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Applicationsz of Minimal Surfaces Theory to Topology
and Riemannian Geometry Constructions
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by
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Doctor of Philosophy

Mathematics
State University of New York at Stony Brook

1984

In the first part, we use minimal surface teéhniques to
study circle actions on compact.manifolds. The results are
applied to the.questidn of the existence of positive scalar.
curvature metrics, In the second part, we study manifolds of
negative ﬁicci curvature, Finally, we prove the "relative
Index Theorem of. Gromov~-Lawson" for tworfamilies of Divac

operators under some technical asswaptions.

Part 1

We begin by studying a Lie group action on a compact

nanifold. Let M be a compact, connected, orientable Riemannian

iii




manifold with a connected, compact Lie group G acting as
isometries. We assume dim M £ 7. Let F be an invariant
submanifold of codimension-2, wihich is ﬁomologous o zaro
in M, By theAexistence and regularity Theory for minimal
surfaces, there exists a C*® area—miniziné hypersurfacelx

'
with 3% = F. We prove that for all g & G, either g(y) = 7
or g(¥) N ¥ = ¥, In particular, if G is seﬁisimple, then ¥
must be G-invariant. In the case where G = Sl, we conclude
that either EAis Sl—invariant or the manifold M ~ F fibres
(equivariantly) over the cirecle with fibre (9-3%). The first

case must occur if M -~ F contains a fixed point. The second

case must occur if F contains a component of fixed point set.

Using this last result, we prove that a large class of
manifolds which admit circle actions must carry metyics of
positive scalar cuyvature. This is true for example if
F.= Fix(M,Sl) has codimension-2 and is homologous to zero in
Mt (n27). Some cpndition-on the action is clearly necessary
as can be seen in dimension 3. (The torus 3 or, more gen-
erally, circle_bundles over surfaces of positive genus, canur
not carry positive scalar curvature.) In dimension 3, we

have that M (with a circle action) has # » O iff M has a Slw

action with Fix(M,Sl) # O

iv




A result similar to the basic one above is proved for

a minimizing hypersurface ¥ (without boundry) in a hdmology

class a € Hn (M“:z). That is, we conclude that either ¥ is

-1
G~invariant or there is an (equivariant} fibre bundle M - S1
|

with fibre ¥T.

L]

Using these results we can reprove the Raymond-Orlic
classification Theorem or orientable 3-manifolds with Sl-
action.

Part II

In the second part, we give an affirmative answer to a
guestion of J.P., Bourguignon. We prove that the class of
manifolds admitting negati&ely Riceci curved metyrics is stable
under connected sums, Moreover, we prove the following. ILet

Ml’M be two oriented Riemannian manifolds with Ric < 0, and

2

Y5 be a éimplé closed geodesic in Mi(i=l,2). wWithout lossg of

gensrality, we assume the length of v. equals the length of

1

¥ Let Ni be the normal bundle of Yo choose tubulay neigh-

2.
borhood Vi of v.. We identify v, with (vémi;ﬂvﬂse). Take any

diffeomorphism ¢ : V. = V_, then ¢ : BVl - BVZ is a diffeo-

1 2
morphism. Let m @tpM2 be the manifold obtained by gluing

Ml - Vl and M2 - V2 along the boundaries by ®w. We then prove

that M](DEM:> admits a negatively Ricecil curved metric.




In dimension 3, we use the above results and some topo-
logical constructions to obtain new manifolds with negatiQe
Riceci curvatu;e metric from a given manifold with negative
Riccl curvature metric. Given M a complete Riemannian three
dimensional manifold with negative Ricei curvature metric,
then there are complefé negative Ricci curvature Riemann

2 2 i 8

metric on M # 8”7 % Sl # Lip,gq), and M # S° x S1 # L x 8,

where % is any Riemann surface, : .
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Chapter 1

Applications of minimal surface theory
to topology and Riemannian geometry

I. Introduction

In this paper, mfnimal éurface techniqueé are used to
_study circle action and SO{n} action on compact manifolds.
The reéults are épplied to the question of the existence of
positive scalar curvature metrics,

First, consider a Lie group action on a compact manifold,
Let M be a compact, connected, orientable Riemannian manifold
with a connected, compact Lie group G acting as isometries.
‘We assume that dim M £ 7. Let F be an invariant submanifold
of codimension 2, which is homologous té zero in M, By the
existenée and regularity theory for minimal surfaces, there
exists a Cé area minimizing hypersurface ¥ with 35 = F., We
pfove that for all g € G, either g(¥) = ¥ or'g(Z) Ny =F,

In particular, if ¢ is semisimpie, then ¥, must be Gminvariant,
In the case wvhere G = Sl, we conclude that either T ig Slm
invarianﬁ or the manifold M ~ ¥ fibres (eguivariantly) ovef
the circle with fibre (¥ ~23%). The first case must occur if
M ~ F contains a fixed point. The second case must occur if
¥ cdntains a component of fixed point set.

Using this last result, we prove that a large class of

manifolds, which adwmit circle actions, must carry metrics of
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positive scalar curvature. This is true, for example, if
P Fix(M,Sl) has codimension 2 and is homologous to zero
in Mn (n 2 7). Some conditions on the action is clearly
necessary as can be seén in ﬁimension 3. (The torus T3
or, more generally circle bundleé over surfaces of positive
genus, cannot carry positive scalar curvature metric [GL37))
For other examples and history see [LY]J. 1In dimensich 3,
M (with a cirecle action) haz » = O if and only if M has a
Slwaction with Fix(M;Sl) # 0.

A result similar to the basic one above is proved for
a minimizing hypersncface ¥ (without boundaxy) in a howology
class.a & Hn—l(MF:Z)° That is, we conclude that either ¥ is
G—iﬁvariant or there is a (equivariant) fibre bundle M -+ Sl
with fibre ¥.

Using these results we can reprove the Raymond-orlic
classification tﬁe@rem of orientable B—manifolds with Slm
action, and the classification of SO(n) action on (n+1) ~

manifolds with Fixed points of W, ¥. Hziang.




iT. Preliminaries

~

This section serves to present some facts needed for this paper.

First recall here, in a slightly altered form, Aronszajn's generalization

of Carleman's unique continuation theorem [AN].

Theorem 2.1t Let A be a linear elliptic second-order differential operator
defined on a domain D in B"., Let u = (ul,...,ur) be a funetion in D

satisfying the differential inequalities

.]Auu[ < const + :E:

i,B

BuB
ax*

+Z[u8| :
B

If the =-jet Jw(u) of u wvanishes at a single point of D, then u = 0
throughout D.
We also collect the maximum principle for7second~order linear elliptic

equation [GT].
Theorem 2.2t Let

L = Zaij(x)Dij + 20b,GOD; + e(x)

be defined in a domain Dg;]Rn. * Suppose that L is uniformly elliptie,

then ¢ < 0, u € C*(D) and Lu> ¢ in D. Let Xy € 8D be such that

(i) u  is continuous at X,

(ii) u(xo) > U(x) for all x £ D

(iii) 9D satisfies an interior sphere condition at x

0

Then the outer normal derivative u at x , if it exists, satisfies

u
) (xo) >0 .




Theorem 2.3: Let L be as in Theorem 2.2, and u € c*(d), Lu > 0, then
u cannot achieve a non-negative maximum in the interior of D unless it is

a constant,
We also like to mention here a result of M. L. Gromov [GM].

Theorem 2.4: On an open n-manifold M (n > 1), there exists a Riemannian
metric with everywhere positive sectional curvature and also one with every-
where negative sectional curvature. In both cases the curvature can be

chogsen to be pinched, i.e., to satisfy &§ < [K] <1 for some § > 0.

This term "open n-manifold" means amanifold having no compact components.,




IIT. Uniqueness of minimal submanifolds . |

submanifolds in a given Riemannian manifold N.

il

Theorem 3.1: Let Nn+ be a Riemannian manifold and let MT and MI; be

connected, compact minimal submanifolds with or without boundary of same

This section deals with proving some uniqueness theorems for minimal.
dimension n. 1If IVI1 and M2 touch at x, ¢ Int(Ml)ﬂ Int(Mz) to infinitely

high order and 3M, = 0M, , then M, =M, .

Proof: Since M, and M, are tangent to each other at x,, we can choose a

coordinate neighborhood U of x

o in N such that M, N U is the slice

n+l n+2 N+
b9 = X = aar = X

0 of U and M, N T is the graph of

]

a n
X =uw(xt, ., x),

i

. |
l,...,m; i.e, ‘

M, N U {cxl,...,x“'; ul,oe, ™ | G XD E V= H N u} .
Recall that if ¢ : M+ N is a minimal immersion, we have the following

(see [EL]). Take the coordinate charts V CM and UC N such that ¢(V) U.
Writing x = (x',...,x") y 0(x) = (v',..., yn+m) we represent the metric

-

tensors of M and N by g(x) = Zgij (x)dx® dx? . Then we have the equation

.. 2,V .. v .. U A
glJ ..,.._8.....__(1).,_._,. — 3 MI‘lf“ . ?i?._ + glJ NI‘\) ..a_@_._‘ ..a,..(P.._. == {) (1)
i, 31 & i3 L, k UA o 3 o ]
— oxX 9x Py ax ox~ ox :
1] 1,1

' .. N '
where 1,j,k =1,...,n; u,A,v =1,...,n+tm and {MI’?J.} , { Pﬁ)\} denote

the Christoffel symbols of Riemannian connections of M and ¥.
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Consider f* & C (V) and VC UC N where 1. < a <m and let Ve be

the graph of 5%} over Vv, i.e. Ve = {(xl,...,xn;fl,...,fm)[(xl,.,.,xn)g v}

We can assume that Vfg_ Ug N. Then Vf is a submanifold of N with the induced

metric and connections.

gf = g(xl,...’ ]-{'n; Vfuifa)
Vi n o
T o= Te(x},..., % ; 95,69
N
Mplve = Nred,en w1

In particular, for the immersion of MI and Mz above, we have

g, = glx', .. x5 0,0) 3 =T, x5 0,0)
8, = glxl,..., s v, 0 U= F(xl,...,rxn; u®,u™)
i N N
= TGt 0 NP MG, )
where
'V
. f ¢ N N .
g, = &l s I = T , =T 0u
f=u f=u
= [ l T = Vfr| NT=NI’IM Ny
b2 B f=u ” 2 f=u ’ 2 2 :

Using equation (1), we obtain

.. B

ij 2 : ij Lk au § : ij N n+a § Vi N n+a Bu

g — g I. —— g + 2 g 2 i
BX BX 2 271] % T _ 2 2 13 IH—BJ Sx

1,3 i,3,k i,j

lf_Bim

.. B Y :
+ z : glJ Nrmﬂ Bu_ Bu. - 0 (2)

iy]
1 <B,Y<m

2" n+ n+y axl )
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and

2 ; ij Non+o ' '

i3]

for ¢ = 1,...,m. Let

2

ij 3 ij,n n 32
A = g7 e = g (%" ,e0yx 3 0,0) e
Z . 9x"ox) Z axleJ

then A is an elliptic partial differential operator of secoud order.

1f we choose U to be small by the Mean Value Theorem, we have

'Z gij-gij a?u“”'l < C Z +Z|UB| (4)
3

i3
ox 9x B

2w’
9%

Non+o 1] N.n+o 1]
17 1] &

1A

N n+ 1] N n+ ij
IZ I‘rilja (x}, ..., %0, us)glJ(x;VuB,uB) — Z Piju (x;0)g 3 (x;0,0)|

E}B
const -« E ~—uz + E gUB[ . - (5)
ip oF 8

i . It follows from ‘equations {(2), (3), (4) and (5) that

+ Z|u8[ . h (6)
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But M, and M, touch at %X, to infinitely high orders, i.e. JOD(UOC)IX=x = 0
where o« = 1,...,m. Theorem 2.1 implies that ua|V = 0 where o = 1,...,m
that is M; N M, ;)V and M MU =M, 1 U. Hence M N U =M, N U =

M, N M, NVU. Let W ={x c Int(Ml)rﬂ Int(Mz)[M1 and M, touch at x to
infinitely high orders} . It follows from above that W is open in both
Int(Ml) and Tnt{M,). However, W is clearly eclosed in both Int(ﬁl) and - |
Int(Mz) and hence W = Int(Ml) = Int(MZ) . Thus M, =M, .

Now turning to the case where the intersection of two minimal sub-

manifolds has a large Haussdorff dimension, we have the following theorem.

Theorem 3.2: Let N be a Riemannian manifold; and let Ml and Mz be con-
nected, compact minimal submanifold of the same dimension n and with

on
oM; = 3M, (possibly =¢). TFor any s > n-1, let X° be the Haussdorff

measure of dimension s on N, If J{S(Mlﬂ M) > 0, then M =N

-

2

In the proof of Theorem 3.2, the following lemmas are needed first,

Lemma 3.3: Suppose { is an open chart of a Riemannian manifold M without
boundary of dimension n, F‘(; ¥ is a closed subset and F( Q. 1If
e Cm(SZ) and f]F = 0 and the s dimensional Haussdorff measure J,{’__S('F) > 0

for s > n-1, then there exists a measurable subset E of ¥ such that

F(HE = 0

and W) = JC(m).




3.5~ ' 8.

Sublemma 3.4: Let F T R (M as above and let f € Cm(ﬂ), f[F = 0,

&{S(F) > 0, where s > n—-1. Then there is a closed subset E of F

such that Vf[F1 = 0 and }{S(Fl) = }{S(F) > 0.

Proof of Sublemma 3.4: Let

U = {xeﬂl |Vf|x>0}

then U is open and G, = U M F is open in F. For any x € G, , we have
Ivflx > 0. Therefore if we take V to be a very small open neighborhood
of x in §, then {f = 0} 1V 1is a {n-1)-dimensional submanifold S5, of VM.

Hence 3i§(sx) = (0. But
Fg{xeg[f(x) = Q}.

Thus we have

|1
2]

Vi 6 C Vn}w‘_gvn{x € Q] flx) = 0}

so that

o

Kwne) < )6 -

\
\
|
|
|
We can choose a .countable covering {Vm} of G, consisting of such open sets,
. |
|
i.e. }

. s
}Q(VmﬂG;) = 0 |, mo=1,2,3, .d. .

Hence

© |

K s Z W nepdy = o .

m =
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Therefore we obtain

i) = o .
1

Let F =T -G, then F, C F is closed and

'}rts(Fl) = w0 .

From the definition, we have VL|F, = 0.

Proof of Lemma 3.3: Using Sublemma 3.4 to function f and to set F, we

have FC F. Using sublemma again to functions {af/axl} and F, , we have

closed subsets {E;} of F, such that

A = Wep

and i= 1,2, cve,m

i
!
&
li
o
l
o
s

Hence
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Therefore, &&S(Fz) = H_S(Fl) = }QS(F) > 0 and

8% f

ax E}X. F = 0 i’j = 1!2) sre 4 I .
i

2

By induction and using Sublemma 3.4, we can prove that there is a sequence

of closed subsets {F }m of F such that
. mfm-—-1

FD¥ DF, DF, D"

il

0 < JCw) = Wir) = $5(F,) = f3@) = e

and

SD[F = 0 mo=1,2,3, ... .

]
1

1lim RS (Fm)'

m-> <o

M@ >0

8 s{ X
wew - 058 ),

[sa] .
and J (f)!E =0, E 1is closed in F.

Proof of Theorem 3.2: Since Jffs(M1 1 1,) > 0, there is a point X, € Int (M 1)

N Int(M,) such that for any open VM and x,€ V, we have A{S(V N M, N M) > 0.

We claim that TXD(Ml) = TXD(Mz) .

Take the coordinate chart of U, C N at x, such that U, N M, is the

0

. n+l n+nt . . .
slice =x = esem X =0, V0 1s a coordinate chart of M2 at x, with

7)) s the embedding from

coordinate (Vl,...,vn) and f(v) = (fl(v),..,,
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vV CHM, to N and f(VG)QU

0 " Suppose TXU(MI) # Tx (M,) . Since-

¢
Ty (M) is generated by {(a/axl)]0 ,...,(a/ax‘“)[o} hence

n+Q

e

i Jv=0/1<o<m
1<i<n

n+1| # 0. If we choose

We may assume that (afn+1/8v )l # 0 that is V£
) n v=0 7 v=0

a very small V , then V ) {v]fn*l(v) =0} is a (n-1)-dimensional sub-

n+l

manifold of M, and (v, N {V[f

(v) =0 )} is a (n-1)-dimensional sub-

manifold of U, , we have

}es(f{v € Vo[fml(v) = O}) =0

But if U, C U, is very small open set such that x,C U, and
U, 0 N Mz'(; (v, N M C v eV, fn+1(v) = 0} , then we have

E@, gy Ny < Yy e v |t

n+1(v) = 0}) = 0. This contradicts the

choice of %, + Therefore TXD(Ml) = TXO(M?_) .

Choosing a coordinate chart U of ¥ at x/ such that UM M, is the

slice P e ™™ 0 of U and U 1M, is the graph ((xY, .., x0

fl,..., fm)} (this is possible since TXU(M}) = TXO(Mz)) . Let

C';:O: = Vﬂ{x Q'V]fa(x) = 0}

where UM, =V = {(x},...,x )} . Since

}_(S(UHMI nu) = yﬁséx EVIENx) = +»v = (%) = 0}) >0 ,
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we obtain that

Wi ) =2 @ nu 0wy >0 .

Since we take U to be any small neighborhood of x/ in N, there exists
closed subsets {F_} of‘ M. such that F C G and }(?S(F } > 0 where

o 1 a a Ut
o = 1,2, +ou,m. From the definition of Ga , we have fOL[FOL = (0 where
(0 = 1,2,...,m). By Lemma 3.3 there are measurable subsets Eag}?‘a such
that J5(8,) = HEE) >0 and 370 E, =0 (a=1,2,...,m). We can
assume also F ,DE = u'N M, 1M, for some U'CC U open in N and x, & U'.

Let E = EEOL, then ENE = (n'{

E N E and
a=1 a=1 ©

Heiw.~ine - H° ﬁl(EquuﬂE) SZ(}{S(E~EuﬂE) .

0=

17‘!".-5 o I{"S i s n _
But E(xg FOt and 4y (Ed) = A (FOt)’ heunce . (I‘a ~ Ea) = 0.

S A5 S n . S
oy = Jx NE) = K@ 0B+ H(E ~EINE) = R (g N B) and

0. Therefore }QS(E ~ EMNE) = 0 or equivalently

il

thus H%(8 ~ E, N E)

W@ nr = Wae >o,

since Jm(fu)]ﬁ = 0 where 1 < g <m. Let X € E Vthen
X ¢ Int(M,) N Int(le) and M; , M, touch at ¥ to infinitely high orders.
Therefore, Theorem 3.2 follows from Theorem 3.1.

As a conseciuence of the proof of Theorem 3.2, we ha\}e the following.
Corollary 3.5: TLet M, be the graph of f.:IRr.1 >1R™ in RO Suppose Ml

is minimal and M, is a n-dimensional plane in IRIHm and ){S(Ml @ Mz) > 0

for some s > n-1, then M, =H,.
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Turning now to the maximum principle of minimal surfaces, we have the

following.

Propositicn 3.6: Let & and s, be two connected minimal hypersurfaces of

a Riemannian manifold N . Suppose that 9S8, = 05, and TpS1 = TpS:1 for

some p € 95, = 9§, and that in a neighborhood of p one of them lies

2

above the other, then §, = 5, .

Proof: Choose a coordinate chart U of, N at p such that U} 8, =

{xEU|xn_>_O;xn+1ﬁO} and Uﬂsz={x€U[xn30,x+1=u} for

n

i

u=u(x1,...,xn)€Cm(Un{xzx > 0, b 0}) and UN3S, =UN3S, =

n n+l
{x ¢ U[xn =X = 0} , then
du _
uly o= 0 e = 0 .
n n

We may choose U to be small such that u > 0 on {(x)500 e xn): X2 0} .

Since S, and S5, ave minimal, we have

. ij 2%u '__'Zijszk Ju ziijl ' ZijNFrwl :
Zgz 9%, 3% &, .Pij ax, ¥ &, 11ij v 2 &, ntl j 3%

ij N_n+l du 3u .
+§ :gz I‘s:1+1 n+l 'axi ij 0 (6

and

-
.

where ‘g

13.

:

gij Nrn+1 - 0 ' €7) |
2] | \
| i

i .
> 8, are metric tensors on 5, and 5, .
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Applying the Mean Value Theorem with equations (6) and (7), we obtain

ii 3%u ' ou .
Z 8 Tx.ax. Ebi o toev = 0 (8)
e i) _ i

where bi , ¢ are functions of x, u, Vu. When we consider bi , ¢ to
be functions of x, then equation (8) is a linear elliptic equatiom of a

second order in u. Let p &€ V CC U and

0}

<
i

{x € len >0, X 1

o ij 92 3 |
A “Lg1 x ij * Zbi Bxi e

i

then A is strictly, uniformly elliptic on vi . Let

_ ij  d* R :
L = Zgl I + Zbi = + min{e,0}

i i
and v = -u, then we have

Lv = [min{c,0} - clv + Av

= [min{c,0} - elv

= ~-max{e,0}lv > 0 .

0.

N

on V'. Note min{c,0}
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We claim that u = 0 on v’ . First suppose .that u > 0 on Iqt(v+) .
Applying Theorem 2.2 to L and v on v, we have (Bvlaxn) (p) > 0, which
iz a contradiction since (avfaxn) {p} = 0. Therefore u(x) = 0 for some
x € Int(V+), then x is a non—-negative maximum of v . By Theorem 2.3 v = 0

on V' . Hence u =0 on v¥ and VN S, = V_ﬁ S, . Using Theorem 3.1,

Similarly we can prove the following.

Proposition 3.7: Let 8, and 3, be connected, compact minimal hypersurfaces
of N with or without boundary. In the first case, we also assume that
98, =39S, . If there is a neighborhood of some point X &« Int(Sl) N Int(Sz)

such that in this neighborhood one of them lies above the other, then S'l = 3

2



wdy )L . 16.

.

IV. Group action and minimizing hypersurfaces

In this section we use minimal surface theory to study manifolds with
‘a Group -action. Throughout this section W isg a compact, connected, oriented
¢” manifold, G is a compact, connected Lie Group acting on N, and

dim N < 7. Without the loss of generality, we can assume that ¥ is a
Riemamnnian manifold and G acts on N as a subgroup of isometries of N.

Let F be any submanifold of N without boundary. If F is homologoﬁs
to zero in N and dim F = dim N - 2, then, from the; existence and regularity
theory for minimal surface due to Almgren-Federer-Fleming-Hardt-Simon
(see [FH1], [FH2], [AF2], and [HS]), one can solve the Plateau problem with
a given boundary F in N i.e. there e?cists a C  area minimizing hypersurf-aceﬂ
% of N such that 3% = F. We are now ready for the basic theorem of this

section.

Théorem 4.1:- Let F, be a G-invariant submanifold of N of codimension 2
Vand let F, be homologous to zevo in N. Let 21 be any sclution of

Plateau problem with given boundary 321 = F and let & be any connected
component of I, , then for any g € G where either gl = % or gfif £ =F

where F = 37 .

Proof: TLet E={g €G|ENgl ~F # ¢, % # gl} . We need to show

E=¢.,

Since ¥ is c” up to the boundary, there is a hypersurface 1' of W

such that % C Intf' and %' is compact. Let U £ I' x (-g,e) be a tubular
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neighborhood of I' in N and h:Z%’ x (-g,e) » U given by h(x,s) = expx(s\)x)
where v is ﬁhe unit normal vector field of %' (note I' is orientable).
Note that (3/3s)|Z' = v. Let Vg be the unit normal vector field of gf ,

| then there is an opeﬂ WC G, e€ W such that gZC U and <\)g , (3/938)) > 1/2
for g € W. Since G acts on N as isometries, we have \)g = dg{v) . Let.
p = U=+ 1" be the projection map i.e. p(x,s) =x. We claim that zgg %o (—é,e)
and p[Zg: Eg + L is a diffeomoiphism for g € W where Ig = gi.

First we show that p[Eg is injective and p[Zg(_:_ %L . Suppose (x-l_,sl) and
(xz,sz) = Zg and p(xl,sl) = p(x?_,sz) that is )-:'1 = x, . Since ' ois
connected, there is an emﬁedded smooth curve (1) ¥' where -1 <1 <1
such that {c"(T)|| # © and {fe(m} N 85" = {e(=1);e()} , {c()I M IT =
{:c(Tl),c(Tz)} where -1 < 7 <1 and -1 <71, <0 <7, < 1 and C(Tn') = X,
for sozﬁe -1 < T, < 1. Let X¢ Tx)jg for any x ezg and X # 0. If \
dp(X) = 0, then X = a(3/3s) where o # 0, hence (\Jg,}{> =- <i)g ,0{3/38)> # 0 ‘
this contradicts with \’g being the normal vector field of Zg . Thus dp(X) # 0
dp (T zg) = Tp(x) ¥' for any x € z, and g €W - Therefore p:J, + ' is
a local diffeomorphism for g € W.

Consider surface S = {(c(1),s) [ -l<T<1l, -¢ <é< e} in :U. Since
(3/33)18 € TS and (\)g,(a/as)> > 1/2, it follows that Jg is transversed to
S in U, and henc§ Zg 1S is one-dimensional compact submanifold of ¥ .

We can assume (xl,sl) & Int(Eg). Now we first‘ show that Eg '8 1is connected.
Since a(Zgﬂ S) = 3% NS =35 N8 = {clr;),elr,)}, let Ly Ns = {Yi}?zl
wheTre Yi are the connected components of )jg 1 S. Then either ’Y.l is a
segment with Y, = {C(TI)SC(Tz)} or. ¥, is a simple- purve 'Without Eoundary

and we can only have one Yi such that 3y, = {c(Tl),c(rz)} . We claim that

no one of {Yi} is a simple closed curve, it will follow from this that Zg s
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is connected segment with B(Eg Ns) = {c(Tl).c(Tz)} . Suppose Y. is a
simple closed curve. Since Yig 8§ and S is diffeomorphic to (~1,-) x
(~e,€), we identify § with (-1,1) x (-g,e) = I?. Then Yi is a simple
closed curve in I2. Let d:1I% x IZ + TR  be the Euclidean metric on IZ%,
Since Yi is simple closed curve, there is a point (t,s,) € Yi such that

d((t,s,), {(0,s8)|~c < s < e}) = max d(y,{(0,s)|-e < s < €}). It follows
YEYi

that T, O)Yi = {(a/as)l(t,sc)} » that is (3/35)1(1:,50) € T(t’so)zg

t,s

and <vg,(a/as)|(t s )> = (, This contradicts the hypothesis <\Jg,(8/as)> > 1/2
H 0 '

for g€ W.
We know now that Zg NS is connected and (xi,sl), (Jkl,sz) € Eg ns.

The same argument as ahove shows that & = 5, - That is (xl,s } = (xl,sz).

1
It follows that p:I, > L' is injective. But L, NS is a segment for any
such surface 8§, it follows that p(Zg) C I . Therefore p: Zg + I 1is
injective and a local diffeomorphism and p(Int(Eg)) is open in Int(}). On
the other hand p(Zg) is closed in I hence p(Int Eg) = p(Eg) ~ F is closed
in IntZ = & ~F. Since Intf is connected, we must have p(Int Zg) = Int}
and p:X -+ I is onto and diffeomorphism for g € W.

We claim now that WNE = ¢. For any g € W we can assume by Theorem
3.2 that ,}QS(E NY)=0forany s >n-2, where n = dim N. Let
Eg ~Z N Eg =_|_|_Zge ; where {Zz} are components of Zg,N z N Eg‘ if g€ E,
choose one Zcé such that azg ~F # . Since p: Zp + 7 1s a diffeomorphism

Zg is a graph of funetion Sg i L > (~e,e) i.e.

I o= {(x,Sg(x)[x €r } .
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By Proposition 3.7, Sg cannot be 2 0 (or £ 0) unless it is >0 {or < 0)
on Int 2 i.e. if gz NI # F, we can assume Sg changes sign. Let =
-p(zz) then }3% = {(x,Sg(x)]x ¢ Za-} . We may assume Sg > 0 on I* and

E%. = az“gz ﬂZ'g and {x € E|Sg(x) =0} =% ﬂ)lg. Let € = {(x,8)]|x GEa,

‘D < s < Sg , then C 1is open connected subset of U and 3C = % 4 E%l

(since )Q_nﬂl(z () ty) = 0) where 22, Zag

have the induced orientations.

1f M(EM gM(z‘;) let I, = I, - 3C, then

37, = 3L, = F

and

f

w0 =0
M(z,) < M(E) < M(Zg — 2g) * M(Z™)

iA

=0 =0y
M(Zg ~ 2g) ¥ M(2,) = M(Z,) -

Therefore M(Zg) = M(Zo) (same for M(Eag) < M(EO'")) . Using the regularity

. theory for minimal surface due to Almgren—Federer-Hardt—Sitnon, L, is a c®

hypersurface of N. It turns out that if x;, € 3z N Zg ~ F, then I and Z‘g

0 .

touch at x, to infinitely high order. It follows from Theorem 3.1 that
I = Eg. Therefore if X ﬂZg~ F#¢ and g € W, then L= Zg that is

.

. WNE = ¢.

We next claim that G ~ E is both open and closed in G or equivalently
that 3(G ~ E) = 3E = ¢. Suppose 3(G ~ E) = 3B # ¢. Let g, € 3E then
there is a sequence {gn}g E such that the 11'.mgn = g, * By the definition
of E we have points X, € 1N Zgn .. F. Since & is compact, we can assume
that the limx = X €.I. Tt is easy to see that x ¢ z N Ly, -

]

We show first that TXOZ = Txo Zlg . If xoﬁ L ~F and T, Z # Txozg ,
: o

then there exists A open in Int(r) and W' open in G such that x, € A
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and g € W' and for any g€ W', X N Zgﬂ A # ¢, and the intersection of

I and I, is transversal in A. Hence W'CE and so g, ¢ E. If x,€ F
and TXDE # Txuzgo , there is a neighborhood V of X in N such that
EAVNZL;, NV =VAF and hence there exists W" open in G such that

gDE W' and I nangnV =F0NV for g € W'. But for large n, g, € W,
x, €V and x ¢ I N v N Egnn V and xné F by the choice of {xn} , {gn} .

Hence Z N v N Zgnn V # F which still leads to contradiction.

Since Ty L =Ty Eg s Wwe can choose a coordinate chart V of N at X,
0 o S0

such that V()% is connected and

{x € V|x_ = 0} if x, ¢ F
rv =
{xElen_lg_O,xn=0} ifxoeF.
and
Z,gﬂv = {xQVIxn=ug(x1,...,xn_l), (xl,...,xn_1)€EﬂV}

for g € W CG and W, is a small neighborhood of g, + We observe that
ug does not change sign. Otherwise, there are X X, € Z MYV such that
0
ugo(xl) <0 < ugo(xz). Since u-gOIZ NvN¥ =0, we have X %, €1 Nv-~r.
It follows that there is an open subset W, C6, g, e W, C W, such that
ug(xl) <0< ug(xz) for g ¢ W, . It implies that there is xge INV~F
such that ug(xg) =0 and I Lo~ TF #band # L. IHence g, € W E
which contradicts the fact that g, € JE.
Applying Propositions 3.6 and 3.7 we obtain that ¥ = Zg and hence

ggDZ = gl for g €& W and ngg G ~ E, so we must have gﬂaf' dE which

contradiects the choice of g, Therefore 3(G ~E) = 3E =¢ and G =6 ~ E,
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As a corollary of the proof of above theorem, we can prove similarly

(and much more easily than above) the following.

Corollary 4.2: Let N be a complete, connected oriented Riemannian manifold

with connected Lie Group G acting on it as isometries. Let Y be a curve

with two end points which are fixed by G, or y is a simple closed curve

with one point p on Y which is fixed by 6. Suppose Y has minimal length.

in its homology class. Then, for any g ¢ G we have

Y
YNney = or
aY .
In the first case and
-
YN gY = or
P

in the second case,

We now turn to study the global structure of the manifold N. We have

the following.

Theorem 4.3: (Fibering theorem). Let F, £ ,N and G be as in Theorem 4.1.

Then

]
™

G(Z) = N or G(Z)
Moreover, consider the closed subgroup
H = {g€G|gr =1z}

of G. Then G(Z) = N if and only if G/E = S! and N ~ F fibers over §!

21.
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with fibre Int(Z).

Proof: Let c:S' > G/H be any embedding and let S! = 1/{0,1}. Considering
¢ as amap of I, we can lift c to a mapping g: I + G with meg(t) = c(t)

~ and g '(0)g(1) €.

Consider

$ :Int(Z) x (0,1} — N ~ F

defined by ¢(x,t) = g(t)(x). Since ¢ is continuous and injective, it
follows from the theorem of invariance of domain (see [SM, Vol. 1], page 3
or[SE], page 199), ¢ 1is an open map. Therefore Im¢ 1is open in N ~ f.
But Im¢ = {g(t)xjx € L,t [0,11} ~F. So Im¢ is closed in N ~ F.

By the connectedness of N, we know that N ~ F is connected and Im¢ = N ~ F .

Therefore
{g(t)x|x € £ ,t € [0,1]1} = N .

Now we claim that dimG/H <1. Suppose dimG/H > 2, then we can find
two disjoint circles {c,(t)}, {e,(t)} in G/H. Let g, (t), g,(t) be the

lifting of ¢ <, in G, then we have from the above:

1 L4

I
=

{g,(tx{x € Z,t € [0,1]}

It
=

{g,(Ox]x € 2,1t € [0,1]}

"Hence, there are s t, such that

gl(tl)(z)ﬂ g, (£,)(2) ~F # ¢ .
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By Theorem 4.1, g (t,)(Z) = g,(t,)(Z) and g '(t )g,(t,) € H, hence
c1(t1) = cz(tz) which is impossible since {cl} @] {Cz} =9 . |

If dimG/H = 1, since G is connected, G/H is also connected and
G/H is diffeomorphic to $'. It is clear that in this case, N ~ F fibres
over S! = G/H with fibre Int} . If dimG/H = 0, then G/H is a single

point and G =H, G(I) = 1.

Theorem 4.4t Let F, % , N,G be as in Theorem 4.3. In addition, G is

semi~simple Lie group. Then £ is G-invariant i.e. G(}) = I.

Proof: If G(I) # ¥, then G(Z) = N and dimG/H = 1, hence H is normal

in G.

Theorem 4.5: Let F,N, G, be as in Theorem 4.1. If 7 is not connected,
then

G(r) = I .

Proof: Let T =il Zj where {Zj} are the connected components of Z.

Note that for every component ¥, of F, we have G(Fa) = F_ and hence

o

G(Bz'j) = Szj . Since I is a manifeld with 29I =_l_|,32j , we have

BZj () Int(Z) =¢. If I is not connected, choose any two of {Zj} s Say

I, 4L, By virtue of Theorem 4.3 we have
G(Z,) = N or G(L)) =X,
G(Z,) = N or G(r,) =L, .

Suppose G(Zl) = N, then there is a g &€ G such that g(Zl) N 3L, # 6.

Since B3I, M 3L, = ¢ , we must have g(IntZ,) N 35, # ¢, and hence
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Int(Z,) N g(3L,) = Int(Z,) N3, # ¢ which is impossible since I, NI, = ¢.

Therefore for any Zj . G(Ej) = L. and G(L) = L.

j
Remark 4.6: We can prove the similar results for minimal hypersurfaces
without boundary of N. (In fact it is easier). In other words, if I is

a hypersurface of N with 3Z = ¢ and if ¥ minimizes area in its homology

class in N where N and G are as before, then we have the following.

Theorem 4.7: Let L, N, G be as above. Then either I is G-invariant or
G(Z) = N. 1In the latter case, N fibers over a circle §' = G/H with fibre

Z where

H = {g €G[gl =72} .

Moreover, if either G is semi-simple or I is not connected, then I is
G-invariant.

We now turn to study the special case G = $!. We have the following.

Theorem 4.8: Let M be a compact, connected, oriented manifold with a circle

action which acts as isometries and dimM < 7. Suppose F, = Fix(M;S') # ¢.
If F is an invariant submanifold of M with codimension 2 and [F] = 0 in

H# (M;Z) such that F, CF. Then
St(r) = M .
and there is an Sl-equivariant fibration
M~F — st

with fibre Inty .
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Proof: If S'(Z) # M, it follows from Theorem 4.3 that S'(I) = .. Let

p EFI and v(p) be the normal vector to F = 3% in £ , which points into
L. Since S! acts on M as isometries, v(p) is fixed S', and hence

Y(t) = exppt\)(p) is also fixed by S'. Therefore YC F CF, a contradic-

tion. So we have S'(M) = M.

Corollary 4.9: Let M be a connected, compact, oriented Riemannian manifold

with an isometric S! action. Suppose dim M < 7 and F = Fix(M;S!) has co-
dimension 2 and suppose that some non-empty union of oriented components

FUC F is homologous to zero in M. Then F, = F and

in

M~ F Int 5 x §?

where § 1s connected and
U (F) = {x ¢M|d(x,F) < 2r} 2 F x b2 (9)

for some r > Q.

Proof: Let e € (0,1)C 8! be the smallest element such that gg(z) =7,
then B * L > % is an isometry whose fixed point set contains 9L . For any
P €932, let v(p) be the normal unit vector to F which points into J.
Then Yt(p) = exppt\)(p) is fixed by B - Therefore Fix(M,ge) is a sub-
manifold of M with dimension >n ~1. Hence Fix(M,gE) =M and gE = Td.

Therefore, we hawve
M~F £ Tntf x 8!

and so F = F . The diffeomorphism (9) clearly holds for all r > 0 sufficiently

small.
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. As a easy consequence, we have the following:

Corollary 4.10: Let M, 8!, I, F be as in Corollary 4.9. If H*(M;Z) = O

- and a component of F has codimension 2. Then F is connected and

| - M~PF = Int] x 8!
- and

F x D?

e

T
i
o]

LB = {x €Md(x,F) < 2r}

for some v > Q.
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V. Applications to circle actions on 3-manifolds

The purpose of this section is to give a new geometrical proof of
the topological classification of effective actions of the circle group,
50(2), on closed, connected 3-manifolds which was originally proved by
P. Orlik and F. Raymond. For technical reasons, we only consider orientable
3-manifolds. 1In the orientable case, the result of P. Orlik and F. Raymond

(see [R] & [OR]) can he stated as follows.

Theorem 5.1: If SO0(2) acts effectively on a closed, comnected, oriented

3-manifold M, then M is identified as
(1) s®, s x s!, L(p,q) admitting actions with or without fixed points,
(2) a connected sum of the above admitting only actious with fixed points,

{3) a quetient of S0(3) or Sp(l) by a finite, non-abelian discrete

subgroup, admitting a unique fixed point free action,

(4 a K(ml) whose fundamental group has infinite cyeclic center
(provided it is not the 3-dimensional torus), admitting a unique
action without fixed points and hence not homeomorphic to any other

3-manifold with an S0(2) action.

We are using the results of last section to prove the above theorem.
The preof will be in several steps—--divided them ihto propositions which
_are also interesting in themselwves.

Throughout this secfion, M is a closed, connected, oriented 3-manifold
with an effective action of the circle group, S' = 80(2). ¥F(M,S8 ) denotes

the fixed point set. We assume that M has a metric which is invariant of

action of §t.
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Proposition 5.2: If HI(M;Z) = 0 and F(M;S$') is non-empty, then M = 83

and the action is the standard linear action.

Proof: By the Corollary 4.10, we must have F = S!. Using the existence
and regularity theory of minimal surface of Almgren-Federer-Fleming-Hardt-
Simon ([FH1], [¥H2], [HS], [AF1l], [AF2]), we know that there is an area-
minimizing smooth surface I such that 3L = F., Because of Corollary 4.10,
we have

M-F = Int(l) x ' .

We claim that I is a closed 2-disk D?. This will prove the theorem.
Suppose J 1is oriented surface Eg of genus g with a hole on it. Since

0

H (M;Z) = 0 using Mayer-Vietoris sequence, we can get that H,(Z;Z)

which means that J = D?.

Theorem 5.3: Let M be a oriented 3~manifold with S! action, F # ¢ and

H (M;Z) =Z. Then M = 8% x s',

It
N

Proof: Since H,(M,Z) = Z, by the Poincare duality we have H?*(M,Z)
which implies that H,(M;Z) = Z. Using the minimal surface theorf of
Almgren-Federer~Fleming, there is an area minimizing smooth embedded surface
¥ without boundary in M.

Suppose now that F # ¢ . We consider two cases :
(i) F is not connected and

(ii) F = 8! is connected.

In the first case, let S}. » 8, be any two components of F. Take a minimal

geodesic o joining S, , S, such that «(0) € S, s a(l) € S, and the length
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of o equals the distance of S, and §, . Then for any g € s! and since
{0(0),a(1)} € F , we must have ga() & = {a(0),a(1)} and {ga|g € S'} generates
a smooth 2-sphere S$%* in M. Since the intersection number S, ¢+ 8% = &1 ;

M ~ 82 must be connected. We can cut M along 8%, then cap off equi-
variantly to get a 3-manifold M with S! action such that F(ﬁ,Si) # ¢ and
M=M¥# 82 x 8!, Since H (M;Z) = Z, we have H,(M;Z) = 0. By Proposition
5.2, M= 5% and MQS?XSI.

In the second case, we claim first F is not homologous to zero in M.
Suppose [F] = [§ ] = 0 in H (M;Z), then we can solve the plateau problem
with the given boundary F to get a smooth surface I with boundary 3I = F.
Using Corollary 4.9 we have M ~ F = Intf x 8! . Since HI(M;Z) = Z by
using Mayer-Vietoris exact sequence, we have that H,(I;Z) = 0 and I is a
2-disk. Hence M is the 3-sphere 8% and HI(M;Z) = 0 which is impossible.

Now we only have to cousider the case F = §* and {F] # 0. Since
H,(M;Z) = Z we use the minimal surface theory to find a surface I without
boundary in M as we observed in the beginning. By the Remark 4.7 , either
L is invariant or M fibres over S! with fibre % . 1In the first case,
£ is either §? or T?. By Poincaré duality, since [F] # 0, we must have
the intersection number F+ 2 # 0. Hence F NI £ ¢ . Therefore, L has to
be the 2-sphere §2 and M ~ S? 1is connected. We cut M along $2 and cap
off equivariantly to get a 3-manifold M such that M S‘M # 8 x s, since

H)y(M;Z) = Z and H(H # s* x 8',Z) = H,(M;Z) ® Z. Hence H,(M;Z) = 0. By

. Proposition 5.2, M = §%® and the action is the standard linear action.

Therefore

In the second case, we must have Fix(M;8!) = ¢, which is the violation of

F#d.
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Theorem 5.4: Let M be a connected, compact, oriented 3-manifold with §!
action and assume that F(M,S!) to be not empty. Suppose H (M;Z) = Zp
for some integer p > 2. Then M is the connected sum of lens spaces

ff: L(pi,qi) for some q; 2 1 where p = TlT P; -

Proof: Since F(M;S ) # &, every orbit of S! in M must be homotopic to
zero, Let M £+ M be the universal covering of M with covering map p.

Consider the lifting problem:

S X M= = — — — - ——> K
Idxp P {*)
\Y/ b Y

st x M = M

where ¢ : S’ x M+ M is the action map.
Since ¢,(Id x p)*(Tr,(Sl x #)) = 0, we have a solution ¢ : 8! x M+ M

to the lifting problem (*) with the property that $(1,§0) = x, for fixed

o
x, € F fmd SED € p_l(xo) . It is easy to see that $ : 8! x M+ ¥ is a S!
action on M. From the fact that H; (M;Z) = ZP and Poincaré duality, we
have HZ(M;Z) =0.

We want to show first that ﬁz(M) = 0. TIf not, then by a theorem of
Meeks-Yau ([MY], Theorem 7) there is 2 minimal embedded 2-sphere 8% in M
which is_ invariant. But since HZ(M;Z) =0, s? is homologous to zero in
M, and M is decomposed to the connected sum of two 3-manifolds M1 ’ M2
. with Sf‘ action along $% and also F(Ml,Sl) $# ¢ , F(MZ,SJ) # ¥ . We note
that H (M,Z) = H (M,,Z) @ H,(M,,2) ,and H,(M ,Z) = H Qf,,Z) = 0.

If, for example, Hi(Mi,Z) = 0, then by Proposition 5.2 M, is a 3-sphere

$* and 5% has to be homotopic to zero in M which is a contradiction.
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Therefore

HM,Z) # 0 and H (M ,2) # 0 .
1 12
We can continue this decomposing process to decompose M. Then we get

M o= M # o Mg,
and

Hl(Mi,Z) = Zp # 0 , p-= TP

and also Hz(Mi=Z) = 0. (Note since Hl(Mi’Z) # 0 the above process have to
stop at finite times.)

Next, we want to show the universal covering }%. of Mi are compact.,
Let P; ¢ ﬁi + My be the covering maps. We know from above that the S! action
on Mi 1ift to ﬁi . Suppose ﬁi is not compact, then Ha(ﬁ,;z) = Hs(ﬁ;z) =0,

By the Hurewicz theorem, we must have that

H-k(Mi.Z) = 0 ’ T[k(M]..) = 0 ’ k 2 1 .

Using Smith Homology theory, we have
1

2 : rank Y{k(F(ﬁi,sl);z) <1 .
=0

Since dhnF(ﬁi,Sl) = 1,.F(ﬁi,81) must be connected and F(ﬁi,sl) =R .

[

We mote that F(ﬁi,sl) = pzl(F(Mi,Sl) and p, is a local isometry. Hence

Z. This contradicts

1l

we must have ﬂl(Mi) = Z which implies that HJ(Mi;Z)

the hypothesis that
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Now uging Proposition 5.2 Fdi = 8% and F(ﬁi;sl) = 8! . We also have

F(Mi,Sl) = 8! and ﬂl(Mi) = Z.Pi . Let Gi = Zpi be the Deck Transformation
group of ITEi , then it is easy to see that Gi commutes with the §' action
of ﬁi and preserves F(ﬁ,Sl) . Let I be the solution to the Plateau problem
with boundary B3I = F(ﬁi,Sl) in ﬁi . We know from the proof of Proposition
5.2 that [ must be a 2-disk and Int(}) x 8! is diffeomorphic to
ﬁi - F(ﬁi,sl). We use this diffeomorphism to identify I:Z'ii - F(ﬁi,sl) with
Int(Z) x S*.

Take any generator of Ti of Gi . We claim that Ti(f.) = t(L) for some

t € ' . First observe that Ti(BZ) = 3L ; consider the projection map f of

Int(5) x 8! to the second factor 8!

f:Int(3) x s! — s!?

since IntTi(Z) = 'I‘i(Int DC M - F(M,8%) = Int(Z) x 8*. We may take

g =foj where

j 3 Int Ti(z) —— ‘Int'(Z) x St

is the inclusion map.

We have two cases to consider. The first case occurs when the image
of g is a single point tiE- s, then IntTi(Z) = Int ti(}]) hence
T, (2) = £, () .

If the image of g is not a single point in S!, then, since

7 g(Int Ti(Z)) ig connected, g(Int ’l‘i(Z)) must contain an open interval.

By Sard's theorem, there is a t € S* such that t is a regular value of g

and t belongs to the image of g. Tt follows that Int Ti(Z) and

Int t{I) intersect transversally.
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On the other hand, let T = the unit tangent field to the foliation of

~ ~ . ~ 1 o _ ~ _ . ~ 1
M, le(Mi,S ) by {t)]}t gle Let © be the 2-form on Mi le(Mi,S )

m

given by E)(vl,vz) ('I‘,v1 ~ v2> for tangent vectors v,»V,. Then

2

(1) do = ©

(2) Jog )| <1 and O() =1 iff £ =71
i.e. 0 is a "calibration".
Now

Vol(TZ) = Vol(Z) .

A

Vol(Z) = f@

z

fo

Ti(E)

The equality implies that if TiE intersect tI for some t € S', then
T;Z and tI have the same tangent space at the intersection points which
contradicts the above fact. Hence the second cage does not occur.,

We have proved that Ti(Z) = ti(Z) but since Tgi = Id one has that
t?i(z) = Tli)i(}]) =7 which implies t?i = Td. It is clear that a; = tzl Ti
generates a group G1 which is isomorphic to a quotient. of Zpi and acts
on I and ailazf = TiIBE . We now claim that the action G, on I is
equivalent to the standard action a 2-disk. Let N be any subgroup of G,

with prime order p' > 1 and let I* be the orbit space of I with action N.

Using the Smith theory (seelB}), we have

rankﬁ (L Z

i>0

It follows that ZN is a single point in IntZI , let us say ZN = {xn} .

Take any § € N, we have Sai (Xo) = aiS(xo) = ai(xo), hence ai(xo) = X

G . . .
and ZN = {x,} = 1. Therefore that action G, on I is equivalent to a

0
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standard orthogonal action on J = D?,
We have from the above proof that the S! action on M is equivalent

to the standard S' action on 8% given by

2mig
e (zi,zz)

L[]

2716
(zl,e z,)

where (zl,zz) € 83(;_; ¢ and

o2Mi(1/P1) , ¢ 2mi(ai/py)

Ti(zl’zz) 1 2

for some q; 2 1, (pi,qi) = 1. Thus, Mi is the lens space L(pi,qi) with
the induced S' action from above S! action on S°.

We are now in a position to prove the equivariant classification and
topological classification of 8! -actions with fixed point on 3-manifolds,

This is the first part of Theorem 5.1.

Theorem 5.5 (F. Raymond): Let M be a connected, compact, oriented 3-manifold
with an S'~action such that the fixed point set F(M,S!) is non-empty.
Then M must be a specific equivariant connected sum of 82 x §! and L{p,q).

The S'-action on $2 x S! and L(p,q) are standard.

Proof: Let k =number of components of F(M;S'), then F(M;8!) is the the
disjoint union of k eircles, i.e., F(M;$!) = Clll C2 ... ll.Ck and

Ci =8l ,i=1,...,k. Suppose first k > 1, Take any two components C
“and C' of F(M;S!) and let 'Y be a minimizing geodesic segment which connects
C and C' such that the length of Y = distance(C3;C'). Then Y L C and

YL C'. Since Y is minimizing and two end points are fixed by the group 8!,

for any g¢ S', we must have g(Y) N Y = {Y(0);Y(1)}. Hence S (Y) is a
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smooth 2~sphere. Since the intersection numbers

]

#(s81(Y),C) = =1, #(st¢yy,ch) 41

s'(Y) is not homologous to zexo in M. Thus, M - S'(Y) is connected

with two holes. Capping off the two holes with two 3-ball in the equi-
variant way, we obtain a manifold M, with §' action and the number of
components of F(M ;Sl) is k-1. Also, it is clear that M = M, # 8% x gl
where the connected sum is an equivariant connected sum. We can continue

this decomposing process to decompose M. We get

Moo= M F 5% x 8T # .er 8% x 8!

k-1

and F(Mk_l;Sl) is connected.
Now we only consider the case where F(M;S!) = §* is connected. Suppose
B, (MZ) = Z + -+ @Z @©ZO:..0Z .,

. p]_ plIl

If n+m > 1, we can choose a class C in H,(M;Z) such that C is not an

Integer multiple of [F(M;S8!)] ; and has the form

C = (0,... 2Cp s evr 5 0)
m+n

‘where € is a generator of the %th factor of HI(M;Z) . Let ¥ be the
oriented circle F(M;S!) and let X 5%, be any two points on Y, then
X,,X, cut Y to two parts. Take one of them, call it Yl = Y[{xl;xz} .

Let A = {B|B is piece-wise C' curve in M with end points on Y such
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that By YI{B(O);B(I)} € C} . Then we can minimize the length of curves
in A as the standard way (see[FH1]) to find a C® curve in A with minimal
length-denoted @ . We note that ¢ is perpendicular te Y at two end points
since o is minimal.

We claim that the two end points of o do not coincide and for any

g est, gla)N o = {a(0); a(l)} . If al0)

[

a(l), then let v,sV, be

the unit tangent vectors of a at a(0) and a(l). The representation of §!
on the normal vector space of Y at a(0) = a(l) is just the standard rotation.
Let gi be the rotation in S! such that gl(vo) = -V . Since gl(o_t(t)) and
a{l -t) both are geodesics with the same tangent vector at the initial point,
we have gl(&(t)) =q(l-t) and gl(vl) =V, It follows that v, =V,
and o is a closed geodesic im M. Thus, we proved that either a{(0) # a(l)

or o is a closed geodesic.

Using Corollary 4.2 for any 8,98, € s! and g, # g, » we have
g, (@ Ng (@ = {30);a(D)} . | 1)

Again, we consider the case that a(0) = a{l). We are going to show that
this case does not occur. Let Y, be the middle point of o and let R = 1/2

length of o . Comsider

D = {exp._ sg(v) | 0<s<R, ggs!
! a(0) o’ | ’

D, = S{exp_ sg(v.) | 0 < s<R, g e8! L.
2 a(0) | ’

By equation (1) D, and D, are diffeomorphic to a 2-disk. and

D = D, = exp_( sV |V E€N_

{v) .
al(0) a(0)
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Thus &C_:_D1 = D2 and o is homologous to zero in D, and hence in M,
which is a contradiction.

Now {g(&)lg € S'} is a smooth 2-sphere by equation (1) and the fact
that a{0) # a(l). Let us call it S!'(3). We have two cases to consider.
The first case occurs when S!(a) is one-sided. 1In this case M - S1(3)
is connected. We cap off this manifold as before to obtain a new manifold
M1 with two components of the fixed point set F(Ml,Sl) and

M = Ml#szxsl.

Since F(MI;SI) has two components, we have as before that M1 = M2 # s% x st

where F(MZ;SI) is connected. Since
H (M;2) = H (M) 6 Hl(s?-_ x $1) @ Hl(s2 x sty ,
we must have

Hl(Mz;Z) = Z @ e QZ @Z QO ++- 0 Z .

Py P —_—

1t S'(q) is two-sided, then we can decompose M into the connected
sum of two manifolds M , ¥, alomg S!(a) where F(Mi;Sl) where 1 =1, 2

are connected. Thus, we have
M = M #M
1 2

and we note that neither Hl(Ml;Z) nor H,(M,;Z) is zero. Otherwise, by
Proposition 5.2, one of them would be the 3-sphere and then C = [q] = O

in M, which is impossible.
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We can continue this process to get a decomposition of M

M=M1#---#Mk#s?xsl#--54fs2xsl

o
where F(Mj;Sl) =8, j=1,2, ...,% and either Hl(Mj;Z) = Z, for some
integer p > 2 or HI(MJ.;Z) = Z. By Theorem 5.3 there are no Mj with

Hl(Mj 3Z) = Z. By Theorem 5.4 Mj = #L(pJTi;qji). By comparing with the

. Y

first Homology group of M and reordering, we can assume U= n, ’f]'_Tp:'li = p3

j=1,2,...,mand y =n. Therefore, we always can decompose

the given M in the theorem to

M = L(p ,q ) # ++- # L{p_sq) # 5_2 x SU #f vuu s? x 8t .

e i g

t
This completes the proof of Theorem 5.5.
We now turn out attention to the case that the fixed point set F(M;S!)

is empty. We are going to prove:

Theore;ll 5.6 (P. Orlik and F. Raymond): Let M be a connected, compact,

orientable 3-manifold with § ~action such that F(M;S!) = ¢g. If M is not
8% x g, g%, pr a j;ems space, then M is either covered by the 3-sphere
with non-abelian fundamental group or it is a K(m,1)-manifold. Moreover,

in both cases, M does not have any S'-action with fixed points.

In order to prove this theorem, let us first prove some propositions

which will be used and will also be interesting in themselves.

Proposition 5.7: Let M be as in Theorem 5.6 with S'-action such that

F(M;S8!) = 0 and €, (M)} = 0. Then M is the 3-sphere.
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Proof: Let C be a prineciple orbit of the S§! action since HI(M;Z) = 0.
We can solve the plateau problem for the given boundary € to get an area
minimizing surface I with boundary 38Z = C. We know from the Theorem 4.3
that either I is invariant or M ~ C fibres equivariantly over S!. if

I is invariant, ther_L I must be a 2-disk and there is a fixed point in I.
This is excluded by the assumption. Hence, M ~ C fibres over 8. Choose
an invariant tubular neighborhood Vl of C and let vV, =M~ Vl . We have
that M ~ C fibres over S! with fibre IntZ and if I has genus g > 0,

then ﬂl(}j) =Zx% +.+ % Z with 2g factors. By the homotopy exact sequence

of a fibration, the inclusion
T (Z) — M~ C) = M~ V)

is injective. Using van Kampen's theorem, we have ﬂi(M) # 0. This is

impossible. Therefore, I is a 2-disk and M ~ v, = D% x 8'. Since

iz

\_Tl s' x D? we have a Heegaard splitting of a lens space and so

M = L(p,q) for some p,q. But since T, (M) = 0, M is a 3-sphere.

Remark 5.8: From Proposition 5.2 and Proposition 5.7 we have that 3-sphere

s? is the only simple comnnected manifold on which S0(2) operates.

Proof of Theorem 5.6: We first show that TEZ(M) = 0. Suppose T(Z(M) #0,

then from a theorem of Meeks-Yau (see [MY], Theorem 7), there is an embedded
minimal 2-sphere S_2 in M such that for any g¢& S! either é(Sz) = 5% or
g(S_Z) N S‘_'2 = 0. Therefore either S_2 is invariant or M fibres over §2
with fiber S? . In the first case, we must have two fixed points om &2,

This is not allowed by hypothesis. For the second case, we must have

HIB

M = 8% x 8! which also excluded from the assumption,
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Let M be the universal covering manifold of M. If M is not compact,
then H3(ﬁ,z) = 0 and from the Hurewicz theorem we have nn(ﬁ) = Hn(ﬁ,z) =0
for n > 1. Henece M is contractible and M is K(w,1) manifold.

Since M is orientable with §! action without Ffixed points , M must
be a Seifert fibered manifold (fibered by the orbits). But from the faet
that M has a fiber preserving $! action, the base surface of the Seifert
manifold M must be orientable., Hence M has infinite cyclie center {HJ]
(with the exception that M is T3). It is a immediate consequence of
Theorem 5.5. There is no $* action on M with fixed points.

Consider now the case that M is compact, Using a theorem of trans-
formation group theory (see [BG], Theorem 9.1, p. 63), we know that there
is a covering S'-action on ¥ of the S! action on M. This action commutes
with the deck group of the covering. It follows from Proposition 5.7 that
M is the 3-sphere §%., Now if 'rcl(M) is abelian by the proof of Theorem 5.4,
M must be a lens space. But M is not a lens space so 1 (M) is not abelian,

This completes the proof.
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VI. The classification of S50(n) actions on (n+l-dimensional

manifolds with fixed points

In this section, we generalize the method of the last section to obtain
a topological classification of $S0{(n) actions on {(n+l)-manifolds with fixed
points.

Throughout this section, we will assume 3 < n < 6 and let M be a
compact, connected, oriented, (n+l)-manifold with 80(n} action sueh that
the fixed-point set F{M;S0(n))} # 0.

As an application of minimal surfaces, we are going to prove that the

following theorem, which is due to W. Y. Hsiang [HW].

Theorem 6.1: We have

H(MZ) = Z® - 0Z
L il
I3
and
M o= g% x gt ogeeep g™ i st o st

. n+l
where the actions on Sn % 8 and S are standard and where the connected

sums are equivariant.

We first prove some propositions which are as setups for Theorem 6.1

proof.

Proposition 6.2: If Hl(M;Z) =0, then F = F(M;80(n)) is connected and

Sn+l .

=
n
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Proof: We first show that F is connected. Suppose F is not connected.
Since the lowest dimension of the irreducible representations of S0(n) is
n , hence each component of F is one dimensional and F is the disjoint
union of circles. If F is not conneeted, let Fl R Fz be two different
components of F. Take a minimal geodesic « which connects F, and F, .
Then a(0) € F, , a(l) € F, and a is perpendicular to F. (i=1,2). For

any g € S0(n}, we have

(83
ga MNo = or

{a(0),a(1)} .

We let H= {g¢ SO(n)lgOf. = o} . By looking at the representation of SO0(n)
on the normal space of F1 at of(0), we have that H = 80(n-1) and the space

Sn—l

{ga[g € 50(n)} 1is a smooth n-sphere s" in M and G/H = . Since the

intersection number Fl « st = 11 y M ~ 8" is connected. We can cut M along

s™ and cap off equivariantly to get a (n+l) manifold M such that

M = M4# 8% xs!? 3

Therefore, Hl(M) = Hl(ﬁ) ® Z which is impossible.
We now claim that M ~ F fibres over an open surface with fiber Sn_1 .
Let x €M ~ F. Take a minimum geodesic o which conneects x and F,

then o is perpendicular to F. TFrom the linear vepresentation of S0(n)

on TO£ (1)M = TF @ TF" and from uniqueness of geodesics we see that
X
H = {g € 6G:gx)=x} 2S0(n-1) .

Hence, since 80(n-1) is maximal, we have
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50(n -1)

either = H
X

e}
il

oT S0(n) .

If H_ = 50(n), then x € F which contradicts that x € M ~ F. Therefore
for any x €M ~ F, ﬁx = S0(n-1) and G(ax) is a smooth n-disk D" . Hence,
the stability group Gx of x is H = 80(n-1). Since x is arbitrary point
of M~F which shows that the orbit of x is principle for any x € M ~ F.
Therefore the orbit M ~ F has topological type Sn*l and M ~ F is fibre

Sn“1 . Let Vl be an invariant

133

bundle over anopen surface with fiber G/H

tubular neighborhood of F in M and V, =M~V and VZ fibres over a

compact surface I with boundary 237 = s' and V1 =p" x s!,

We claim that I is a 2-disk. If X is a surface with genus g > 0,
then

'JTI(Z) = Z* e *Z .
e e e e et

2g

.

L,y + I, we obtain

By the homotopy exact sequence of the fiberation 8" )

1T1(V2) = 'lTl(E) = Z % ..o % Z
2g
Hence
Hl(Vz) = Z + ves + Z .
2g

By Mayer-Vietorie exact sequence, we must have H (M) # 0 which is the

violation of H1 (M) = 0. Therefore X% is a 2-disk.
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It
[}
[
X
w
o
=
0.

Hence, 32

=
u
<
C
<l
n

(" x 84y U 2 x s*°hy

Let £:8%1 y g1 5gt x go!

be the map f£(x,t) = (t,x) and g be the

gluing map 81_11 - 3\-72 of M. Then f,g are equivariant, so F = f ' g 1is

an equivariant diffeomorphism. F: Sn_1 x 81 » Sn_1 x St

is determined by
the image {xo} x 8, 1In faet,

{transversal embeddings §'<s Sn_l x. 8! of degree 1}

<}:l> 80(n) -equivariant diffeomorphisms of Sn_l x gt

Thus, F is isotopic to the identity map I and f is isotopic to g.

Therefore, n+l

M is diffeomorphic to §

.

Proposition 6.3:

If H,(M;Z) = Z, then F has two components and

Proof: We consider two cases

(i) the number of components of F > 1

(ii) F is connected.

In case (i), let F . F, be two different components. As in the first
part of the proof of Proposition 6.2, we have M 2 M # S" x S'. Since

HI(M;Z) = Z , we must have Hl(I\N{;Z) = 0 by Proposition 6.2, M & Sm.1

44,
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and F has two components.
In case (ii), we consider two subcases:

{(a) F is homologous to zero in M

(b) F is not homologous to zero in M.

We claim that case (a) is possible due to H,(M;F) = Z. Let a be
a generator of Hl(M;F) . We can minimize the curve in O to obtain a connected
smooth geodesic Y with end points on F (see [FH1]) such that [¥} # 0 in
HI(M;F) . From the proof of the last section, Y(0) # Y(1) and for any
g € 80(n), either gy =Y or g¥ N Y = {Y(®,Y(1})} CF . Furthermore,
is perpendicular to F at 7Y(0) and Y(1). By checking the representation
of S0(n) at the normal space of F at Y{(0), we know that {gY|g € S0(n)}
is a smooth n-sphere s, If M~ 5" is connected, then M = M #_Sn x §t

M# 8" x 8! and

|18

and F(M;S0(n)) has two components. Hence, we have M

N

%4 s™ x st # 8" x s! which is impossible since H (M) = Z. If M ~ §"
1

IR

M
has two components, then M 2 Mo# M since HI(M) =H, (M) @H M) =Z,
one of'Hl(Ml) and Hl(Ml) is zero. Let us say Hl(Ml) = (0, then by

= Sm'1 and we must have [Y] = 0 which contradiets the

Proposition 6.2 M1
choice of Y.

In case (b), since H (M) = Z by Poincaré duaiity, we have Hn(M) = E.
Let X be the area minimizing hypersurface in its homology class of M such
that [2] # 0 in Hn(M) . Since n+1l < 7, I is smooth. By Remark 4.7
either % 1is invariant or M fibres over § with fiber I. Sincer[F} £ 0,

we have that the intersection number F+ 3 # 0, hence FMJ # @ and I

must be invariant. We claim F () I contains exactly two points and
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g5 s%, Suppose that F ()} I contains a single point. For any x € I ~F,
take a minimal geodesic Oy, from F M L to x, then for any g € $0(n)

either go_ a =F NI or gu, = o . Hence, we have that

]
I

{g01(0) = 0l(0)|g  s0(n)}

e

S0{n ~1)

and all the isotropy groups Gx are conjugate to each other. Therefore,
for any x € £ ~ F, the orbit of x in I is principal and T ~ F fibres
over a l-manifold. Since I ~ F is open and connected, we must have that

L ~F/S0(n) ER and

Thus HI(Z ~F) = 0 and HI(Z) = 0, 8ince % is a n-dimensional manifold
with S0(n) action and the fixed-point set is non—empty. By Proposition 6.2
and Proposition 5.2, we obtain that § = s". Hence, since F {12 is a

. . ~ &l n . . ~ o1
single point, % ~ F 28 ~ FN I =R which contradicts ¥ ~ F 2 § xR,
Therefore, ¥ ﬂF contains more than one point.

Take two different points P,sP, € F ML and a minimal geodesic ¢ in I

from p to p2 . We have
S |

i

H = {g € $0(n}|ga = a} {g €50(n)[ga'(0) = a"(0)} = sSO(n-1)

and the space U{gun|g € SO(n)} is the n-sphere s™. Hence I = §" and
g
F N L has exactly two points. Since Fe+ 8" #0, M ~s" is connected

and we can cut M along s" and cap off equivariantly to obtain an
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(n +1)-manifold ﬁ such that

n

M = M# 8% xs!,

Since H,(M;Z) = Z, hence HI(IUI;Z) = 0, and by Proposition 6.2, M = Sn+l

n

and M £ 8 x S'. This completes the proof of Proposition 6.3.

Proposition 6.4: If H (M;Z) = Z,, then F = s! and p = 0 and

M = Sn+1 .

Proof: T1If F has more than one component, then we can decompose M as

M = M# s" x sl

which is impossible since Ha(M) = ZP . Hence, F = 8' and as in the

proof of Proposition 6.2, we have M ~ F/SO(n) is an open surface, If Vl

is an invariant tubular neighborhood of F with ‘71 zp" x st , then V =
2

]

M~ V1 fibres over a surface Zg of genus g and 828 $'. We claim g = 0

and Eg is a 2-disk. Suppose g > 0, then

= Z eee & T -
Tl:l(Zg) *
2g

From the homotology exact sequence of fibration Sn_'1 = 80(n)/S0(n-1) >
v >

V.2 Eg » we have

w (V,) = ml(zg) = Z % *v0 x Z
2g

since n > 3. Hence
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By using Mayer-Vietoris exact sequence for pair (Vl,ﬁz), we obtain

HM) = Z@ -0z
2g

Since Hl(M;Z) =7 we must have g = 0 and Zg is the 2-disk DZ.

p »
Therefore Vz z Sn-1 x D? and

M = (% x s U (s® !« p2y .

Since the gluing map is equivariant, the reason, as before, shows that

Moz gl .
Using the above propositions, we can apply the same method we used
to prove Theorem 5.5 to give a proof of Theorem 6.1. Since they are similar,

we will not write out the proof of Theorem 6.1.
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VII. Circle action and scalar curvature

It has been known for some years that if a compact spin manifold M
admits either a non-trivial §' action or.a metric of positive scalar
curvature, then A(M) = 0 . It has been at times conjectured that these
are directly related, in partieular that the existence of an 8! -action
implies the existence of a metric of positive scalar curvature. This con-
jecture turns out to be false. In fact, we have many manifolds with S!-action
which does not have any positive scalar curvature metric. This can be seen
clearly from recent works of Gromov-Lawson (see [GL3]). We have the following

theorem.

Theorem 7.1 (Gromov-Lawson): There is no metric with positive scalar

curvature on three-dimensional K{(w,1) manifold.

Prooi: By Theerems 7.1 and 5.1 we have many K(g,l) 3-manifolds with
S!'-action but no metric with positive scalar curvature. However, all the
counterexamples known up to now are have S!-action without fixed point.,
In fact for 3-manifold, as a consequence of Theorem 5.1 and the works of

Gromov-Lawson (see [GL1]). We have

Corollary 7.2: If M has a S'-action with fixed points, then there is a

metric on M with positive scalar curvature.
. Remark 7.3: This corollary was observed by L, B. Bergery (see [BB]).

JIn this section, we study the relation of the existence of Sl-action

with fixed points and the existence of positive scalar curvature in general.
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We will prove the following theorem:

Theorem 7.4: Let M be a compact, comnected, oriented C manifold of
dim M < 7 with S!'-action such that the fixed points F = Fix{(M;S!) # 0.
Assume that F has codimension 2 and that F is homologous to zero im M.
Then there exists a smooth structure on M such that with this smooth
structure there is an invariant Riemannian metriec on M with positive
scalar curvature,

We first prove a theorem whiech will be use to prove Thecrem 7.3.

Theorem 7.5: Let M be a compact manifold and F a codimension 2 submanifold

such that

diffeomorphic
M~N(F) == % x 8!

and the tubular neighborhood NE(F) of F in M is trivial, i.e. NE(F) =
F x D? where % is a (n+l)-dimensional compact manifold and 3L = F,
M= NE(F) U Z x 8! the gluing map is isotropic to the identity map. Then

+

there exists a metric on M with positive scalar curvature.

Proof: From Theorem 2.4, we known that there is a metric on 35 with positive
sectional curvature, call this metrie dS2. TLet v(x) be the normal vector
field of ¥ in %, pointing into 5. There is a tubular neighborhood U of
F =32 in 7 such.that U = {expx(t\)(x))|x €EF,0<t<2r}. Hence U is
diffeomorphic to F x [0,2r) . TLet V =(U ~ F) x S'. We identify M ~ F
“with I x S', then VC M. We are going to construct a metric on M which

has the form

ds? = dsf + £2(t)dap?
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where dS‘:' is a metric which is different from dS? only on UE

{expx(t\)(x))[x €F, 0<t<ec} for some small € < r and £(t) is a smooth

function which is constant on § ~ U,

First, let us define the function f on L. We choose a smooth function

g(t) such that

€ cos% on [0,e]
g(t) =

0 on [r,2r)
and g is decreasing,where € < r will be decided later. And let

. t
€ —
. sing on [0,e]

() = f-g(s)ds =
0

r
Lg(t)dt >0 on [r,2v) .

Then we can extend f to } by letting f = conmstant on I ~ U. Note that

£'(t) = g'(t) 2 0.

Let ‘[xl s eea ,xn} be & coordinate of ¥, then {xl, ,xn,t} is a

coordinate of U and we have

Tt
as® = E g, . (t,x)dx.dx, + dt?
: ijt 7]
i,j=1

for 0 £t <2r.

Let g be any metric on & and
g = g+ £2(x)dp?

where f is C€° function on § . Let {Q,i, i=1,2,...,n+l} be an
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orthonormal frame of I with metric g and v = 1/£(3/36) . Let R< >, .
Ric, R denote the sectional, Ricci, scalar curvatures for g, and R< >,

Ric, R denote the corresponding curvatures for g . Then we have

Ric(o,,0.) = Z<ﬁ(zj,mi)zi,aj> + (RO, 08,v) .

j
But
5 _ - 2
<R(£j,gi)mi,gj> = <R(9“j’9'i>9“i*9vj> SLITLITIE S
and for i # j
- (T - _l.,2 5 - leg 8
by = <V vilyd .7y 2,2 F<35 V. %> = <V, 55452
i 1 1 1
= - 1¢0,,7 L. ~L.,9 S = KT 0, = -{2.,7, v
£N71%7(8/36) £ 9,3. Y Rj i’ i* gj
= - b,, .
ji .
Hence b.. = ~b.. = =b,., =0 for i # j and
1 Ji 1]
- - -L1.3 5 - + L. 9
byg = Vg vaty2 @iV 22 = = 2 Ty 8 - + 54V 5547
1 X i 1
- L.t 1,13 -

Hence

<R(g’i’23)£j’2’i> = <R(Q"1’£’j)9"j’g'i> .
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By a straightforward computation, we have

==}
il

Zf{'?:(li,li) + Ric(v,v)

ZRic(Ri,Ri) + 2 Rie(v,V)

_ oBE o LA
-R+2f-R :

This formula is alsc in [GL3] where A 1is the Laplace operator of the metric g.

Now consider the metric g = dSi defined by

2 _ 2
ds? = :E:gij(¢(t),x)dxidxj + at’

whare ¢ is a smooth function such that $p(t) = £ for t > e and ¢ is
constant in a neighborhood of t = 0. Let Yu = gij(u,x)dxidxj be the

metric on F and uR< >, uRie, uR are the corresponding curvatures of Yu .

For g =g + £7(t)d0% = as? + £7(£)d6?, we have

Af = f"(t)

and

. f"(t) ‘
R -2 EICON . (7.1)

=1
n

By simple calculus, we can obtain

.. 0%g. . ag.
R IO L 72 (s —I e 9P e 4 D Gl —E) o)) +gm(e)
S du ;
| (7.2)

Let A =TF x [0,r]. Since A is compact, there are constants ¢ ,c, >0

such that ‘
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(7.3)

for 0 < u<r.

Now we are going to choose the function ¢ . For any O < ¢ < r,

. choose a smooth function ke(t) such that
L on -2 o 9 ]
he, .2 10 2 10 ©
k (t) = '
€ 1
0 on [O ,T-d-g] and [e,21)
1 1
and 0 < ke(t) < Ge 'Tr -
Note that
£
1 1 7 7 1
t T ermm— 8  — = » — o
-/(;ke( A e T Z0c, &

when ¢ + 0.

Let c; = -,/c1 and we may assume (1/4c2) < (1/2(:;) and choose e very

small such that

€
fk(t)dt = a_ > 1
£ £
0
and g < r, and
|R|<-1—-—1—2 for 0 <u<r . (7.4)
u 2 ¢

Set k{t) = (l/as)kg(t) and define
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t 8
p(t) = f f k{x)dxds + n

0 0
where

€ L€
n = e-—f fk(x)dxds .
0 0
oo

0
Since f k(x)dx = 1 and _’; k(x)dx = 0, we must have
0

£ 8
f f kix)dx < ¢
0 0

and n > 0, By definition ¢(t) = n for © 2t <£1/10 and
or ] = | enedas] € Lot . L1 11 s
¢ B chss__ae c, g2 bey, ¢ 2c, ¢
for 05 t<e. Furthermore,
n 1 1
S (7.6)

€

and also ¢(t) = t for ¢ 2 €. We note ¢ is an increasing function.

We claim now that for the above choice of f and ¢, the metric defineg

by
dg? = Zgij(d)(t),x)dxidxj + £2(t)ap?

.is well-defined on M with positive scalar curvature. Since o(t) =n is

constant for t < 1/10¢ and d-s-fo' is a product metric in a neighborhood of

F, so ds? is well-defined on M,
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For t>e, ¢(t) =t and £'(t) 2 0, hence by equations (7.1), (7.2)

and (7.4)

f"(t)

W)O.

R = R-2

(Note that on %, R > 0.)

For t < e, (£'(t)/£(t)) = —(l/e?) and by equations (7.3), (7.5), (7.6)

and (7.2), we have

. dE.
.]k . ¢" (t) + __;_-_Zg-]k ......_-]_k . (t)"(t)

£1(¢E) 11 11 11 11
2 oy 732 T T8 9212 Ez_ci‘écz E'z+2_57-e_2>0

1

This completes the proof of Theorem 7.4,

Proof of Theorem 7.4: By using Corollary 4.10, we have

homeomerphism
—""'_\._,____/
M~F Int(2) x st .

In order to apply Theorem 7.5, we have to define a smooth structure on M
which satisfies the condition of that theorem.

We take the product of the smooth structure on Int(I) x S! and this
structure and the homeomorphism (7.7) induce a smooth structure on M ~ F,
But from the linear representation of §! action at the fixed points if

the vector field X on M is induced by the $!action, then X(x) is

transversal to I for x € ¥ near the boundary 3%. Therefore, the
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homeomorphism (7.7} is actually diffeomorphism in a neighborhood of the
boundary of Int(I) x Sl, hence, the two smooth structures coincide on
this neighberhood.

So we can extend this new smooth structure to M and with this smooth
structure, M satisfies the condition of Theorem 7.5.s0 Theorem 7.5 implies
Theorem 7.4.

We conclude with the following.

Question: TIs Theorem 7.4 true for the given smooth structure?




Chapter 2

The Constructions of Negatively Ricci
‘Curved Manifolds

I. Statement of theorems

Theorem 1l: Let Ml and M2 be two complete Riemannian

manifolds with negative Ricci curvature of same dimension,

Then there is a complete Riemannian metric on Ml # M2 with

negative Ricci curvature.,

Let Xl and X2 be two oriented C® manifolds, and Yi is

a simple closed curve in Xi(i=1,2). Take a tubular neigh-

borhood Vi of Yi in xi, let o : avl - aV2 be a diffeomorphism

of the boundaries., We use Xl #=QX2 to denote the manifold

obtained by gluing xl ~ Vl and x2 a—Vz along the boundaries

by ®. We call Xl=# X

w2 the connected sum along circles of

xl and xz.

Theorem 2: Let Ml and M2 be two oriented complete
Riemannian manifolds with negative Ricci curvature, and let
AN be a simple closed geodesic of Mi(i=1,2). Without loss
of generality, we may assume that Yl and Yz have the same
length. We further assume the holonomy along Y, is .

the same with the holonomy along YZ' Take an orthonormal

11 along Y; of the normal bundle

:1.--

parallel frame [x;,...,
). let

of Y in Mi(1~1 2
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v; = A, yp<el i=1,2

i

for small €> 0, and define avl —> BVZ by
n-1 1 n-1 9
Pfexp ¥ a, X, |= exp a. X,

Then there is a complete Riemanmian metric on Ml # M2 with negative

P

Ricci curvature, Here n = dim Ml = dim M2 .

For three-dimensicnal manifold, we have a stronger result,

Theorem 3 : let Ml and M2 be two oriented three-dimensional com-
plete Riemannian manifolds with negative Ricci curvature. Let Yi be a
simple closed geodesic in Mi(i= 1,2) . We may assume that Y1 and Y2
have tle same length. Take V, = {x € M (X, Y < e} (i=1,2). for small

€>0 . Then, for any §:3V; ~—> ay there is a complete Riemannian

2 s
metric on Ml@cp M2 with negative Ricei curvature,

Using some topological constructions. we also can obtain a new manifold

from an old one in the negative Ricci curvature manifold category.

Theorem 4: Let M be a complete Riemannian n-manifold with negative

s , . . . n-1 1
Riceci curvature. Then there is a complete Riemannian metric on M # S XS

with negative Ricci curvature,

Again, in three-dimensional case, we have more complete results,
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Theorem 5: Let M be a complete Riemannian 3-manifold with negative
Ricei curvature, Then there is a complete Riemannian metric on

2 1 1 , ] .. . :
M # 8% x s T#Z X8 with negative Ricei curvature for any oriented com-

pact surface 2

Theorem 6: Let M be as in Theorem 5.

Then there is a complete Riemannian metric on M # 82 X S1 # L(p,q)
with negative Riceci curvature.

Final Remark: For 3-manifold, the above theorems in conjunction with

the work of Thurston conclude that for a given compact 3-manifold M with

2

e . . . . 1
negative Ricci curvature, there is a Riemannian metric om M #8° X s~ # p

with negative Riceci curvature for "almost™ all compact, oriented prime
g p » p

manifold P .

11, Proof of Theorem 1 and Thecrem 2. )

Let R" be n-dimensional Euclidean space, and a €R" , let

Ua,p) =" N {x: |x-a] <p} .

Let

v, = U, p) X st

and S1 be parametrized by t from 0 to 1 ; i.e., Sl_= [0,1]/{0,1} .

2

We denote
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1
Throughout this section, we call RaLg t , and the Greek letters

always be integers from 1 to n+l , all sums about Greek letters be taken
from 1 to nt+l , and the English letters i,j,k ... always be integers

from 1 to n, all sums about these letters be taken from 1 to n .

==}
Given a € manifold X , let
Ric (X) =_(a11 metrics on X with negative Ricei curvature} .
Let p0 be a fixed positive number. The basic fact we need is that we

can deform a given metric in a neighborhood to a nice one., We have the

following.

Proposition 2.1, Let By s 81 € Ric_(Vp ) (or Riq_(U(O,pO))) , and
0

suppose that the 1l-jets Jl(go) s Jl(gl) are equal on the curve

Y={r=0} (or at 0), Then there are a g € Ric__(Vp ) (or Ric_(U(O,pO))) s

0
and 0 < 0y < Py < Po such that g = 81 for r < 0, 5 and g = 24

for > Py -

Before the proof of Proposition 2,1, let me mention a general lemma

of M. Gromov which is pointed out by M, Gromov [GM].

Lemma 2,2, Let V be a manifold, Vo =™ V a submanifold, and

two sections of a bundle X —=> V , say fl,f2 tV—> X . Suppose

that the 1-jets Jl Jl PV — JI(X) are equal on V_ . Let
fl’ f2 : 0
2 2 . , yA 2 ,
Jt : V== J (X) be a deformation of the 2-jet Jf to Jf with the
1 2

following two properties,

(1) The deformation does mot move JIIVO

(2) The deformation keeps the image of V in J2(X) within a

given open subset ﬁ(’CZJz(X) .
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Then, there is a deformation of sections f1 —> f2 s say ft 3
which jets J% deform with the properties (1) and (2).
t

In fact, we only need a simple corollary of Gromov's lemma, For

completeness, we will give the proof of the corollary.

Corollary 2.3, Let 845,87 be as in Theorem 1, then there exists

1
p < f and a deformation of 8o —_ gy » such that Jl(gs)[Y = Jl(g0)==J (gl)

and gSERic_(V_ﬁ) (or € Ric_(U(0,7)) .

Proof of Corollary 2.3. Let
8y = (1-s)g0 + 88, .

On Y, we have
Ric(gs) = (1-s)Ric(g0) + s Ric(gl) <0 .
Therefore, for small p , we have

Bg € Ric_(VB) (or G'Riqm(U(O;E))

amd TN - Iy = I e

Proof of Propesition 2.1. By the above corollary, we have a

deformation 8y - Let

a
g, = z 8o B (x, t;s) dx dXB s where t = x%rl

o

We denote that §(x, t;s) = 3

B(x, t3s) , E(x,t;s) - —g(x,tss) .
s

From (1), we have




éaB(O,t;s)=0, 220, e58) =0

> .08

""%E(O,t;s)=0, EE-Y"(O,t;s)=O (2)
ax 9%

Ep ©,t5=0 , §P0,t58 =0

3g
9B 0, £;8) =0
HXY

Therefore, there isa M>0,s,t on V_ (or U(O,_p))
P

lguﬁ(x,t;s)ISM , ]gas(x,t;s)ISM . (3)

lgpCes e300 <mlxl®, 1%, es o] <ulx)?

’P;;j(x;t;s)l <M, II‘ZB(X,t;S)’ SMIX] (4)
aB dE .
.o 2
w@@,usHSMhl,-ﬁr}SM , iﬁlgmﬂ .
dx A%
n
where ixlz = r2 = 2 (x.)2
. i
i=1
We may assume
B 9 n+1 a2
ZRic(gS)an“x <-clx}*=-c T @H° , (5)
=1

for some C>0 on V_ (or U(O,E)) .
p

o —_—
For Y € c (U, po)) , with compact support, supp ¥ < U, p) ,

0< <1, welet

63.

and
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bH gaﬁ(x, t, 1P(x))dxa'dxB
then E is a well defined metric on Vp .
0
We claim that g is the desired metric on Vp for suitable ¢ .
0
Let
g = E'Eas(x, t)dxq'dxB
then
Bp(x, £) = B, 5 4(x)
and
=Y Y
ol ol — =
. of Y8 MRY e TY
Ric(g) , = L —2= - + I T -T
oB Sx? 3x% TR B " yH YB au
where
¥ _L=yu Pyp  Bpp  Bgp
B~ 28 B " a H
3 X RIS A X
_ | royw %Byu  OBgp Mg
= |38 " et G
. "X ax dx
1 vu : sl 23 24
+38' O |8y ) gt g () T - Bp()
s = V(x)
= TV (x, t; U(x)) + ATY
a7’ oB
and
Yy L vH . : oV, - 3% _-. 3¥




Therefore, we have

Y Y Y
HI‘GB= araB+%Y ot +aAI“GB
Y Y aB Y Y
9 X ax ax s = U(x) ox
Y Y
ol aT
.o _ af _ 8 H Y _ MY
Rlc(g)ctﬁ zax Y ax“+ z TO.B TYH TYB ra}l
s = Y(x)
Y Y
. . »AC AT
+ | sy ¥ _py 3 ey Oﬁﬁ_a Y8
af 'c‘axY ¥ ax“ axY axc'
s = Y(x)

“‘ |"|' Y p‘ . Y - t“t Y - A 1"‘" " I‘Y
+Z(Tc,s Aop + 8 " Typ - Tyg 2lgn ~ 4Ty uu)

o ArY L e ArY
+E(Araa A Arvﬁarau)

= Ric(gs)as =y + ACLB
where ‘ BAI‘Y am_“Y
- vy 20 Y 2Y af _ __¥B
A 8 T 8 T + 2
& @ HXY ax% BXY axa“
K Y L Y o_ HoLoY
+ 2 (TuB MYU + ATO,B T‘YM TYB Arali Al-\YB Tor,u)

Mooy s Ay
+2(A1*a8 oY, - anke Arau) )

[ =]
Choose £:R—>R s.t £f£€C , and 0<£f<1,

(=, 1], £=0 on [2,+4) ., Let N>0, such that

65.

(7

)

on
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@] <n, £ <
and let gé(s) = f(g) , them 0L gb(s) <1,

X

ley)| <3, lef] < iR (9)

We take

1o = gy (1x) e ¢

where 0 < A< 1, we will determine A later. Therefore

A _ i
Al NEE Ax| 1 2

i

ox Ix,
and
A A-1 N 1
v ] = Mgy D= <A - 5 e (10)
AZ\IJ = ngu(,xl)\-) . |X|23\-2 Xin + kg'(l I)\) 61!
aXlaXJ ) lxlz & IXIZ-?\
' A xlx.
+ K(K-Z)gb(]xl ) T"fa:x
X
aij =0
3 n+laxa '
hence

2
—aV 2. B 1 _ .8 1
BXG’BXB - 62 ’Xlz—z)\ & | IZ-K

+ 2. g 12-)L
| x|
_ 42 N 1 N 1
= A" . — 77 + 3 A 5 T oon . (11)
8° || | x|
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ox AX 9x

Hence, by (6), (12), (4) and (10), (11),

|AI‘ | < (n+1)M . 3M|x[ "5

(13)

2 A 1+A
= %(n+1)M N - Elx’ +

1 2 N 1 2 N 1
S'E(n+1)(M+Mlx] L E—l—x)' 3M,X| . ?xg . W

x|

A-1 A-1
#aemes | (ulx) +ulx® e M) M

2, (.2 N . 1 N (A2
+ M| x| (7‘ ;E lxlz-22\+37L 1k )

3 A Ny 1+A 1+A
-2-(n+1)M N - '6—(1-1-)\. 5' I ) : IXI +

A A
+ 2ty - 3l 4w e Bl 4 Rx 4 3] )




1 1
we choose A% = b< —:’;5 S~8]5-< 1, then for |x| <p, lxllnmsfxlz
and A ] < Beasindn 8 =] N = cp8]x| P

201 3 2 14h, (A
——%ﬁ < F+DMN SCL+N6 x| ) [x|" +
ox

+ %(n+1)M2N 6(|x|>L + N & |x[2x + b |x'2k'+ 3|xlk)
5%@4—1)1\421\1 SL+N8) x| + 2N b (4 +NE + 8 x|
=[§(n+1)M2N(1+N) +-:2"—(n+1)M2N(5 +N)] 5 x|

A

= C25]x, .

Thereforea

A1
|=]

IA I < 2(n+1)M|x| * N A + 2{(n+1)C, 0 xlk
ap 6 2

+ 6P cy 8l x) 4 2eay2e? ¢ |x| 24P

< [2(n+1)MN | x| My 2(n+1)02|x| My 4(n+1)2M cl]xllﬂ

+ 2(a41) %62 | [2+2l]

< |:2(n+1)MN + 2@H)C, + 4@ M C +

1

1

+ 2(n+1)2 Cz] 8 lxl)‘
1
A 2 A
€y 8 [x]7 =¥ fx]" .

68.

<|x/

(14)

(15)

(16)




We now take Py gufficiently small such that

2(ntl)C, % o <5 (see (5))

and pl<_p, then, let 6=%p15-}; ,

and hence, for ’x| <P

b2 AGBXGXBI < c36[x[)‘ £ |x%P|

<2 03]x|?‘ 8 T a®?+ @2
a, B

2(n+1)c3|x|7L 8/x)*
< 2(ntl)c, 8)x|? = 2(a+1)Cq % plinz

Cly2
<sIx° .

Thus
Z Ric(g) anaxB
< ¥ Ric (gs)asxofxﬁ + |2 Aaaxaxai

2 G2 C 2
< -clx]? + Sx1% < - §x)? .
Therefore, for |x| < Py »  we have

Ric(g) <0, and g € Ric_(V, ) (or € Ric_(U(0,p,)))
1

Since $(x) =1 for Ix'k < &= % Py so if

69,



IXI S (z; pl) 471 S (—l}i p1)16 S% pl < Pl <1l then
1
(%; 91)2

= A
8 = By s and if (% pl) < Ixi < Py » then ’x' =|:d

and V(x) =0 s E =g . Hence supp ¥ C U(O,po) , and we can take
1

1 2
p2 = A pl) and g is the desired metric.

Let X he a manifold without boundary,
an X)) = {all complete metrics on X with negative Ricci curvature] .

Let h be the standard hyperbolic metric on U(O,po) , 1l.e,,

h= dr? + sinh’r d8” (17)

where d@z is the standard metric on sphere st

I
e
=
]
£l
1
fad
A
W

and

n+l=dim X .

Proposition 2.4, Let g € (X) , @and let p €X. Given any normal
coordinate neighborhood Upo(p) = [le < po] of p, then there is a metric
g0 € €b?(x) , and T > 0 ; such that 80 has form (17) on Un(p)=={|x|<:n} s

i.e., gy =h for x| <n .

Proof: Since at p , Jl(g) = Jl(h) = 0, Proposition 2.4 follows

from Proposition 2.1,

Let b be the standard hyperbolic metric on Wp = U(O,po) XR, i.e.,
0

B = cosh’r dt’ + dr’ + sinh’r d6° (18)

and let A € O(n) . Consider the diffeomorphism
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A
(x,t) —> (Ax, t4+1) : W —> W .
Po Po
It is easy to see that A Oﬂp s h) —> (Wp s ﬂ) is an isometry; hence

0 _ 0
the quotient space Q_ (A) = (W_ , h%// ) is a disk bundle over 81 with
Py Py {a

the induced hyperbolic metric hA from h . Note, if A € SO(n) ,

then Q_(A) is diffeomorphic fo V .
Po o

Proposition 2.5. Let g € ME), and YS X be a simple closed

geodesic., Then there exists a metric 8o € M) , such that for some

A €0(n) , 8g = hA on a tubular neighborhood Qn(A) of ¥y in X .

Proof: Fix an initial point p on V¥, then vy induces an
isometry A on Np(y) = {v'ETbX[V_L_Y'(p)} =R" by parallel translation
along v . Choose small Py » and tubular neighborhood which can be
identified to QpO(A) by a parallel translation along vy . It is clear
that Jl(g) = Jl(hA) along v . Proposition 2.5 follows from

Proposition 2,1.

Now we are ready to prove Theorem l. By Proposition 2.4, the proof of
this theorem is reduced essentially to proving that the connected sum of two
hyperbolic manifolds has a metric with negative Ricci curvature. This

last factwas known to S. T. Yau, but it has never appeared. For com-

pleteness, we give a proof here,

o

. |
lemma 2.6. Let o € Cw([O,m)) , and 71> 0 . Then there is a
C function g on (-=,w) , such that g(t) = @(t) for t>n, and |

|

g(c)y =0, for £t <0. Furthermore, if ¢ is monotone, increasing,

then g 1is monotone increasing.
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[==]
Proof: For such m> 0 , there is a C -function k(t) on R,

such that k(t ) =0, for £<0; k() =1 for t>n, and
k(t) is increasing on [O,N] . Define g(t) by

k(£)ep(t) £>0

g(t) =
0 £ <0

Then g is C , and has the desired property in Lemma 2.6,

Lemma 2,7, There exists a Cm-function f on [0,=) such that

££" + Mf'2 > M (19)

on [0,=) for any given integer M > O and £'(0) =0, £"()>0,

2

i

£(0) = €e>0; £'(x)>0, £(r)>0 for r>0; and £M™ 0y = 0

for n > 3 . Moreover, for any given T > 0 , we can require £(r) = sinh r

for r>=mn.

Proof:
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Let 4 be the region EACDE . Choose point B in 4 near D .
Smooth loop CBAE at corners B and A ; by Lemma B , we get a
[-=]

C ~function h(r) < cosh r and h(r) = coshr for r> 1 and h is

increasing. The shadow region has area El R

(cosh r - h(x))de > 0 .

N'_—} 3

Choose & ray,starting from O which intersects with CB at F . Suppose

ray OF Thas slope k such that k €1>M and %

|

|
<g . Smoo thing i
curve OFhE at F, by Lemma 2.6 we get a c increasing function

and g(r) = h(r) for r > a H

g(r) such that g(r) = kr for 0<r < L >

k
T
g(r) <cosh r . Let £f(r) = IO g(r)dr + €, where

n
E = IO (cosh r - g(r))dr > El .

Then f£'(r) = g(r) and g(r) > 1 for r>i{1* ; £>e>0,

1 . Therefore on [%, @)

@@ =k>0, 8@

ff"+Mf'2>M .

On [0,7]1, f£>E>c¢ f"(r) = g'(r) =k, hence £fEf">k e >M,

1’ 1
and

ff"+Mf'2>M .

Also we have

£0) = e>0, £'(0)=0, £f'0)=k>0

£™@©)y=0 for nx3. j
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Thus, f is the desired function.

As a corollary, we have:

Corollary 2.8. For any given TN > 0, and integer M 2> 0 , there

-]

is a C function £(t) on R, such that £>0 , £(-r)

Il

f(r) , and

f'(r) >0 for r>0; and

ff"+Mf'2>M

on R, and f(r) = sinh r for r> 1.

Proof of Theorem 1: Suppose X has dimension n > 2 and a metric
with Ricei curvature Ric <0 . Fix p €X and let
D= {x €R" : 'X’ < ro} be a small normal coordinate ball center at p .

By Proposition 2.4 we may assume this metric g has the following form:
g = dz? + sinh’r d6° .

We shall change the metric in D - {0} , while preserving negative Ricci
curvature, so that it agrees with the old one near dD , and it has the

form:

gy = dr’ + £2 (r)ab? (20)

where £(r} is the fumction in Corollary 2.8, and we take T < Ty -
‘ 2
Since f(r) >0, f£'(0) =0, £f"0) =k>0, f( )(0) =0 for 4> 3,

it follows immediately that one can add 1-handles and take connected sums

while preserving negative Ricei curvature,

A

=37 7 and

We claim the metric has negative Ricei curvature, Let V

[Ei ;1= 1,...,n~1] be an orthonormal frame on Sn"1 around a point and
1
f

€. . Then, by straight calculation, we have
1 .




75.

Ric(v, v) = ~(n-1) %%%?l <0

Ric(4, 4,) = ;-1—5 [ (n-2)-(n-2)£'2(r) - £(r)E"(x)] < O

Ric(4, , V) = 0

hence, we have, for any unit vector u , we can take 4. such that

u = G,ﬂl + BY , with c? + Bz = 1 and

Ric(u,u) = G?Ric(il, 51) + BzRic(v, V) <0

which proves the theorem,

Proof of Theorem 2. let Ml and M2 be the given manifolds.
Take € sufficiently small. Using Proposition 2.5, we may assume that
the given metric g; on Mi (i=1,2) equals hA on Vi , which is

induced by the metric

h = coshzr dt2 + dr2 + sinhzr dez

on U(0,€) xR .
We shall change the metric in Vi ~:Yi = (U(o, &) «»{0}) p 4 S1 , while
preserving negative Ricel curvature, so that it agrees with the given one

near BVi , and it is induced from

5. = cosh’r dt® + dr? + £ (r)ab?

take M < E, It follows immediately that one can glue these two manifeolds

together to obtain Ml (:)cp M2 with negative Ricci curvature metric.

on (U(0,8) ~ {0}) XR, where £(r) is the function in Lemma 2.7, and 1
|
|
|
|
i
?
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IITI. The Proof of Theorem 3.

We start with two simple lemmas,

Lemma 3.1, let €958 be two positive Cm-functions on a neighbor-
1 1 .
hood of ry in R and let gl(rl) = gz(rl) . Suppose also gl(r1)>g2(r1) >0

gi'(rl) > g'zl(rl) >0 . Then, for any €> 0, there exists a Cw-function

1 2 7100

gl(r) ] r Z ro
g(r) =

gp(r) rsr,

g , such that for some r, -8 <r, <r, <71 <r1+E, we have
' n " |

and glr) 2 g,(x) , &"(x) 2 8y(x) on [r,,ry] .
|

Proof: By hypothesis, we can find M> 0 , and L p such that

-—-E<r <r, <p<r

ry 2 1 +Ee, and

1

< g (x) - gy(x) <M (21)

2=

for r € [r2, el , and g'l'(r) - g;(r) > 0.
Since gl(rl) - gz(rl) =0, there is a L > ry, Tg <p,
such that

2 gl () -gh(r) | ‘
M 210 "2 0 ) (22) |
r; -1, = gy(rg) -8,(ry) ‘

[+ =3 l
Let ké be a C function on R , which satisfies:
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(a) 0<kyx) <1 ,

® k=0 ,  x<0
(c) kb(x) =1 , X 2 26
(d) klb(x) >0 . on R

tet ¥, 40 = kg(r-(ry-26-2))[g  (x) - g,(x)]  and

g4 (xy) = 8,(xq)
na-ol07 %2007
%o r)dr
[P,
r, 1

and let

r
g(r) = gy (x) +n[ ¥ (s)ds .
r, 1’

We claim that g is the desired function for small &> 0 and some

] T
E _ . . . ; _
1 < Ty ~Ty . Note k& is an increasing function and so g; -8, on

[rz,ro} B hence 8 is increasing on [rz,ro] . Therefore, we have
5

g'(r) = gy(r) + M Ve, n(® 2 800

g"(r) = gy(r) + w;l’n(r) > g,(x)

on [r2,r1} .

Since, if 2n<r then

0o~ T1
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Y000 g (o) - B, (ry)

T &

1‘0 - I‘O ' .
7y gmar [7 [g1(0) - g (x) 1dr
2 ? r0—2

but
' '
8, (x) - 8,(x,)
lim - 1°0 20 = 4+ e
b >0t [0 [g)(0) -gy(r)lar
r0—25

We can choose & > 0, such that 20 < ry-ry , and

Yo,800) 81(rg) - 8,(xy) N 8y (zg) = 8, (xy) 23
o = %o : . 81 (ry) - 8, (rp)
J O U, qdar [0 [g1(x) -gy(0)lar
T 2 r -28
2 0
Fix such & , consider
Ve 8 (%g) | gl (x.) - g (r,)
1’ _ 1\o 2\50
o - o , - _
i Ve, ()% J g <00 (gm20-E ) 8y ()-8 () Jax
n, U 7275
g, ()-8, (rn) 2
et el (by (21))
ﬁ . (6 -+ 51) 1
By (22), if €&, + 6> ry-r, , €<ry-r, , then
ﬂr' (r ) 1 - 1
51,6 0 . M2 B M2 . gl(ro) gz(ro) . 20
Iro y 6(r)dr - & + El — Tyer, = gl(ro) —gz(ro)
E
r 1’

2
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Hence, from (23) and (24), there is a € >0, €& < r,-r

such that

, g, (rg) - 8,(x)
1 _ Eilrg) m8,(x _ (25)
r gl(ro) = gz(ro)

By ¢€1:6(r0) = gi(ro) ~gé(r0) , and (25), we have

gl(ro) - gz (ro)
A M COT
T, 1?

and

g' (r) = gy(r) + (g7(r) ~8,(¥)) = g (¥)

for rZrO-El 5 but

o, . .
- Ve 8D = 8 ()

Hence, g(r)=g1(r) for rZr0 .

(p,+=) , such that g' >0, g">0; £'>0, f">0 on (p,+=) .

Then, for any rN>r,>P, there are §>0 and s <p , such that,

2
~ [=-]
for any 0 < e< b, there are g, f € C with the following property:

|

|

m

Lemma 3,2. Let g,f be two C positive functions defined on
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~

(a) >0, g >0, g'>0; ¥>0, £'>0, T">0 for r>s .
®) Bs)=Fs)=¢, ' () =T'(s)=0; g"s)=T(s)>0,
E (m)(s) = E'(m)(s) =0, for m>3.

‘E(r) for r near s .

il

(¢) B(r)

Il

(d) Ekr) g(r) , %kr) = f{(x) for r>r«r

Proof: Take 7 < min ff(rz), g(rz)'} s and 1> 0.

Consider the functions:

- 2
h, = al(r—sl) + bl(r-sl) +n
h, = - 2+b(- +
5 = az(r sl) o (x 51) n

on [s;,+=) , where

o
I
o
It

1 b2 = %— {min(g(rz) 3 f(rz)) "n} * (rZ-S].)-l

)
I

= 18(x)) b (xyms) =7] * (ryms)
8, = [£(r,) ~by(ry=s) =] + (r,=s) 7> .

’ n it
We choose 8y such that 84 < t, and 2a1 <g (r2) s 232 < f (r2) s

' ' '
b1 + Zal(rz-sl) < g (rz) H b2 + 2a2(r2-sl) < £ (rz) . Therefore,

we have

hl(rz) = al(rz-sl)2 + bl(rz-sl) + n= g(rz)

hy(ry) < g'(ry)) , hi(r,) <g"(xr,)
hz(rz) = az(rz-sl)2 + bz(rz—sl) + n= f(rz)

hé(rz) < f'(rz) , h;(rz) < £'(x,) .
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o« ~
Using Lemma 1, we can find two € functions ®, ,h

1 2

such that

- - - |

hi>0’ hi>0’ hi>0 on (sl,+cn) l
and "

"r\;l(r) = g(r) , Ez(r) = f(r) for r>r
and

hi(r) = hi(r) for r mnear $1 .

Take s > sy mear sy . Consider 0= 7,

k(r) = a(r-s)2 + E .

We choose a and s < s, , such that

1
a=[n-el(s;-s)"

and

2a(sl-s) < min { Fi(sl) ,gé(sl)} =

2a < min { ?;i'(sl) s T{tZ'(Sl)}
then |

k(s = hy(sp) = K (s)) = m
and

k'(sl) < min {rﬁi(sl) ;'Eé(sl)}

k"(s;) < min {_Ei‘(sl) ,'ﬁé'(sl)] .

~ ~ [==]
Using Lemma 1 to {k, hl] and {k, h2} , we obtain two C  functions

hg",.?:" with the desired properties in Lemma 2,

Proof of Theorem 3: We consider Xl first, By Proposition 2.5,

if we take m small, we can deform the given metric gy to a mew metric
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g on X1 with negative Ricci curvature, and By = hA on VT] 5 hA is

the metric on VT\ as in Proposition 2.5. Since NI(Y].) is orientable,

A €50(2) . Let
cos 0., sin a
sin @, cos Q

and let {El(t) s Ez(t)} be the orthonormal parallel frame of Nl(Yl) ,

then we have

e, (1) ¢, (0)
= A
e, (1) ¢, (0)
Let
-1
.Gl(t) costa, =sinta El(t)
'62(t) sinta, costg ‘ Ez(t)

then {ﬂl(t) , ﬂz(t)} is a smooth orthonormal frame of N;(Y,) .

We have

2
2
vV, = iflxiﬂi(t) r= % &))" <nm

We use exponential map exp o identify VT] with [Xid(x, Y) < n} .

Let fr, 81 be the polar coordinate on coordinate plane {xl s xz} s

coshzr dt2 + dr2 + sinhzr(de + Ccdt)2

=n
il

|
then we have ‘
|

I

(coshzr + or,zsinhzr)clt2 + dr? + sinh’r d46% + (26)

+ 20 sinhzr dbdt .
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2

Consider hA defined on V_~ Yy = T X ©,w . We will pull

Ul
the metric out, such that it defined on T2 X (-L,n) for large L,
which agree with hA near T2 % {,'ﬂ} . Let o= O+ ta , then

hA = coshzr dt2 + dr2 + sinhzr dcp2 .

Cons ider the metric

2

as? = gZ(ryac? + ar? + 2 (myap? . (27)

Note {CP, t, r} is not global coordinate on T2 X (=, M) , since
for t=1, ®=0+q and t=0, = 8 . Nevertheless, we still

can use this coordinate. We have for metric (27),

MG iR T e
Ricl%,‘a—ar-)_o

Using Lemma 3.2, for any &> 0, &8<mn , there is a s <0,

=

and two C functions f£,g , such that

(a) £>0, g>0; f'>0, g'>0; f">0, g">0.

sinh r

() f(r) g(r) = coshr for r> & .

2

n

(c) £(x)

g(r) for ¥ near s .




Take 51 > s, such that f(r) = g(r) for s <r< 51 - Consider
the metric
ds? = £2(ryde? + dr’ + £2(r)d (8 + )’
= A+ (de? + dr® + £2(r)as’
2 2
+ P (r)£° (r)dBdt + ap(r)f (r)dtdd
1A 1 o o
and let €, = = —F E, = F——— * 3=, E,TTo
1 £ ab>’ 2 /1+a2-f at 3 3r

Straightforward but rather lengthy calculation shows that

<reG, D &, > - ardde’e? v 2 et
+ a?qu'fo' + a?wzfzf'z
1 a?m‘zfz
o 3 o) 5 4L
<RGp, 3P _";_'§>= - ££N
1.2 2. 2.2
R, 2, 2>= - arddeen+ Farae
R ,? — — = = + Q.
at’ ar’ ar’ At 1+44a (1_cp2)
i 3 2.2
= f
1 2 4‘“‘”‘)
KRS,y 2,2 >= - apfe - 2 ap"E” - a@'EE -
a0’ 3r’ Ar’ at 2 4—& (1- ¢ )
Oy 0 D5
<R(ar’39 56’ 3¢ >=0
3 fs) b _
<RGE, 30 3gr 75" O
and
3 1

3 _ a2
Rlc(’ﬁj)g’g)“ 2<R(aey at —a—t’ ae> +

(1+a2(l-o)]E

3. A, 8 2
+ <RGE 50 350587

84.

(29)
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1 2 ,2.2 l 2 2
_ g2, ofpereet 4‘“Pf Cegn & '
2
(1+a2(1-c;>)) 1+a(1-cp) 1+c.2(l-co2)
2
3 14 ¢ D 3
Rlc( ) = < ( s Py >+< ( )
at’ at [1+a2(1-cp2)]f2 at ae e At At? dr’ or’dt
1 2 2 2.2
2 2 - 1 'Cf
- _eadyer? 4 CAraeREE G o (L+a)e
1+c12(1-cp2) 1+a2(1-cp2)
1 2
(1+cn)cp
~(L+oPEE" +4 £
1+0. (1--cp)
el By L e Dy DD
RlC(BG’Ht) <R(F§6’ar) ar ’ at |
1 3 2.2 |
1 2 g oopef
= _acpffn_Eacpllf - a,ﬂp'ff' - 5 |
1+a"(1=-wu)
2
, .0 Is) 1+a s s fa [5)
RicGzo, 59 = <RGZ, 3@ T:""">
3r? dr [1+a2(1-tp2)]f2 ar? ad 3 or
-ZOLCP &l
+ <R( s ) _>
[1+c1,(1 cp)]f2 ar’ ab at ot
1 > a |
+ <R(—'J "'"J >
[1+a (I_QPZ)]fZ ar Ht ot’? or ‘
1 2[(1+a)+atP] 2
- -2 f .2 ¢ o 0o
T 2 2
_[1+0L (1~cp)] 1+ (L-9) |
2 aztpcp' £! |
+ 3 2. " T
14 (L=-0p)
A 5] f:) 1
Rlc( )= <R( =) < > =0 ‘
or 7 38 At ’ 3¢€) 5t 39 (14021 - ) J£2 ‘
2 \
9y - o9 . 14a =
Rlc(r’at = <r (ar’ae 367 3¢~ 0 . J

[1+a2(1 - )52
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Therefore,
1 2,2
2 2 = oo
X £! £ N £ 2
Ric(ey, &) = - =5 - F + = 5. " F T 2 3
f 14+ (-g) l+a (-9
102 2. ,2
. _ f|2 f" az(l +C(.2) CPQP'. fl 2 a (1 +CL )Cp
Ric(e,y, 8)) = - =5 - F+ 3 7. £ T 2 3
f 1+a (1-9) 1+ (L-¢)
lacpll
" 5 1 £1
Ric(sl,sz)z-_@?;—.f__? o @ s
/1 +a? 14?2 Y1402
13 .2
. Fae9
Ji+a2[1+02(1 - )]
1 2 2 2 2. ,2
fll EG‘[(1+&)+O«QP]QP. (IZCPCP"
Ric(gy, &g) = - 27 + 2 5 2 2 2
[l+a (1-9)] l+a " (L-¢
+ 20" 99" L
2 2 £
L4+o (1-97)
Ric(€1,53)=0 H Ric(52,83)=0 .

We know that metric (29) is defined on [s, Sl] . Now we shall extend

this metric to -(N-1) < r < 81

8y » this metric is the same with (27), and for

we have o= 0 and

as2 = 1+ D) E2(r)de? + ax’ + £2

Take s, € (s,s;) , and k>0, such that

for large N such that for r < s near

1
r > -(N-1) near -(N-1) ,

(ryde® . (30)
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. (31)

Choose a C  function ¢ such that 0 < o(r) <1, and ¢(r) =1 for

r>s; @(r) =0 for large negative Y, and

[+ @ |- e+ + @+ +

[0
+ 20?21 +02)e'?] < -;_- K21 - dd (32)

J1+a2

Let N be a large number, such that if r < -(N-2) then o(r) =0 .

Consider

fl(r) = & cosh(k(xr+N))

f(sz)
cosh(k(s2 +N))

where b =

Take € > 0 very small, such that ‘
i

£'(s, +6) £1(x)
2 1 1, 2
T < k+M, T 7 -k (33)
fl(s2 £) f(32+€) 2
£'(s,)
for re[sz-E, 52-!-3], where M‘—‘%—(;z-')"— .

We note that, from (31), we have

fl(sz) = £(32) s fi(sz) < f'(sz) s fi‘(sz) < f"(sz) .

Using Lemma 3.1, we can find a ¢’ function ¥ 5 which satisfies the

following:




88. |
(a) T(r) = £,(x) for r<s,-E T(r) = £(r) for T > s,+¢
® Fxy>o0; '@ >0, '@ >0, on (N, s;]
© Tz £ 5 T 2 £ on [s,-e,s,+e] .

From (32), we have

’E'(rl . i' (so+€) i f'(sz+ £) < ean
F(r) (s, - &)  f(5,-8)
(34)
E"(rl> £1(0) _ £(0) o 1,2
£(r)  T(s,+e)  f(s,+%) 2
for rE[sz-E,sz-l-E] ’ ;
and
T'(r) _, . sinh(k(r+N))
7 k cosh(k(xr+N)) Sk <k+M
(r)
(35)
£'(r) _ .2 %_ 2
T(r)

o~

In (29), substituting £ by £, we have that, if

E = glsl + «‘;282 + 531-:3 s then

. . e 2, . 2.
Ric(€, €) = E; Rlc(el, El) + 2§1§2R1c(81 s 52) + @2 R].C(Ez, 82) +

+ §32Ric(s3, 53)




Hence, for r <s

0<p<Ll, |2§1§2| < @1 +§22 , we obtain the following estimates:

£ 2 2 a® . 271 _£'7 2 2
- [51 8y > 258, + & } 7~ (5 + 50
1+0 £
2 —1~c12€p'2
£ 2 ' g7 2
- 5 F achcp 5. F * 2 5] 5
l+a (L-¢) l4+o(l-9)
12 2. 2
Lard)op | £ 2 & EFEIP 2
+ 2 7 |t 2 7. |52
1+ (L-9) T+ a0 (L-g)
1 13 .2
+|:_ﬂi‘1___§.991__.f_'_ G & PP ]-25@
; 12
M+ Yi+a? A1+ oR[14021 - B ]
1 2 9. 22,2
E’ o (1+CL )+CL ) )CP' achcpll ZQZCPCP' £ 9
+ 2 52 * 2 7.+ 2 5 F | 53
L+ (1 =-97)) L+ (L-0p) 1+ (L-0)

5 tE, because of (34), (35), and the facts,
2

R
A |qf g2 - £ 2 2

— (&, + E))
3 e 2 1 2

£ L2 2 f£' 1 2,2, .2
- T BT @' - g dIE
2 £’ 1 2 2, 42
+ @2a+addy|ot] = +5 o Q+a)y )%22

1 1
v &l 4 et z oty + e,

+ [% (1.2(1+20L2)cp'2 + azlcp"l + 2a2|cp'[ . %—]%32
Ly2fy o el Iélz—ﬁﬁ(gl2+§2)~—f1§2
2 m f2 2 £f 3

89.




90.

+ (azlcp"-(k+M) +%—cn2cp'2 + cc2(1+c,2)|cp'| (k+M) +
rrdardreE 8

2 2

+ Gla + [o'] G +%a cp'z)(il2 + §,)

+ {%- a2(1+2a2)cp'2 + c,zlcp"l + Zazlcp'f (k+M)]§32

2
1.2 o 2 f! 2 2 £
<—§k 1___|I_. | €] ____Z.(gl 4 52)_?532

Y1 +a? £

where |E,|2= E,l + 52 + §3 .

Now applying (32), we have

N

. 1.2 a 2 f 2 2 " 2
riee, o < - 221 -2 g2 - £ g te e -,

1
2 !/1+C(.2 ‘ £

o
+-;—k2 1——II gl
Y1+oZ
(36)
2
£ 2 2 "2

From all of the above, we have found a metric h on (-N, n] xT ,

which agrees with El =h, mnear (N} X 'I‘2 , and equals

A

2

4% = A +a)Emla? + ar? + To)2ad (37)

on (-N, -(N-=2)) X T2 5 and h has negative Ricei curvature,
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Since d82 is the metric on Sl with length 27 , let

2 —2
a¥% = é%fdez , then d8& is the metric on s! with length 1, also

dt2 is the metric on S1 with length 1, and

45 = (1 +aDF@y2ae + dr” + F@)? -

Xl

Using Lemma 3.2, we can find ¢ functions ‘Ei defined on (-Nl, -{N-2))

for W, -2> N, such that
'gl(r) = Eé(r) for r € (-N1 ;-(Nl..z)) ,
~ 2 B 2~ 2 ' 2 . L,v
g ()" = (L+o)E(r)” , g,(r)" = oF £(x)
for r € (-(N-1), -(N-2)) , and
B >0, F@>0, G >0

on (N ,-(N-2)) , andlet §(r) = () = B, for T € (-N, ~(N-2)) .

For such r , we have the metric

d'Zz = F(y2ae? + ar? + B(r)2a® i (38) ‘
\
Now consider X2 . We can choose polar coordinate {81, t1 ;rl}
on Vﬂ like we did for Vn above, Using Proposition 2.5, and the above

method, we can find a metric om [-Ll, nl] X T2 which coincides with the

given metric g, near {1}} X T2 , and has the form

2

~ 2.2 ~ 2.5 2
gz(r) dt1 + d:t:1 + gz(r) d@l

2
on [-Ll, -(L1-2)) for large L1 >0, where dt1 5 del are

metrics on S1 with length 1,
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Let qD:T2 = Sl % Sl = [(_9-, £)} —> T2

= {(81 ) tl)} by any

diffeomorphism. Then (@ is isotopic to a linear diffeomorphism belonging

to GL(2:;Z) , since the diffeomorphism class of X @ X, only depends
1N 72

on the isotopy class of ¢ . Hence, we can assume @ € GL(2;Z) and

a b
€ GL(2 ;Z) .

6
i

c d

Let (82, t2) = * (_9, t) , then (_G, t) = cp-]'(e2 s t2) and hence

E

382 + btz

c82 + dt2 .

rt
i

In coordinate {82 » By s r} , metric (18) has the form

a5% = gmielradar,” + dr? + ()2 (a? +c2)d822
(39}

+ 25(0)% (ad +be)ab,de,

Using the method above, we can find a metric on [-L, -(N1-2)] X '1'2

which agrees with (39) on [-(Nl—l) s -(N1—2)] , and has the form:

a2 o~ 2.2 2 e 2.2
ds —-gs(r) d!:2 + dr +g3(r) dez

on [~L,-(L-1)] .
2 2, ,
Note ¢@:T —=> T~ 1is the same with {92 s tz} — {Gl s tl} :

19, —> 8, t, —> 1t .

2

Using Lemma 3.2, we can assume that

gy (X + (L-1)) = g, (X + (by=1))

for ¥ € [0,1] .
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Now we can identify {-L} X {82, tz} with [-Ll} X [91, tl} to
obtain a metric on Xl(:)q¥2 with negative Ricel curvature, and this

completes the proof of Theorem 3.

IV. The Proof of Theorems 4, 5 and 6.

Proof of Theorem 4, In the proof of Theorem 1, since all the
procedures are local,instead of two manifolds to start, we start with one
given manifold M, and chocse two different points Py, Py - Take the
"eonnected sum'™ of M to itself at Py and Py then we get a manifold

n-1

which is diffeomorphic to M # S X S1 s and with negative Ricci

curvature metric.
|

Proof of Theorem 6. Let M be a given 3-manifold with negative
Ricei curvature., Take two different points %X,y . Applying Proposition 2.4,
we can deform the given metric on M near x,y, such that the new

metric has the form .

g = dr2 + sinhzr d82

on geodesic balls Bx(n) s By(n) for small n> 0 . Choose unit

. _ 1 i
vectors Vi(l—-l,Z) PR A € TXM, V2 € TyM , and %t.— eprQi 5 T Vl) s

1
- = € €
gy = exPyE g MVy) - Then X, B (M) , vy, B (M) .
Apply Theorem 4 to pairs {x_, x+} and {y_, y+} to take the connected
sums of M to itself at x_ and X, and at y_ and LA Then, we

obtain a manifold which is diffeomorphic to M # 82 X S1 i 52 X8, i.e.,

the given manifold with two handles. By the way are doing, we know that

|
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two copies of 82 % Sl -D3 are disjoint, and Yl(t) = expx(t Vl) s

Yz(t) = expy(t V2) are closed geodesics in each of 82 % S1 - D3
(see the proof of Theorem 1). We also can make Yl and Yo have the

same length. Now we use Theorem 3 to small tubular neighborhoods Vl

of vy and v, of Yy > and any Cp:avl —> av2 s since

s? xst -0y~ v, > xst - ~ v,

are both solid tori with a ball removed, From the Heegaard splitting of

lens space L(p,q) for appropriate choice of o, we have

(52 xsl-D3) ~Vy @cp (S2 xsl—D3) ~V,

~ 3 3
= L(p, q) ~D ,J_I_ D *
Therefore, we obtain a manifold which is diffeomorphic to M#S2 XSl#L(p,q)

with a negative Ricci curvature metric.

Proof of Theorem 5. Let M be the given manifold with negative Ricci
curvature, As in the proof of Theorem 6, we can touch two handles to M to

. . 2 14.2.,.1 ; .
obtain a manifold M#5°“ XS #8°%x8 . We can make the two handles isometric.

We have the simple closed geodesic Yq and Y, inside each handle, We

also have the tubular neighborhoods Vl and V2 . Now we take
(O BV]_ — > BV2

to be the canonical diffeomorphism induced by isometry of two handles.

Using Theorem 2 to glue 82 X Sl ~ D3 U Vl and 52 X Sl ~ D3 U V2 by ®,

we obtain a manifold which is diffeomorphic to

><sl#sz><s1 .

M # 52
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. 1
If we check a2ll the construction, aVl = BVZ oM #52 b Sl # S2 XS

is a total geodesic torus. For any g, we pick up g pairs of

parallel closed geodesics in 3V

lEaV2 in the non-triwvial

each pair to form the "connected sum along circles”, then
obtain a manifold which is diffeomorphic to

M#Szxsl#};‘gxsl

homotopy class of the handle. Apply Theorem 2 g times to
where Bg is a Riemann surface of genus g. This completes
|
|

the proof of Theorem 5.
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