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Abstract of the dissertation

Manifolds of positive scalar curvature.
Yang-Mills fields -~ the Kalusa-Klein model.

by

Rodney Arthur Carr
Doctor of Philosophy
in
Méthematics
State University of New York at Stony Brook

19084

In this dissertation we investigate problems arising
from two distinct areas in mathematics. We study manifolds
of positive scalar curvature and examine certain problems
raised in the study of Yang-Mills fields.

our study of positive scalar curvature includes both
positive and negative results. Our positive results invclive
giving newiexamples of manifolds which carry metrics of
positive scalar curvature. The basic result here is a

surgery—type construction for regular neighbourhoods of

[
e
[




embedded submanifolds of a manifold. Using this we show
that any finitely presented group cén appear as the
fundamental group of a compact 4-manifold of positive scalar
curvature. We also examine the space of positive scalar
curvature metrics on a fixed ﬁanifold M. Here, using the
technigque of plumbing disc bundles over spheres we find that
for M = S4n“1, n > 2 this space has an infinite number of
connected components.

| The other main series of results concerning metrics of
positive scalar curvature is motivated by the idea that
"large" manifolds should not admit such metrics. We develop
techniques which involve formalizing a general notion of
_"1argeness“ for manifolds by requiring "large" submanifolds.

In the first we study manifolds having "large” codimension 2

submanifolds by extending the bad-end results of Gromov and
Lawson, 1In the second we study manifolds having "large™

codimension 3 submanifolds by concentrating on

"complementary"” submanifolds. The latter method gives
interesting results in dimension 4 where we are‘able to use
tha minimal surface techniques developed by Schoen and Yau
and others.

Our results concerning Yang-Mills fields rzlate to the
so-called Kalusa-Klein model which attempts to unify the

gravitaticnal field with other interaction fields of physics




by working on the total space of a principal G-bundle

P > M. We give a general fbrmulation using a well-known
functiénal = the general idea of the model being that
critiéal points of the functional should give simultaneous
solutions of the Einstein field and Yang-Mills equations.
We show, however, that this is only the case under certain
restrictions and is true in general only if G = U(1). 1In
addition, we obtain a topological rigidity result for
Einstein metrics on P, 1In part this depends on a rigidity
result for metrics having harmonic curvature derived from

the Bochner-weitezbock formula.
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Chapter 1. Introduction - Survey of results.

In this chapter we describe our main results and give
some background material motivating the studies. There are
4 main chapters in this dissgrtation. In Chapters 2, 3 and
4 we continue the study of manifolds of positive svalar
curvature and in Chapter 5 we consider some problems arising
from the study of Yang-Mills fields. These subjects are
discussed in Sections 1.1 and 1.2 of this chapter

respectively.

§1.3. Pousitive gcalar curvature,

l
)

Let M be a complete riemannian manifold. It is =
fundamental problem to understand the relationship between
the curvature and topology of M. In the first few chapters
of this dissertation we continue to investigate this
ra2lationship for manifolds carrying metrics of positive
scalar curvature,

In genecral, the results concerning manifolds which
admit metrics of any type of positive curvature (sectional,
Ricci or sgalar) indicate that these ménifolds form a rathev
restriciive class, more specifically, that they are "small"
in some sence. To illustrate this we recall the classical

theorem of Myers and Bonnet which states that a manifold

admitting a complets metric of stirictly positive sectional




or Ricci curvature has a compact universal cover (and so is
itself compact and has a finite fundamental group). With
even stronger curvature restrictions the notion of
"smallness" becomes more definite - the pinching theorems,
for example, conclude that the universal cover of a manifold
admitting a sufficiently &-pinched metric is diffeomorphic
to the usual sphere. However, in this dissertation we

will be concerned with the weaker restriction that is
imposed by requiring positive scalar curvature only. The
class of manifolds admitting such metrics is, of course,
much wider than the class admitting, say, positive secticnal
curvature but we still expect them to be "smali®” in some
sence. However, it is difficult to formulate this notion
precissly and in fact we have mores success in showing that
manifolds which are "large™ do not admitrmetrics of.positive.
scalar curvature.

Before attempting to develop a notion of largeness it is
nseful to study examples of manifolds which de admit metrics
of positive scalar curvature. It turns out that we have a
grzat deal of freedon in construction; Firstly, we note

2 carries such a metric.,

‘that any manifold of the form M x 8
This zan be g2neralized in a number of ways. TFor example, a

basic discovery of Gromov and Lawson and Schoen and Yau was

that a spbere "factor" could be used to "carcy® positive



scalar curvature around corners. A simple example of the
use of this technigque is illustrated in the construction of

a complete metric of strictly positive scalar curvature on

R3 where we "pull out” from the standard metric on

g3 - {point} to a complete one which is a product con the

end R x 82-

\_,// ‘

Mere the metric on the 5 factor can be chosen to

dominate the negative curvature introduced in going around
the corner. Developing this idea GromOV'and Lawson [GL2]
and, independently, Schqen and Yau {SYZ] proved that any

manifold obtained from a manifold of positive scalar

curvaturs by codimension > 3 surgeries also carries a

metric ¢f positive gcalar curvature. Chapter 2 of this

dizgertation is devoted to developing the technijue further

and studyiny somz2 natural consequences. We provs the

following basic theorom.




Theorem

B, Let M be a riemannian manifold with @

fixed smootl cell decompositicon and K a codimension 2 3

subcomplex of M. Then there is a regular neighbourhood U

of K in M so that the induced metric on the boundary QU

has positive scalar curvature.,

Using this we are able to construct some new examples
of manifolds of positive scalar curvature. In particular,

&s an interesting consequence we obtain (§2.2)

Theorem B. Let = be any finitely presented group.

Then there is a compact 4-manifold M of pogitive scalar

curvature with fundamental group nl(M) = .

In Chapter 2 we also show that the épace rT(M)  of
positive scalar <¢urvature metrics on a.fixed manifold M
can be guite complicated. The study reguires somse
background material concerning metrics of positive scalar
curvabure on manifoldé with boundary ($2.3), then we
indicate une method for detecting non-zero elements of the
homotopy groups nk(R+(M}), k= 0,1. {§2.4). 1In §2.5 we

usa the technique of plumbing disc bundles over spheres to




ot

study ﬂO(R+(S4k"1)). By plumbing according to the tree

Eg (appropiately weighted)

‘11 Va V3 Va Vg V6 vy

F
-y
9
-
i

we show that the number of connected components of
S4k—]

R

o0

) i

infinite.

Thus, we see that manifolds of positive scalar
curvature can be quite complicated and that we have a gresat
deal éf freedom to deform such manifolds while retaining
positive scalar curvature. Any notion of "largeness" for
manifolds which prohibits positive scalar curvature must
take this into account. 1In particular, Theorem B shows that
any condition using the fundamental group must involve its
interaction with the topology of the manifold. Also, we
should avoid manifolds having spheres of dimension » 2
which may be able to carry the positive curvature,

The first successful formulation of a notion of

"largeness” was given by Schoen and Yau [SY,,;,1. They
gtudied compeact manifolds having "large® hypersurfaces and
proved thal such manifolds do not admit metrics of positive

scalar curvaturs. The idea here is that manifolds

containing "bad" hypersurfaces cannot also contain spheres




of dimension » 2 that carry the pogitive curvature. Their
proof used minimal surface techniques and unfortunately
broke down in dimensions » 8 due to the failuve of
internal regularity for solutions of the Plateau problem,
Another natural idea to try in an attempt at
formalizing a notion of "largeness" for manifolds is Lo
use the covers - a manifold with "larg=s" covers should not
admit a metric positive scalar curvature. For example,
recall that & manifold M _is called a K{=,1} if
ﬂ1(M) = % and nn(M) =0 for n 2> Z. Then the universal
cover.of M is contractible and therefore presumably

"large"™ in some sence. Hence we may expect the following to

be true.

Conjecture C. A compact K{mn,1l)-manifold does not admii

a metric of positive scalar curvature,

Although this conjecture is plausible no notion of
"lavgeness” which is sufficiently strong to inciude the
generai Ki{x,)} case has so far been given. However, a.
less genaral but still highly successful "largeness®

condition for covers nas been given by Gromov and Lawson

[GL

1123-»




pDefinition D. A compact manifold X is enlargeable if

for any = > 0 and any riemannian metric on X there is a

gspin covering manifold ig + X  and a wmap fg:i; - Sn(l)

onto the euclidean n~sphere of radius 1 which is

e~contracting, constant outside of a compact set and has

non-zero degree.

Gromov and Lawson provea that eniargeable wmanifolds do

not admit metrics of positive scalar curvature. Their proocf

used the Dirac operator and a relative Atiyah-Singer Index

Theorem (for non-compact manifolds). Thus it extends

earlier work of Lichnerowitz [Li] and Hitchen [HI.

The enlargeable result already gives many examples of
compact manifolds which cannot carry metrics of positive
scalar curvature, the tori Tn, n » 2, for example (this
latter result was also obtained by Schoen and Yau [SYl,z] in
dimensions < 7). However, the concept of enlargeable is
defined in 4 geometric way and so in cases where we have
topelogical information alene it becomes difficult to work
with. For example, it is easy to see ﬁhat a éompact
K{®x,1)-nanifold which carriez.a metric having sectioral
curvatures < 0 1is enlargeablie (and so does not admit a

metric of positive scalar curvature) but the condition does

not apply directly to an arbitary compact K{mn,1).




Thus, in order to exhibit other compact manifolds which
do not admit metrics of positive scalar curvature we ratuin
to an examination of the covers. If X » Xc is a covexr of
a compact manifold of positive gcalar curvature then the
lifted metric on X has uniformly positive scalar |
curvature. If X is non-compact this has stronger
implications than requiring only positive scalar curvaiture.
This can be seen in the following examples. Let T be a
(compact) enlargeable ménifold. Then
1. ¥ xR cannot carry a metric of positive scalar curvature
2. £ x R2 cannot carry a metric of uﬁiformly positive

scalar curvature
3. T X R3 can .carry a metric of uniformly peositive scalar
curvature.
These examples illustrate a general phenomenom, namely, thar
a non-compact manifold's inability to carry a metric of
uniformly positive scalar curvature can result from having a
high dimensional enlargeable (= "bad") submanifold_Which is
“uzimost” a factor. Also note that the R and R factors
in the Type ! and 2 cases do not have dimension > 2
sphere "factors" which could carry all the positive
curvature. Thus, these types are cleariy "large" in some

sence.

0f course, the general classes of manifolds enjoying




properties akin to those of the above simple products are
much wider - all we really require is that X have a “"bad"
submanifcld & which is sufficiently non-trivally embedded.
For example, the manifolds with "large" hypersurfaces which
were studied by Schoen and Yau fall into the general class
of Type 1 manifolds. Gromov and Lawson [GLz] studied the
class of so-called Azuenlargeable manifolds which are also
of this type. In both cases it was shown that the manifolds
do not carry metrics ofrpositive scalar curvature,

Manifolds of Type 2 (that is, ones with & "“large"
codiménsion 2 submanifold) have been étudied by Gromov =znd
Lawson. They introduced the notion of a manifold having a
"bad end" and proved that such manifolds do not carry
metrics of positive scalar curvature. Various manifolds
having "large" codimension 2 submanifolds were then shown +to
have bad ends.

Manifolds of Type 1 or 2 can be used directly in
showing that certain compact manifolds X do not carry
metrics of positive scalar curvature - we need only show‘
that X, has an infinite cover ¥X falling into one of

these classes. A standard method for attempting *his is to

require that X itgelf have embedded a "large"”
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. i .
submanifold % » XC s0 that when lifted to the cover

-t

X+ XC corresponding to the subgroup i*(nl(z)) < nlixc)

¥z

the submanifold ¢ X dis sufficiently "bad". The bad-end
results of Gromov and Lawson depend on this construction.
Por example, a compact 3-dimensional X(#w,l)-manifold has au
embedded civcle representing an element of infinite order.
The corresponding K(Z,1) cover is of Type 2 (it has & bad
eml) so cannot carry a metric of uniformly positive scalar
curvature. Hence we obhtain the result that no compact
3-dimensional K(n,l)-manifold admits a metric of positive
gscalar curvature (when combined with thé Prime Decomposition
Theorem for 3-manifolds [M3] and the surgery results fov
manifolds of positive scalar curvature this gives an almost
complete classification of compact 3-manifolds of positive
écalar curvature} . In'Chapter 3 we extent these results a.d

prove a more general “bad end"-~tvpe theorem.

Theorem E. Let X, be a compact manifoid:containing a

- , . i
compact codimension 2 submanifold 1 XC g0 that the

following conditions hold

1. 5“3_(}"(;}/”;1(2)[ = =

2. The normal circle about % in X_ has infinite crder

B s — C




_3;_ “1(}(0-2)

3., If T = i*(nl(z)) then there is a surjective map £,
of T onto the fundamental group of the {n-2)~torus
2 gar - 2772

7
Let X » Xc be the cover corresponding to the subgroup

i(n](P)) c my (XD, i*+ ¥ » X the l1ift of i:% -» Koo 2nd 7

the boundary of a tubular neighbourhood of i(Z) 1in X.

Let f:X » T2 be the map inducing £4. In addition to

the above conditions we require that

4. The composition foisx » T has non-zero degree

2.

5. There iﬁ an Sl—ggndle ZO > so that the pundle

z > I 1is the pull-back of 2z, via foi.

Then X » X, has a cover which does not admit a metric of

uniformly positive scalar curvature. In particular, X,

cannot carry a metric of peositive scalar curvature.

This thecvewm can bz used to exhibit further examples of
compaét nanifolds which do not admit metrics of positive
acalar curvature. Unfortunately, however, we h%ve not been
able to extend the K(=®,1}) result to higher dimensions
usirg this method, although this seems to be due to a lack

of understanding of the fundamental groups which can appear

rather than a fault of method itsell,.

1l



. We now turn our attention to non-comnpact manifolds of
.Type 3, that is, ones with codimension 3 enlargeable
gubmanifolds. On the surface it does not appear that these
manifolds will be very useful in showing which compact
manifolds do not have metrics of positive scalar curvature,
since they could; concievably, cover such manifolds. Maybe
this is true in general. However, consider the simple

1 3

4-dimensional example X = S % R with the product metric

of uniformly positive scalar curvature
2 3
de + (8 - {point} "pulled out").

Here the Rj factor (which has 2-dimensional sphere
"factors” to carry the positive scalar curvature) has a

"long and thin" property so that truncating leaves a small

houndary.

5 /

1
. ﬂ_ﬂr‘—%%
Li
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.
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If we now assume that X covers a compact manifold we
are able to "cap-off" this boundary with a compact manifcld
and form a 3-cycle which we can arrange to represent a

non-zeco class in  Hyryxy (gimply by truncating a long way

out and capping off s0 that the intergection number with the

L4




sl doesn't change - we may have to take a finite cover

X + X first). This contradiction shows that ¥ with this
metric cannot be the riemannian cover of a compact manifolid.

Thus, potentially, we have ancther method for showing
that a compact manifold XC does not admit a metric of
positive scalar curvature - we (simply} have to show that it
has a non-~compact cover X =» b9 having properties similar
to those just described for Slx R>. The idea is that if X
has a codimension 3 "bad" =submanifold I then we may be
able to find a complementary.3—dimensional submanifold
M X which "carries" the positive sbalar curvature and is
{hopefully) "long and thin" in some sence. We can truncate
this submanifold and may be able to cap off the resulting
boundary in X to form a non-zero elemept of. H3(X). This
will be a contradiction in some cases.

The most delicate part of this method is in the
finding of a suitable complementary 3~dimensionél
submanifold M and showing that it is sufficiently "long
and thin". Here is one possiible method for doing this. We
notice that the Rg—factor in our Slx R> example is a
stable minimal 3-manifold. Therefore, a natural choice for
our A-manitold M is to pick it to be a stable minimal

submanifold in X which intersects the “"bad" submanifold ¢

non-trivally. Such a choice wmight work in all dimensions




but, for the moment, at least, it is only in the study of
d-manifolds that current knewledge enables progress to be
made. The reason is that in this case (alone) the
3-manifold M "carrying" the positive curvature is a
hypersurface and the technigues developed by Schoen and Yau
[SYi,2,3) and Fischer-Colbrie and Schoen [F-CS8] can be used
effectively in conjunction with results concerning
3-manifolds of positive scalar curvature obtainsd by Gromov
and Lawson [GL3l. A complete description of this with
details is given in Chapter 4. We obtain a theorem which
can be used to exhibit new examples of compact 4-manifolds
which do not admit metrics of positive scalar curvature,
Unfortunately, however, we have been unable to give a
cempiete proof that covers compact K{=x,1) 4-manifolds. We
have recently learned that Schoen and Yau have-filléd in th
missing link and have thus proved the theorem that these

manifolds do not admit such metrics.

§).2. Yang-Mills fields - Kalusa-Klein model.

in Chapter 5 of this dissertation‘we consider sone
problens arising out of the study of Yang-Mills fields.
Yang~Mi1lls fields are used in physics in ar attempt to
give a classical description of interaction fields. The

subject has a long history begining with the eariy work of

e



Weyl [W], Kalusa {Kal and Klein [Kl] in the 1220's. The
work of Kalusa and Klein is particually interesting. They
attempted to combine the gravitational and electromagnetic
forces into a unified theory by working on the total space
P of a principal U(l)-bundle over gpace-time M. The
motivation for much of our current study here comes from an
attempt to understand this model in a wider setting.

In 1954 Yang and Mills [¥YM] gave the first us=ful
description of interaction fields other than the
electromagnetic (and gravitational).fields. Their work
involved using the non-~abelian Lie gréup gU(2) and was
couched in a differential-geometric setting. It was
recognized that the mathematical model was nothing more

than a connection on a principal bundle so the

i
(T
O

eneralization to arbitary Lie qgroups appeared =oon Y.
g P

a

The theory developed quickly but an added boost was given in

1967 when Weinberg and Salam gave a model which unified the
waax and electrgmagnetic interactions. Since then thousands
cf pavpers have appeared in the physics literature.

in this dissertation we will not be concerned with the
ghysical aspects of Yang-Mills fields. In particular, we do

not dicuss how they arise naturally and simply start by

e

aiving a mathematical definition., This is done in Section

¥

5.1. We introduce the Yang-Mills functional YM and the
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combined Einstein-Yang-Mills functional F. Thease are
defined on the space Met{M) Conn{(P) where P M  is our
principal hundle, Met(M) the space of riemannian metrics on

M and Conn(P) the space of connections on P. Critical

points of ¥YM (for a fixed ﬁetric) are Yang-Mills
potentials and critical points for E satisfy the combined
Binstein field and Yang-Mills equations.

In Section 5.2 we study various asmpects of the Kalusa-
Klein model. We give the formulation in a general setting
using a well-known functional E {the total curvature

functional) on the space of wmetrics of the total space P,

Critical points of E restricted to the subspace of bundie

metrics on P are shown to give solutions Jf the combined

Binstein-Yang-Mills equations on M. However, we also shnw

that in geueral such critical points satisfy the vacuum

Einstein fisld equation o P only in the case that the

p

iroup is the unitary group U(l). This latter result

B

clarifies scme confusion prevalent in the mathematical
community - it was generally believed that the combined
Einstein-Yang-Mills equations on M were equivalent to the
gimpiar vacuum Einstein field equations on P,

We also study other critical points of E. For



- Co s - . L o o
example, Einstelin metrics are critical points of “1MetV(P)

where MetV(P) Met (P} is the subspace of metrics having
fixed volume V. We investigate the conditions under which
an Einstein bundle metric actually has constant positive

curvature by firstly showing that P » M admits a bundle

metric having constant positive curvature only if it is one

of the standard examples, namely

2 > PT{C) or > pP(H)Y.

p ———n
We then use a rigidity result derived from the Bochner-

Weitezbock formula and observe that jﬁ P > M gdmiti an

Einstein bundle metric which is sufficiently clese to having

constant positive curvature then the metric actually has

constant positive curvature, and we are back 'in the

situation ijust described. Thus we have a type of

topological quantization for Einstein bundle metrics on P.



Chapter 2. Construction of metrics of positive scalar

curvature.

In this chapter we contribute to the study of manifolds
of positive scalar curvature by giving some new examples.

In the first section {§2.1) we prove a basic surgery-
~type theorem (Theorem 2.1.1) for hypersurfaces in an
afbitary manifold. The underlying idea here is similar to
that used by Gromov and Lawson [GL,] and Schoen and Yau
[¢¥,] in obtaining their surgery results for manifolds of
positive scalar curvature. We use the fact that spheres of
dimension » 2 «can "carry" positive écalar curvature arcuni
corners., However, we work ambiently.

in subseqguent sections we use Theorem 2,1.1 to exhibit
new riemannian manifolds of positive scalar curvature. 1In
Section 2.2. we use it to show that any finitely presentsad
groun can appsar as the fundamental group of a compact
4~nanifold of positive scalar curvature. In Sections 2.3 -
2.5 we use it in conjunction with some results concerning
metrics of positive scalar curvature on manifolds with
woeundary to study the space of positive scalar curvaturs
metrics un a fixed manifold M. By using the technique of

plumbing digc bundles over spher2s we obtain interesting

47]

rasults for M o=

odm=1
Pl ) -




§2.1. Positive scalar curvature on boundaries of.regular

neighbourhoods,

In this section we prove the following theorem.

Theorem 2.1.1. Let M Qg a riemannian manifold 9£

dimension n with a fixed smooth cell decomposition and K

a codimension g » 3 subcomplex of M. Then there is a

regular neighbourhocod U of K in M so that the induced

metric on the boundary U has positive scalar curvature.

Idea of_E£pofa We show how to construct the

neighbourhood U inductively. We successively construct
tubular neighbourhoods Uy about the i-skeletons Ki of
K, i=0,;1,...,n-q, so0 that at each step the induced metric
on the boundary 8U; has positive scalar curvature. Ths

irductive step is achieved by taking Uy and constructing

U;.7 by Ypulling out" around the (i+l)-cells of the
skelaton K1+1. At the final step we will have constructed
U =213 We note that at each step we are "pulling out®

S
spheres «f dimension » g~ > 2 which are used to carry the

positive curvature. Of course, we are working ambiently but

a basic fact which indicates that such an idea will work is

that the principal curvatures of a smail distance sphere




Sp(s)'= {xemnm | disty(x,p) = ¢ }, p e M,
are close to those of the usual sphere, that is, of the form
-1/e + 0{g). The problem then is similar to that of Growmov
and Lawson [GLz] in that we must show that the negative

curvature introduced in "pulling out®™ can indeed be

dominated by the positively curved sphere "factors".

Praoof of theorem. As indicated above we will construct

U  inductively by forming successive regular neighbourhoods

Uj of the i-skeletons K% of Ky 1= 1,25000,n—s
To begin the induction we form Ugr @ regular
neighbourhocd of the O-skeleton Ky = {Vl""’vr} of ¥.
For ¢ > 0 and p e M let
Bp(a) = { xeM | distM(p,x) < e}

be a small ball centered at p with boundary Sp(s), Then

set U0 = Bvl(al)u '--iJBVr(sr) where the £ > 0 are

chosen so that

i) S, ley) n 8 (e =0 for 1 % 3
e . .

+)
i J .

i1y & (zi} has positive scalar curvature for 1 = l,...,r

v

iii) each l-cell of K coming into the vertex vy

intersects S (g;) transversely in one point.
i

For the inductive step we assume thet Up—l

o
n
o}

regular neignbourhood the (p-1)-skeletcn &Pl sueh

that
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a) with the induced metric. the hypersurface H 6Up
positive scalar curvature, |
and
b} each p-cell o of K whiph intersects H does so
transversely in a (p-1)-sphere.
We fix a diffeomophism byt o n K-> Sp_l onto the
{p-l})-sphere.
For each p~cell ¢ of K we now show how to "pull

out® U around o while retaining positive scalar

p-1
curvature on the boundary. Lét 1 be the outward unit
normal to H. By altering K é little, if necessary, we
assume that for each y € sP™}  and sufficiently small
{ty e o for all <« & (~&,38}.

{(y)
We define distance functions t:M » R and r:M -» R+ as

5 > 0 we have eXpPy~1
O- —

follows., Set

(2.1.2) | T(x) = dist, (x,H),

where we measure distance positively if x € M 1is in the

direcvtion and negatively if x is in the -n direction,

-1 has

NS

and
(2.1.3) Tix) = distM(x,o).
y A=g=p , ,
Let {ei . be orthonormal sections of the normal bundle
s j_

of ¢, with e = grad(¥). For r > 0 let
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pUR) = { x e RY [ ixi < ¢ }.
For sufficiently small R > 0 and 0 < T < § we will
identify the set

v x e M | r(x) <R, 0< t(x) < T}

R,T={

with DY(R) x [0,T] x gp-1 by the map which sends x e Vp g

to (0,,...,0__.,r,t,y) where {(8,,..., ,v) & DYRY,
1 g-1 1

eq_l
p-1 a = |
t £ [0,T] and y & S are such that H, oo 1) o {x}.

Here H, is the hypersurface a constant distance t from

H and
: [ g-1
o s o, = 1 exp { ) ¢e; +re ) | te (-5,8)}.
(elrj vy equ)*-c}(y)'{tn) i:].l 1 q
‘\\\ . gl
. exp { ) 8.e. + 1e .
%Fexp¢,l(y)(tn) =1 i71 Q)
o
% T )
r
¢t (y) l
a
3 t —> | @XD, . (tn)
p¢Ul(Y)
/ u,
We wish to show that in V we are able to choose a

R,T

hvperzorface H' of the form
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H' = { (Byrevnsbyqyrret) | ro=y(t) |

where y 12 a curve having a graph as follows

~,

tf

and such that the induced metric on H*® has positive scalsr
curvature. The important points about ¥ are that it
starts at t = 0 and ends up as a constant g1 > 0. The
hypersurface H' then has the property that it is pulled
out from H = H0 and ends up as a tube a constant distance
3] from the cell v.

For the purposes of calculating the scalar curvature of

n-1
H' it is convienient to introduce the frame field {ei}izl
on Vo . = p9(R) x [0,T] x Sp“l where €1s+00s8, are, as
before, given by polar coordinates about g, - = grad{t)

eq+1

and {eq+2,...,en} forms an orthonormal frame field for the

sP™ L fuctor orthogonal to e

1r“°'req__;_l}"
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e = grad{r)
N/ :
-
/eq+1 = gradit)
/ mmmmm
- 0T 0/0t -
r
e, y
. i
l=1,'oq"l
Note that e+l = /ot + O(r)eq.

The metric g on Vi p is given in terms of this
r

basis as

| .
0 l<i<qg

]
! |
8 f a+2<i<n

—

We reguire only the following crude estimates for the

in terms of this basis

connection V¥
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Te 01 = - 1 eq + kglo(l)ek 1<ic<aqg-l
1 v .
(2.1.5) veieq = fegt k;__lou)ek 1 ¢ i ¢ g=1
3 1
Veiej = kz:lo(l)ek . otherwise.
A basis {fi};=l for the tangent space of the
hypersurface H' in VR,T is given in terms of the basis

n
{ei}izl as

4 e; + O(L)y(t)y*(t)e

q i:: l,‘-oofq"'l
A 2.4 2
1+ 0(1)y(e) y'{t)

(2;1«6) fi = 4 eq_ll + Y'(t)eq i = q
/i + y'(t)2
t ei‘*\l i = q+1'ono'n"1c

The first expression here can be understood as follows. The
angular vector e; fails to be tangent to the hypersurface

H' because the hypersurfaces Hy are not totally geodesic.
Hence we have an eq term the size of which depends to

first order on the product of y{(t} and y'{t). The unit

novmal £ to H' is similariy given as



R
[a51

q-1

| oq T Y (Begy + L ooGier e,
{(2.1.7) £ = . =

Aoyt + o) 2y ()

We now proceed to calculate the sgalar curvature of the
hypersurface H'. Firstly, note that since the condition
of having positive scalar curvature is an open condition wea
can choose an initial segment of our curve y as shown in
the figure below while retaining positive scalar curvature.

]
r

('Y
=2

t

Having done this we can assume from now on that y' is

bounded and estimate the scalar curvature of H! in terms

3]

o ylty. We need to control «y"(t), however.

Firstlv, we estimate the sectional curvatures
KH,(fiﬂfj), T ¢ i, €« n-1 of H' using the Gauss curvature
equation

{z.1.8) KHe{fiﬂf-) = KM(fif\fj) + g(VfiE,fi)g(Vfii,fj)

~9(Ve £,£5)2,
i
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Hera KM is the sectional curvature of the ambilent manifold

M.

Using (2.1.5) and (2.1.7) we have the following

i n
1 .
v E, = ey e € -+ ZO(l)e 1 = }.;--.;qml
e. ' i k
n
V., &= ] 0(l)e,
q k=1
Yo(1 + 0(y2))e .. + ) O{l)e
v £ = = ——tomenes . ) {1
Cq+l } & q12 atl ogay Tk
n
v E_- e O(l)ev j. = +1 s 8 e gite
L Pi kz=l k | q ’ H
Then from these and (2.1.6)
i _' n
Vf E, T e 2. + Z O(l)ek 1 = l,oo"q"'l
i 2 ' k=1
yvl + ‘Y'
) ,Yn ) ri
£ +1 k
ﬁ q /€—+ y! 9 k=1
n .
V, E_; = }: O(-ﬁ)e i = q ) n-—l.
LT A= N | T

From {2.1.8) and the estimates (2.1.10) we have the

following estimates for the sectional curvature Bijee




B (g

_KH.(fi
{2.,1.11)
By (£

Finally, the

(2.1.12)

KH‘

£1) = i+ 0t 1< 5<g-1
J v o+ oyt

(1} l ] .
£y = - k s+ O(y") + 0(2) 1€i<q~1
4 Y(1 + v'9) Y
fj) = 0(1) g+1<j<n-1
fj) = 0(1) g+l<jsn-—-1, g<i<n-l

scalar curvature Kiy of H' is estimated as

= (g-1)(g~-2)({ 5

— o))

)

#

+ 2(g-1)(~ X
v{(1 + v°

LI 1
2)2 + O(y"y) + O(—;{-) }

+ 0(1}

1
= {(g-1){g-2) _
' ey

+ 2{qg-1) r"
vyl + y!

n 1
+ 0O 2
2)2 {(y*) + L(Y)



Following a procedure similar to that in [GLy1 we now
show how to choose the curve vy so that Ky remaing
positive. We have already noted that we may choose the
initial segment. Extent vy from this as a straight line
with equation y(t) = Yo ~ pt for t < ty < Yo/p, where
p > 0 1is the slope of vy after the initial bend and vy,
is, as 1is shown on the graph below, a measure of where we

start the bend.

o

<
s
t

On the straight section

(q-1)(a-2) . ol

K = —
(vg - pt)2(1 + pz) Yo = Pt

A

which can be made positive by cheoosing the parameter Yo
small enough.

Continue this straight section until we reach a point
with r = ry and then bend v by choosing " of the form

shown below



ar

] ¥

ty : tO + r0/2p
Note that y(t) > ry/2 throughout this bending. Also,

we have that

_ - ’) n ,
Kyr = w_gnln§ ( q22 - <Y 5 y + O(y") + O(%J
14yt y Yil + v'%) !
2(p2/4r )
s 9-1 4-2 0 - + o(d)
1+ y'2 ro2 (r0/2)2(1 + (p = p/8)%) o
2
_ = q-l R 12 { (g-2) - e 3 ) 3 o+ ot
1+ y'% rg 1 + 4%p“/64 Lo
I 1
= N 5 + O(ro
0

wheye the constant ¢ > 0 since g-2 > 1. 8o chousing the

Ko » 0

around this bend. At the end of the bend the slope of v

parameter I, sufficiently small will assure that

has changed by an amount

. " - 0/8,

G

L

e
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s0 that finally y' = —-p + p/8. .Note that by an appropiate
choice of " as above we can actually achieve any change
of y' in Ehe interval (0,p/8).

We continue y as a strgight line with the new slope
and rspeat our bending process as above. After 9 such bends
we can achieve ' = 0, as reguired.

This completes the demonstration that we may "pull out”
the regular neighbourhood Up_1 around a p—-cell of K
while retaining positive scalar curvature on the boundary.
Doing this for each p-cell of K constructs a regular
neighbourhood Up of the p-skeleton. Proceeding

inductively we eventually construct U = a regular

Upneg?
neighbourhood of k"9 = Kk, so that the induced metric on
the boundary 8U has positive scalar curvature. This

conmpletes the proof of the theorem. OED



$§2.2. Positive scalar curvature and the fundamental group.

In this section we use Theorem 2.1.1 to show that
manifolds of positive scalar curvature can be topologically

complicated, at least on the level of their fundamental

group.

Theorem 2.2.1, Let = be any finitely presented

group. Then there is a compact 4-manifold M of positive

scalar curvature with nl(M) = 7,

Proof. Let K bz a 2-complex with nl(K) = w, Such a
complex can be constructed by taking a bouquet of circles

stv sly....vs!

corregponding to the generators of = then
attaching 2-cells accovding to the relations. By the
Whitney Embedding Theorem we can find an embedding ¢ of K
into RS, p:K » R5.

Since ¥ has codimension 3 in RS, Theosrem 2.1.1 shows
that ¥ has a regular neighbourhoocd U so that the induced
metric on the boundary ®U = M has positive scalar
curvature. To complete the procf we heed only show that

ﬂl{M) = .

We have that the inclusion K &= I 1is a homotopy



equivalence, so nl(U)'= ni(K} = . Alsoc, the relative
homotopy groups wl(U,M) and ﬂz(U,M) are zerc, since any
map f:(Di,Siﬁl) + (U,M)}) representing an element of
ni(U,M), i = 1,2 can be deformed away from K and then
pushed out to M = 3U radially from K. The long exact

sequence for the pair (U,M), namely,

> ﬁz(U,M) > nl(M) + nl(U) > ﬂl(U,M)

! I I

0 7 0

then shows that nl(M) = ¢, as required, QED

§2.3. Metrics of positive scalar curvature on manifolds

with boundary.

In this section we proof some results concerning
metrice of positive scalar curvature on manifolds with
boundary. The class »f metrics we study are ones which are
a product near the boundary.

We firstly prove the following extension of Theorem

2.1.1.

Theoren 2.3.1. Let K be a codimension g > 3

sub:complex of a riemannian manifold M. Let U< M be a

regular neighbourhood of K. Then'on U there is a metric




(R3]
Erd

of positive scalar curvature which is a product on a tubular

neighbourhood of the boundary.

Proof. We work in the riemannian product M x R where
we take the usual metric on the R factor. In M x R
congider the set K x [+1,1] which we make into a complex
as follows. The zero-skeleton consists of the zero-
skeletons of K x [~1} and K x {1}, considered as copies
of K. Then inductively we obtain the (k+l)-skeleton by
taking the {(k+l)-skeletons of K x {-1} and x x {1}
together with (k+1)-cells of the form o X [~-1,1] where o
is a k-cell of K,

The complex K x [~1,1] has codimension g » 3 1in
M x R so we c¢an apply Theorem 2.,1.1 to qonclude that it has
a regular neighbourhood VvV with the induced metric on the
boundary H = WV having positive scalar curvature. The
choice of c¢ell structure for K x [-1,11] and the method of
construction of V given in the proof of Theorem 2.1.1 (by
*oulling cut“‘to hypersurfaces which are a constant distance
from the cells) shows that we may actually choose

Vo Mx{~-5,8) Lo be of the form U x («§.,8) for some U C M



(1 ""Z_.__— K x {1}
/
M x {0}
S8
e
// / /
U/l/ Ny R ox {1}

We note that U 1is a regular neighbourhood of KX
(in M x {0}) and is diffeomorphic to H  Mx[0,=), the top
half of the surface of the "dumbell". The induced metric on
d Mx[0,~) has positive scalar curvature and is a product

oan a tubular neighbourhood of the boundary, H N1 Mx[0,58).

We have constructed the metric as required. QED
Mow let Xy and X, be n-manifclds having metrics of
positive scalar curvature which are products near the

boundary. It will be neccessary in later sections to
consider their connected sum at the boundary X, #,X,. We
wish to know that this also has a metric of positive scalar

yrvature which is a product near the boundary. This



construction is actually an example of the process of adding

a solid l-handle to a menifold X. For = 1l,..4,n-1 &

r
-4 ] ¥ n-yY ]
solid r—-handle  H is a product D X D , and is

atrtached an n-manifold X with boundary 88X by & map

n—r

¢:6Dr *x D » 3X. We have the following theorem.

Theorem 2.3.2. Let X be an n-manifold carrying a

metric of positive scalar curvature which is a product near

the boundary. Let H be a solid r-handle where n-x » 4.

Then X U¢H also carries a metric of positive scalar

curvature which is a product near the boundary.

An immediate corollary of this is the folleowing.

Corollary 2.3.3. For n > 4, let (Xl,axl) and

(x?,axz) be n-manifolds having metrics of positive scalar

curvature which are products near the boundary. Then the

connected sum at the boundary (X1 # Xy # axz) also

g T2f 1

has a metric of this type.

Preof of Theorem 2.3.2. We shall give the proof for

r = 1 = the general result follows by a similar argument.
Since the metric on ¥ is a product near the boundary

irg Aouble D(¥X) carries a metric of positive scalar



curvatufe which is a product on a neighbourhood of the join,
We alsoc have an involution o:D{X) =+ D(X).: 02 = Identity
map, which is an isometry and is such that D(X)/c = X.
Note that the fixed-point set_ Fix(os) of o corresponds to
oX .

Pick SO = {po,pl} c Fix{o). As shown in [GLz] we can
deform the original metric in small neighbourhoods about
Py and p, by "pulling.out" to a product on the cylinders

Sn—l

R X . This can be done while retaining positive scalar

curvature and symmetrically so that

0 . 0
c :D(X)-8" + D(X)-S
b(x)-g0 3P
will still be an isometry. This shows that we may add a
handle Dl ® Sn—'1 to D{X) while retaining positive scalar

curvature and so that we still have an involution
o:{D(x)u(SOXD")) U (Dlxs“"l) > (D(X)—(SOxD“}) U (Dlxsn"l)
which is an lscmetry.
We consider the induced metric on the manifold with
attached handle

1

s u oo™ h = () -(s%%p™) v (pxs™y) /6.

Outside of a small neighbourhood of the handle this metric
is the original one on X and so is a product near the

1 ..n-1

houndary. The handle D™ xD has a metric which is very

close to being a product of the form

~3



{usual metric on Dl) *x (hemispherical metric on Dn_l)

We may deform the hemispherical metric into a "bullet-
shape® which is a product near the boundary. Hence X U H

carries a metric of positive scalar curvature which is a

product near the houndary. O

Note. TIf X is a manifold carrying a metric of
positive scalar curvature with the mean curvature of the
boundary equal to zerc (not necessarily a product near the
boundary) then by a result of Almeida [A] we know that the
double D(X) stil) carries a metric of positive scalar
curvature., By using an argument similar to that given in

the proof of Theorem 2.3.2 we then have the following.

Theorem 2.3.4. Let X be an n-manifold carrving a

metric of positive scalar curvature with the mean curvature

of the boundary equal to zero. Let H be a solid r-handle

whore n—~r 2 4, Iﬁen X U

kacre AL )

¥ also carries a metric of

positive zcalar curvature with the mean curvature of the

boundagx

1

o
=
m
—
o+
A
o]
n]
Q
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§2.4. Homotopy gronups of the space of positive scalar.

curvature metrics.

Let M Dbe a compact n-manifold. Let Met(M) denote the
space of riemannian metrics on. M and R+(M) c Met(M) the
subset of metrics having positive scalay curvature. In this
section we give a procedure for distinguishing non-zero
elements of the homotopy groups nk(R+(M)), k=0,1. We start

with the follcwing.

Lemma 2.4.1. Assume that R*(M) is non-empty. For

k = 0,1 suvpose that I[gl = nk(R+(M)T is represented by

g:Sk + RV (M), Then if [g] = 0 there is a metric § of
positive scalar curvature on Xt x m which is a product
of the form
(2.4.2) § = Reggk + gl(x) + dt?, x ¢ gk

k

on a tubular neighbourhood 8% * M x (1-§,1] of the

boundary Sk x M. Here R > 0 1is some gufficiently large

congtant, R-g_x the usual metric on the sphere of radius
AL g =22 2= phd

R and dt2 is the usual metric on the interval {1-5,11,

Notes. 1. For k » 2 this lemma is true without any
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restriction on [g] being zero in nk(R+(M)) (simply
take a "bullet~-shaped"” metric on the disc factor). Hence
our method for distinguishing non-zero elements of
n (RT(M)) will fail for k > 2.

2., 1In the case k = 0 Lemma 2.,4.1 is
equivalent to the fbllowing statement, If metrics g, and
g, on a manifold M are in the same connected component of

R+(M), that is, are homotopic through metrics of positive

scalar curvature, then they are H-cobovrdant, that is, on the

manifold W = M x [0,1] there is a metric g of positive

scalar curvature which is a product near the boundary with

9|Mx{0} = 9y and g[MX{l} = 97

Proof of Lemma 2.4.,1. Since [g] = 0 in nk(R+(M))

we have, by definition, that g extends to a map
a:Dk+1 > RT(m), §|Sk = g. Let I k+1 be the usual flat

i . . . k+1 n
metric on the unit disc D + Let {fa} 1 be a frame

=
k+l

field for M and {ei}i—l an orthonormal frame field for

pk*l Lien 8,41 = 0/dr. the radial vector field. For

e

> 0 consider the metric h given by

h = R°ng+1 + gix), X € Dk+la

We c¢laim that choosing R large enough will assure
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that Kp > 0, but, unfortunately, h will not in general be
a product near the boundary. We may overcome this by
deforming it into one that is as follows. Firstly, form a
complete metric, call it h', on the open manifold

Dk+1XM

{ ) - a(nk+1xm) by multiplying the radial component of

h by f(r), where £:[0,1}) » R+ hag the graph shown below.

1 r
] 1
The metric h' has scalar curvature
n n k n
ur T a,g=1Kfa fa ¥ 2ocX=1 iz=1 “t,ep 7 2L e e
k | k
+i,>ﬂ==1Kei 3 . 2;'_E=1Kei ®k+1
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1 1
Ka(x) 1% Y TR v 0
k —F" (1) 2
o=y 77 )
R E(r) Il + £'(r)%)
k+1

where €;,¢,:D "“xM » R are independent of R. Note that
the term in brackets in the last expression is simply the
"curvature of the surface given by rotating the graph of £
about the r-axis and, by choice of £, is positive. Hence
we see that choosiﬁg R large enough will assure that

k+1

Kpr # G > 0. (Here ¢y = min{ (m)/2 | (x,m) € D" "x# },

“g(x)
say}. By a slight deformation we may alter h' so that
outside of Dk+1(l“6) x M, that is, on (Sk x M) x {1-4,11,
the metric is a product of the form (2.4.2}). This complistes

the proof. . QOED

Using Lemma 2.4.1 we now show how it is possible in
some cases to detect non-zero elements of ﬂk(R+(M}). 7
sSuppose that we construct a manifoeld X with boundary
BX = M X Sk together with a metric of positive scalar
curvature so that near the boundary the metric is a product
of the form (2.4.2) induced by a map Q:Sk > RY(M).  Lemma
2.4.1 shows that 1if [gl 1is zero in ﬂk(R+(M)) then we
pitd

can "cap off”® X by attaching a copy of M x aiong

their commor boundary M x s thus forming a closed



manifold X =X U (M * Dk+l) which still carries a metric
of positive scalar curvature. However, we may be able to
calculate, for example, the A-genus of X, and if this % 0
we obtain arcontradiction to the theorem of Lichnerowitz  [L]
and conclude that [g] # 0 in nk(R+(M)).

In the following section we carry out such a procedure
for k = 0. We construct manifolds X and X1 with 3Xq
and axl diffeomorphic, via fo and fl, to M, say.,
together with metrics ED and 51 of positive scalar
curvature which are products near the boundary. If
fO*(go) and fl*(gl)' the induced metrics on M, arxe in the
same connected component of RT(M) then we know that there
is a metric of positivg scalar curvature on

X = XO U Mx{0,11u Xi.

/_‘\ M x [0,1] /_\\w

7 R . g Xl

\\:::;a/ // O
-

We calculate A(¥) and show that by appropriate

choices we can arrange to have it # 0., This contradiction

shows that gj and g, are not in the same connected

+
component of R {M).




§2.5. Plumbing.

Using the procedure given in the last section we
obtain results concerning the connected cowmponents of the
space of positive scalar curvature metrics on the spheres
S4m—l, M=2,3,400 We show, in particular, that the number
of connected components of the space of positive scalar
curvature metrics on S ™1 is infinite. We use a method
of constructing manifolds called plumbing, and we wish Lo
emphasize the ideas and results involved in this

construction as muich as the conclusions we draw.

manifolds with boundaries, given as follows. We recall that

n-bundles over S" are classified by m,.1(80(n)). Take

Wyr Wy E nn_l(SO(n)) and let Ewl, sz -be the
corresponding Dn-bundles over s%, lLet D? S?, i=1,2 be

disczs embedded in the base spheres and let

fi:D? x D" B |Dn be local trivializations over DF. We
i i1
plumb E to E by identifying £1(x,y) with fz(y,x).




This gives a 2n-manifold with boundary that is smooth

everywhere except on £.,(S

n=1y gn=1ly, Along this set we can

1

smooth ag shown in [HNK].
Repeated plumbings as above can be conveniently

described using a plumbing diagram. This is simply a

ﬁn_l(SO(n))wweighted graph G, that is, a graph wich each
vertex vi‘ assigned a waight Wi € ﬁnml(so(n))’ i = 1,060
We will denote such an object by (G,wi) or, if there is no

confusion, by G.

y

1%




We do not require that G be connected.
We form a connected manifold with boundary (XG,aXG)

from € as follows. Firstly take the bundles

i i Y3

connected to vj by an edge in G. This will give a

E i=l,...,N, and plumb EW; to B if vy is

connected manifold XG for each connected component
k
k=1,...;K of G. We then form XC by setting

Gk'

X.o= X. #. X. #. ... #, X, , where #
1 ) &2 3] 3] GK

sum akt the boundary.

o Means connectead
A bagic fact which makes this plumbing technique useful
in the study of positive scalar curvature metrics is the

following.

Theorem 2.,5.1. 1f n » 3 and (G,wi) a ﬂnul(SO(n))~

weighced graph then the gg—dimensionai manifold with

boundary (XG,BXG} formed by plumbing according to G has

a metric of positive scalar curvature which is a product

near the boundary.

Proof. For each connaected component Gk’ k=1,...K oFf
¢ the base spheres of the plumbed bundles form a

codimension n » 3 subcomplex of the corresponding manifeld




X and X

G itself forms a regular neighbourhood of this
i

G,
subcomplex. 1Theorem 2.3.1 applies directly to show that
Xe has a metric of positive scalar curvature which is a
product near the boundary. We then apply Theorem 2.3.2 to
conclude that on X, = X F, eaa¥, X

a G 3 a Lg there is also a

metric of this type, : QED

To carry out the program outlined in the previous

section we need to answer the following questions.

G are ax. and ox

0l. For which graphs G,,
0 1 0

q

diffeomorphic?

g Mx[0,1]1 U XG what

02. If axGO = BXG =M and X = XG A

0
is A(X) ? 1In particular, when is =&

To help answer these we gather a number of facus
concerning the manifolds XG. These are based on results

given in [HNK, chapter 8].

Lemma 2,%.2, For n > 3 let G be a =, ,(80(n))-

weighted graph with components Gy r k=1,...K. Suppose that

G, has N verticies and is homotopy equivalent to
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S]'V SlV ...V Sl (pk tif[leS) [ Set
f i
P =1DP and N = N, .
k=1 © —= k=1 K

Let (xG,axG) be the 2n-manifold with boundary

given by plumbing according to G. Then

2 k=0
7P k=1
0 ctherwise

-

Furthermore, Hn(XG,Z) is generated by the base spheres of

the plumbed bundles.

Proof. We observe that for each connected component
Gy of G, the bundles in the corresponding plumbing retract

onto their base spheres. So

N, pk
3 1
Xg, hre.(V 8™V (V sh.
k i=1 j=1
We form XG by taking the connected sum at the boundary,
X = XGl #a..,.#a XGK. The connecting strips retract onto

lines. So

~

K N Py
Xo ~ Vo« sy oy sh.
k h.e. k=1 i=1 j=1
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This gives the homology of XG and we note that
H (XgeZ) is indeed generated by the base spheres of the

plumbed bundles, as claimed. OED

Recall that for any oriented 2n-dimensional manifold X

{with possibly non-empty boundary) we have the intersection

pairing @:Hn(x,z) x Hn(x,z) + Z. Under the Poincare-
Lefschetz duality isomorphism Cn:Hznml(X,ax,Z) > Hy (X,2)
this is just the cup product

usH™MX,0%,2) x BN(X,0%,2) > H™(X,8X,Z) = Z.

The intersection pairing & has an associated map, the

intersection form of X, called & again, defined on the
free part of the homology groups
@:Free(ﬂn{x,z)) X Free(Hn(X,z)) > Z
Associated to the intersection form & 1is a map
p1Free(H (X,2)) - Free(Hn(x,z)))* = Free(H (X,2))
defined by

${a)(b) = &(a.b), a,b ¢ Free(Hn(X,Z))

The map ¢ 1is called the correlation of &. If ¢ 1is

injective we say that & is non-degenerate. If ¢ is an

isomorphism we say that @ 1is non-singular. This latter
condition is equivalent to saying that any matrix
representation M for & (over %) has JdetM| =1 - we

say that such a @ 1is unimoduylar. If n is even, say




ta
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n = 2m, the intersection form & is symmetric and is called

the quadratic form of the 4dm~dimensional manifold X. 1In

this case @& can be diagonalized (over R), and if we let
@, be the number of positive entries and «_ the number of
negative entries on the diagonal (they are independent of

the choice of representation) we define the signature

sig(®) of @ by sig{®) = a - «_. The signature of X,

sig{Xx), is defined to be the signature of its quadratic

In the case we are studying we can easily give the
quadratic form. We recall the classical definition of the
Euler number of a bundle as the number of “self-

intersections”

of the zero section (that is, push off the
zero section transversely and count the nunber of
intersections of this new surface with the original zero

section), With this definition the following is immediate.

'Egoposi%iog_2.5.3. For m>» 1 Jlet G be a

nom_I(SO(Zm))—weighteg graph with verticies vy of weight

Wi i=},...N. Let (XG,aXG) be the 4Am-dimensionai manifold

cbtained by plumbing according tc G. Then in terms of the

. Sl ol o

i=1

pasis {s,] of H, (X.) consisting of the base spheres

of the plumbed bundies E_ the quadratic form &, of G
i

has the following matrix representation,




. e(wi) 1=1

1 i*j and v. is connected
. = (a;:), @y = { h
¢ + ] to v. by an edge in G
e 'i¢j otherwise
. Y
where e(wi) is the Euler number of the bundle Ew .
: i

We should note that in this theorem

G need not be
. connected - if

G has components Gk' k=1,...,K with
associated quadratic forms

2n then the quadratic form &
k

“G
of X, has the representation
i)
1
o 0
G2
@G = a2
0 »
i
_ Gy
Hence we have the following.
Corolilary 2.5.4. Let G be a =

2mml(80(2m))zﬁplggzgg
graph with ¢onnected components

Gk' k=1,.:..,¥X. Then the

is the sum of the signatures

of the components, that is,

signature of G, sig{G),

519(G))
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(Here sig(G) means the signature of the associated -
4m-manitold Xar that is, the signature of the quadratic

form @G)f
In particular, we have

Corollary 2.5.5. Let G be a nzm_1(80(2m))~we@gggg§

graph. For k » 1 let kG be the graph consisting of kK

disjoint copies of G. Then sig(kG) = kesig(G).

Since we will need the above signature results later we
could continue to restrict n to be even without effect.
However, the following results {2.5.6) - (2.5.10) are stated
for the general.caseo

We calculate the homology of X

Theorem 2.5.6. Let G and (XG,QXG) be as in Lemma

*
~:Hn(XG) > Hn(XG) be the correlation of the

2,5.2. Let ¢G

intersection form B of Xg. Then

r

% k=c,2n~1
zP  k=1,2n-2
HK(BXG,Z) = coker(¢G) k=n-1
ker(@G) k=n
L 0 otherwise
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Proof. The first isomorphism is automatic, since GXG
is connected and oriented. For the rest we use the long
esxact sequence of the pair (XG,BXG), knowing Hk(XG) Erom

Lemma 2.5.2.

For k=1 we have

Hz(Xg,aXG) > Hl(bXG) - Hl(XG) > Hl(XG,BXG)

I I I

H2n--2(X gP HZn'-l(X

G) )
it ' 0
fyn-2(Xg) c Hypa(Xg)
I - I
0 | 0

The two outside vertical isomorphisms are given by Poincare-
Lefschetz duality followed by the isomorphism
k . ; - -
H (XG) = ere(Hk(Xk)) + ior(Hk_l(XG), k=0,.4.,n
and Lemma 2.5.2. So Hl(aXG) = 22, Also we have
- aliax v - - 5P
H2n_2(aXG) = H (OXG) o Hl(aXG) = Z .
In the middle dimansions, k = n,n-1 we have the exact
seguence i
i
Hn+1(KG,BXG)+HH(BXG)+Hn(XG)+H

H
0

(XG’aXG)+Hn~1(aXG)+Hn~1(XG)
it 7 i
n

HY (X) 0

i

n




w
i

The vertical isomorphisms -follow from Poincare-Lefchetz
duality and Lemma 2.5.2. We note that under the isomorphism
#
H (X5 0 0Xo) = B (X,)
the map 1 is just the intersection pairing ¢g« So we
have

Hn(aXG,Z} = ker(¢G)

and

*
Hn__l(E)XG) HR(XG) /1m(<1uG) b coker(¢G)_

For the other values of k the long exact seqguence
together with Lemma 2.5.2 shows that Hk(aXG,Z) = 0, This
QED

completes the proof,

ITf we restrict ourselves to ﬂn_l(so(n))uweighted graphs

@G is

is an isomorphism)y

G  for which the associated intersection form

unimodular {so that the correlation 9%

we have the following corollary of Thecrem 2.5.6.

Let G and (X5,3X;) be as in Lemma

n ar
=

Corollary 2.5.7.
2.5.2, whare now we add the assumption that the intersection

is unimoedular. Then

Z k=0,2n-1
Hy (8X,,2) = P k=1, 2n-2
0 otherwise.



We now return to the problem of answering Questions QI
and.QZ on page 47. Firstly we consider QL. Unfortunately,
we canpot answer this question in general but never-the-less
we can exhibit an lmportant class of graphs for which an
answer is possible. This is the set of trees and for these

we have the following well~known theorem.

Theorem 2.5.8. For n.» 3 let T be a (possibly

disconnececed) = (s0(n))-weighted tree with unimodular

n-1

intersgection form. Let (XT,bXT) be the 2n—-dimensicnal

manifold with boundary obtained by plumbing according to T.

Then 6XT ia a homecomorphic (2n=1l)-sphere.

Proof. From Corollary 2.5.6 we have that

Z k=0,2n~1
)

R

H, (8X,.,2
k T 0 otherwise

from whish it follows by the Whitehead theorem that 0Xp is

5271 Then, since

homatonry equivalent to the sphere
2n-1 » 5, the proof of the generalized Poincare conjacture
given by Smale [8] shows that it is actually homeocmorphie to

a (2n-l)-sphere. _ - QED

For k > 5 the set of homeomorphic k-spheres 8, forms
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a finite group under the action of the connected sum ¥
{see [KM]). The identity element is the k-sphere with its
usual diffeomorphic structure. 5o we have the following

immediate corollary of Theorem 2.5.8.

Coroliary 2.5.9. ¥or n > 3 let T be a ﬂn_l(SO(n))»

weighted tree with unimodular intersection form. Let

(XT,BXT) Eg_the associated ganifold and let kT be the
order of 0Xy in the group 0,01 °F homeomorphic (2n-1)-

spheres. Let kTT be the tree obtained by taking kT

disjoint ccpiles of T. Then 23X, " is diffeomorphic to the
- T =2 =2

usual (2n--l)-sphere. In fact, for each integer q > 1 we

is diffeomorphic to the usual (2n-~1)-

have that ax(qKT)T

sphere,

We will now consider Question Q2 on page 47. 1In view
of Theorem 2.5.8 it would be natural at this point to
restrict to nn_l(SO(n))wweighted trees, but we firstly give

the following more general answer.

Theorem 2.5.10, For n » 3 let G0 and G1 be

0¥~ ) and

G G

ﬁn_l(SO(n))—weightqg graphs with (X

0 0



P DX )
1 &
following conditions hold.

(X the associated manifolds. Asgume that the

G

i) If w e nn_l(SO(n)) is a weight i GO or Gl then the

; n -
bundle EW + S has pn/4(Ew) = 0 where

pn/4(Ew) £ Hn(Sn) is the n/ﬁth Pontrjagin class.

ii) The manifolds aXGO and aXGl are diffeomorphic (to
M, say)
iii) The intersection forms @GO and @Gl are unimodular.
Form the compact manifold X = XGOU Mx[0,1] U XGl. Then
0 ‘ n=2n+l, m=1,...

Xy = ‘
. c(sig(GO)—sig(Gl)) n=2m, M=2,..:

where ¢ is some non-—-zero constant and sig(Gi) is the

signature of the 4m-manifold XG , i=0,1.
. i _

Proof. For n = 2mtl the manifold X has dimension

dm+2, so A(X) = 0 automatically.

For n = 2m the manifold X has dimension 4m so
possibly A{X) # 0. To calculate A(X) we use its
gxpression in terms of the Pontrjagin classes p ¢ H4k(§)
of X, that is, |
(2.5.11) A(X) = Alpy,...,p ) [X]

where ﬂ(pl,...,pm) £ H4m(ﬁ) is some universal homogeneous

polynomial and [X] is the fundamental class of X. There



¥
[$4]
o

is an explicit formula for the coefficients of ﬁ(pl,..,,pm)
but we only need the fact that
{(2.5.12) A(pl,...,pm) = c,p, + terms involving only
Pp—17e+>¢Py-
where €n is some non-zero constant.
Compare this with the similar expression for the
signature sig(X) of X. We can write
(2.5.13) sig(X) = L(pl,...,pm)[i}
where L(pl,...,pm) £ H4m(ﬁ) is the Hirzebruch L—geﬁus of
X and, as for ﬁ(pl,..e,pm),‘is a homogeneous polynomial.
Again,; all that we need to know concerning the exact formula
for L is that
{(2.5.14) L(pl,...,.pm) = dmpm + terms involving only
PpoyreneeP;
where d_ = is some non-zero constant.
We also have an expression for sig(X) directly in
terms of the signatures sig(GO) and sig(Gl) of Xg and

0

Xg

1 . .
{2.5.15) sig(X) = sig(GO) - sig(Gl)

We now make the following claim.

Claim. All the lower Ponkrjagin classes

pk; k=1’--ayﬂl_1 of 5‘{ are Zero.
With this cleim we complete the proof of the theorem

since from Equations {(2.5.11) to (2.5.15) we have



o2
o
H

(cuby) [X1, ¢ % 0

il

(cm/dm)sig(x), dm 0

i}

(e, /d.) (51g(Gy)=51g(Gy))

c(sig(GO)msig(Gl)), c % 0,
as required.

Proof of claim. Consider the following portion of the

Mayer-Vietoris sequence for X = s VU X, where

0 1
XG0I1 XGl = M.
e H4k(xG0) @H4k(xGl).+ Hp (X)) Hyp (M) >oe
We have that the first term = 0 if 4k # n, that is,
k ¥ m/2, by Lemma 2.5.2, and that the last term = 0 by

Corollary 2.5.7. Hence we have that H, (X) = 0 for

k ¥ m/2., Since everything is torsion-free this implies

4k(~

that H X) = 0 for k # m/2. Hence the Pontrjagin class

ﬁk'is equal to zero except possibly in the case that m is

even, say m = 2¢,; and then we have to check pq £ H4q(ﬁ)-

y N

For this exceptional case we know that H, (X) = %

4q
whers N = N0.+ Nl is the sum of the number of verticies of
tire graphs GO and Gl' with the base spheres S; r i=l,...,N,
of the plumbed bundles forming a basis. We wish to show

that = pq(Ti) ig zero, where TX » X is the tangent

Pq
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bundle, so it suffices to calculate the evaluation quSi

on each basis element 8

; of H4q(x).- The integer

pq(Ti)[Si} is just the gth Pontrjagin number of the bundle
Txisi » S8;. We have that TXISi = TS, ® NS, where
Tsi * Si is the tangent bundle to the sphere Sy and
NSi > Si iz the normal bundle of 8y in ¥. By
construction of ¥, the bundle Ng = 8, is just E_ » S

i i
where Ww; ¢ n4q_1(80(4q)) is the weight assigned to the
vertex corresponding to S. and By is the associated

. i
bundle. By Hypothesis i), pq(Ew ) = 0. Hence
i
P (TX) [8;] = pq(TXlSi)[Si]

pq(TSi ® NS, )I[s,]

)15, ]

Py (TS; @ £

i
(pg (TS;) + pq{Ewi))[si}
=0

where in the last equality we have used the fact that
pq(TSr) = 0 (since the tangent bundle of a sphere st is
stably parallizable). Hence pq(Ti) = pq(i) = 0, ‘as

claimed. This completes the proof of the theorem, QOED

We now restrict n to be even, n = 2m.
By combining Ceorollaries 2.5.5 and 2.5.9 and Theorem

2.5.10 we have a saltisfactory answer Lo OQuestions Q1 and (2




on page 47.

The following theorem summarizes the situation.

Theorem 2.5.16. For mn ?_2 let (T,wi) be a

S0(2m) )-weighted tree g0 that

2m—1(

a) 2(Wi) = 0 for all i.

P/
b) The quadratic form &

¢ 1is unimodular and hasg

sig(@T) £ 0,

Let (XT,BXT) be the 4m-manifold with boundary given by

plumbing according to T. Then

1. X 18 a homeomorphic (4m—1) ~sphere,

If k., » 1 is the order of aX; 1in 6, _,, the group of

2L Ry 15 Ehe B

homeomorphic (4m-—-1)-spheres, then also

13

2) For each integer g > 1 the manifold 6K(qk )T
‘ T

diffeomorphic to the usual (4m-1)-sphere.

and

3) For each pair of integers dgrdy ? 1, dg F qy - the

manifold
% = X v s¥™ 0,11 0 x ,
(qlkT)r

has  R(X) # 0.

We now need to show that for m » 2 there is a

"om-1(80(2m))-weighted tree (T,w;) having the Properties

a) and b) in Theorem 2.5.16. A good way of finding such a

61




tree is to try and actually realize a given guadratic form.
We firstly give a brief review of quadratic forms (see [MH],

for example, for further details)

2.5.,17. OQuadratic forms. Some of the definitions in
this section have already been given in the context of
intersection forms of even-dimensional manifolds. We give
them again for completeness.

Let V be a free abelian group of rank r. A

guadratic form @ over 2Z is a symmetric bilinear map

Q:V x V » Z. The rank rank(0) of 0 .is the integer r.

*
The correlation of @ 1is the associated map HAVAE BV

o
defined by ¢Q(v)(w) = QO{v,w), v,w € V. The quadratic form

ig non-singular or unimodular if is an isomorphism.

%

This is eguivalent to the fact that the determinant of any

matrix representation MO for 0O 1is equal to *1. The

matrix Mo may be diagonalized (over R) and if we then let

v, equal the number of positive entries and e¢_ equal the

+

number of negative entries on the diagonal we define the

signaturs =sig(Q) of O as sig(Q) = a, - «_. If

sig(0) = rank{Q) we say that O 1is definite. Otherwise it

is indefinite. We say that ¢ is even if 0Of{(v,v) 1is even

for all v & V. This iz eqguivalent to saying that the



diagonal entries in any matrix representation M

are all even.

odd.

We may attempt to classify gquadratic forms.

A quadratic form whi

for O

Q
ch is not even is called

If we

vestrict ourselves to unimodular quadratic forms the known

results of interest to us here may be conveniently

summarized in the following table.

definite

indefinite

Here

even odd
sig(0Q) = 0 {(mods) Examples, diag(l,l,...)
diag(Eg,1)
Cne -of rank 8, Eg

Other examples,becoming
very complicated as
rank increases.

Becomes very
complicated as rank
increases

deiag(ﬂpnocfﬁ,

Q=diag(l,...l,—l,...—l)

Eg,.«+Bg)
/21000000
j12100000
01210000.
001210C00 _01)
00012101 and H"(lo.
00001210
00000120
00001002

63
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2.5.18. Plumbing according to the tree Eg.

In this section we show how to find a anﬂl(SO(Zm))-
welighted tree (T,wi) which has the Properties a) and h)
giﬁen in Theorem 2,16. We concentrate on definite
unimedular forms so that Condition b) is autonatically
satisfied.

From the partial classifaction given in Section 2.5.17
we see that the simplest definite unimodular gquadratic form
we may try to obtain from a ﬂzm“l(SO(Zm))—weighted tree with
m > 2 is the one rvepresented by the matrix {1). The next
simplest is Eg.

The even unimodular definite quadratic form Fg i3
actually the easiest to realize by a ﬂ2m_1(80(2m))—weighted
tree (pri), i=1l,...,8 for which pm/z(wi) = 0 {Condition
a) of Thecrem 2.5.17)., We know {see [MS]) that for each

2m S2m

Lthe tangent bundle T8 > has Euler number

= 0. Let Wig € Tczm__l(SO(l’m))
be the c¢lassifying element for this bundle., Form the well-

known tree 7T




and set the weights L ‘equal to Wog ¢ i=1,...,8., Then

the =,

om—1 80(2m) ) -weighted tree (T; ,w.,) has the

Eg i
properties
) Pryptwi) = Puypl¥ipg) = 0
~and
b) @T = Eg, which is unimodular and has non-zero
Eg
signature.

To simplify our notation we denote this tree by Eg.

Theorem 2.5.16 applies directly and we have

Theorem 2,5.19. For m » 2 let (XEB,QXFS) be the

dm-manifold-with~boundary obtained by plumbing according to

Eg. Then ‘
1. axE8 is a homeomorphic (4m-1)-sphere.
If kg, 1is the order of X,  in the group 8, ., of

homeomorphic {4m~1)-spheres then also

bx(quB)EB is

diffeomorphic to the usual (4m-1)-sphere.

2. For each integer gq > 1 the manifold

and

3. For each pair of distinct integers qb, q; » 1 the

manifg&d

¥ - 4m~1 .
X = X . S % x{0,11 U X
(qgkp, ) g ! (d) kg, )Es

65
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We now apply Theorem 2.5.1 and conclude that for m » 2
and each n » 1 there is a metric of positive scalar
curvature on the 4dm-manifold (X ) given by
plumbing according to the nzm_1(80(2m))—weighted tree nBEg
which is a product near the boundary. In particular, for
each g > 1 there is such a metric on
). From Theorem 2.5.19 we know that

S4m—1' say)

(67,4
g’ "laky )Eg

ig diffeomorphic (via fq:ax(quB)Es

to the usual (4m-1)}-sphere. So letting g, be the metric

induced on we have a metric fq*(g }y  of

d

8 -S4m~1

positive scalar curvature on the usual sphere p Moz 2,

Conclusion 3 of Theorem 2.5.19 (tcgether with Lemma 2.4.1)

then shows that for distinct integers dgrdy 2 1 the

metrics qu*(gqo) and fql*(gql) are not homotapic

through metrics of positive scalar curvature. Thus

4m-1

Thecrem 2.5,20. For m > 2 the space R+(S } has

an infinite number of connected components.




Chapter 3, Bad ends and co-dimension 2 enlargeable

submanifolds.

In this chapter we prove & generalization of Gromov and
Lawson's result concerning manifolds having bad ends., This

notion was introduced in [GLB]:

Definition 3.1. A non-compact manifold X has a bad

end X, if there exists an enlargeable hypersurface 27z < X

so that X is a non-compact component of K - Z such that

[

1. the homomorphism nl(z) > nl(ﬁ;) s injective
and
2. there is a map i; » %y oato an enlargeable manifold

Zq so that the composgition 7 > X, » 4y has non~zero

degree.
Gromov and Lawson proved the following.

Ehgorem 3.2. Let X he a bad end (9£ some manifold

+ 2= 4 bad

¥} and assume that there is an exhaustion function

FeX » R satisfying

(3.3) 1780 < C and AF < C

for some constant C. Then there can be no complete metric

on X which has uniforuly positive scalar curvature on.the

87
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The proof of this theorem is achieved by using the

"inflating ballcon" trick. The idea is that if i; carries

a metric of uniformly positive scalar curvature then we can

use the exhaustion function to construct a metric of

2 ghich is a product

D(i;) L SZ(R) outside of a compact set K X Sz < D(i;) x 52

pocsitive scalar curvature on D(§+} x 8

(here D(X,) 1is the double of X, ). On the other hand, it
is shown_that'this metric is Az—en}argeable and so cannot
have positive scalar curvature.

Theorem 3.2 is useful for showing that certain compact
manifﬁlds X do not admit a metrics of positive scalar
curvature since
1) all infinite covers X » X, admit an exhaustion

function F:X -~ R+ having Properties 3.3
and
2)  if X does carry a metric of positive scalar curvature
then the metric lifted to X has uniformly positive
scalar curvature.
Thus, if X has a bad end we reach a contradiction and
conciude that X, cannot carry a metric of positive scalar
curvature.
To actually give examples of compact manifolds with

such covers it is useful to study its codimension 2

submanifolds,. The idea 1is that if X has a sufficiently
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"had" submanifold I c Xc; then in the cover X =» Xc
-¢corresponding to the subgroup i*(nl(z)) C'nl(xc) the set
X - . may be a bad end. Precise theorems using this idea
have been given by Gromov and Lawson. The following is a

good 1illustrative example.

Theorem 3.4, Let X, be a compact K(n,l}-manifold

and suppose X, contains an enlargeable K(=n,l)-submanifold

*

RS Xc of codimension 2 such that the homomorphism

i
ny (2) -fiﬁ(xc) is injective. Suppose that the boundary 2

of a tubular neighbourhood of I in X is enlargeable.

Then X, carries no metric of positive scalar curvalture.

This theorem implies, in particular, that a compact
3-dimensional K{x,l)-manifold does not admit a metric of
positive scalar curvature since there is an embedded circlé
b =_Slcz X representing an element of infinite order in
(X0

Unfortunately, Theorem 3.4 and others like it are not
so easy to apply in high dimensions -~ the difficulty arises
partly from requiring the homomorphism nl(z) > ﬁl(Xc) to
be irnjective. We give a strict generalization in which this

condition ig reliaxed.
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Theorem 3.5, Let . X, be a compact manifold containing a

i
compact codimension 2 gybmanifold %o XC a0 that the

following conditions hold

1. l'ﬂil(xc)/ﬁl(ﬁ)‘ = «

— C

2. The normal circle about % in X has infinite order

in ml(Xc - T)

3. If T = i*(ﬂl(z)) then there is a surjective map £,

of T onto the fundamental group 9£ ﬁhe {n-2)Y=-torus
Tnuzf FyiT Zn-z.

t
Let X » XC be the cover corresponding to the subgroup

o~
L]

remiX), I:%»X the lift of i:% » X_, and & the

boundary of a tubular neighbourhcod of 1(z) in X. Let

£:% » TN be the map inducing £;. 1In addition to the

A=

above conditions we require that

4. The composition fol:r » Tn_2 has non-zero degree

5. There ig an Sl—bundle Za > Tn_2 S50 that the bundle

iz a4l o Tl 0

Z » % 1is the pull-back of Zg via fofi.

Then ¥ » ¥ has a cover which does not admit a metric of

uniforunly positive scalar curvature. In particular, X

cannor carry a metric of positive scalar curvature,
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Proof. We have the following diagram

i
Z i .
p l
Z

We would like to 1lift the map £ to Zy+ Restricted to 2

—s X -~z

it has a litt of non-zero degree (by Condition 4.), so a
1lift over all of X -~ 8 would show that X - 3 is a bad
end. Then Theorem 3.2 would apply to complete the proof.
The ohsgrtruction to-lifting £ is a class
fc(f)] = Hz(i - Z,Z,nl(sl)). It is détermined by its
values on the 2-cells of ¥ - % - if o is a 2-cell then
c(£)(0) = 1£,(60)] & my(s1), where £,:k' > z, is any lift
of £ over the l-skeleton KX of X - 1. Unfortunately,
since the homomorphism my(Z) » nl(i’— £) is not assumed to
be surjective, we may not be able to find a cell-
decomposition of ¥ - &  in which all 2-cells o have
do Z. in this case we cannot calculate c¢{f){(o) directly
since we do not have a lift £4 defined.
- We can overcome this problem by taking the cover

—— }.'“: s .
X -5 » - & corresponding to the subgroup i*(nl(z)) in

’ P

Py e . ’
TT]-(X - 2). 1Jlft Z LD X. b Ew
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X -1z
i
d
Z X~z Zg
P £ l Pgy
M Tn-2

. i* R—
Now since n](z) > nl(x - ) 1is surjective we can find a

- - v . m £
cell~decomposition of X - & with all 2-cells attached to
%, We can calculate the obstruction, call it co{f) =still,

to lifting £of to Zor

S m—
For each 2-cell o of X - % we have

c(£)(o) = [£(b0)] e w(fiber of Z, » T" ). If [£(d0)] % O

then by the choice of 2y {in 5. above) we have that

{3c] # 0 1in nl(fiber of Z + r). However, this is
impossible in view of Condition 2, since no non-zero
multiple of the normal circle about % in X can bound a.
2-disc (2--cell) in X - %. Hence c{f){c) = 0 for all
Z~cells o. Hence the obstruction cycle c¢{f) wvanishes
{and, of course, =0 does the obstructicn class
(c{E)] & By (%~ 7,2,m(80))) and £ lifes o z,.

We now proceed as in [GL3]. Under the assumption that
. has a metric of positive scalar curvature we have a

metric of uniformly positive scalar curvature on the bad end

Gt . . sy s
X = 2. From this we construct a metric of positive scalar
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T ———__ 2 ]
curvature on D(X - %) x 8 wh

[ bl

ch is a product outside of a
conpact set by slowly iﬁflating the Szwfactor. We see,
however, that this metric is A2~enlargeable. This
contradiction proves that X, cannot carry a metric of

positive scalar curvature, as required. QED

This theorem generalizes many related theorems of
Gromov and Lawscon. For example, we retrieve Thecrem 3.4 as
a special case. Unfortunately, it is still very difficuit
to apply the theorem to the case of compact K(x,l)-manifolds
of diﬁensions > 4, The problem is in checking Condition 3,
_and, in particular, we need to know that the fundamental
group of such a manifold has a projection onto

nl(T = Z . Whether or not this is true in general

appears to be a difficult question.




Chapter 4. 4-manifolds of peositive scalar curvature.

In this chapter we stuﬁy d-manifolds of positive
gscalar curvature uging the "capping off" ideas outlined in
the introduction. The method uses minimal surface
technigues which have been developed and used by Schoen and
¥ au [SY1,2,3] and Fischer-Colbrie and sSchoen [F-~CS] in their
study of manifolds of positive scalar curvature. It also
relies heavily on some properties of 3-manifolds of positive
scalar curvature given by Gromov and Lawson [GL,].

To understand the procedure it is instructive to work
a2 3-dimensional example first (§4.1). Then in §4.2 we prove
&z generalization of a result of Gromov and Lawson concerning
3-manifolds of positive scalar curvature. We give some

D

b3
P

reliminary covering space lemmas (§4.3) and finally in §4.4

ve a "capping off" theorem for 4-manifolds of positive

W
[

scalar curvature.

g§4.1. Oﬁtline of procedure,

We prove the following 3-dimensional result.

c

Theorem 4.1.1. Let X be a compact 3-manifold

carrying a metric of peositive scalar curvature. BSuppose

that o € nltxc) has infinite order and let X » Xc be the

74
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cover corresponding to the cyclic subgroup <u> C nl(xc).

Then H,(X) # 0, In fact there is a class N e H,(X) which

has non-zero intersection number with 1y, a generator of

By (X} = Z.

To prove this we use the following basic result of

Gromov and Lawson [GL3,§10].

Theorem 4.1.2, Let M be a compact 3-manifold with a

possibly empty boundary carrying a metric of positive scalar

curvature (assume > 1 for convenience). If A G M i§ a

disjoint union of closed curves such that

1y M) = 0 in Hy(M,0M)
2) distM(h,aM) > 27

then A bounds in its 2m-neighbourhood.

Proof of Theorem 4.1,1, Let y ¢ X be an embedded

circle generating Hy(X) = Z. Set X = {x e x | 5 (x) < o}

where GY is a smooth approximation to distx(',Y) and
where p » 4n is some regular value of SY. Since Iv]
has infinite order in Ht(Xp) there is a class
: - ulr. - :
W E Hz(xp,axp) = H (ip) o Free(Hl(Xp)) + Torsion
go that (w,[y]1) % 0. {(That is, each 2~cycle representing

w has non-zero intersection number with }. Let
Y



Eé,aﬁg) < (xp,axp) be any surface representing w.
Consider I, = {x e i; | 8, (x) < p/2} and assume that

~. Let Xk = 03L . Clearly

n/2 is a rvegular value of 6Y|Ep o 0

we have
i A = 0 in H,{X ,dX
) D] 1 (X 0%
and
iil) dist A osOX )Y > 2w,
Hence, by Theorem 4.1,3, kp bounds a 2--chain & in its
2n-neighbourhood,.
Form the 2Z2-cycle §.= Zpt; Q. This cycle has the same
(non-zero) intersection number with y as Ep does {(since
QN vy = ¢) and so, in particular, [Z] e H,(X) is non-zero.

Thiis completes the proof. DED

If Xc is a compact K{mn,l1) 3-manifold then the cover
S XC in Theorem 4.1.1 is a K(Z,1) and we know that

Hn(Z) = 0 for n » 2. Hence we conclude:

Corollary 4.1.4. No compact K(m,l) 3-manifold carries

a metric of pogitive scalar curvature.

In the 4-dimensional casze we would like to prove a

theorem similar to Theorem 4.1.1, namely,
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Conjecture 4.1.5, Let X, be a compact 4-manifold
carrying a metric of positive scalar curvature with

nz(xc) = 0, Buppose that u e ﬁl(Xé) has infinite order
and let X » Xc be the cover corresponding to the cyclic
subgroup <u>. Then there is finite cover X » X for which

Ha(X) * 0. 1Tn fact there is a class T e Hy(X) which has

non-zero intersection with 1y, a generator of Hl(x) = T

Note thatrthe condition .nz(xc) = 0 1is equivalent to
the condition Hzfi) = 0, where X 1is the universal cover of
Lo This is sufficient to guarantee that all "small™
2-cycles in X bound "small" 3-chains. This is, at least,
a necessary condition for our "capping off" argument to
work. The finite cover X » X appears to be necessary for
technical rzasons (see §4.3).

If we could prove Conjecture 4.1.5 the 4-dimensional
K{n,1) reéult would follow as the 3-dimensional result
followed from Theorem 4.1.1. Unfortunately, we have not
been able to give a general proof, although our partial
results indicate that the theorem is true. Since a general
proof will probably rely an these'partial results and seeing
that they are interestiﬁg in their ‘own right we now proceed

to develop them.



$4.2. The "long and_thin" result for certain 3-manifolds.

In this section we prove a generalization of Theorem
4.2.1 and use it to obtain a long and thin result for

simply~connected 3-manifolds.

Theorem 4.2.1. Let M Dbe a compact 3-manifold with a

possibly empty boundary and metric dsz. Assume that cn

M x Sl there is a warped-product metvic. of the form

(4.2.2) as? = ds? + £2(x)de?

having scalar curvature k » 1. Let o be a closed curve

in M such that

a) (o] = 0 1 Hl(M,aM)
and
b} distM(G,aM) > 2V3T.

Then o bounds in its 2¥3n-ne ighbourhood.

Prootf, Pick any surface g M with 3Ly = © (modaM) .

such 2 surface exisrg by a)., In (M x Sl,bM X Sl) solve the
Plateau prob]ém for the boundary o X Sl homologous to

£y * g, Call the solution H. We wish to claim that H

L . .
is of the form % x 8§ where T 1is a surface with
AF = o {moddM}. By results of Gao [Gao] we know that either
the minimal hypersurface H 1is Sl—invariant or

<a/88,v> > 0 where the vector field d/66 generates the



Si—actioh and v 13 the unit normal to H. The second

possibility is impossible for the following reason., Set

ME =M -~ Ng(c) where NE(O} is a small neighbourhood of c.
The hjpersurfsace H=H1M Mtxsl defines a relative cycle

in M_ X Sl homologous to the relative cycle defined by

Lg X sl = onsl n Maxsl. The orbits of the Sl—action maet

5. x 81 with zero intersection number while they meet H
with positive intersection number if the second alternative
holids. This is a contradiction. Hence H is Slﬂinvariaut
and can therefore be written as

H =% X S1

wirere I 1s a surface with 8% = o {(moddM), The metric on

H is a warped-product of the form

dw 2 . dw2 + £ (x)zdez.
1 1
The minimal surface 5 x Sl is stable in M x Sl SO
by results of [GLz], [F-CS] we have that on (% X-Sl) X Sl
there is a warped-product metric
2 2 2 2 - 2
de = dw” + fl(x) del + fz(x)de2
having =calar curvature Ko > 1. The idea here is %o choose

f2 to he the first eigenvector of the stability operator

L for I xS . Since L is Sl~invariant £, is
independent of 91. Actuzally we must be a little careful
because the function £, may equal 0 on 3%. However, we

can overgome this by shaving off a small collar of B8I.
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We now show that each point Py & ig at a distance

< ¥/3n from oI following a construction in [GlL3,§12]. 1In

{n x Sl X Sl, an x Sl x Sl) solve the Plateau problem for
{po} x Sl X Sl. Call the solu?ion H', £ince everything is
Slxsl—invariant the same arguments as above_show that H' is
also Slxsl~invariant and cén therefore be written in the
form

H' = [0,r] x st x gl-

The metric induced on H' 1is a warped-product of the form

> .2 2aa 2 N 2an 2
dw3 = dt° + fl(L) d91 + fZ(t) d62 .

Note that
(4,293) | distM(pO,GE) $ r

since the curve

Arf0,r] » [0,r] x S1 X S1

t + {t,constant,constant)

has length r and goes from py to 3I.

Again, since H' = [0,r] x Sl x 81 is a stable minimal
1

1

. 1
hypersurface, we have on ([0,r] x 8 x §7) x 3 a warped-

product metric

A2 _ 2 2 2 oy 2 2 2 2
(4.2.4) dwy™ = Je” + fl(t) del + fz(L) d62 + f3(t) d83

having scalar curvature Kq 2 1. Here f3 is the first
eigenfunction of the SIXSl—invariant'stability operator for

H' and =o is independent of el and 62. Again, we may

have to shave the boundary to guarantee that f. > 0.

3



-Proceeding-aipng‘the lines of [GL3,§11) we calculate

the scalar curvature of the metric {4.2.4).

3 £y f_.l f-,'
W g LR
1=l 5 <J MioTj
" - vy 2 2 1\2
3 fifl (£;) 3 f{ 3 £y
= -2.) 3 L E) AT
i=1 £ i=1 %3 i=1 i
i - LI t 2 ]
Y SR S N
Tiz: £2 =1ty Fli=1 fi}
" - L 2 : v\ 2
3 £YE, - (F]y RS
= =2 ) 5 -3 Y =
i=1 f i=1"1
Setting F = log(f1f2f3) and recalling that Kp 2 1 we
find

"_4 l2
1< ky < -2F _3(F }

EWF‘ gives

/3

Setting u

which integrates to give

5 [

1( N

tanul(u(t)) - tan ~{(u{0}) € ~-

for all ¢ in the interval [0,r].
It Follows that
t <« /3n for all t & [0,r].

In narticular, from (4.2.3) and (4.2.5) we have Lhat




distM(pO,az) « v € Vim.
Recall by hypothesis b) that distM(d,aM) > 2/3% so

o

tharefore no component of 8L can be on dZ. Hence 3%

and ¥ is a surface bounding o and contained in its

2/3n-neighbouhood. This completes the proof.

Theorem 4.2.1 is an extension of Gromov and Lawson's

82

QED

-
5

basic theorem {our Theorem 4.1.1) and the same corollaries

as given in [GL3,8§10] still hold for our more general

z-manifolds. We are particually interested in the "long and

thin® result [GL3,Corollary 10.11] but Yau {(private

communication) has correctly pointed oub that there is an

errvor -in its proof. As things stand we can only claim the

followiny.

Corollavy 4.2.6. Let M be a complete simpliy-

cennacted 3-manifold with metric ds”. Assume that on

-here is a warped-product metric of the form

682 = ds? + f£{x)2d02

baving scalsr curvature kK » 1. Fix Xg € M and let &

1,

€ a smooti gpproximation to distM(e,xO). For p » O

ﬁp be a connected component of Sglﬁn. Then
L 2L 0 aen

iamﬁ(ap) 5 12/3n.

Notes. 1. OF course, this theorem 1s trug 1f M

o %
o O

T

|




itself has positive scalar curvature.
2. Without the condition that M be simply-

connected the theorem as stated is definitely not true.

Here 13 a counter-example. Take Sl x 8% with a large

1 : N
S5 =factor. Remove many points {pi],' in the set

S1 b {point} and pull-out the metric around each point to a
product 52(5) x R while retaining positive scalar

curvature. Do the sawe for a sphere 53 with points

N -
{qi}i-l removed from a small ball By(r) c 83 and join tire
corresponding ends keeping the connecting "tubes" very long

and of aponroximately the same length,- Choose x;5 € 83 o

be the antipodal peint to vy.

T— \
—‘_‘—\_N—
= Y/
—. J

Then the connected components of level gets of the function

éy have small diametar for a while but on the’ Sl X 82
0

rart they can become as large as we wish simply by choosing



the Slwfactor large and using many points p;.  However,
this construction shows only that we cannot use the distance

function & The "long and thin"” result may still hold in

X
general - weoneed to prove that there is a function

f£:M > R which retains some of the properties of the
distance function but which avoids the problems. The
precise properties we require will bécome clear in the proot
of Theorem 4.2.2. Unfortunately, we have not been-able to
construck such a function (if, indeed, one exists) and, for

the moment, at least, we must be content with the theorem as

is.

Proof of Theorem 4,2.2. The proof given by Gromov and

f.awson is correct except for one point. We give the

details.
We wish to show that if Xq and X, are in the same
connected component of 6_1(p) then dist,(%,,%,5) < 1273=%.
XO MrT1r72
Construct the triangle T = Y1YY5 where vy 1is a curve
joining Xq to X, on which BX is constant, 7y is a
0 .

ninimal geodesic from Xq to x4 and is a minimal

Yo
geodesic from x, to X,. Mote that T is homotopic to
zero since M is assumed to be simply-connected.

We apply Theorem 4.2.1 and conclude that T bounds a

surface § in ite 2/3n-neighbourhood fgimply consider ithe
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compact sets .MR = { X e M 1 5. (x) € R }). Consider the

(x) =&, (x;) - 23n - ¢} in 3.

curves y_. = [ x ez | & «
= 0

X
0
For each regular value € > 0, the curve Ye is a regular

compact curve which intersects ' in exactly one point,

since SX is strictly increasing on vy;, i=1,2, 8o one
O .
component of Ye jeins Yy to v, and there is a point

X, € v, at a distance < 2/3n  from both vy and  v,.

and let the

Join x to v by minimal geodesics vy

E

b

[

endpoints on y; be x., i=1,2.

XO -
We have
{(4.2.7) disty(x),%,) < distm(xl,xiy + distM(xz,xé)
+ distM(xi,xE) + distM(xé,xE)
For 1i=1,2
(4.2.8) distM(x;,xE) < 2V/3n

and since vy; 1is minimal
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. v o ] oA '
dlatM(xi,xi) = dlstM(xo,xi) dlstM(xogxi)

F oy

distM(xl,xz) - (disty(xq,x,) + 2/ 3n)

(4.2.9) (diStM(XO’Xi) - dlStM{XOyKE)) + 2370
Let y be the closest point to X, on . Then
dlStM(XO’xi) = dlstM(xo,y)
< dlstM(xo,xE) + dlstM(xE,y)
S0
. distM(xo,xi) - dlstM(xO,gg) < 231 + ¢
Ffom (4‘1207) - (402.10) we haVQ

disty(xy,x,) < 12/ 3%

as claimed. _ ' OED

§4.3. Covering space lemmas.

In this section we will prove the following theorem.

Theorem 4.3.1. Let X, Dbe a compact riemarinian

@anifqﬁq with ﬁz(xp) = 0. Suppose that u ¢ nl(xc) has

infinite order, and let X » X, be the cover corresponding

to the cyclic subgroup <u>. Let ry > 4 be any constant.

Then there is a finite cover X » X and a constant ¢y 50
. is a e g -0 AN )

that for all 'x € ¥ the inclusion




H (B, (rg)) - Hy(B, (cq))
is zero.
This theorem is intended to partially generalize the

following result which holds for regular coverings.

Lemma 4.3.2., Let X -+ Xc be a reqular cover of a

compact manifold with H,(X} = 0. Let ¥, > 0 . Dbe any

2 0

counstant. Then there ig a constant cy S0 that for all

¥ ¢ ¥ the inclusion

Hy(B,(rg)) > Hy(B (c))

Proof. Let K ¥ be a (compact) fundamental domain.

Since the covering is regular we can [ind a deck

N

i=1 be a

transformation g taking x into K. Let {Zi}

generating set for H,{K'), where XK' = ro—neighbourhood of
X. Since #A,{(X) = 0 each ¥, bounds a 3-chain S,. Pick

g > 0 soO that S1U ««.U Sy U K'c B (co) for all vy e K.
¥ 1, (K'Y » 3 ) is i s
Then Ez(K Yo dz(Pg(x)(CU’) iz zero, and so the

composition Hz(Bg(x)(rO)) > Hy(K') = HQ(Bg(X)(CO)) is ailso

-1
~ero. Apply ¢ to conclude that Ho(B,(rg)) » Hy(B, (cy))

is zero, as required. QED

)



88

Before the proof of Theorem 4.3.1 we need

Lemma 4.3.3. Let Xc be a compact riemannian

. “  manifold. Suppose that u e m, (X ) has infinite order.

For each integer n let Yn be the shortest closed

geodesic in the free homotopy class of n-u. Then

lim

I
8

length(yn)

An immediate corollary 1is

Corollary 4.3.4. Let X, be a compact riemannian

manifold. Suppose u e nl(xc) has infinite order, and let

X » X, be the cover corresponding to <u>. Let X be the

universal cover of XC. Then given ¢ > 0 there is a

finite cover X + X so that balls of radius < ¢ in X

are evenly covered by X » X.

Froof of Lemma 4.3.3. Assume not. Then there is a

o

sequence {Ym} of closed geodesics where is in the

m=1 Ym

free homotopy class of n_+u, n_ » «, all having lengths

m m 4

> L (say). By compactness of X, and properties of

ordinary differential eguations we know that (a subsequence
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of) {Ym} converges uniformly to a closed geodesic y. In
particular, for m sufficiently large they are homotopic, in
contradiction to the initial choice. QED

We can now prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Firstly consider the universal

cover X - X,. This is a regular cover with

e

HZ(X) = nz(xc) = 0, so we can apply Lemma 4.3.2 to deduce

Cr

1}

that there is a constant. ¢, {depending only on ro)
that for all y & X the inclusion H2(By(r0)) > Hz(By(cO))
is zero.

Now appiy Corollary 4.3.4 with ¢ = 2cq: there is a
finite cover X » X so that balls of radius < Cq in X
are evenly covered by X » X. That the inclusion
Hz(Bx(rﬂ)) > Hy(B,(cy)) is zero for any x & X follows
immediately by lifting to the universal cover. This

completes the proof. _ QED
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§4.4. The capping off procedure.

In this section we give a partial proof of Conjecture

Conjecture 4.1.5. Let XC be a compact 4-manifold

carrying a metric of positive scalar curvature with

nz(xc) = 0. Suppose that u ¢ nl(xc} has infinite ovder
and let X » Xc be the cover corresponding to the cyclic
subgrqup <u>. Then there is finite cover X » X for which
H3(X} # 0, In fact there is a class ¥ e H3(X) which hag

non-zero intersection with vy, a generator of H;(X} = Z.

The proof uses the partial "long and thin" result,
Corollary 4.2.6, and so is not complete. We point out the

extra assumption (4.4.2) we need during the proot.

Set r, = 12¥/3x and let X + X be the finite cover
given by Theorem 4.3.1: there is a constant ¢ 2 0 so that
for all x c X the inclusion
(4.4.1) Hz(Bx(12/§ﬂ)) » Hy (B (cg))
is zerc. We now work entirely in X.

Let v c X be an embedded circle such that [yl
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generates Hl(x) = 7, and let 5Y be a smooth approximation
to distx(-,y). For each regular value p > 0 of 6Y set
XI '»X 6 Q -
o= lxex 8 <o)

Since [yl has infinite order there exists an element

w e Hy(X ,8% ) so that (w,y) * 0. Let (zéﬁazp?'c (X ,0X))
be a minimizing 3-manifold with [EE] = w. By vegularity
results §; is a regular embedded stable minimal
submanifold. By extracting a subsequence we pass to the
iimit as p » » and form 3F. This is a complete regular
gmbedded stable minimal hypersurface.

To carry out the remainder of the proof we

(4.4.2) assume that I is simply-ccnnected.

We know, by results of [GL3l, [F-CS], that on I x S1

there is & warped-product metric of the form

a2 2

da% = ds? + f£(x)2de?

having scalar curvature kK » 1. Fix Xy € <€ X and let
63 be a smooth appreoxzimation to distz(-,xo). For each
integer n consider the compact manifold

£y = 65 (10,0,1)

where Pry is a regular value of 62 vary close to n. Let

the connected components of oy = 6E}€{pn}) be denoted by
Ai: iml,...,Nn, Apply Corollary 4,2.5: since I is simply-

connected we have that



92

(4.3.3) diam.(A%) < 12/3x.
In
Fix p > g and note that for n sufficiently large

6£n_c X - Xp. This is evident because both 62 and 57

are proper exhaustion functions on L. (6Y is proper because
it is in X and I is properly embedded in X). Pick an

integer R so that g€ X - Xp. Then I has the

property that its boundary components A% are at a distance
> Cy from vy and from (4.4.3)
. i ; i
diamy (AR} < diamg (A7 < 12/ 3n.

i

R 12/3%) with

Hence each A is contained in some ball B

x|
i

B

ey

Q:i:;// Q

.H‘

By {4.4.1) we know that each class A, e H

bounds a 3-chain Q4 in Bx (co) {with Q. n
i

therefore). 7The cycle



L= ipUu QU eos U QNR
then has (%,y) = (3gsy) # 0. 1In particular, the class

[E] € H3(X} is non-zero.

Notes. 1. This partial result is not very satisfactory
in view of Assumption 4.4.2. However, we do not need to
know quite so much about the hypersurface I - the proof

would still work if = is thin "often enough”

6r_maybe even if it grdws at a slow-enough rate compared
with distaﬁce from vy. Of course, if the "long and thin”
result holds in generél there are no problems.

2. The assumption does hold for ¥K'= Sl % R3
with the product metric. Here the minimal hypersurface is
just {poinﬁ} x R3. We conclude that 81 x R {product

metric) cannot be the riemannian cover of any compact

manifold.



Chapter 5. Yang-Mills fields - Kalusa-Klein model.

In this chapter we consider problems arising from the
study of Yang-Mills fields. 1t is organized as follows.
Section 5.1 contains notation_and basic results. We give &
precise mathematical definition of a Yang-Mills field as a
solution to a certain variational probliem and, more
generally, show that the combined Einstein-Yang-Mills
equations arise from a variational problem. 1In Section 5.2
we show that this latter problem has a simple formulation if
we WOrk on thé total space of the principal bundle. This is
the Kalusa-Klein model. We study some natural questions
concerning this variational problem obtaining in particular
a type of topological quantization for certain critical
noints.

It should be noted that some of the material in this
cihapter is not new and can be found in greater detail in
Bleeker [BL1li, for example. However, we clarify some

confusing points and develop some of the relevant ideas.




£§5.1. Definitions, notation and basic results.

In this section we set-up the mathematical framework in
which we work. Our primary aim is to state precisely what a
Yang-Mills field is and to give the Yang~-Mills and combined
Einstein-Yang-Mills equations. This material is quite
standard and is given in, for example, [B1] or [BL]. 1In
fact this section is included mainly to fix our notation
and for completéness. Kobayashi and Nomizu [KN} is a good
source for the basic definitions.

We firstly fix some very.general notation. For any
manifold X let TX » X be the tangént bundle for X . and
if x & X let TXX be the tangent space at x. Let T*X
be the cotangent bundle of X. 1In general, if E » X is a
bundle we denote the sections of E by T(E). If & + X
is a vector bundle we denote its kth~éxterior bundle by

ﬁk(E). The set of k-forms on ‘X, that is, sections of

Ak(T*x), will be denoted simply by Ak(X), and if Vv is a
vector space the set of V-valued k—-forms will be denoted by
Ak(X,V). Let .Sz(TX) be the set of symmetric (0,2)-tensor
fields on X and Met(X) < Sz(TX) the space of riemannian
metrics. For g e Met(X) let Ricg € Sz(TX) be its Ricci

curvature and Kg:x + R 1its scalar curvature.

We fix a compact connected orientable manifold M of

dimension n » 2, a compact connected semi-simple Lie group




96

T
G of dimension r » 1, and a principal G-bundle P > M.

Let (ﬁ denote the Lie algebra of G and [ , 1 its Lie
bracket. We have the adjoint representation »Ad:G » Gl(%).
We fix an Ad-invariant inner product k on o or,
equivalently, a bi-invariant metric on G. Such a metric is
given by the Killing form of o .

If VvV is any vector space and p:G + Gl(V) a
representatioﬁ of G on V we can form the associated
vector bundle E > M by setting E = P xp V. If VvV = %
and p the adjoint representation we denote the associated
bundle of Lie algebras by %.

For g £ G let Rg:P > P be the right action of g
on P. Recall that a g-valued p-form ¢ e AP(P,q) is
called tensorial if
a) R;¢ = Adg_lom
and
b) ¢(X,¥) = 0 if one of the vector fields X,Y & T(TP) is

vertical {that is, tangent to fibers of P).
A tensorialt}ﬂvalued p-form can be thpught of as an element
of T(PT M ®§). |

We now introduce Conn{P) C Al(P,g), the set of

connection i-forms on P, A form w & Al(P,%) is a

connection form if it satisfies the following conditions




a) If A e 0 and A the corresponding fundamental vector
field on P then w{A") = A.

b) If. g € ¢ then R;m = Ad 1w,

We note that the difference w,-w of two connection

2

l-forms w; and w, is a tensorial %—valued l1-form. Hence
* -

we can think of F(AlT M® %J as the tangent space at

w & Conn{(P). On any associated bundle E a connection

w e Conn(PF) induces a covariant derivative

g¥:T(TM) x T(E) » T'(E).
p+l

o
o

For w € Conn{P) we let dw:Ap(P;%) > AP (P, )

the covariant exterior derivative defined by

(5.1.1) SR TC SR - d¢(xfﬁ...,x

p+l

B
p+1
(P,Og) is the usual

p+l)
where - ¢ & AP(P,g), d:AP(P,y) > A

exterior derivative , Xl"“’xp+l are vector fields on P

H

H
and Xl""'xp+1

their horizontal projections. ©On a
tensorial a~valued p-form v, that is, a section of
APT*M & % + M, the exterior covariant derivative

a%:r (AP u ® %) > ELARE W %) has the expression
(5.1.2) a¥(v) = dv + [w,v]
Ak+1

where we define the bracket T[¢,¢] (P,%) - of two

o~valued forms ¢ e Ak(P,%) and ¢ € Al(P,%) by
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1 . sgn(o)
[6,6](K 00X ) = —=— }(-1) [ e ,
1 p+q pig! %a(1) " " Xo(p+1)

¢ e ]
o(p+1) Xo{p+a)

Here Xl,...,x e T(TP) and o ranges over all

p+q
permutations of 1,...,p+q.

Given w e Conn(P) we define the associated curvature
form @ ¢ A2(P,%) by ¥ = dww. The curvature form
satisfies the following fundamental equations
(5.1.4} a® = @ + 1hiw,w] Structure equation
{5.1.5) ae = Bianchi identity
Also .Qm iz tensorial so that it can be thought of as an

* ~
2T M ®a) or, equivalently, as a map

element of I(A
Q¥:r (A%TH) » T3 .
Using the inner product k on % we define, for each

— * A
g £ Met(M), a metric gk for the bundle APT M ® o > M as

follows. For x ¢ M and ¢,6 € p "(x) set

n
5.1.6) _]Z( r ) = k -
( g ¢ ¢ a -E..a =1 (¢Ea OQ..Ea ,dj't"a ....Ea )
1’ p 1 p 1 P

where {El"°"En} forms an orthonormal basis for TxM’ AS

usual this gives an inner product, called EE still, on the
%* “

vector space r(APT M ® %) by integration over M

(5.1.7)  ° gk(e,4) = [ gklb,,4,) dvol (x),

M
d,0 € P(APT*M ® @_)



Finally, for each (g,w) & Met{M)xConn(P) we define
the map s 9:r (AP e M & 3) » raPrM @ &) to be the
adjoint of d” with respect to the inner product (5.1.7),
that is,

gk (8%799,0) = gk(4,3"%)
for all ¢ e T(aP "M ® g and ¢ e (P’ M ® )
Using the riemannian connection D on APT*M and the

. W : A : .
connection V- on o we have a tensor product connection V¥

* ~
on APT'M ® 4 defined by ¥(a ® £) = Dx ® L + «vE. We then

have the following handy formﬁlas for a* and 8“9,
(5.1.8) (a“9) = T entog e .
Xog...xp i=0 Xi XO’..Xi;--Xp
n
(5.1.9) (8%79¢) = -1 9 9
Xl'Ilpr‘dl 0::1 Ea Larxlf..lxp_l

* ~
Here ¢ e T{APT M ® ), {El""En} forms ‘an orthonormal
basis for T M and xd,...xp are arbitary vectors in T M.
We now introduce the basic functionals we study in this

chapter.

Definition 5.1.10. The functional

YM:Met (M) % Conn{P) -+ R

defined by



YM(g,w) = laf gk(e®,a") dvolg
M

is called the Yang-Mills functional.

Definition 5.1.11., Let ¢ > 0 be any constant. We

define the functional
EC:Met(M) x Conn{P} + R
by

E lg,0) = [ (x - 144k (2%°,2%) + <) dvol

M g g

The constant ¢ 1is called the cosmological constant. We

will call E, the Finstein-Yang-Mills functional with

cosmological constant c.

We usually think of the metric g & Met(M) in

Definition 5.1.10 as fixed. We then define the

g~Yang-Mills functional YMg:Conn(P) + R by

™ (0) = 14 [ gk (¥, ") dvol,

M
A connection w® 1is called a Yang-Mills potential for the

metric g 1f it is a critical point of YMg, that is, if

d . . . 1.* A
EfYMg(w + tv) |y = 0 for all variations v ¢ T(A'T M ® &),
w

* -
The corresponding curvature Q ¢ F(AzT M ® o) is called a

Yang-Mills field. The first variation formula for YMg is

given in, for example, {BL) and we have the following.

1G0



Theorem 5.1.13. Let g & Met(M)} A connection

——— ———— —————— —— —

w e Conn(P) 1is Yang-Milis for g if and only if it

satisfies the Yang-Mills equation -

(5.1.14) s¥r9g” = 0.

There are many interesting problems which arise iﬁ”tﬁé
study of the g-Yang-Mills functional for a fixed metric g;
However, here we are ﬁore interested in allowing g to vary
also -~ the interesting functional in this case is the
combined Einstein-Yang-Mills functional E,. A pair
(g,w) € Met{M)xConn(P) 1is a critical point of this
functional if and only if %€Ec(g + th,w + tv)|t=0 = 0 for
all variations h € Sz(TM) and v € F(AlT*M ® %J, We have

the following theorem.

Theorem 5.1.15. The pair (g,w) € Met{M) x Conn(P) is

a critical point of E if and only if the following
2 oL c X= y it

equations are simultaneously satisfied

{5.1.16) Ric - LQKgg ~§ 9= Tyq (Einstein field
equation)

(5.1.17} sWr9® = o {(Yang-Mills equation)

Here T, g ¢ SZ(TM), the so-called stress-energy tensor, is

z28LE ’ 1=

given by
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n
(5.1.18) T _ (E_,E,) = 4 } k(@ Q )
wygt e’ B y=1 E Ea’ B EB
1—

-g-gk(Qw,Qm)g(Ea,Eﬁ

where {El,...,En} is an orthonormal frame field of TM.

)

Proof. A proof of this theorem is given in [B1l] but we
give it again for completeness.

Let- < , > be the metric induced by g on SZ(TM).
Then we have the basic results that for variations

2 2 * ~
h e 8°(TM) and v £ T{A"T M ® %J

[ 4
()01-19) ?__J‘ dvol

{qg,h> dvol

le=
gtth't=0 M

(5.1.20)

d
HE& Kg+th dv°1g+th!t=0 = gi(LQKg<g'h>

- <Ricg,h>)‘dvolg

a - oW
(5.1,21) HE£ (g+Ethlk(Q" ,Q )dvolg+th

= LQEEXQw,Qw)<g,h>dvolg
M

n
- [ 2¢ ] k(Qg |04

L) eh> dvolg
M oy=l Y Y
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d witv
r

(5.1.22)

foll

—— witv
té gk{(Q Q ) dVOlgItzO

|
= é 20K (Fp(d(w+tv) + Lg[m+tv,m+tv])|t=0,gw) dvol

il

f 2gK(dv + [w,v1,2%) dvol
i g

[ 2gk(d®(v),0"y dvol

=
o]

1l

[ 2gk(s®7 9%, v) avol .
i g

Combining (5.1.19}=(5.1.22) gives

“)

d K . -
-d—t'h.c(g-{-th,w‘l-tv) [t=0 == {d<"—-29-g - Rlcg - —é':] (.Qw,Q

M

y .+ Sg,h> dvolg
Y Y

b

- B[ gk (s¥ %%, v) dvol
M d

From this it follows that (g,w) is a critical point if and

only if
g c n 1
a) Rng - 59 -39 = 130 k(QE 8 L) -3 gk (a”,2%)
v=1 Yo
b) sPrdpW = ¢

which proves the theorem. ‘ OED



. 104

§5.2., FKalusa-Klein Model.

In this section we show that the Einstein-Yang-Mills

functiocnal EC has a simple fofmulation if we work on the

- total space P of our bundle P E M.. This is the Kalusa-
Klein model. We then study relationships between the
critical points of this new functional. We use the same
notation as in the previous section.

To give the Kalusa-Klein formulation we need to embed
the space Met(M)=xConn(P) into Met(P}) as follows. For
{g,w) & Met(M)xConn(P) define the metric ja_s Met{P) by
gsetting for each p € P and arbitary' X, Y € T P

P
(5.2.1) (ﬁ)p(xm: g(dm, (X) ,dn, (¥)) + K{w(X),w(¥).

This metric is called the bundle metric associated to g
and w, We note that the (right) action of G on P 1is by
isometries of the metric gw. Hence we actually have

. (P € ) ;
Met{M)xConn{P)} Metlnv(P) Met{P) where Metlnv(P) is

the sei of G-invariant metrics on P.

We observe that m:P + M is a riemannian submersion

for the metrics gw on P and g on M - in fact an

isometry of the horizontal subspaces of TPP onto M.

T
n(p)
This observation is important as it shows that we may simply

use the 0'Neill formulas [0fN} to calculate the‘curvature of

— n
gw. To do this, let {E }

o a=1 be an orthonormal basis for




}_.\l
o
wn

r

the horizontal subspace of T P and {F an

D 1=l
orthonormal basis for the vertical subspace tangent to the

T
fibers of P » M., We have the focllowing.

Theorem 5.2.2. Let gw £ Met(P) be the bundle metric

given by the pair (g,w) & Met(M)xConn(P), Then the Ricci

curvature Ricga of gw is given as follows.

n
a) Ric—(E ,E.) = Ric (E ,E,} - 1 ) k(& Qr o )
guw' a8 gt e B y=1 EYEa’ EYEﬁ
b) Ricoo(B ,Fy) = l@k((éw'gQ)Ea,Fi)
. o . , t -
c) RlcﬁE(Fi'Fj) = Rch(Fi,bj) + 1Ak (200 (Fi)flj)

Here Ric; 1is the Ricci curvature of G with its fixed

bi-invariant metric k. In the last expression we think of

the curvature @ = ¥ as a map Q:AzTXM + 0. and tinen Qt
is its adjoint with respect to the riemanrian metric on
AszM and the metric k on %”. Note that we can write

t d t
Qo) {F. = X £ . \
Q (F;) = af e<2'y=1k(F€ E /27 (F;)) (B, E ) )
n
= ] k(e ()9

e<y=1 EsE E

Y Y

a0 that




h

10

n

t
k(QoQ (F,),F, Vok(o, ., JFIK(Q
i’e"y ech=1 BB 1 E_E

er5

¥

n
=1 ] k(e P k(R JE L)
A e<y=1 EEEY' . E&EY 3

Using Theorem 5.2.2 we calulate the scalar curvature

n r
= Y Ric—{E ,E ) + ) Rice(F,,F.).
a=1 g Tol o i=1 w1771

be as ig Theorem 5.2.2. Then

Theorem 5.2.3. Let Qgow

its scalar curvature ngcP + R ig given as
Kg = L@E&{Q,Q)'+ Ko

is the scalar curvature cf G with its

Ko =
gw

Tere .
Her KG

hi~invariant metric.

Note that, since the action of G on P 1is by

isometries, the scalar curvature Kaa- is constant on the

fibers. Hence it gives a map K;;EM + R by prcjection.

We now return tc the main point of this section and

E:Met (P} » R

introduce the total curvature functicnal
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(5.2.4) "E(h) = | ky dvol,, h & Met(P)
F

The notation here is consistent with that of 5.1.11 since on

Met (M) xConn{P) € Met(P) we have, using Theorem 5.2.3, that

E(gw} = é Kga—dVOlgw

= £ ( Kg ~ agk(Q,Q) + kg } dvolgw

and since the integrand is constant on the fibersa

E({guw)

i

vol, (G) é { kg ~ agk(Q,Q) + Ko ) dvolg

= volk(G) EKg.

Here volk(G} is the k-volume of &, that is,

vol, (G) = [ dvol,. Herice

.

Gy

E | :Met (M)xConn(P) + R

Met (M) xConn{P)

is, up to a constant, the same as E. iMet(M)xConn(P) » R.
G
Thus, we may replace E, by the simpler functional
G

EiMet(M)XConn(P}' This is the Kalusa-Klein formulation.
We are interested in the critical points of E. Of

course; on the subspace Met{M)xConn(P) < Met(P) the

critical points agree with those of E s0 we have the
G

following re-~wording of Theorem 5.1.15.
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Theorem 5.2.5. The pair (g,w) = Met(M)XConn(P)f ;g"

critical point of the functional

Elyet (M) xConn () $ Mt (M) xConn(P) > R

and only if

n
: - ]
a) Ric, - L@Kgg - Yaxgg = Lgyilk(QEy"QEy°} 5ak(2,2)g
(Einstein field eguation)
b) §%19% = 0 (Yang-Mills egquation)

The critical points of E on other subspaces of

Met(P) are more well-known. We have, for example,

Theorem 5.2.6., The metric g = Met(P) is a ylobal

crital point of E:Met(P}) + R if and only if it is

Ricci-flat, that is, Ric§ = 0,

Let ,Metv(P)(: Met{P) Dbe the subgpace of metrics with
a fixed volume V. Then, by applying standard Lagrange

multiplier technigues (see, for example, [E]), we have

Theorem 5.3.7. The metric g € Metv(P) is a critical

point of E[MetV(P)=MetV(P) + R if and only if it is
K

Rinstein, that is Ric— = -3 5
ins  El is, i 5 = 3.
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An interesting question to ask is if the critical
points of EIMet(M)XCohn(P) are ever critical points of
E{Metv(P) or of the unrestricted functional B, that is,
‘are they ever Einstein or Ricci flat. Another more general

question is to ask for the conditions under which any bundle
metric gw 1is Einstein. We will consider an aspect of this
question later. As far as the first is concerned we have

the following.

Theorem 5.2.8. A bundle metric

qw = {(g,w) £ Met(M)xConn{P)

that is a critical point of ElMet(MjXConn(P) is Einstein

Af and only if it is Ricci-flat.

Ezggg.- From Thecorems 5.2.2, 5.2;3 and 5.2.5 we have

. It
Ric_. (& ,E.) = Ric (E_,E.) - 1A § k(@ o )
Te Ca B g Cattp 1 E B, E Eg

Kg — lagk(Q,Q) + Kg __
= .9 ’ G
2 gw(EarEB)

K—u-——-
= = gu(Ey,tg), @B = 1,0ua,n

ITf gw is Einstein, however, we have

K ——

Ric (E _,E = g _
quw' af B) —;;rrgw(Ea,EB) B = 1,..440
Hence, since n + r > 2, we have K ™ 0 and so gw is

Ricoci-flat. OED




- 1iC

Thus, we are reduced to asking when a critical point of

' . » L " - -‘ H
EIMet(M)XConn(P) is Ricci-flat. We actually give the

following more general theorewm.

Theorem 5.2.9. Suppose that n » 3. Then a bundle

metric go e Met{M)xConn(P)  Met(P) is Ricci~flat if and
only if it satisfies the following conditions.
Kg KG
i) Rlcg(ha;EB) -5 g(ha,Eﬁ) - 3 g(ha,hﬁ)
? .
= I2 ) k(@ Q ) - lg gk(e,2)g(E_,E;)
E r E r r
=1 SyRa Py . “ P
a,B = lyeuern (Einstein field equation)

1i) 8% = o {vyang—-Mills eqguation)

,Fj) = "LQk(QoQt(Fi),Fj),_ i, = 1yl

If n = 2 the above is true with the extra condition

Proof. The implication in the forward direction

follows immediately from Theorems 5.2.2 and 5.2.3 since then

= Kg = agk(Q.Q) + Kq = 0.

“gw

For the reverse implication we have the following.
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3 2 . = : t, o -
a)l R;cgm(Fi,Fj) = Rch(Fi,Fj) + 1Ak (QoQ (ri),Fj) 0
ifj = 1,00»,1’:
b) Rié.g,m(Ea;.Fi) = l,Qk((éw'gQ)Ea,Fi) =0 i = 1yeeesr
- € = l;54e04n
)
c) Ric_ (E _,B,) = Ric (E_,E.) -~ 1A ) k(& Q )
3 E R '"™E R
gt e e g atR y=1 tHa Py
e
g
= "—Ei gw(Euﬂ'Eﬂ) CL,B = 1,---;1’1
If n = 2 condition iv) shows that ng.: G and
Ric@ﬁ(Ea’EB) = 0. In any case, for n » 3 we have
w = ):Rlcé-a)—(Ea,Ea) + ) RICoAF,F )
—
B -—-—%90!1 + 0
and so KE_:;TJ“ 0 still.

So RlcgmiEa,EB) = {0 for

2,8 = 1,;{.?n. Together aj), b) and c¢) show that Ric~a-= 0.

QED

We note that Conditions i) and ii) in Theorem 5.2.9

characterize a critical point of E'Met(M)XConn(P) so we
have tne following corollary.

Coroilary 5.2.10. Suppose that

n » 3. Then a bundle

metric gw that is a critical point of E]

Met (M)xConn{P)
is Ricci-flat (that is, satistfies the vacuum Einstein field




equations). if and only if the following condition holds

; . t, . P
i) Rch(Fi’Fj) = -1Ak(Qe0 (bi),Fj) i,i =1;...,n

If n = 2 the above ig true witn the extra conditioq

An impertant observation is that if G = U(1l) = 8, as
in the case of electromagnetism, then condition i} in this
corollary is unnecessary. This was Kalusa and Klein's

observation:

Corolliary 5.2.11. Let (M,g) be a compact riemannian

4wm&nifoig (represgnting space-~time}), and P =+ M &

principal U{l)~-bundle with a connection w {(representing a

Maxwell potential}. Then the pair (g,w) satisfies the

combined Einstien-Yang-Mills esquation if and only if the

associated bundle metric gw on P satisfies the wvacuum

Einstein field eguation, Ricaa = 0.

For gauge theories with larger groups, however,
condition i) in Corollary 5.2.10 does édd a restriction.
Thus, unfortunately, we cannot «laim that in general a pair
{(grw) & Met{M)xConn(P) saticfying the combined Einsteinm‘

Yang-Mills equations comes from a bundle metric satisfying

the vacuum Einstein equation,




Some more -can be said about the theory if we assume
that the group G 1is simple. 1In that case the Ricci
curvature RicG, veing bi-invariant, must be a multiple of

K
ke Then

~la

the bi-invariant metric k, that is, RicG =

Condition i) in Corollary 5.2.10 may be written as

2K
i)? QOS}t = '“—"]_;'—G"Id.

Here TId: ¢+ is the identity map. An immediate necessary
céndition for i)' to hold is that the map

Qt:QA-AZTXM be injective for each x € M. Hence, in
particular, r < n(n-1)}/2. This restricts the choice of
groupv G and, for example, in the phyéically interesting case
where n = 4 we have that r < 6. From the classifaction

éf simple Lie groups (given, for example, in Helgeson [Hell)

we have that the only possibilities in this case are

G = U(l) or 3U({(2).

Turning now to a slightly more general question we
ask for conditions under which a bundle metric
gw & Met(M)xConn(P) ¢ Met(P) 1is Einstein. We already know

that if gw is a critical point of then

E',Met('i\*i)xComrl(P)
it is Binstein only if it is Ricci-flat. Here we are
interested in general metrics contained in

Met (M) xConn{P) € Met(P).

There may be many bundie metrics gw which are




Finstein. We could write down the equati@ns_.g_ and. w
must satisfy (using Theorem 5.2.2) but this doés'ﬁét_seem
particularly enlightening. 1Instead, we consider some
special Einstein metrics - the ones having constant or near
constant curvature. We firstly show that P admits a
bundle metric or, more generally, any G-invariant metric of
constant positive curvature only under very special
circumstances.

Before stating our result we point out that there are
some examples of principal G-~bundles P 5 M which do admit

G-invariant metrics of constant positive curvature. We have

821‘1-!-1

the Slﬂbundle P (c) = 82n+1/sl which defines the

. . . +
complex projective space Pn(C). The Sl-actlon on Szn 1

is by isometries of the standard metric and the induced

metric on P(C) is the standard Fubini-Study metric. If

we take a finite cyclic group Zp<: s! we can also form

32n+1/2 P™{C). The "generalized lens

the Slwbundle e

still has constant positive curvature.

Another related example is the SU(2)-bundle 54n+1 > PD(H)

+
space"” g2n 1/Zp
which defines the quaternionic projective space P {H).
Here, again, the §0(2)-action is by isometries of the

' JArn+l

standard constant curvature metric on S . The theoren

we prove states that these are the only possible examples.
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Theorem 5.2.12. Let P » M be a principal G-bundle

over an orientable manifold M, f P admits a G-invariant

metric g of constant positive curvature then either

n
i} G = U(1) and P ~» M is one of the bundles

2n+1/z N Pn(C}

5 P

dn+1l

) A
ii) G = 8U(2) -and P ¥ M is the bundle S » p(H) .

Proof. 1In the first part we consider the case where #

[
]
n
[

mply-connected, so let # E M be the universal cover

v

and P the corresponding pull-back principal G-bundle over

p*

2w’
v

=T
T2 ot
A
s ey

(-
ES

We determine the bundle P M.

M2

Since P has constant curvature so does its cover
and hence its universal cover is the sphere of constant
0P = . PG .
curvature 5 3 P, Let G > & be the universal cover of

sur group G. We have a free action @&:G x P+ P which

1ifts te an action &:8 x s » gN,




N

‘Unfortunately, the action of G on 8% may not be free but
we may replace it by one that is by following a standard
procedure. We let H = {g e G| €(g,+) = IdSN} and consider

N be the

the quotient G' = B/H. Let ¢':G'x s » 3
guotient action. By construction &' 1is effective and by
the unique path~lifting property we actually have that since

& 1is free sc is &' (see [Bre] for details). Hence we

have the following commutative diagram.

@l
o' x s TSN
pGlxp p
G %X P B 5 P

We now determine G'. Firstly, we note that it is

compact. This follows from the fact that ker(pG,} = the

kernal of the homomorphism pg.:G‘ > G 1is contained in




117

T =
B'(g',s) €T if g' € ker(pge)).

connected group acting freelyIOngaé.ﬁf

usual metric. There are not many choices = either

i) G' = U(1l) acting standardly on 82n+l with quotient
or
.. . s . N 4n+1 . L
ii} G' = sU{2) acting standardly on S with quotient

p(H).

We now wish to conclude that M = P%(¢c) or PMH). To
do this we need to show that ker(pg,) = ' since then

W= b6 = S/, - s
G'/T

and SN/G' is known from i) and ii) above. We have already

observed that ker(pG.)tz I'v The reverse inclusion follows

from the fact that M 1is simply-connected. Pick

y € T' = ﬁl(%) - we wish to show that the action of vy on

SN is given by an element g{ e G', that is, for all

x e gV, y{x) = @‘(gk,x). Fix pe P and let e & G be

the identity. Since ™ is simply-connected we have from
f .

the exact sequence for the fibration G + P » M that the

inclusion nlfG,e) + nl(ﬁup) is onto. Hence vy is

represented by a loop in P, called y still, based at p




and contained in the fiber 7% (%(p)). It”c‘é{'ﬁ.-'_?ie written in
the form ¢t » &{g(t),p), t e [0,1], where heré.A.
g:{0,1] + G 1is a loop in G based at the identity. é: Lﬁéff
1ift g to a path g':[0,1} » G' beginning at the identi£§

e’ G'.

m

[0,1] ——+ G

Then the path ¥:[0,1] » S given by §(t} = &'(g'(&),x)

is the unique 1ift of the path y in P. Hence the action
of y on SN, namely x =+ y{x) = §(1), is given by the
zction of g; = g‘(l). .This completes the proof that
ker(pG,) = I and we have determined that M = P™(C) or
27(n) according as te whether G' = U({l) or §5U(2).

We aiso determine the original group G = G'/T. 1In the

case that G

U{1l) we have I = 2 a ftinite cyclic

p.l‘
U{l1y still. 1In the case that G' = SU(2)

i

group, and G
we have TI' = trival group and se G = G' = 8U{(2). Also, in

the firet case we have that P = 82n+1/2p (standard

action) and in the second P = g4ntl

~ B
Thus, we have determined the G-bundle P + M. To

summatrize we have either




iy G = U(l) acting standardly on
quotient M = P"(C)

or

ii) G = sU(2) acting standardly on P =

quotient M = p"(H).

All that is left to do is determine M, that is, we

need to decide which manifolds are covered by APn(C} and

pn(H). We use the Lefschetz fixed point theorem.

Case 1. Pn(C). Let f:Pn(C) > Pn(C) be a non-trivial

deck transformation so that, in particular, it is a
fixed~point free diffeomorphism. We shbw that such a map
exists only in the case that n 1is odd and then it is
orientation reversing.
Let m € H2(Pn(c),z) be a generator of the cohomology
fing H*(PH(C),Z) (so‘that mk generates HZk(Pn(C),Z) = Z
for k < ni, Since f is a diffeomorphism the induced map
on cohomology, H*(f), is an isomorphism. Hence
22(E){w) = *w.. :
If B2(£)(w) = w then B2X(L0)(®) = ® for k=1,2,....
and the Lefschetz number L(f) of £ definéd by
2n . .
L(f) = _El(-~3_)1tr(ﬂl(f))
i=

(—l)2k # 0. By the Lefschetz fixed point
0

is equal to

N 33

k
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theorem such a map £ has a fixed point. This is a

contradiction to £ being a deck transformation. Hence

Hz{f) = -w., In that case sz(f)(wk) = (—1)kwk and we then
have

n

Lig) = § (-1)2Kk
k=0
n
= 3 (-nk
k=0
0 n odd

n

1 n even

If n is even we again have a contradiction to £
being a deck transformation. Hence the.only pessibility is
that n is odd and then Hzn(f)(mn) = - 0 f is
orientation reversing. Such a map p%(c) » p™(C), n ocdd,
exists -~ it is given by complex conjugation. However, the
fesulting manifold PT(C)/I' is non-orientable.

Case 2. P (H). Following an argument similar to the

one just given for p™(Cc) (with v e H4(Pn(H)) a generator

of the c¢ohomology ring) we f£ind that p"(H) does not cover
any manifold if n 1is even and in the case that n is odd
it only covers a non—orientable manifold,

So we have that both P (C) and PT(H) are not

non—-trivial covers of any ovientable manifold. Hence M = M

in both cases and the theorem is proved. QED




We now return to the problem of finding G-invariant
Einstein metrics on P. Theorem 5.2.12 shows that if such a
metric has constant positive curvature then the whole hundle
P+ M must be one of the very special ones described,

Then, since Einstein metrics are, in particular, harmonic
the usual "gap" phenomena may be expected. Here we have.in
mind results similar to those found by Bourguignon and
Lawson [BL] for self-dual connections. They depend on &
Bochner-Weitzenboch formula. Indeed, by examining this
formula in our case such a “gép" thecrem can be proved. The
following theorem has been proved by Eourguignon [B] and
was discovered independently by the author. We refer the

reader to [B} for the proof.

Theorem 5.2.13. Let (X,g) be é compact n-dimensional

riemannian manifold having harmonic curvature. If the

sectional curvature KX of X satisfies

5n .
WQH‘EK £ KX £ K

for some K 0, then (X,g) has constant curvature K,

Thus, if a G-bundle P » M has a bundle metric gw

(or any G-invariant metric) which Einstein and close to

having constant positive curvature then in fact the metric




i; of . constant curvature and we are back in the situation

described by Theorem 5.2.12. In particular, then, we have a

type the of topological quantization since the bundle itself

must be one of the special types described.
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