodesic and X be

a locally defined Lie parallel vector field (with respect

to U) with T{Xey) Yer

1l

( Z
anbor\T)' Then, from Lemma 2.39

- ) ~
h‘LV%V%X oh)] where X

+

viviX = h (Y X)oh Yovyoh. Eut
YVY ( YKJ Y

since X is Lie parallel (with respect to U),
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(V,7,X)eh = V¥l op

It

17Uy on

1§

(V7 W) eh - (R(X,Y)Y¥)°h

It

(T EU)eh - (R(X,Y)T)oh

(X£)ohU|y,p + (£on) (VyU)eh - (R(X,¥)¥rh

and therefore

- o .
h(v;X)eh + A% (XE)°hUj +h2(£oh) (V40) oh

VT s
SIS
.2  n
h (R(X,y)¥)°h

L . -2 -. I2
h(7;X)eh + (£2R)h7(7yX)oh  + b (X£)ohU]

~

- R, DT,
Since (h+(£oh)h*)NV,X)eh = 0 (cf. Lemma 2.39),

- oN "‘"“‘:JN—‘-Z
veveX + R(X,T)Y = b7 (XE) bl

Thus

1l

M (7R (X, T) h% (X£) 0BT (1) | o, = O since M(U) = 0.

Therefore,

Remark: From the above proposition, we conclude that
oh = (X eT '
(FU~nbor(YD h = {X°h€ G(reh)IXE U—nbor(Y) and

o~ L . - .
Y = Yoh is a reparametrization

of ¥ as a geodesicl

i
|
|
i
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is an (n-2)-dimensional vector space of Jacobi classes

along the null geodesic ¥.

Using the Proposition 2.40, the following generali-

zation of Proposition 2.38 can be similarly proved.

Proposition 2.41: Let S be a null hypersurface in a

spacetime M and y be an integral curve of a null vector
field U on S. Let ¥ = yoh be a reparametrization of

v as a null geodesic with $(0) = ¥v(0) and let A be a
Jacobi tensor along ¥. Then (FU_nbor(Y))Ohw:FK_nbor($)
iff A satisfies the initial conditiomns A(0) non-singular

1 1

and E(O)(K(O))— 5Ul?(0)' Moreover ﬁ{t)[ﬁ(t))" =

VU|$(t) for all t.

{We note that since vU is seif-adjoint, A is a Lagrange

tensor. Also, since v(0) = §(0) and v(0) = #[O), h(0) = 0

jeH)

o]
oy
—
josy
[ahs)
p—

I

1.)

Definition 2.42: Let S be a null hypersurface in a space-

time M and let v be an integral curve of a future directed
null vector field U on S. Let ¥ = yoh be a reparametri-
zation of v to be a future directed null geodesic in S.

Then the expansion of U-neighbors of vy is defined by
1

— -1 — LA —
p°h along v where o = tr A(A) and A is any Lagrange
tensor along ¥ which satisfies the initial conditions

A(0) pon-singular and j(O)(K(D))il = 6U[§(0)'
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(Note that by Corollary 1.15, 5 does not depend on the

choice of A satisfying the specified conditions.)

Remark: Note that since no non-trivial U-neighbor of

vy vanishes, the neighbors of ¥ induced by & do not vanish

along vy (since_(rU_nbor(Y)Oh (v¥)) and therefore,

Pi-nbor
it follows that & and gﬁﬁlare finite along ¥ and ¥y
respectively (cf. the remark below the Proposition 1.18).
Finiteness of § alsoc can be rephrased as "no null geodesic

in S contains a focal point of any spacelike surface

H in § which meets y'" (cf. Chapter I, theorem 1.16),

Definition 2.43: A null hypersurface S in a spacetime M

is called a stationary null hypersurface if L = 0, where

L is the second fundamental form of S ({cf. Definition

2.28).

The well-known examples of stationary null hyper-
surfaces are the event horizons of time independent black
holes (for example, event horizons of the Kruskal and
Kerr black holes) and the compact Cauchy horizons (for

example, Cauchy horizons in the Taub-NUT spacetime).-

Theorem 2.44: Let S be a null hypersurface in a space-

time M. Then the following are equivalent:
i} S is a stationary null hypersurface

ii) VU = 0 for some null vector field U on S
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iii) VU = 0 for every null vector field U on S

iv) For any null vector field U on S, VUY = [.X

for every ¥ € G(S)
V) _UE = 0 for any null vector field U on S.
vi) § is a totally geodesic submanifold in M (that is,

the restriction of the connecticn of M to S

defines a connection on S).

Proof:

{i) & (ii): =:This immediately follows from the

definition of L (cf. Definition 2.28).
«: Let U be a null vector field on S with VU = 0.

Let x € G(S) and u € N{S). Then, there exists a function

f on S such that u £(p) U (p) where p € S and u € N(S)ﬁ.

Then,

- T
X

£

—~

il
o

e
I

(fU) = -TM(V_fU) = -N((x£)U + £7_U)
X X

= -fvy=U = 0 since M(U) = ¢ and VU = 0.

[
|

Thus T = 0.

(1i) = (i1i): «: obvious
=: Let U be any null vector field on S.
Then there exists a function f on S such that U = fU.

Thus, for any x € G(S) and x € TS with T(x) = X,
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(VU)x = v = vf{fU) = n(vx.(fu) = M{{xH)U + vaU}
= f?EU = 0 since TM(U) = 0 and YU = 0.
(iii) e= (iv): This is obvious from VUY - ﬁfU = EUK

(cf. Lemma 2.31).

(i1i) <= (v): This is obvious from (fﬁ@)(i,?} = 2§(V§U,§)
for every X,y € G(S) since g is a Riemannian metric on

G(S) (cf. Proposition 2.33).

(iii) <= (vi): ©Note that, for any null vector field U

on S, VU = 0 iff v .U e N(S) for all x € TS.

Thus, for any X,Y € I'TS,

<V Y,U> = X< Y,U>-<Y,v U> = —<Y,VXU> since

X X

<Y,U> = {,

Therefore, VYY € TTS for every X,Y € TTS 1iff vyU € 'N(S)

for every X € TTS.

Proposition 2.45: Let S be a stationary null hypersurface

in an n-dimensional spacetime M and U be a future
directed null vector field on S. Let y: I - S be an
integral curve of U and ¥ = yeoh be a reparametrization
of vy to be a null geodesic. Let A be a Jacobi tensor

along Y which satisfies the initial conditions A(t)
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non-singular and A(t) (A(t)) §U|?(t) for some t ¢ I.

|
%

(F+B ) - =2, $g=0 and

Then g = tr B = ¢, 5 = n-7

o

w =

- % - - s -
(B-B ) =0 along ¥ where B = A(A) l.

of

Furthermore,

R(+,U)U = 0 and it follows that Ric(U,U) = 0.

Proof: Since EUlY(t) = B(t) for some t ¢ I, B is self-

adjoint (cf. Proposition 2.41) and it follows that

B =g + n?Z id (cf. [BE], page 351),

(J__). = 0. Since EUI?

it follows that ¢ = 0 and § = 0. Furthermore, since

vU = 0, R{(-,U)U= 0 and it follows that Ric(U,U)=0.=

We recall that an integral curve y of a null vector
field U on a null hypersurface S is called a null
generator of §. Let ¥ = v°h be a reparametrization of
v to be a nuil geodesic and gcé"be the expansion of
U-neighbors of vy (cf. Definition 2.42). Thus, 8 = 0
iff Fol = 0.

Theorem 2.46: Let S be a null hypersurface in an

n-dimensional spacetime M satisfying Ric{u,u) > 0 for

every u € N(S). If the expansion of U is zero for any null

vector field U on S then S is a stationary null hypersurface.

Proof: Since y is a null generator of S, by definition,
vy is an integral curve of same null vector field U on S.

Let ¥ be a reparametrization of y to be a null geodesic
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and let 8 be defined as in the Definition 2.42. Then,
= _ 06 = - . = - T
VU|$(t) = o id + ¢ since VU is self-adjoint. From the

Raychaudhuri equation (cf. Proposition 1.18), it follows
that § = -Ric(Y,¥) - tr 2 =0 along every Y since

§ = 0 along every Y. Thus, since Ric(Y,¥) > 0 and

tr EZ > 0 (since o is self-adjoint) it follows that

ST+ T =0

¥ 1

Ric(Y¥,¥) = 0 and & = 0. Thus §U1

along every ¥ in S and therefore YU = 0 on S. m
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CHAPTER III

NULL CUT LOCI OF SPACELIKE SURFACES

The future null cut locus C;(pl of a point p in a
spacetime M is defined and its properties are investi-
gated in [BE]. In this chapter, we shall generalize
this concept to spacelike surfaces. We shall show that
the future nul} cut locus CQ(H) of a spacelike surface
H in a spacetime M has propertiés similar tc the properties
of the future null cut locus of a point in globally
hyperbolic spacetimes. Furthermore, by making use of the
prOpertiés of future null cut locus of a spacelike surface,
we shall obtain sufficient conditions for the normal
bundle of a spacelike surface to be a trivial vector
bundle.

We recall that the future null cut point of a

(future directed) null geodesic v: [0,a) - M is defined
in [BE] to be the point g = Y(to) on y where t, =
sup{te[0,a}td (v (0),v{t))=0}, provided that O<to<a

where d 1is tﬁe Lorentzian distance function (cf. [BE],

page 230).

Then, the future null cut locus C%(p) of a point p

is defined to be the set of future null cut points of all
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future inextendable null geodesics y: [0,a) -» M with
vy(0) = p {cf. [BE], page 230).

It has been shown in [BE] that Cg[p) of a point p
in a globally hyperbolic spacetime M is a closed subset
of M and each point x € Ci(p) is either a conjugate
point to p along some null geodesic y or there exists
two null geodesics (which are not reparametrizations of
each other), joining p and x.

We recall that the distance between a set H and a
point p in a spacetime M is defined by d(H,P) =
sup{L(x)|Y€Q(H,p)} where Q(H,p) is the set of all future-
directed (piecewise differentiable)} non-spacelike curves
v from H to p and L(y) is the length of y (cf. [BE],

page 81). (If Q(H 5) ~ #, define d(H,p)=0.)

Definition 3.1: Let H be a spacelike surface in spacetime

M. Let v: [0,a) - M be a future directed null geodesic

with v(0} € H and y(0)LH. A point q = Y(tO} is said to

be the future null cut point of H along v if 0<to<a and

t, = sup{tE[O,a)id(H,Y(t))=0}.

Remarks:
i) It is not meaningful to define the future null cut point

of a spacelike surface along a future directed null geodesic

Y which does not meet H orthogonally since such a
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null geodesic fails to realize distance between H and
each of its points (but except possibly the point where

it meets H (cf. [0], page 298)).

11) The assumption O<t, is technical. We shall make usec
of this assumption to emphasize the influence of the
causal structure of spacetime on the future null cut

locus of a spacelike surface.

In fact, it is possible that the future null cut

point of a spacelike surface along a null geodesic y may

not exist even though the geodesic v fails to realize

the distance between H and each of its points (see Figure 6.
It is also possible that the future null cut point g

of a spacelike surface along a null geodesic y may fail

to be a focal point of H along vy and yet there

may there exist no other null geodesic from H to q (ses

Figure 5).

Definition 3.2: Let H be a spacelike surface in a

spacetime M. The future null cut locus of H is defined

to be the set C§(H) of future null cut points of all future

inextendable null geodesics which meet H orthogonally.

We note that even if H is compact and acausal, it
is possible that C;(H] is not a closed subset of M (see

Figure 6).
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We recall that a spacetime M is called causally

continuous if each p € M and any compact set K « M - It(p),

there exists a neighborhood U of p such that K o M - Ii(z)
for every z € U (cf. [HS]) and a spacetime M is called

causally simple if J+(p) and J (p) are closed subsets

of M for every p € M (cf. [HE], page 188). Since,
global hyperbelicity implies causal simplicity implies
causal continuity (cf. [ES]}, it follows that if M is
causally simple (or globally hyperbolic) then ¥E25§ =
J5(p) for all p € M. -

Lemma 3.3: Let M be a causally simple spacetime and
{pj},{qn} be sequences in M converging to p and q
1

respectively with p # q and Ph<dy for each n. Then p<q.

. . +

Proof: Assume q is net in J (p). Then q€M—J+(p) and

since q is compact, there exists an open set U, containing
+

p, such that q&M-J (z) for every z € U from causal

continuity.

Let z, € Unl (p). Then there exists N>0 such that
I+(zl) contains all P, for n > N and therefore I+(zl)
contains all Ay for n > N since P,<d,- But then,
M—J+{zl) is an open neighborhood of q which fails to

contain infinitely many Ay in contradiction. =



Now, by using the Lemma 3.3, we can restate .
corollary of [BE] (cf. [BE], page 39) without the assumption

p<q as follows:

Theorem 3.4: Let M be a globally hyperbolic spacetime
and suppose that {pnh{qn} are sequences in M converging
to p and q in M respectively, with p # q and P <4, for
each n. Let Yy be a future directed non-spacelike curve
from P, to q, for each n. Then there exists a future
directed non-spacelike limit curve Yy of the sequence

{y,} which joins p and q.
Proof: Immediate from the corollary of [BE] (cf. [BE],

page 39) and Lemma 3.3 a

Let H be a spacelike surface in a spacetime M and

let N(H) be its normal bundle. We recall from differential

topology that there exists an open neighborhood V of H
in N{H} such that the exponential map expl of N(H) is

a diffeomorphiém cf V onto an open neighborhood W of H
in M (namely, W = exp™(V)) (cf. [BJ], page 123)}. There-
fore, there exists an open neighborhood W of H in M such
that each non-spacelike geodesic emanating orthogonally
from H does not contain any focal point of H in W and
the non-spacelike geodesics, emanating orthogonally

from H do not intersect each other in W.
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Theorem 3.5: Let H be a compact, acausal spacelike

surface in a globally hyperbolic spacetime M. Let
vy: [0,a) » M be a future directed null geodesic with

Y(0) € H and v(0)1H. Then
t =Sup{t€[0,a}|d(H,Y(t})=O} > 0.

Moreover, if Y(to) is a future null cut point of H along
Yy then either or both of the following holds:

i) Y(to) is the first focal point to H along v

ii) there exists a least two future dierected null
geodesics from H to Y[to), realizing the distance between

H and Y{to).

Proof: Assume ty, = 0. Let t, —» 0 be a strictly decreas-
ing sequence in (0,a). Since M is globally hyperbolic

and H is compact, we can find a sequence of timelike
geodesics {Yn} each of which realizes distance between H
and Y(tn) (cf. [HE], page 207 and [P], page 55). Since
each g realizes distance between H and Y(tn}, necessarily,

each Yq is orthogonal to H at some point D Since

is compact, a subsequence of the sequence {pn} converges
to a point p € H. We shall also denote this subsequence
by {pn} for brevity. Thus, it remains to show that

p # v(0)}. For, then from the theorem 3.4, there exists

a non-spacelike limit curve a of {yn} from p to y(0) in



contradiction with the acauslity assumption on H.

Assume v(0) = p. Let V be any local causality neigh-
borhood (cf. [P}, page 30) of p. Then V contains all

Py and Y(tn) for large n. Since V is a local causality
neighborhood, each y  is also contained in V for large n.
By choosing V small, since vy ‘dnd $n'are non-spacelike
geodesics orthogonal to H, we reach a contradiction with
the fact that non-spacelike geodesics emanating orthogon-
ally from H cannot intersect each other in some open
neighborhood of H in M. That is, p # v(0) and t0>0.

The rtest of the claim can be proved following similar
lines. Let Y(tO) be the future cut point of H and let
{tn} be a strictly decreasing sequence in (0,a), converging
to t.. Let {Yn} be a sequence of timelike geodesics from
some p, € H to Y(tn), each of which realizes distance
from H to v(t,). Then from Theorem 3.4; {Yn} has a limit
curve n from a point p € H to Y(to}. But n must be a
null geodesic, realizing the distance between H and
Y(to] since y(t,) is the future null cut point of H along
v (in other words d(H,Y(tO))=O). Now, we have two cases

to consider:

a) 1if y#n, then we obtain the case (ii1) of the theorem.
b) if y=n (up to parametrization), then y is a limit

curve of the sequence {Tn} of timelike curves each of which

67
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is orthogonal to H. Then, since v is a limit curve of
the sequence {Yn}, there is a subsequence {%m(O)}.of
{%n(O)} such that directions of the vectors +m(0)
converge to the direction of %(0) (cf. [BE}, page 231,
Lemma 8.14). But then Y[to) is a focal point of H

along vy since the exponential map of N(H) fails to be one
to one on every neighborhood of }(0) in X{H). Thus we

obtain the case (ii) of the theorem. =

Corollary 3.6: Let H be a compact, acausal spacelike

surface in a globally hyperbolic spacetime M. Then every
future directed null geodesic v: [0,a) - M with v(0) € H
and %(D)LH realizes distance between its points and H

up to and including the future null cut point of H aleng

Yy (if any). Moreover, either one or both of the following

holds for each x € C;(H):

i) x is the first focal point of H along some geodesic
y which meets H orthogonally
ii) there exists at least two future directed null

geodesics from H to x realizing the distance between

H and x.
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Proof: Immediate from the Theorem 3.5.

Theorem 3.7: Let H be a compact, acausal spacelike
surface in a globally hyperbolic spacetime M. Then

C&(H) is a closed subset of M.

Proof: To show that C;[H) is closed, it suffices to

show that 1if {xn} 1s a sequence of points in Ci(H) with

CoE +
X, = xECN(H) then x € CN(H},

Let x € C&(H) and X, @ X. First, we shall show
that.x ¢ H and x € J+(H).

Let Tn be a null geodesic from some point Yy € H
to x realizing the distance between H and X, for each n.

(Such a geodesic always exists since x_ € C;(H).) Since

n
H is compact, a subsequence of {yn} converges to a point
y € H. We shall also denote this subsequence by {yn}
for brevity. Thus, toc prove the claim, it suffices to
show that x # y since, then there exists a non-spacelike
limit curve ¥y of the sequence {Yn} from y to x (cf.
Theorem 3.4) and it follows that x € H and x ¢ J+(H)
from the achronality of H.

Assume x = y. Let V be a local causality neighbor-

hood of y. Since X, =Y and Y, = ¥, there exists N > ¢

such that V contains all X, and Y for n > N and therefore
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V contains all Yq for n > N (since V is a local causality
neighborhood). Then, Corollary 3.6 implies that each

X, is either a focal point or there exists two null
geodesicg (orthogonal to H) from H to x (or both).

Now there are two cases to consider. Eithe; infinitely
many x, are focal points or else no X, is a focal point
for large n. 1In the first case, we can reach a contra-
diction by choosing V small enough since there exists

an open neighborhood of H in M such that no non-spacelike
geodesic emanating orthogonaily from H contains focal
points in this open neighborhood. Therefore, no x

is a focal point of H for large n. But, then Corollary
3.6 implies that there exists a null geodesic o # Yu
from some z, € H to X, realizing distance between the H
and X, for large n. Since H is compact, a subsequence of
{zl} converges to a point z € H; we shall also denote

this subsequence by z_ for brevity. If z # vy then

n
Theorem 3.4 implies that there exists a non-spacelike
limit curve of {an} from z to x = y. But this conflicts
with the achronality of H. If z = y then all x, lie

in the local causaliﬁy neighborhood V of y together with
all Yo for large n. But since the future endpoints of

both vy, and oy 1s X, € V for large n and the past end-

points of Yn and a, converges to y, by choosing V




71

sufficiently small, we again reach a contradiction as
before. Thus, this completes the proof that x ¢ H and

X € J+(H).

On the other hand, since the Lorentzian distance
function d is - -continuous in globally hyperbolic space-

times (cf. [BEl, page 85), d(H,x) = 1lim d(H,Xn) = 0
X =X
n

and it follows that the non-spacelike limit curve

v of {Yn} 1s a null geodesic which realizes the distance

between H and x (and therefore vy is orthogonal to H}.
Now, there are two cases to consider. Either

infinitely many points X, are focal points or else no

x, is a local point for large n. In the first case, x

is necessarily a focal point since the set of singular

points of the exponential map of N(H) is closed. If

no x, is a focal point for sufficiently large n then

Corollary 3.6 implies that there exists a null geodesic

B # Yp from some w, € H to X, realizing distance between

H and X, for large n. Let § be a non-spacelike limit

curve of {Bn} from H to x (cf. Theorem 3.4).

Case 1: If B8 # v then vy fails to realize the distance
between H and its points to the future of x. Since

Y realizes distance between H and its points up to x,x

is the future null cut point of H along v.
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Case 2: If B = v (up to parametrization) then v is a
limit curve of both the sequences {y,} and {B,} which are
null geodesics emanating orthogonally from H and have
the common future and point X,, palrwise. Since

Y 1s a 1limit curve of both sequences, there exists a
subsequence {+m[03} of {%n[O)} and a subsequemnce {ém[O)}
of {én[D)} such that the directions of the vectors

+m(0) and ém[O) converge to +(O) (cf. [BE], page 231,
Lemma 8.14). But then x is a focal poinf of H along

Y since the exponential map of N(H) fails to be one to
one on every neighborhood of %[0) in N(H). Therefore,
since v realizes distance between the H and its points

up to Xx,x is a future cut point of H along vy.

Remark: We recall that the future horismos of a set H
is defined to be the set E (H) = J'(H) - I'(H). Thus,
if H is a spacelike surface then Cg(H) < E+(H) which
corresponds to those points of E+[H) where the null
geodesics in E+(H) leave E+{H} in the future direction.
Since every null geodesic v in E+(H) realizes distance
between H and its points, Y is orthogonal to H and
therefore the set E (H) - {HUCQ(H)} is a (smooth) null

hypersurface (cf. Chapter II, section B).




Theorem 3.8: Let H be a compact, acausal spacelike

surface in a globally hyperbolic spacetime M. Then
E+(H) - {HUC%(H)} has exactly two connected components

cach of which is a (smooth) null hypersurface.

Proof: Since C§EH)OH-= # (cf. Theorem 3.7 and Corollary
3.6), every null geodesic, emanating orthogonaily from

H has a non-trivial portion contained in E+(H). Therefore
since H is smooth, E+(H) - {HUC&(H)} is a smooth null
(possibly disconnected) hypersurface generated by the null
geodesics emanating orthogonally from H. Assume

E+(H) - {HUC§(H)} = S is connected. Then, since S is

a null hypersurface, there exists a null vector field U
on S whose integral curves are reparametrizations of the
null geodesics in E+(H) which are orthogonal to H. But
this is a contradiction since there exist two linearly

independent null directions at each point of H. ]

Corollary 3.9: Let H be a compact, acausal spacelike

surface in a globally hyperbolic spacetime M. Then the

normal bundle N(H) of H is a trivial vector bundle.

Procf: This is immediate from Theorem 3.8 since

EY () - {HUCQ(H)} has exactly two connected components. =
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CHAPTER IV

SPACELIKE SURFACES IN 4-DIMENSIONAL SPACETIMES

In this chapter, we shall discuss;ﬁhe influence ot
curvature on the existence of‘;i;seéﬁtrapped surfaces in
4-dimensional spacstimes which obevy the Einstein equation
for the stress-energy tensor T (cf. [SW] pages 71 and 111).

In section A, we shall obtain sufficient conditions
(which invélve curvaturé in a cruéial way)-for-the com-
pactness of spacelike surfaces. We shall then cbtain
in section B, some results concerning the evolution of
closed trapped surfaces from marginally trapped ;urfaces.

In achieving the above results, we shall make use
of the results of Ambrose and Cohn-Vessen on compactness
of complete Riemannian surfaces H by making estimates
on the induced curvature KH of H using the Gauss-Codazzi
equation. _

We recall that the normal bundle N(H) of a spaceslike
R(H) 5,

in each of which, we can find two future directed null

surface H has two dimensional timelike-<Fiber

N

vectors u,w € N(H) with <u,w> = -1. The second fundamental -
P
forms of H in the directions u and w at p € H are defined

by IIu(x,y) = <Lux,y> and IIw(x,y) = <L x,y> where
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X,y € TpH, Lu and Lw are the second fundamental tensors
of H in the directions u and w at p € H. GCeometrically,
IIu(x,x) can be interpreted as follows: Let y: [0,a) - M
be a future directed null geodesic with v(0) = p and

¥ (0)
‘i(g)-

u € N[H)p. Let X be the Jacobi class along v with

I(x} and f(O) = H(Lux). Then, IIu(x,x) is
interpreted as the radial velocity <f(0),f(0)> of the
Jacobi class X at p € H, which measures the initial
rate of separation of a congruence of null geodesics
perpendicular to H (since <f(0},f(0)> = 11, {x,x) by
gefinition (cf. [BE], page 382)).

Also, since each fiber N(Hp} of X(H) at p € H is

a timelike plane in TpM, the sectional curvature K J_(p)
H

of N{H) K 1is defined by K L(p) = -<R{n,z)z,n> where
H

P
{z,n} is a Lorentzian basis for M[HJP. Geometrically,

K i(p) may be interpreted as follows: Let v: [0,a) - M
bg a future directed unit timelike geodesic with v(0) = p
and v(0)LH. Let N be a Jacobi field along y with

HWN{O0)Y =1, N(O}i;(O} and N(O)LH. Then, K l(p] can be
interpreted as the radial acceleration <V§V+ﬁ,N§ﬁ)of

the Jacobi field N at p € H, which measures the separation

of a congruence of timelike geodesics (since,

<V+V+N,N>h,= <—R(N,+)?,N>,p = KHl(p)). We shall call a
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variation of vy through timelike geodesics 2 radial timelike

congruence to H at p if the variation vector field is

orthogonal to H at p € H.

Now, we shall state the_GaussﬂCodacci equatiqn for a
spacelike surface H in a 4-dimensiong1 spacetime M
which obeys the Einstein equation for the stress-energy
tensor T. Since its proof is rather long and not avail-
able in the recent literature, we shall provide a proof

of it at the end of this section.

Gauss-Codazzi equation: Let H he a spacelike surface in
a 4-dimensional spacetime M which obeys the Einstein
equation for the stress-energy tensor T. Let u,w be

*

future directed null vectors in N(H}p with <u,w> = -1

Then,

KH(p) = KHL(p) + Ric(u,w) + T(u,w) - IIu(el,el)IIw(ez,eZ)

- IIu(eZ,eZJIEW(el,el)

= Kﬁi{p) + Ric(u,w) + T{u,w) ~ (tr Lu)(tr L)

+ IIu(el,el)EIw(el,el) + IIu(eZ,eZJIIw(eZ,eZJ

\
where €1,8, are orthonormal vectors in TpH for which ;’

either IIu(el,ezj = 0 or IIw(el,ez) = 0,




77

Proof: see page 87.

We now state Ambrose's lemma and a result of Cohn-

Vossen for complete Riemannian surfaces.

Ambrose's lemma: Let H be a connected, complete Riemannian

surface. 1If there is a point p € H such that along each

geodesic y: [0,=) » H with v(0) = T, f (KHOY)dt = o then
o)
H is compact.

Proof: «cf. [A].

Cohn-Vossen's result: Let H be a connected, orientable,

complete Riemannian surface, If J KHmH:> Zm then H is

A . 2 =
diffeomorphic to S° and JHKHQH = 4w,
Proof: «cf. [C].

We shall obtain sufficient conditions for the
compactness of spacelike surfaces (to be diffeomorphic
to SZ] in the following two circumstances:

i) (cosmological case): M is a 4-dimensional spacetime
which obeys the Einstein equation for the stress-energy

tensor T = {(Z+p)ZRZ + pg where ¢ (energy density) and

p (pressure) are continuous functions on M,Z is a future

directed, unit timelike vector field on M and g is
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{0,2)-tensor field on M whi@h is physically equivalent

to the metric é of M. (cf;;[SW}, page 107.)

ii) (Black hole case): M”isyé 4-dimensional spacetime

which obeys the Einstein'eqﬁation for the stress-energy

tensor T = 0.

We shall need a weak form of spatial isotropy:

Definition 4.1: A spacetime M is said to be weakly

spatially isotropic for the instantaneous observer
zeT™M (<z,z>=-1) if R(x,z)z = kx for every x € It where

k is a constant.

Section A: Necessary and Sufficient Conditions for the

Spacelike Surfaces to be Diffeomorphic to Sz.

Theorem 4.2: Let M be a 4-dimensional spacetime which

obeys the Einstein equation fof the stress energy

tensor % = (g+p)Ig&i + pé. Let H be an orientable

spacelike surface in M orthogonal to the vector field

Z. Suppose that: g
a) H is complete in the induced metric. ?

b) IIu(x,x)IIw(y,y) < 0 for each q € H and every x,y € T_H,

q
where u and w are future directed null vectors in N(H)q
with <u,w> = -1.

c) M is weakly spatially isotropic for each instantaneous

observer in Z along H.
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d) At least one of the following holds:
1} there exists a point q € H such that for every
geodesic y of H (in the induced metric) emanating from

[«

q, J (zey)dt = » and J Zwy > 0.
0 H ,
2) J Cw, > 61,
yH

Then, H is diffeomorphic to S2 (and if ¢ > 0 -along H then

diam H < g % where m = min(zg).

Proof: Let u,w be future directed null vectors in N[H)q

such that <u,Zq> - . L and <u,w> = -1. Then, necesarily
vZ
we have <w,Z > = - = {since Z_ € N(H)., we write
gq JT q q
Z = au + bw. Then, since <u,Z > = - L and <u,w> = -1,
1 1 77
b= - . Also, since <Z_,Z > = -1, -2ab = -1. Thus,
q’"q

V2
a = 1 and therefore <w,Z > = ——LJ. Since Ric =

Ned a vZ

rr

(z+p)igi + %(g—p)g from the Einstein equation, using the

weak spatial isotropy along H, we obtain

= - Llps ! 1.1, 1
KH_LCPJ = - gRlC(Zp,Zp] = g(g+p 5 +?p) = €(C+3p)'

Also, T(u,w) = 7(z*p)-p = 3(c-p) and Ric(u,w) =

%(;+p) - %(C*p) = p. Thus, the Gauss-Codazzi equation yields,




Kpp) > KHl(p) * T(“’W)ff:Rlcf“’z) = ~gle*t3p) + S(z-pi+p =%€-

Therefore, if (d-1) holds then [ (zoy)dt = = implies that
o

H is compact from Ambrose's lemma and J twy 2 0 implies

b . Z

that H is diffeomorphic'tazsz-from the Gauss-Bonnet

[o.e]

theorem. (Note that j (zdyjdt = « implies that ¢ > 0

o
at some point x € H and therefore J Cuy > 0.)  If (d-2)

7

result. In either case, if ¢ > 0 on H, then from Myer's

holds, then H is diffeomorphic to S$“ from Cohn-Vossen's

theorem, diam H < @/g-wherefm = min ¢. =
_ H -

The assumptions of the above theorem are expected
to be satisfied by infinitesimally spatially isotropic
spacetimes (cf. [K]). 1In particular, the recollapsing
Friedman-Robertson-Walker spacetimes contain strongly
marginally future converging spacelike surfaces H
with the above properties. (Recall that H is strongly
marginally future converging if N(H) is trivial and
tr Ly = 0, LU = 0 where U,W are future directed null
sections with<U,W> = -1. (cf. Chapter 1, page 11)).

In the next corollary, we shall obtain necessary
and sufficient conditions for a strongly marginally

future converging spacelike surface H to be diffeomorphic

to 82 (which is then a marginally trapped surface).
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Corollary 4.3. Let M beﬁéfd;&imensional spacetime which
obeys the Einstein equafiéﬁifor the stress-energy tensor
% = (g+p)IRZ + pé. Let_Higé gn orientable spacelike
surface in M, orthogonaifté;fhe vector field Z. Suppose
that:

a) H isrédﬁﬁlété in the induced metric.

b) IIu(x,x)IIw(y,y) = 0 at each g € H and every x,y € TqM
where u,w arg future directed null vectors in N(H)q

with <u,w> = -1,

c) M is weakly spatially isotropic for each instantaneous

observer in Z along H.

Then, H is diffeomorphic to 52

iff J T, > O7.
q H
Proof: Let u and w be future directed null wvectors in

N(H)qwith <a,w> = -1 at each q € Then, as in the

It

G4

proof of the above theorem, K from (b). Assume

H
) . . 2 _1f _
H is diffeomorphic to S*. Then, 'KHwH = §JHCmH = 47
from Gauss-Bonnet theorem and it follows that

( sz = 127 > 6w, Assums j ng > 6. Then from the
: H

'H
Cohn-Vossen's result, H is diffeomorphic to SZ. "

Let H be a spacelike surface in a 4-dimensional

spacetime M. The shape function ®: H » R of H is

defined by @(g) = IIu(el’el)IIw(?Z’ez) + Iiu(ez,ez)llw[el,el)
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where u,w are future directed null vectors in N(H):q

with <u,w> = -1 and €1,€, are orthonormal vectors

in TgH for which either IIU(el,ez) = 0 or IIW(el,ez) =0
(cf. Gauss-Codazzi equation). The shape function @ of

a spacelike surface H in a 4-dimensional spacetime which
obeys the Einstein equation for the stress-energy tensor

T 1s also given by @(gq) = X l(g) + Ric(u,w) + T(u,w) - KH(q)
where u,w are future directgd null vectors in N(H)q with

<u,w> = -1 (cf. Gauss-Codazzi equation).

Note that if H is a strongly future converging

surface then © > 0 on H and from the identity
(tr Iﬁl)(tr Iﬁv) = IIu(el’el)IIw(eZ’ez) + IIu(eZ,ez)IIW(el,el)
+ IIu{el,el)IIw(el,el) + IIW(eZ,GZ)IIu(eZ,ez),
we see that (tr Lu(tr Lw] > © along H,

Theorem 4.4: Let M be a 4-dimensional spacetime which

obeys the Einstein equation for the stress-energy tensor

— >

= (;+p)ZIRZ + pg. Let H be an orientable spacelike
surface orthogonal to the vector field Z. Suppese that:

a) H is complete in the induced metric and f”mH < @,
H

b} H is strongly future converging.

c) M is weakly spatially isotropic for the instantancous

observers in Z along H.
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Then, H is a closed trapped surface diffeomorphic to 52

i ff J Lo > 61 3[ Do,
oo g o

Proof: From the Gauss-Codszzi equation, as in the proof

of the Theorem 4.2, we obtain'KH = %c-@. Then, since

J Cwy = 3[ KHmH+3J @mH, H is diffeomorphic to 52

H H H

iff LcmH > 6w + SJ Swy from Cohn-Vossen's result and the
H

Gauss-Bonnet theorem, using the fact that f Swy > 0 as
H

in the prﬁof 0of Theorem 4.3. a

The conditions of the above theorem may be expected
to be satisfied in infinitesimally isotropic spacetimes.
in particular, recollapsing Friedman-Robertson-Walker
spacetime contains spacelike surfaces that satisfy the
above conditions. The theorem expresses the relation
between the energy density on a strongly future converging
surface in an isotropic spacetime and the topology of
the surface.

Now, we shall discuss the black hole case.

Theorem 4.5: Let H be an orientable spacelike surface in

a 4-dimensional spacetime which obeys the Einstein
equation for the stress-energy tensor T = 0. Suppose
that:

a) H is complete in the induced métric.

b) IIu(x,x)IIw(y,y) < 0 at each g € H and every x,y € Tq

where u,w are future directed null vectors in N(H}q




with <u,w> = -1,
c) at least one of the following holds:
1) There exists a point q € H such that every geodesic

v of H (in the induced metric) emanating from g satisfies

J (K L°Y)dt = « gnd f K
0 H

> 0.
H o+

(UH_

2) J K. ,wy; > 2w,
gy gt H

Then H is diffeomorphic to 52 (and has diam H <7 % if

K N > 0 where m = min K

)
q H pt

Proof: From the Gauss-Codazzi equation,

KH > K N since T = 0 = Ric and IIu(x,x)IIW(y,y) < 0.

Thus, as in the proof of Theorem 4.2, it is diffeomorphic

2

to 8%, either from Ambrose's lemma and the Gauss-Bonnet

theorem or from Cohn-Vossen's result. =

The following special case of the above theorem may
be interesting from the viewpoint of the theory of black
holes. We recall that a black hole is said to be time
independent if the expansion 8 of the generators of its

event horizon § vanishes. In Chapter II, Theorem 2.45,

we have shown that this condition (together with the weak

energy condition) implies that S is a stationary null

§4




hypersurface. Furthermore, every spacelike surface H in
S has trivial normal bundle N(H). (cf. Chapter II,
Proposition 2.10.) Let U be a future directed null

section of N(H) tangent to S. Then LU = 0 since S is

a statlonary null hypersurface.

Corollary 4.6: Let H be an orientable spacelike surface

in a 4-dimensional spacetime M which obeys the Einstein

equation for the stress-energy tensor T = (. Suppose

that:

a) H is complete in the induced metric.

b) IIu[x,x)IIw(y,y) = 0 at each q € H and every x,y € T H

4
where u,w are future directed null vectors in N(H)q
with <u,w> = -1. Then, H is diffeomorphic to 52 iff
K w, > 27,
| x o
Proof: Since T = 0 implies Ric = 0, then, from the Gauss-
Codazzi equation, KH = K K Thus, the claim follows from
H
ne Gauss-Bonnet theorem and Cohn-Vossen's result. ]

Let ©: H » R be the shape function of H. {Recall that

® > 0 on each strongly future converging surface H.)




86

Theorem 4.7: Let H be an orientable spacelike surface

in a 4-dimensional spacetime M which obeys the Einstein
equation for the stress-energy tensor T = 0. Suppose

that:

a) H is complete in the induced metric and J Wy < @,
H
b) H is strongly future converging.

Then H is a closed trapped surface diffeomorphis to 5%

iff f K,lm >2m + f dw,,.
H™ H d

H
H ] i
Proof: Since T = 0 implies Ric = 0, from Gauss-Codazzi
equation, we obtain KH = 3Hi-®. Then, J K @y =

. H O
[ K Wy + f @w,. Thus the claim follows from Gauss-Bonnet
u gt H i

and Cohn-Vossen's results since @ > 0 on H. =

Conditions of the above theorem are expected to be

satisfied in Ricci flat black hole spacetimes. In

particular, the Kruskal black hole contains spacelike |
surfaces that satisfy the above conditions.

Note that the above theorem expresses the relation f
between the surface gravity of a strongly future con-
verging spacelike surface in an empty spacetime and the |

topology of the surface.

Now, we shall verify the Gauss-Codacci equatiomn.
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Proof of the Gauss-Codagzzi equation:

We shall prove the Gauss-Codazzi equation in two !
steps. |
Step 1. Let H be a spacelike surface in a 4-dimensional
spacetime M. Let u,w be future directed null vectors

iﬁ“ﬁtHJp”with <u,w> = -1. Then
= fuy ‘]_
KH K(leez, IIu(el,el)IIw(eZ,eZ}IIuIez,ez)IIw(el,el)

where {61982} is an orthonormal basis for TPH for which
either Ilu[el,ez) = 0 or IIW(el,eZJ = 0 and K(elAeZ)

is the sectional curvature of the spacelike plane e1A8,.

Proof: Let U,W be a local null extensions of u,w in N(H)

with <U,W> = -1 and X,Y,Z be vector fields on a neighbor-

hood of p in H with [X,Y] = 0. Then

- T L ‘
(1) VYZ = (VYZ) + (VYZ) |
= Tyl o+ (72" where 9,2 = (vy2)T is the induced
connection on H. Since (VYZ)L = w<vYZ,W>U - <VYZ,U>W

we can rewrite {1) as

vyl = %Yz S <VyZ, WU -<vy 2, UsSW,

Thus,

Vol = ¥ VyZ - [K<VYZ,W>U+<VYZ,W>VKU]

X

- [X<VyZ,UsW+<vy 2, U5V W], [
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Therefore

T ~ LT T T
2y (vyoy ) VU ) - <VyZ,W> (95, 1) - <TyZ,U> (T4 W)

T VXVt <V LLWeLyX ¢ <7 7,UsLyX.

z Y v

On the other hand, from the Ricci identity,

Y<Z,W> - <Z,v.,W>

<VyZl,W> v IIW(Z,Y)

and

I
1l

<VYZ,U> Y<Z,U> - <Z,9,U>

Y
since <Z,W> = 0 = <Z,U>. Then by substituting in (2),

11 (Z,Y
(2,1

we obtain
T — s o o4 : Lx3 r T
(TxTy D" = VT T2, )L X - ITy(2,Y) i, X.
Alsc, by interchanging X and Y, we obtain
(vyvy )T = V2 Tl (2, X LyY + TT5(2,%)L,Y,
Therefore,
ROGYZT = BOX,VZ + 10,02 9)L.X - 11 (Z,X)L..Y
W U i U
T2, )L - TIG(Z,X) Ly
where R is the curvature of the induced Riemannian

structure on H. Thus,

(3)  <RCLY)Z,V> = <R(X,Y,Z,V> + ITy(Z,Y)I1,(X,V)
11, (2, I1,(Y,V)
LT (2, V)T (X,V)

IT(Z,X) I, (Y, V)
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where V is any vector field on H.

Let {el,ez} be orthonormal eigenvectors of either
Ly or Ly at p € H.  Then by making substitutions X <- €1
Y o> ey, Z «+ €y, V > e; in (3), we obtain

K(elAez) =,<R[el,ezJez,el>

<§Ie1,e2)ez,e1> + IIu(el,el)IIw(ez,ez)

+ IIu(ez,eszIW(el,el)
since either IIu(el,eZ) = 0 or IIW(el,ez) = 0. Therefore

KH = K(elAez) - IIu(el,eleIW(ez,eZ) - IIu(eZ,eZJIIW(el,el).
Step 2: Let M be a 4—dimensionél spacetime which obeys

the Einstein equation for the stress-energy tensor T,

Let e1,8, be orthomnormal spacelike vectors in TpM and

u,w be future directed null vectors in (elAeZ)i with

<U,w> = -1 where p € M and (elAezjl is the orthogonal

complement of the spacelike plane e1Ae

2
K(elﬂez) = K(el,f\ez)‘L + Ric(u,w} + T(u,w) where K(elAez)l

in T M. Th

i b en
1s the sectional curvature of the timelike plane
(61A82)¥.

Proof: Let {z,n} be the orthonormal Lorentizian basis

for (elAeZ)l defined by
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u+w - ?
and n = 4% .

|

<
N
<.
|

Then

(a) Ric (el,el) -2<R(u,e1)e1,w> + K[elAez)

Proof of (a): -

Ric(el,el) = -<R(z,e1)eljel,z> + <R(n,el)e1,n>

+ <R(e2,el)el,e2>

fl

+ ix
_ <R (LW Usw

:e-)e T
- 7 vZ R vZ
+<R(Eiﬂ,el)e1,giﬂ>
V2 T V2
+ K[elAeZ)

= —<RCu,e1)el,w> - <R(w,eljel,u>

+ K(elAeZJ
= —2<R(u,e1Je1,w> + K(elAezj 2
By replacing e; with €, in (a) we obtain

{(b) Ric(ez,ez) = —2<R(u,e2)e2,w> + K(elAez)

. 1
{c) Ric(u,w) = —K(elAeZ) + <R(u,e1)el,w> + <R(u,ez)e2,w>

Proof of (c):

Since, u = JL(z+n) and w = 4L(z~n),

V2
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Ric(u,w) “<R{z,uw)w,z> + <R(n,u)w,n>

+ <R(e1,u)w,e1> + <R(e1,u)w,e2

7+ - z+ -
~<R(z,7 n E—E,z> + <R{n, n)z I

vZ o V2 V2 VZ

il

|
> }
|

, 1>

+ <R(e;,ulw,e,> + <R(e ,Ulw, e, >
1 1 A2 2

%<R(z,n)n,z> + %<R(n,z)z,n>
+ <R(u,el)el,w> + <R(u,e2)e2,w>

= <R{n,z)z,n> +<R(u,e1)e1,w> + <R(u,e2)e2,w>

= —K(elAez)l +<R(u,el)el,w> + <R(u,e2Je2,w> o
(d) Sc = -2Ric(u,w) + Ric(el,el) + Ric(ez,ez)

Proof of (d):

Sc

]

-Ric(z,z) + Ric(n,n) + Ric(el,el) + Ric(ez,ez)

. +w u+ . . -
“Ric (MW utw, Ric (LW u-w

vz vz vz vz |

"

+Ric[e1,e1) + Ric(ez,ez)

-ZRic(u,w) + Ric(el,elj + Ric(eZ’ez)' a I
X( =K T+ 2Ri + 1(s |‘f
(e) ‘elAeZ] = (elAezJ Ric (u,w) ?{ c)

Proof of (e)tfrom (a) and (b)

Ric(el,el)+Ric(e2,e2J -2<R(u,el)e1,w>—2<R(u,e2)ez,w>

* ZK(elAez)

"2 Ric(u,w) - 2K(ejne,)’t

+ ZK(elAeZJ from (c).
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On the other hand, from (d)
Ric(eq,eq) + Ric(ez,ez) = Sc + 2 Ric{u,w).
Therefore,

L . 1
K(elAez) = K(elAez) + Z2Ric(u,w) + 7 Sc.

Finally, from the Einstein equation,

Ric(u,w) + % Sc = T(u,w) since <u,w> = -1.

Therefore, from (e)
K('el_;\ez)-=7K(el,\ez}‘L + Ric(u,w) + T(u,w).

Now, by combining Step 1 and Step 2,we obtain

Ky (p) KHL(p)+Ric(u,w).,+ T(u,w) - IIu.(el,él}IIw(eZ,ez)

- IIu[ez,ez)IIw(el,el)

]

€ @HRC@) + Tlaw - (er L) (erL)

+ IIu(el,el)IIW(el,el) + IIu(ez,ez}Ilw(ez,ez)

since (tl‘.Lu] (tr Iﬂv) = IIu(el,eIJIIW(el,el} + IIu(ez,ez)IIw(ez,ez)

-

+ IIu el,el)EIw(ez,eZ) + IIu(eZ,eZJIIW(el,el). =
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Section B: TEvolution of closed trapped surfaces

In this section, we shall be concerned with the
evolution of closed trapped surfaces from marginally
trapped surfaces in cosmological and black hole circum-
stances. We shall observe that the evolution of closed
trapped surfaces from marginally trapped surfaces is
closely related with energy density in cosmological
circumstances and is closely related with surface gravity
of marginally trapped surfaces in black hole circumstances,

In achieving the above results, we shall make use

of the following lemma:

Lemma 4.8: Let M be a 4-dimensional spacetime which
obeys the Einstein equation for the stress-energy tensor
T. Let H be a compact spacelike surface with trivial

normal bundle N(H) and let U,W be future directed null

sections of N(H) with <U,W> = -1. Assume that LW = 0
frhere LW is the second fundamental tensor of H in the
direction W). Let SU = expL(Q) where Q is an open ﬁ
neighborhood of H in NU[H) on which e:{p‘L is an embedding L
of Q into M. Thus SU is a null hypersurface in M (cf.
Chapter I, section B). Let ¥ be the extension of U to

a future directed null geodesic vector field on SU (cf. j

Chapter II, section B). Let ¢ be the flow of U and let 4
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Ht = wt[H). Thus Ht is a compact spacelike surface for
sufficiently small t (see Figure 7). Let D be the sub-
bundle to TSU defined by ﬁfr.UTHt (in some open neighborhood
of H in SU) and let W be the ;xtension of W to a null
section of quwith <ﬁ,ﬁ> = -1 (cf.VChapter II, section B).

Then, for any p € 4

It

~ ) _ . ~ — 2
Up(trVW) —KHL(p)_RlCCU’W)fp+d1vH(va)lp+|lvUW|p”

. i o~ 2
T(Uﬁw)lp"KH(p)+dlvH(vaJ|p+EIvUWIp”
where divH Vﬁﬁ is the divergence of VEﬁ.H on H in the
induced metric. (Note that v~W g € 'TH (cf. Remark

u
4.9(a).)
Froof: <cf. page 106.

We first note the following consequences of the

construction in Lemma 4.8,

Remark 4.9

a) By definition, D is integrable and therefore VW: DsD

1s self-adjoint (cf. Chapter II, Thesrem 2.22).
e -
UW,W> = > U<W,W> = 0 and

<v§w,ﬁ> = ﬁ<w,ﬁ>—<ﬁ,VﬁU> = 0, it follows that

b) Since <¥

~

Vﬁw € I'D and therefore vﬁw 1q € I'TH.




d)

f)

Let X be a Lie paraliéi;ﬁector field along U with

X|y € TTH (thus X ig"ﬁﬁﬂgent H, for each t, that is

XelD). Therefore,ngﬁﬁ;X> = —<W,Vxﬁ> since
IGH,X> = UW,X> = <H,v,0> = -<W,7,0>.

If X € FTSU then X =':<X,ﬁ>ﬁ + XT where XT is the
component of X in P(cf. Chapter II, section B).

[f X € I'W" then X = -<X,T>W + X' where X! is the

component of X in D.

Let X € TS Then vX € TTS

U- 8] U
SU i1s a null hypersurface (cf. Chapter I, section A),

and VXU € TTSU since

Theorem 4.10: Let M be a 4-dimensional spacetime which

obeys the Einstein equation for the stress-energy tensor

T,

Let H be a spacelike surface diffeomorphic to 52

in M. Assume N(H) is trivial vector bundle and let u,w

be future directed null sections of N(H) with <U,W> = -1.

Assume also that:

1)

ii)

K LT Ric{U,W) > 0 along H
H

= _fowy L <.
Ly = - (7W) 0

iii) tr Ly = -tr(vU)T > 0 along H, and (R(X,Up)Up)T # 0

=

for some x € TpH whenever tr LUlp
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iv) <R(U,W)X,Y> = 0 for all X,Y € I'TH.

Then M contains closed trapped surfaces diffeomorphic to

s? in Jt(m).

Proof: First, we note that <U,W> = -1 leaves the freedonm

U - Ut = er and W - W' = e_fw where £ is a smooth function

on H. Now, let's consider the situation in Lemma 4.8

for U' and W'. Then for any p € H,
Tt Nr - ¥ D3 1 1 : ~~r
{1) Up(tr VW) Rﬁl(p) Ric(U',W j,p+d1VH(? W )[p
~ 2
~ t
fHVU,W Il |p'

On the other hand, since L and L

. . are the second
W |1, v |,

fundamental tensors of the Ht for each t, it suffices to

show that tr LWV > 0 and tr Lﬁ,
| TH, {THt

(Thus, Ht is a closed trapped surface diffeomorphic to 5°

> 0 for some t > 0.

for some t » 0.) But, tr Lﬁf’ > 0 for all t > 0 from *
TH
t

condition (iii) and Corollary 1.22 (Ric(U',U') > 0
from the weak energy condition). Now, to show that

ter, > 0 for some t > 0, it suffices to show

THt

Ué(tr vﬁ‘) < 0 at each p € H. For this, it suffices to

show that U' and W' can be chosen so that Va,ﬁ' q = 0
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Then, Ué(tr VW') < 0 follows from Lemma 4.3 (since

K l[p) + Ric(U",W') > 0 along H).
H

Note that, for any X € I'TH,

Y W,X> = <l v, U's = -<e Ty v efus

X X

~e'f<w,efX(f)U + erXU>

I}

X(£) - <W,VKU> = df(X) - <W,VYU>

from Remark 4.9(c). Therefore, Vg,ﬁ’ = 0 along H iff

there exists a function f: H - R such that df(X) = <W,v,U>

X
for all X € I'TH iff the 1-form o = <W,v.U> on H is exact.

(Note that, from Remark 4.9(b), Vﬁ,ﬁ' € TTH and, since

¢ iff <VE,%',X> = 0 for every
X € TTH). But, since H is diffeomorphic to S2

]

H is spacelike, Vﬁ,ﬁ‘

, 1t suffices

to show that a is closed (since H is simply connected),
Let p € H and X,Y be tangent vector fields to H on

some nelighborhood of p in H with [X,Y] = 0. Then,

da(X,Y) = Xa(Y)-Ya(X) = X<W,VYU> —Y<W,VXU>
= <VXW,VYU>+<W,VXVYU>—<VYW,VXU>
<W,VYVXU>

= <VXW,VYU>-<VYW,VXU>+<W?R(X,Y)U>

since [X,Y] = 0.
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But, since VXW=ﬂ<vXW;U>W + (VYW)T (cf. Remark 4.9(e}),

Y

L T
<VXW’VYU> ~<VXW,U>$W,V U>+<(VXW) »VyU>

Y

W, Us+< (7,0 1,7, U>

<VXW{U><V Y

and similarly,

U>.

1

T -
<VYW,VXU> = <VYW,U><VXW,U>+<(VYW) Yy

Thus,

T T
do(X,Y) = <W,R[X,Y]U>+<(VXW) ,VYU>-<(VYW) VU=

Therefore, from condition (ii) (that is Ly = 0),

da (X,Y) = <W,R(X,Y)U>
= <R{U,W)X,Y>
= 0 from condition (iv). o
Remarks:

i) Note that, [VXN)T = 0 for every X € TpH iff VXW = awp
for some a € R.
1i) Assume that each point p € H has a neighborhood V in
H and on which there exist a function £: V - R
such that VXW’ = 0 for every X € THI-V where W' = efw.
Then, R(X,Y)W = 0 for every X,Y € TH and therefore

<R{X,V)W,U> = <R(W,U)X,Y> = 0.




Corollary 4.11: Let H béfgﬁ orientable spacelike surface
in a 4-dimensionatl spacétime M which obeys the Einstein

equation for the stress—eﬁergy tensor T = 0. Assume N(H)
is a trivial vector bundle and let U,W be future directed
null sections of NtH) with <U,W> = -1. Assume also that:

a) H is complete in the induced metric

b) Kyt > 0 along H
T
c) Lg = -(VW)" = 0
) tr Ly = -tr(VU)T > 0 along H, and (ch,gp)up)T # 0
for some X € TpH whenever tr LU]p = 0
e} <RW,DX,Y> = 0 for all L,Y € TH
1) f K w, > 2.
q Hi H
Then there exist closed trapped surfaces diffeomorphic

to $% in J(H).
Proof: From the Gauss-Codazzi equation,
KH = KHL since T = 0 = Ric and LW = {,

r
Also, since { K., = J K oy > 2w, H is diffeomorphic
‘H H H H™ |

to 82 from the result of Cohn-Vossen. Thus, there exist |

closed trapped surfaces in J+(H) diffeomorphic to S2 from

the Theorem 4.10. =




Discussion of Corollary 4:11: In fact, the conditions of
Corollary 4.11 are more general than needed for the
intended application of the theorem to black holes. We
shall discuss the conditions and the consequence of the
theorem in the XKruskal black hole model. We recall thét
2

the Kruskal spacetime is the warped product R? X fS

where RZ is equipped with the Lorentzian metric g = F(r)

2
(dwRdu + dufRdw) where F(r) = (§%—)exp(1 - Q%J and r
il

is implicitly defined by [r—Zm)exp(%% - 1) = wu. S

is equipped with the usual Riemannian metric h of constant

2

curvature 1. The warping function f is given by f(w,u) = r
(cf. [0], page 389). The null hypersurface S which is

given by r = Zm (event horizon) is a stationary null

hypersurface diffeomorphic to RxSs? and W = é% is a

[l

future directed geodesic null vector field on S with
VW = 0 on TS since r = 2m on S. (cf. [O], page 156,
exercise 8 and page 206, proposition 35-(2)). Thus, it
follows that R(X,Y)W = 0 and therefore <R(W,U)X,Y> =
<R(X,Y}W,Us = 0 for every spacelike vector X,Y € TS

where [ = I 5y (cf. the remark below the Theorem 4.10).

S
since S8 is a null hypersurface, every spacelike surface

H in S has trivial vector bundle and Ly = 0 (cf. Chapter

[T, Theorem 2.45 and Proposition 2.10). Also, it can be




shown that the surface gravity K | of the spacelike
H

spheres H which are contained in the null hypersurface

S 1is equal to %lj >0 and tr L, > 0. Furthermore,

8m v
since they are topologically sphere, J K 1@y T 4m o> 2m.

H H
Therefore, -the corollary implies that there exist -

closed trapped surfaces in the black hole region which

are evolving from the spacelike spheres in the event
horizon S.

In the next theorem, we shall discuss the evolution
of closed trapped surfaces from marginally trapped
surfaces in cosmological circumstances. First we shall
state a consequence of the Hodge decomposition theorem

for immediate reference in the next theorem.

Lemma 4.12: Let H be a compact, connected, oriented

Riemannian manifold and lef f: H-> R be a smooth function.

Then the equation

[ f
Ji
Ay + £ = B where B = 2L » has a solution on H
. U_)H
H
(A is the Laplace operator on H).

Proof: From the Hodge decomposition theorem (cf. [W],

page 223), Ay = B-f has a solution on H iff J (B—f)mH = 0
H
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(since, the only harmonic functions on a compact,
connected, oriented Riemannian manifold are the constant

functions). But, by definition of B, [ (B—f)wH = 0 and

H
therefore there exists a function ¢: H » R which satisfies

the above equation. "

Theorem 4.13: Let M be a 4-dimensional spacetime which

obeys the Einstein equation for the stress-energy

tensor % = (g+p)ZRz + pé. Let H be a spacelike surface
orthogonal to Z, Assume that N(H) is trivial and let

U,W be future directed null sections of N(H) with <, W= = -1,

Assume also that:

a) H is complete in the induced metric

b) Ly = 0 and tr LU > 0 along H.

c) M is weakly spatially isotropic for the instantaneous !
observers in Z along H.

< 2T |

da) J Cwy > 67 and ( Pl |
H

Iy

Then M contains closed trapped surfaces in J (H) !

diffeomorphic to S,

Proof: From the Gauss-Codazzi equation,

=0). :

KH = KHL + Ric(U,W) + T(U,W) (since LW




Again, following the same lines of the proof of Theoren

. _ 1 . o1
4.2, we obtain, KH = zt. Thus, since [HKH“H = ngcwH > 27,
H is diffeomorphic to 5% (from Cohn-Vossen's result)

and fcw = 127.
H H

Note that <U,W> = -1 leaves the freedom U - U' = ewU

and W' = e-wW where ¢: H > R is a smooth function. Now,

let's consider the situation in Lemma 4.8 for U' and

W'. Then, for every g € H,

UgCer vWry = (¥ ) ¢ Kpla) divH(vU,Wf)fq
~ 2
+ IIVU1WquH :

Now, we shall show that U and W' can be chosen so that

Ué(tr Vﬁ‘) > 0 at every q € H.

Now,
N

for U and w.

let's also consider the situation in Lemma 4.8

Let {X;,X,} be an adapted moving frame
near 4 on H in the induced connection. {That is,

., =9 and.ﬁw X; = 0 where ¥ is the induced connection
4

on H (cf. [Pol, page 151)). Let X. (i=1,2) be the Lie

paraliel extension of X; with respect to U' to a nelghbor-

o

hood of H in SU’ and ii {(i=1,2) be the Lie parallel

extension of Xi(i=l,2) with respect to U to a neighborhood

of H in SU.




Then, since VS W'IH € I'TH,

divH (ij, W) lq

(since V

—

X,

i

Xi"‘

0)

2 :
E <V, T W ,Xi>|q

i=1 X ‘i
2 ™~
§ [X. <VU,V ’Xi>f <VU,W VX.Xi>|q]
-1=1 i
izl[xi(u*<w‘,xi>)|q - Xi<wr,v~,,xfﬂq}
2 . ~ ~ 2 i~ o~
T X <W',Vsr Uts = - I X.<Wiy, U'>
i=1 T Kj_ IC{ i=1 1 Xi lq
2 -
- T Xj<e ww,vY e¢U>|
i=1 24 4
2

_ Y W 12
i§1Xi<e W,e Ki(w)U + 8 VX.U>!q

divH(V§W)|q.




Thus

1 ’I“-" = N! N? _ 3 - . Nl 2
Uy (tr wW') = T(U' W )fq_ @) + divyy (V) | #aW| + 1o, W o117

Since T(E',Tw]m = T(0, M) |y = T(U,W = 2(c-p) (cf. proof
of the Theorem 4.2),

~

~ 1 1 . N
Uy (b 901 = =o(@) - 3p(q) + divig (i [ + awfy + 95,00 01"

v q
Now, let f = %c-—%p +cﬁNHGﬁﬁﬁ. The? the equation A¢p+f = R
L Tw
has a solution Y on H where B = wa H (cf. Lemma 4.12),
H
H

Therefore, for this w,Ué(tr vW') = B + ]|V~,W1q}|2. Thus,
to show that U&(tr vﬁ') > 0, it suffices to show that

ijmH > 0. Indeed, Jyfoy

1 1 . i
FIHCMH - 7ijmH + delvH(vUW)mH>O

2

. 1 . . oy
since zfyceoy = 2m(since H = S°), prwH < 27 and fHdlvH(VﬁW)wH=0,

e

Now, since H is compact (~ SZ), tr LU‘ >c¢c >0

for some ¢ € R from the assumption (b). Also, since

tr LW' = 0 but U'(tr LW,) > 0, 1t follows that p, (HY = H

t
1s a closed trapped surface diffeomorphic to s? for

some t < O (Corollary 1.22). =

Discussion of the Theorem 4.13: We shall discuss the

conditions and the consequences of the above theorem in
the recollapsing Friedman spacetime. We recall that the
recollapsing Friedman spacetime is the warped product

M = RfoS where R is equipped with the negative definite
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metric - dt 8 dt and S° is equipped with the usual
Riemannian metric h of constant curvature 1 and f is
the warping function whiéh is given by f£' + 1 = A/f
where A is a positive constant. (cf. [0], page 351.)
Thus, stress-energy tensor is % = cz'® Z (dust) where

Z = g% and this Spaceﬁimé“isrépatially isotropic for 2

and therefore, weakly spatially isotropic for each
instantaneous observer in Z. (cf. [0, page 351.)

M contains achronal spacelike surfaces H (diffeomorphic

to Sz) which are orthogonal to Z with the property that

tr Ly > 0 and Ly = 0 (cf. [CET], page 186, also see Figure
8). Since these spacelike surfaces are topologically

SZ, from Gauss-Bonnet theorem f Luy = 127n > 6w, Also,
since p = 0 (dust), the above tieorem implies that there
exist closed trapped surfaces diffeomorphic to s% in the

causal pasts of these marginally trapped surfaces.

Now, we shall provide the proof of Lemma 4.8,

Procf of the Lemma 4.8: Let Yi i=1,Z2 be orthonormal

vector fields on H in some neighborhood of p £ H.
Let X, (i=1,2) be vector fields on SU which are
obtained by first Lie translating Yi (i=1,2)along U and

then orthonormalizing them. (Thus, Ki (i=1,2)is an

orthonormal basis tangent to He = @i (H)).  Thus
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~ 2 2 ~
tr(VW)T = I <[V W) 1 = ¥ <Vy W,Xl>
i=1 1 i=1 i
since X; (i=1,2)are tangent to Ht'
Then
- " 2 . 2
Ultr Vi)~ = i§1U<7Xi W,Xl> = i§l€<VU x W, X >y W,uni. > ]

On the other hand, from

N

Vv, W= R(U X. ]W + 7 V”W + V W v W
U Xl Y 4] UXi inU
we obtain
(1) <VﬁVXiW,Xi> = <R(U,Xi)W,Xi> + <VX UW Y >

+ <V W’Ki> - <‘7\7 NW,Xi>

X.U

1

VﬁKi

Mereover, since VﬁXi is in TSU (cf. Remark 4.9-(£)),
-~ . T . i
VﬁXi = <VUX1,W>U + (VUXi) (cf. Remark 4.7-(d)) where : .

(VEXi)T is the component of VﬁKi in D. Therefore

(2)<VVNKIQX & = —<VEX W><?ﬁW,Xi> + <7

oy AT, X, >
UM (VUXi) 1

<V”ﬁ,X>2 T>

5 + <(VUXi) ,(vx_w)

1
since (VW)T: = D is self-adjoint (cf. Remark 4.9-(a)),

and <VG%,X1> = —<VﬁXi,ﬁ> (cf. Remark 4.9-(c)). Similarly

~ sy

since ViiU is in TSU’ VXiU = —<VX1U S WU+ [V U) (ctf.




Remark 4.7-(d)) and therefore

(3) <v ~W,X-> = -7 ﬁ,ﬁ><v~ﬁ,X.>+<V N , X
inU 1 Xi U i [VX U)T 1

- 11 e oyt : =y T ~ T
= <U,VXiW><VUW,Xi>+<(VXiU) ,[VXiW) %

from Remarks 4.9-(a) and 4.9-(c).

Finally, since v
X
i i 1

where (VX %)T is the component of Vy W in D. Therefore
i 1

XiW,VﬁXi> = —<V1iW,U><W,VEXi>+<(VXiW) ,VEXi>

(4) <v

<§,VX_ﬁ><VﬁW,Xi>+<(VX_ﬁ)T,(VﬁXi)T>
i i

Then, by substituting (2) and (3) in (1), we obtain

(5) <vﬁvxiw,xi> = <R[U,Xi)w,xi>+<vxivﬁw,Xi>
~ 2 T ~.T.
+ <V§W,Ki> + <(v§xi) ,(inW) 5

™~ ~ ~ e T
<J,VXiW><VEW,Xi>—<(VKiU) ,(VXiW) >,

Hemce, using (4) and (5), we obtain

[}

U{tr vW) = iflf<R(U’Xi}W’Xi>+<vxivﬁw’xi>+<vﬁw’xi>

e 2T ST ~ T ~ T
+ <(VUXi] ,(VXiW} > <(VXiU) ,(VXiW) >

+ <[vX.WJT,(v5Xi)T>].
1

e o L L oo T
W is in W™, VX.W <VX.H,U>N + (VX.M)

- 1




Thus,

~

(6) U, (tr Vi) = Xivaw,xi>|p

Mo
p—d

[(<R(U,Xi)W,Xi>|p+<V
V0 v >2
HRARES ,p}

since L, = -(vWJﬂp'= 0.

p

Also, from Ric(U,W)|p + KHLCP) =
i

Z
§l<R(U,xi)xi,W>

(cf. Identity c on page 90) and Gauss-Codacci equation,

we obtain ’ -

™~

(1) - i§l<R(U,Xi)Xi,W>m= —KHi(pJ - Ric{U,mp

It

TU, W, - Ky(p)

sincs LW = (.

Also, since vﬁWlH is tangént to H (cf. Remark 4.9-(b)}, ‘

we have

- 2
<Vy VIW,X.>| = 1 <%
XU T

p/
(8) =

1

and

(9)

M o

~ ~ 2 _ NN
<y, 2| ;IVUW|p|F.

1=1

Finally, by substituting (7), (8) and (S} in (6),

we obtain
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i

Up(tr Vi) —KH_L(p) - RiC(U,W)|p + divH(VﬁW”p

T
+ I 1

= T(U,W),p - KH(p) + divHVﬁWlp,

- o
MRIRGLE I R




111

References

[A] Ambrose, W. (1957). A theorem of Myers. Duke
Journal, 24, 345-343.

[BE] Beem, J.K. and P.E. Ehrlich (1981). Global
Lorentzian Geometry, Marcel Dekker, New York.

[BJ] Brdcker, Th. and X. JHnich (1982). Introduction
to Differential Topology, Cambridge University
Press, New York.

IC] Cohn-Vossen, S. (1936). Totalkrilmmung and
geoddtische Linien auf einfach zusammenhfngender
offenen vollstindigen FiMchenstiicken. Recueil
Math. de Moscou, 1, 139-163.

[CET] Clarke, C.J.S., G.F.R. Ellis and F. Tipler
{1980). Herizons and singularities, in General
Relativity and Gravitation vol. 2., ed. Held,
Plenum, New York.

[H] Hirsch, M. (1976). Differential Topology, Grad.
Texts in Math. 33 Springer-Vériag, New York.

[HE] Hawking, S.W. and G.F.R. Ellis {1973). The
Large Scale Structure of Space-time, Cambridge
Press, Cambridge.

[HS] Hawking, S.W. and B.XK. Sachs (1976). Causally

continuous space-times, Commun. Math. Phys. 35,

237-296.
[K] Karcher, H. (1982). Arch. Math. 38, 58. i
[C] O'Neill, B. (1983). Semi-Riemannian Geometry, !

Academic Press, Inc., New York. |

IP] Penrose, R. (1972). Techniques of Differential I
Topology in Relativity, Regional Conference
Series in Applied Math., 7, SIAM, Philadelphia.

[Po] Poor, W.A. (1981). Differential Geometric |
Structures, McGraw-Hill{ New York.




112

[SW] Sachs, R.K. and H. Wu (1977). General Relativity
for Mathematicians, Grad. Texts inm Math. 48
Springer-Verlag, New York.




113

L v Vi AT A0 S I A 9 0 A A 0 A Y P A A A A A A i Fivs ot Ii L v LIl 7 v L [

Figure 1.

This identified subset of 2-dimensional
Minkowski spacetime is strongly causal and
contains a future trapped set H. Note that,
every complete non-spacelike geodesic which
meets E¥(H) fails to realize distance between
its points. Therefore, the Hawking-Penrose
singularity theorem? predicts non-spacelike
geodesic incompleteness in this spacetime.
(Also, by -retating the figure around the
symmetry axis, we obtain a 3-dimensional
spacetime, in which H is a compact (non-
future converging) spacelike surface with
compact E*(H).




Figure 2. In 3-dimensional Minkowski spacetime, the
intersection H (=3J-(p)naJ-(q)) of the
past light cones of the points P and q is a
closed (non-compact) strongly future con-
verging spacelike surface. Note that this
spacetime does not contain closed trapped
surfaces.




Figure 3.

In 3-dimensional Minkowski spacetime, there
exists a null vector field U on the smooth
hypersurface S, yet S is not a null hypersurface.
Note that S is not achronal.




In 3-dimensional Minkowski spacetime, Let Uy

and U, be the null vector fields on the null
hyperSurfaces S1 and S, respectively. The

null geodesic v is contained in both S1 and S, .
However, ?Ul = 0 but ?UZI # 0. Therefore,
Y

U;-neighbors gnd Uz-neighbors of v we are induced

by the different Jacohi tensors along .
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identified

deleted
= deleted
Figure 5. In this strongly causal identified subset of
3-dimensional Minkowski spacetime, ¢ 1is the

future cut point of H along v. However, q is
neither a focal point of H along v nor there
exists another null geodesic, n#y from H to a.




deleted

Figure 6.

identified

v——deleted

In this strongly causal identified subset of
3-dimensional Minkowski spacetime, the null
geodesic vy does not contain a future null cut
point of H, yet it fails to realize distance
between H and its points. Note that, Cﬁ(H]
1s not closed since r ¢ CQ(H'. ’




Figure 7. See Lemma 4.8.




Figure 8.

'?ast38ingularity

(See [CET], page 184). Penrose diagram for

a recollapsing Friedman Universe. There is a
trapped surface through every point in the
contracting phase (the dotted region of the
figure) and each point on the hypersurface N
is a marginally trapped surface diffeomorphic

to §2 (in fact, since Friedman universe is
globally hyperbolic, it follows from Corollary
3.9, normal bundle N(H) of H is trivial.
Moreover, Ly = 0 and IIU[X,XJ>O for every

X &€ TH where U,W are future directed null
sections of N(H)). '






