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Abstract of the Dissertation

On the Smoothness of the Limiting

" Digtribution Functions for Additive Functions

by

Victor Hugo Cortes

Doctor of Philosophy

in

Mathematics

State University of New York at Stony Brook

MAY 1984

ABSTRACT

To a givén arithmetic function f(n) we associate
a limiting distribution function F(z) which is the limit
of the arithmetic mean FX(Z) a8 X goes to infinity,
It is well known that for additive arithmetic functions
the existence of such function F{z) is completely

characterized by the Erdos-Wintner theorem. Furthermore

iii




this theorem alsoc gives necessary and sufficient con-
ditions on F(n) for F(z) to be a continuous function.
In this paper we obtain conditions on the additive
arithmetic function f(n) for the limiting distribution
function F(z) to be absolutely continuous. The condi-
tions are given on the second moment of F(z), theorem

2.1.

We prove via theorem 2.1 that the functions given
by f(p) = (log log p) @ with o > 1 generate absolutely
continuous distribution functions. Also we include a
new proof for the absolute continuity of F(z) for the
)—a

case f(p) = (log p s, 0 < a < 1.
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Introduction

We say that f(n), an arithmetic function, is addi-

tive if for any pair of positive coprime integers m, n,

f(m.n) = £f(m) + £(n). An additive function with the

property f(pa) = f(p) for every prime p and positive

integer o 1is called strongly additive.

-,

Clearly, for any positive integer n one has

K a (n)
f(n) = y2f(p) =xf(e? )
pin p
where g (1) ig the positive integer such that op
p
a_(n)+1
and p P doesn't divide n.

As usual, we define theé frequency function FX(Z) as

FX(Z) = Vi(n < x; £f{n) ¢ z)

z 1
n<x

!
el

f(n) < z

Here we are interested in the smoothness property of the

limiting distribution function TF(z) defined by

F(z) = 1lim FX(Z)

P Y




The existence of such limit is guaranteed by the following

Theorem, due to P. Erdds and N. Wintner,

Theorem 0.1 (Erdds - Wintner)

Let f(n) be an additive function.

Define A(n) = % (o) ;3  then
pgn P

1f(p)] s 1

Vh(m : f(m) - A(n) s z) converges to a distribution func-

tion F(z) if and only if

2
(0.1) E-Eﬁggl- and by % are convergent.
ps [T(p)] s 1 p, [£(p)] > 1

The characteristic function y(t)} of F(z) has the fol-

lowing form:

b(t) = 1 () T (Lto(p))exp(ZE L)
£ (p) >L |£(p) sl 2

where w(p) = - % + (1 - %) 21 p exp (it f(Pm))-

The function F(z) 1is of pure type. Furthermore it is

continuous if and only if




(0‘2) ' % % diverges
T (p)#0

This theorem, for strongly additive functions, with

the additional hypothesis

(0.3) 5 féEl converges

p, |£(p)|s1

tells us that the characteristic function §(t) has the

form

b(t) = g (1 - 1 - exg(it f(p)))

The proof of the theorem is based on the strong link
between Probability Theory and Number Theory. Namely,

the relations between the frequencies generated by addi-
tive functions and the sum of independent random variables

in some probabllity space.

P. Erdds [3] proved that if f{p) = O(p ), a>0
then F(z) is singular; in other words, F(z) 1s continuous
with F'(z) = 0 almost every where. For example, the addi-
tive function f£(n) = log({(n)/n) - where @(n) is the Euler

function clearly satisfies

I f(p)| s g-, for every prime p.




Similary, f(n) = log(g(n)/n) where o(n) represents
the sum of the divisors of n, satisfies the game condi-

tion.
Recently, Babu [1l] showed that if
f(p) = (log p)™®, 0< a < 2 then F(z) is
absolutely continuous.

Therefore all three possible types of F(z): singular,

absolutely continuocus and discrete are expected to show

up in the Erdos-Wintner theorem.

The condition for the continulty of F(z) comes from
the Levy's theory of convolutions of infinity many distri-
butions. In Elliot [2] an alternative proof is giVen
using Number Theoretical techniques. But the simplest
proof was given by Szlisz [ 9 ). His idea is to apply

Chebishev inequality in adequate form.

Here we will give some conditions for the absolute

continuity of ¥(z) and we will compare them with other

known results.




Chapter one

I.1 SOME DEFINITIONS AND THEOREMS FROM PROBABILITY THEORY

Let a Probability space (0,G,P) be given. A mea-

surable functions f(w), weQ 1s called a random variable.

If for any set Gps Ggs eeey O of m real numbers

P[£,(0) < ap, () < a

il
famm|
v/
—
Hy
[N
—
g
N
Q
-

holds, then fl.((JJ)J fg(d)), ., fm(w) are called inde-

pendent random variables.

Any real function F which is non-negative, non-
decreasing, left continuous with F({-«) = 0 and F(+«) = 1

1g called a distribution function. It is well known [5]

that F(x) can be decomposed in the following way

F(x) = ajFa(x) + aF (x) + azF_.(x), a;20

. + =1,
with ay + a2 a3 1

where F is a discrete function, FS ig singular and

d
Fac 1s absolutely continuous. A function G 1is singular
if and only 1f G 1is continuocus and G' = 0 almost every-

where.




F(x) 1is called of pure type if ai=l for some i, i=1,2,3.

-There 18 a natural topology for the distribution func-
tions, 1.e., [Fn}n a sequence of distribution functions:
we say that {Fn} converge weakly as noe if and only

If there exists a distribution function ¢ so that

1i z} = z
im F (z) = G(z)

holds at every point =z at which G(z) 1s continuous.

Given a random variable f(w) = X(0), weq, we
define

F (x) = P[X(w) < x].

Since P(q) = 1, the function F (x) 1s a distribution

X

functions, if 1s called the distribution function generated
by the random variable ZX(w). We will omit the subscript

X in F_(x) and we will say that F(x) is the distri-
X

bution function of X(w).

The conveolution of two digtribution functions F, &
1s defined by

(F * @) (x) = fi-mF(y-X)d a(y)

o0

where the integral 1s in the Lebesgue-5tieltjes sense.




Let X(w) be a random variable on (Q,G,P) with

distribution function F(x). The r M noment E(X) and

the variance D(X) of X = T(w) are defined by

BE ) =X (w)ap = [ x dF(x), >0
Y)

and

DECE) as usual.

1
i
~
54
i
=
T
b

With these notationsthe Chebishev inequality becomes

P(IX - BX)| 2a) a2 D (%)

where a>0 and L8 any random variable. This inequal-

I

ity reduces to

_ o Fe 5
P(IX] 2a) £a = [ x%drF(x), a>0

The characteristic function ¢(t) associated with a dis-

tribution function F(x) is defined as the Fourier -

Stieltjes transform of F(x), namely

(t) = [ " ar(x).

n
Consider a sequence [Xk(w)}k—l of independent random




n
variable and let {wk(t)}kzl be the corresponding sequence

of characteristic functions. If we define

(t) = o (t)
"n lsk<n ¢k

then it is well known that ¢, (t) 1s the characteristic
n

function of & = ¥ Ek. After these introductory con-
k=1

cepts and theorems we can state one of the most important
theorem about characteristic functions; we will assume
that {E%(m)} is a sequence of independent random vari-

ables defined in some probability space (0,q,P).

Theorem 1.1:

The sequence F _(x) = P[S, ¢ x] of distribution func-

tionns converges weakly to a distribution function F(x)
a8 nN-oe 1if and oniy if there exists a function y(t)
defined for all real values of t and continuous at zero
such that

lim ¢ (t) = y(t) for every t.

Nove D
Furthermore, the characteristic function of F(x) is
y(t). TFor the proof of this theorem see Flliot [2],

lemma 1.11 and 1.18. Another important thecrem about

the nature of the limiting distribution function is given




by the following,

Theorem 1.2

Let G(x) a distribution function and §(t) its

characteristic function. If there exists p such that

o)) dt < m 1spso

Then G(x) 1is absolutely continuous and its derivative

ils given by

T tx
G'(x) = 1im [ e ¢(t)at for 1 sp < 2,
Tow =T

and by

G'(x) = L.i.m.‘f o HtE d(t)dt for p = 2

Furthermore, ®(t)€LP(R) implies that G'eLq(R) where
L
!

. 1
q = s l.e., 5 +

P
p-1

For the proof see Kawata [5], Zygmund [11]
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I.2 PROBABILISTIC MODEL

Here we will relate the frequency of an additive
function with the sum cof discrete random variables.

For references see Kubilius [7] and Kac [6].

Cne of the models that we can introduce is the

following. Define a sequence of random variables as

follows:

Let r Dbe a real number, ra2; let N be a

positive integer.

Define
f{p?), 3=1,2,...,N-1, n=al

for every prime p not exceeding r,

where f(n) = X f(pJ) is an additive function

In other words, if we define

Ap = fn: p|n}, prime, psr and

Ap(K) = [ns k: n ¢ Ap], k any positive integer,
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the density of Ap is given by

s L
D{Ap} iiﬁ E|Ap(k)1

E_ Bt _ 1
S R

|
=
'_l
=2
=,
ik
|
i
l_.l
}._l
=]

Koo kKow

If we define by Aqu = {n/p|n,q|n} p,q primes and

A (k) with the obvious meaning then

P-4
. 1 1
Tim(A k - =
qu( p,q( )) k P4
therefore:
1 1
DA == . = = D(A . DA ).
( pq) P q ( p) ( q)

This is the reason why we can guarantee the independence
of the random variables {E%}p. We also define the law

P ag follows

- - 1 .
PIX = f(p")] = (1L -3) &, 34=1,...,n-1
=p P’ ]
D
11

d X =90 =1 - =+ =_ .

an P[ . ] 5 pN
N-1 '

Since ¥ (1 - E) 3 + (1 - 5) + —; =1 this Iaw is

1
j=1 Py p
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well defined and it is related to the frequency
V. (n: £(n) s z) by the following theorem.

Theorem 1.3

Let f(n) be an additive function; then

V.(n: £(n) £ z) = p( ¥ Xsz)+ O(eL'LNr x-l)

X pgr
holds uniformly for all real numbers f(pJ), Z, X, x>0

2 £71r X, N positive integer.

For the proof of this theorem and better appreximations

see FElliot [2], Kubilius [(7].

The main fact about this model is that in some sense,

{X@}p, P prime, are independent random variables. We

can interpret this by saying: the "events" of being

divisible by p and q are independent.
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I.3 Some Formulas and Lemmas.

In this section we first state the famous asymptotic

formula

Lemma 1.4:

There are constants A,d such that for any x real,

Xe2
1 -1
a) L == log log x + A + O((log x) ).
psx P
b) ) L. log log x + A + O(exp(~ d/log x)).
psx P

Lemma 1.5: (Abel's Identity)

For any arithmetical function a(n), let
A(x) = 1 a(n)

nNeXx

with A(x) = 0 if x<{1. Assume f has a continuous
derivative on the interval [y,x], where OJ<{y<x.
Then
g a(n) f(n) = A(x) £(x) - A(y) f(y)-—IXA(t) £7(t)dt
ysnsx y
For the prcofs of these lemmas see any elementary

book in Number Theory. . For part b) of lemma 1.l see

Babu [1].
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Proposition 1.6:

For any real numbers ¥x,q, with x>ee and o>l

we have
] |
i) b - converges :
8cp Pllog log p)
i1) 5 L . }l 1 -t R(x)
x<p p(log log p) 7% (log 1log x)¢

where R(x) = O((log log x) ).

Procof:

First we compute

1 —
z . | ;

' Q
e®epgx P (108 Tog p)

Let b(n) Dbe defined as follows i

1 if n is prime, n=ze®
b(n} = {

0 otherwise.

n

|
|
|
We apply lemma 1.5 with a(n) = b(n) and |
f(n) = (log log n)™®. By lemma 1.. we obtain

5 L = (log log x + Ry (x)) (log log x) ™~ +

e p(log log p)“

|
X - -1 -
+ a j (log log t) = (t log t) ~dt |
(=]
e
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X
d -Q
- f eRl(t)<a€(log log t) “dt
e _

where R, (x) = 0(1).

1 (

Taking v = log log t in the first integral it is

easy to see that

fx (log log t) (t log t)—l=
! e
e

Alsc, we note that

jx Rl(t) gt“( (log lOg t)-a)dt —
e
]

I eRl(t)-§€((log log t) Pat - ijl(t) %?((1og log t)™%)dat

The first integfal in the last identity is finite and we
denote 1t by Ie. Clearly the second integral is

0((log log x) 7).

Therefore we have proved

- 1 _ 1
p(log log p)® 1@

log log X)l_ tog

eespsx

- It R(x)
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where R(x) = 2((log log X)_a). If x goes to infinite
we obtain
1 o 1

5 — -2 .1 - 5
e®sp p(log log p)¢ @ 1 ©  e®spsx p(log log p)°

the second paft of the proposition follows immediately.

The next lemma will be vital for finding out conditions
for the square integrability of the characteristic function
¥{t) of the limiting distribution function F(z) generated

by the additive function f(n).

Lemma 1.7

Let y(t) be the characteristic function of the
limiting distribution function F(z) generated by the
additive function f{n).

Assume that f(n) satisfies conditions 9.1 and 0.3 of

theorem 0.1. Then

4(5) 1% < K exp(-2 20 - cos(£72(p)))5)

holds uniformly with respect to N and ¢t.
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Proof: we know from theorem 0.1 that
it f(p) |
2 e -1 |
lw(t)l =1 (1 + 5 SR
p ‘.
-it f(p) :
-1
1+ +
( 5 )
Thereforea
2 2(cos (£f(p)t)~1 1 :
le(e) % = p (1 BleosElR)t)D) o o))
P D l

Taking logarithm one has

tog|y(t)|% = 1 log(1 + 2LESLEPILIZL) 4 o2 ))
D p

< o E (cos(g(p)t)-l) + 0(1)

Applying the exponential function we get the required

inequality. _ 3

Remark: Notice that each factor in the product is less

or equal than one, therefore 1if we restrict ourselves

to a subset of primes we get something which 1s biger

2
than |§(t)| . For strongly additive functions we can

chooge such constant X as one.
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Chapter Two

Scme criteria for absolute continuity of F({z)

One of the necessary conditions, theorem 0.1, for
the existence of F(z), the limiting distribution func-

tion, is the convergence of the series
2

(2.1) 5 (),

(o) |s1 P

Here we study this sum and give conditions on it such
that ¢(t), the characteristic function of F(z) 1is

.square integrable.

For >0 define A_(t) a subset of the prime

numbers, as follows:
A_(t) = {p: |f(p)t] < €}.
It is clear that if the sum 2.1 converges, then

2

t-o peA_(t) P

where € 1s a fixed real number.
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Also, by lemma 1.7 we know that if f{(n) satisfies (0.1),
(0.3) of theorem 0.1 then §(t), the characteristic func-
tion of F(z) satisfies the following inequality

(2.2) W (t)]° s K exp(-2 £ 2(1 - cos(t £(p)))

e

z
P

Now we state the following result:

Lemma 2.1
Let f(n) be an additive function which satisfies
(0.1), (0.2), {0.3) of theorem 0.1 and the following

condition

2 .
= 1nt
(c) 5 __5131 5 Kuior

pea_(t) €42

for t large and € small, with K > - . Then F(z)

€ Cosgk/E)
the limiting distribution function is absolutely con-

tinuous.

Proof: For each x such that |x|< ¢/2 we have
|sin x| 2 (cos €/2)|x|. Hence for p € A_{t) we

28 T
immediately see that 2(g - cos(t £(p))) = 4 sin (___iﬁl)

2 césg(e/Q) tgfg(p). Therefore by (2.2)

2
T

(2.3) |w(t)|2 < exp(— (cos (e/2))
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Then using condition (¢) we get that

-K (cos(e/E‘))2
FIOINPEE

which proves that ¢(t) 1is sgquare integrable. By theorenm

1.2 we conclude that F(z) 1is absolutely continuous.

For the applications of this lemma we need some

notation. Let Aéa,a) the subset of primes defined by

ae,B) = a(t%) - aftf)
where %4ta) and AgtB) are the set defined as before

with o < B, «,B > 0.

Consider the strongly additive function defined by

fn) = ¥ f(p)
pln
p prime

where f(p) is given by, f(p) = (log p) %, where a

is a positive real number.

The cardinality of ‘Aéa,B) is easy to compute, is

the set of primes under the condition
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1l/a 8

e ()7 %)< 0 < exn ()

).
Using lemma 1.4 is easy to see that

1

1 -
by 5= ln|t]8 “ R(t)

peAE(Gsﬁ)

where R(t) 1is a function that goes to zero as t goes

to infinite.

For peA(a,B) we have

2
o €
f'(p) =2
£
Therefore,
2oy & 1 R(t
b3 pp 2 =5 - E(B-a) In|t| + aéél-.
peAla,B) -t t

€

Take B = 1 and choose a < 1 such that 1 - a > a.

This o can be chosen for any a 1in the interval (0,1).
Finally we find ¢ such that eg(iég) cos® /2> 1.

After thisechoices we easily geﬁ'that for such.a,such

that theldst inequality holds for some g <1

2
£° T f—éﬂl z K lnt +R(t) :
peA(a,B)

which is enough for proving the square integrability of




22

y(t). Therefore the distribution function F(z) generated
by f(n} is absolutely continuous. This example also
give us how fast the second moment (2.1) has to go to zero

for getting an absolute continuous distribution function.

We consider Al(t) as before and f{(n) an arbitrary

additive function.

Theorem 2.1

Let f(n) be an additive function which satisfies

conditions. (0.1), (9.2), (0.3) of theorem 0.1. We also

assume that there is a constant ¥ > 0 such that

2
(d) T ). yeBy R(t)

pea, (t) P

for t large, where R(t) 1s a function such that
th(t) i1s bounded as t goes to infinite and B is a
positive constant with 0 g B < 2. Then the limiting
distribution function generated by £(n) 1is absolutely

continuous.

Proct:

We Enow from lemma 1.7 that for any + and for

peAl(t) we have

2
\*(t)fe < K exp(- at2 5 E“LEL),
peh, (t)

P
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Applying condition (d) we obtain |

|° 8

Lo ()] Ky exp(— Mt

for scme constant K1 > 0. This inequality shows that

fw(t)|2 1ls Integrable for B < 2 and hence by thesrem

1.2 F(z) is absolutely continuous.

ixample:

Consider the strongly additive function given by

with f(p) defined by f(p) = (log log p) ¥, v > 1. By
proposition 1.6 we see that conditions (0.1}, (0.2) and

(0.3) of theorem 0.1 are satisfied, therefore only remains

to check condition (d).

By part il) of proposition 1.6 we have

2
pea, (t) p>h(t) p(log log p)
1 ~ 1
= 31 + R(t)

(log log h(t)2Y~t

where h(t) = exp(exp(tl/Y)) and R{t) = O(l/tg).




2l

Therefore

Bl 2 L+ R(t)
pen (t) P 2Y-T * 2-17y

Since Y21l then O g p =2 - 1/v ¢ 2.

Appealing theorem 2.1 we conclude that FP(z) 1is

absolutely continuous.
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IT.2 New Proof of the absolute continuity

f(p) = (log pJ°.

The method used by ErdSs - Katai [L] for proving
the absolute continuity of F(z), the limiting distri-
bution function generated by r£(p) = (log p)_l/a, a > 1

consists in the study of the sum

cos(t f(p))
(2.4) g = S L
s (t)<p<s(t)

which appears in the inequality (2.2).

They prove that the sum 2.4 is bounded as + goes
to infinite if s(t) = £+ and S(t) = eta. We notice
that the inequality (2.2) holds for p running over
the primes number. Since each factor in (2.2) is less

than one we obtain that

(2:9) 1(9)]% < exp(-2 T 20 - eos(t 2(5))

s exp (-2 5 %{1 - cos(t £(p))).
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Taking s(t) = t and S(t) = e for f(p) = (log p)—‘l/Oﬂ

one gets

|¢(t)|2 s K, exp(- 2 1ln ta) exp(ln 1In t)

which proves the square integrability of [y(t)].

Here we develop a method for proving the square
“integrability of y(t) via the sum 2.4 with
(/)

s(t) = exp and s(t) = exp(ta).

The main idea 1s to compare the positive and negative

part of the sum (2.4).
Define the.following sequence of sets fAK}K.

A = Ip: f(p)t < (2k + 1)7/2}, k=0,1,2, ...

where p  runs over the prime numbers.

For each n=1,2,3%,... let Bn be the sets given by

Clearly the sets Bn are disjoint. TFurthermore the sum

(2.4) can be decomposed as follows:
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(2.6) 5 cos t f(p) _ Nét) . cos (t £(p) ..
s (t)<p<s(t) P n=1 peB, P
L cos(t £(p))
n=1 peBgn_l '
. 5 cos{t f(p))
r(t)<p<s(t) P

where N(t) = (2 t-1) s(t) = exp(t¥?), s(t) - exp(tY

and r(t) = exp((% t)%). It is easy to see that the last

sum in (2.6) is bounded because by lemma 1.4

' t 1 St
(2.1) n(t>L§<iiS(p () o 1og(%) - 0(1)

For estimating the First sum in the right hand side of

2.6 we need to compute the cardinality of Bgﬁ- Tt is
clear that peBEn if and only if
2 t \a 2 t o\
exp (7 mayp) ) s p s exp((Z 7))

This last inequalities come from the definition of

-1
f(p) = (Log p) /a. By lemma 1.4 we obtain

od ¥

z

= a log((Un+l)n/2) - a log((4n-1)n/2)
pEBgn ’ _

+o(dY).
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Since the logarithm is monotonic and by using the Mean

Value Theorem we have

N(t) N(t) N(t) _a
g P 2“1 ro( s &)
n=1 peB. P np=1 =0 n=1 t

en

Since azl we also have

1 N(t) o4
(2.7a) = I n = 0(1) as t goes to infinite.
t n=1

Therefore we have proved

N(t) ) N(t)

(2.8) % L —s 20 T oqgptT b 9(1)
n=1 peB, p n=1

for o = 1.

Now we will estimate the second sum in the right hand

side of 2.6. Let B,,_1(€) be a subset of Boyg

defined by

Bon.1(8) = {p: ((4n-3)+eym/2 < £{p)t < ({Ln-1)-e)T/2]

where € 1is a positive real number, 9 < e £ 1.
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We denote d(e) the negative number given by

d(e) = - sin(Z €).

> By construction, for any peB

2n—l(€)
we have

cos(t T(p)) s d(e).

Using this construction we get the following inequality

(2.9) Nét) 3 cos (t f(P))s d(e) Nét? 5
n=1 peB,, ; b n=1 peB, _,(¢)

T |

The cardinality of BEn-l(E) is given by the set of prime

numbers which are in the interval

((In-3)+e)n/2 s p s ((In-1) -e)n/2 .

By a similar argument used in 2.8 we get

N(t)
(2.10) D

n=1 PEB

N(t)
=a ¥ (log({(in-1)-e)m/2) -
n=1

1
on-1 ()

- 1og(((4n—3)+e)ﬂ/2))+ 0(1).

Taking the exponential function in(2.6)and applying (2.7),

(2.8), (2.9) (2.19) one gets




| cos (¢ £(p)). o
exp(s(t)§%<s(t) 5 ) s K, exp {2q nfl
N(t) 1
exp (ad (&) Zi 1og(§§:%:§))
N=

where K3 1s some positive constant. By the Mean Value

Theorem, the monotonicity of logarithm and the fact that

d(e) 1is a negative number one finally gets

(2.11)  exp( 5 coe(t T(p))y ¢
s (t)<p<s(t) i
N(t)
sKB exp(2a+2d(e)a(l—e))n§l Qn—l)

since

}Nét) L Nét) L | 0(1) t to infinit

- = as goes O 1nrinite

=1 M=l 7, In

we have
exp( 2 % cos (b f(p)))

s (L)<pLs(t)

s K, exp(%(l+d(e)(l~e))lnﬁt).

Therefore by (2.5) and (2.11) we finally get




IT.3 Some Remark about the square integrability

of the characteristic function.

Another technigue for testing the square integrabi-
lity of the characteristic function y(t) consists in

to estimate the set A given by
1
(2.13) A = [te[0,1]: |g, 5 cos(t £(p))|= 3 =z, 3

for T large, where the sum ZT % denotes the sum
over the primes in the interval [M(T), N(T)] with

M, N 1increasing functions whichgo to infinite as T

N(T

T ) >0 for T large.

goes to infinite and log(log
Following the paper of Sziisz [9] we have that the
integral

T 2
I(T) = fomm at

can be written as follows

(2.14) T(T) ='Tfll¢(tT)|2dt-
0

Denote by YT the following expression

cos t £(p)T)

YT = z

B M{T)<p<N(T) P




é.l&) with respect to A

T

0t + ul y (£T) | “at

t and by appealing to lemma

cond moment of Y, given by

=[5 eose to)m)ar

Working out thé'idehtity (2.16) we get

) <o ¢ 2 Sy SRS,
p#4q |
¢ p Losin((f(p) - r(q))m)
pd (£(p) - ()T
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where p and g run over the primes numbers in the
interval [M(T), N(T)]. We can assume without loss of
generality that |f(p)| # |f(q)] for p # q, see [9]

for details.

The first expression in the right hand side of
(2.15) tells us that N(T) should be at least
exp(Tl+€). The second expression in 2.15 is difficult

to handle and conditiocns like

. cos(tg(p)T) - 0(1) as T goes to

p ‘ infinite
p<M(tT)

r(tT)<
for some functions r(x), M(x) with r(x) < M(x),
: 1
r(x) = exp(xl+€) assure that D(Y%) is of order O(;P?) and
therefore the finiteness of the integral (2.14). But
these kind of conditions obvicusly guaranteed the

convergence of (2.14) as Twe as we saw in (2.5). We

weren't able to find new conditions on f(n), via the

trigonometric series (2.16), such that T(T) 1is finite.
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