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| Abstract of the Dissertation
"10N:THE COHOMOLOGY OF LIE ALGEBRA EXTENSIONS
o by
William Evan Rosenthal
Doctor of Philosophy
in
M@thematics

State University of New York at Stony Brook

1983

:In fhis theéis we éefine a Hochschild-Serre-type
spectral.s@quence for ah extension 0 > I » g > & + 0
of Lie aigébras with abélian kernel I. We use techniques
similar to those employed by Charlap and Vasquez for the
groupexfens%on case to show that if g is the semidirect
product of 7 and 9, the;second differential dz is
identically 0. In general, we show-that d2 is givég by

'

cup product with a cohomology class that is the image of

the extension under a map determined by a homology

multiplication.

)




To the memory of my father. I am forever grateful

that the apple did not fall far from the tree.
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CHAPTER 1
INTRODUCTION

In [7], Hochschild and Serre defined two spectral

Sequences associated with a group extension 0-+-K-+G=+9~>1
with abelian kernel K. Chérlap and Vasquez [3] computed
,the second differential d, of one of these sequences, the
Cartan-ﬁeray sequence. They showed.that for x € Eg’N,
dz(xj is given by cup product involving a canonically
.determinéd element e(x)-with a second factof that
decomposes into two summaﬂds. ‘One of these (the charac-
teristic class of the ¢-module X) is independent of the
extension and the other is determined by applying a
map induced by Pontrjagin multiplication td the
cohomology class a € HZ(Q;K) classifying the extension..
In [8], Hochschild an& Serre introduced a spectral
sequence for Lie algebra extensions, analogous to the
Lyndon sequence in the group case. However, they did
not treat thé analogue of the Cartan-Leray sequence.
This we do in Chapter III, and subsequently a cup product
formula is obtained. Briefly, this formula is described
as follows. For 0 - I » g > ¢ - 0 a Lie algebfa

extension with abelian kernel and A an appropriate




coefficient space, HN(I;A) and HN(I;A} are ¢-modules.
Denéte by E, f, and E the spectral sequences for the
extension with coefficients in A, HN(I;A), and HN(I;A}

respectitely. A pairing of spectral sequences with

2 Z - 2

- -~ . . p’N -—~p,0
isomorphism 8: Ez A~ E2 . The cup product formula

(Chapter VI) expresses.dz(x) (x € EE’N] as the product

»of e(x)_ﬁith an element uN € ﬁé’N'l

— ~0 . .
Ep,O Q E N EP’N is obtained, and there is a canonical

. This formula is
precisely that of Chariap and Vasquez. However, iﬁ our
case, there is no "constant term" independént of the
eitensi;ﬁ; more precisely, this term vanishes identically,
The:main consequence is that if g is the semidirect

product.oﬁ I and ¢, then the differential d2 also

vanishes identically.




CHAPTER I1I

PRELIMINARIES

In thls chapter the basic facts concerning L1e

algebra cohbmology are summarized,

1. 'Bemoéules

'Let g be a Lie algebra over a tield k tno restriction
is assumed-on either>t#e characteristic of k or the
dlmen51on of g). A (1eft) gemodule is a k-vector space
together with an act:on of g on M; i.e., a Lie algebra
homomorphism p g > L(End M) where L(EndkM) denotes the

assoc1at1ve algebra EndkM made into a Lie algebra via

[a,g] = aB-Ba- We think of the elements of g acting on M

accqrdipg to the rule zl-(zz-m) - zy-(z9'm) = [zl,zzl-m.

Right_g-modules are defined similarly. Any right
g-module may.be made into a left g-module by defining
—ﬁ-z'(ahd'vice.versa). The subspace of invariant
‘eleﬁents of M consiStsfof all elements of M that are
ann3h11ated by each element of g, i.e., M8 = {meM|z-m =
for all zeg}. M is called g-trivial if M3 = M; any
k-vector spaee may be regarded as a trivial g-module,

As in the category of groups, where for a group G,




G-modules correspond to modules over the ring ZG,
moduies.OVer da Lie algebra g correspond to modules

over a universal enveloping algebra Ug. This is the

quotlent of the tensor algebra Tg by the ideal generated
by zl 8 z2 -2, 8 Zy - [zl,zz] Ug thus assumes the
role for L1e algebra cohomology that ZG does for group
cohomology. There is a'map i: g » Ug given by
q +-T% +9Ug; 1 is a monomorphism and we consider g as
imbeddea.in Ug. It‘is-worthwhile to observe that if
§ is abellan with k- ba515 {z }, then Ug is commutatlve
and 'is the polynomlal algebra k[z ]. |

’ The P01ncare Blrkhoff Witt theorem is fundamental
to the theory | it states that if g is k-free on an
'ordered basis {z ] EC’ then Ug is k-free on {ZI},

“where I is a flnlte increasing sequence in C and Zy

denotes the-preduct z, *+rz_in Uy where‘I = (Yl""’Yn)'

. Y1 Yn .
The empty sequence conresponds to 1 g Ug. In a sense Ug

has a more compllcated structure as a k-module than does
ZG as a Z- modu1e° ZG has a Z-basis con51st1ng solely

of the elements of G, whlle a k-basis of U8 consists

of (ordered) products of the elements of 5. It is a
consequence of the P01ncare Blrkhoff Wltt theorem that
a g- module M 15 UR free on {m } if and only 1f it is

m.}..

k-free on {zI 3




Remark on notation: We will follow the usual convention
and'write "g-free" for "Ug-free", ”Homq” for “HomU%”,

T

etc, Hom and tensor over the base field k will be

denoted-simply by "Hom" and "R" respectively.

2, /Diagonal actions
We Shall make freQuent use of diagonal actions on

Hom and tensor. Let B:and A be left g-modules. For

f € Hom(B,A) and z € g, define

2.1y (z-£)(b) = z-£(b) - £(z-b).

This makes Hom (B,A) info a g-module; note we have

{Hom(B,A) 13 =_Homg(B,A). Similarly, define
(2.2) - z-(bBa) = z.b R a +b R z.a;

this gives diagohal action on the tensor product. If

B is a right g-module, (2.2) must be modified ﬁo
(2.3) z.(bBa) = -b-z 8 a + b R z-a . o

: Furthermore; if 1 is an ideal of g, we have
diagonal action of the{quotient on Homy and ®, . For
B and A left g-modulgs.and f e HomI(B}A), define z.f
by formula (2)1).l Sinﬁe f is an I-map, the ideal 71
annihilates Homi(B,A) and the action 1is wellédefined on

the quotient. Similarly, for B a right g-module, A




a left g-module, and b ® a € B 8 A, define z-(bRa) by

formula (2.3). Again, the action passes to one of the

quotient.

3. Cohomology and homology of Lie algebras

‘Given a left g-module A and a right g-module B, . |

define

H” (g;A) 'Extrgl(k,A)

’

and

Hn(g;B) Torg(B,k) forn=0,1,... .

As with groups, we have Ho(g;A) = A8, Hn(g;A) may be
computed via any g-projective resolution of the trivial
g-module k. The following resolution, called (by an

abuse of terminology)} the standard resdlution;,will be

used throughout this paper. Denote the exterior algebra
of .g by E4(g) and define C*(g) = Ug RE,(g). Foi each

ny 0, Cu(g) = Us RE_(g) is a g-module via the action

of g 6n the first factor, which is multiplication in

Ug; i.e., zfﬁl BX) = zu® X for z € g, ue Ug, X ¢ En(g).
It follows that if g is k-free on'{zy}, then Cn(g) is

~g-free on {1§Q(ZY1,...,@GQ|Y1<---<Yn}; here we follow

standard notation and write <z eyl ') for z_ A---AzZ_ .
Y Tn Y1 Yn

The differential in Ce(g) 1is given by




(2. 4) d (1@(21,...,2 >) -1)1+lzi®(zl,.;.,§i,...,zn)

iII?".l:!
;..a

i

1<i<j<n J
and the augmentation‘é:'co(g) + k is the structure map
of k considered as a trivial g-module., It is very
impértant to observe that (2.4) is stated and holds for
'{arbitrary élements ZyseeesZy of g; this is because the
formula”giVingrthe differential is alternating and

multiliﬁear and 42 = 0. for arbitrary elements.

" Remark 1: A Lie algeb%a g may be regarded as a module
ove£ itself via the adjoint action 2.2 - [z, zl]. This
exténds‘to an actlon of g on E_(g) by derivations:
z-{%i,.i.,zn> = z {z yeeaslz,2. ilse-esz ) Hence
diégonal action glves_dnother action of g on C n(8);
denote thié new g- module by . C4 (1) and note that the
actlon of gon C (g) is itself dlawonal action, with
tr3v1al action on the second factor. 1t can be shown
‘that if M is any'g-mOdple and M, is the underlying

vector spacé of MT i.e;, M made g-trivial, there is a

- 150m0rph15m Ug @ M £ Ug & M that carries 18m to 18m.

Hence C'(g) is a free g -module and Ci(g) a g-free

resclution of k.. We may use either resolution for

o+-. Fas Fad
+ I (-1)1 Jlﬁ{{zi,zj],zl....,zi,...,z-,...zn




cohomological purposes, but nothing 'is gained by using

the'“more complicated'" resolution CL(g). It should be

noted that the differential in Ci(g) is induced by

1 |
Cal) —25 ¢ (1)

Cpl®)mmo c;l__lcg)
. |

and‘takes a slightly different form than (2.4):

i+l ~
(-1) Z; ®<zi,...,zi,...,zn>

dr'lsg(lﬁ(zl,._..,zn));% !

R
Wi

+.1_.Z (f1)1+j+11®<tzi’zj TR LITER T

Note the different sign in the second summand above.

“Bﬁmark 2: .Hn[g;A) is;the nEE cohomology space of the
% ' ‘ |
cochain complex C (g,A) = Homq(c*(g),A). Adjoint : !

‘ %
associativity yields C (g,A) = Hom(Es(g),A); we will

go back and Forth between these complexes as we please.
In the second complek,fthe n-cochains of g in A are

the n-multilineéar alternating functions with arguments

in g and values in A; the coboundary takes the form




.

n+1

-+1 : . .
(2.5) (80) Ceprennnzyyy) = iil(-l)l 23 (2500 y3 500 ,20,0)

J

1%i<j<n+1

Observe that if g is abelian, the second summand dis-

appears, and if A is g-trivial, so does the first

11l

summand. Hence in this situation we have that § 0

and Hn(g;A) = Cn(g,A). In this setting, we will not
distinguish between cohomology classes and. their fepre-
sentative cochains (= c@cycles); however, we will
continue to write Hn-rathef than C. ' Similar remarks
apply to homology with coefficients in a right g-module
B; here we have C,(n,B) = B @gc*(gj = B & Eyx(g) and

-the boundary in the latter complex is
¢ (:)) 3 (b {z ) - 1 (0 )'a 22 )
. 1“"’Zn> = i=1(— ) | ( "z <Zl’“'zi’""zn

.+- : ~ N
+ I (-1); I P IS S SN 2
1§_i<jf_n < i? j 1 -1; » ], ]’]}

4. Extensions and ‘the semidirect product

The theory of Lie algebra extensions is analogous
to that of group extensions. An extension of Lie

algebras with abelian kernel I is an exact sequence

'1i+— A ~
+ I (-1) Jf[[zi,zj],zl,...zi,...,z.,...z

n+1)'
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2.7y 6+1345%¢-0 .

Regard 1 as an ideal of g and ¢ as the Quotient.
T is a g-module via z.X = [z,x]; since it is abelian,
.it becomes a ¢-module via o.x = [z,x], z € p-l(Q).
Now start with a ¢-module I. An extension of
& by 1 is an extension (2.7) of Lie algebras such that
,the ¢-structure induced by the extension agrees with
the given structure; Equivalence of extensions is
defined precisely.as with groups, and the equivaleﬁce
classes of extensions of,q by 1 are in 1-1 éorres—
pondeﬁce with the elements Qf HZ(Q;I). If a € H2(®;I]
élassifies the extension (2.7), g may be described as
follows. As-a vectof_space, g = i.@ & and the bracket

in g is given by
(2-78) . [(xl)_c):(XZ’T)] = ,(O'Xz"r'xl""a.(oia'f)’[UI,T])’

where a € CZ(Q,Z) is a 2;c0cycle representing o (see
Cartan-Eilenberg {2], p. 307). The maps j: I - g and
p: g + ¢ are then described by j(x) = (x,0) and
p(x,6) = ¢. The semidirect product 1-¢ of I and ¥ is
the extension whose equivalence claés corresponds to
o = 0 in HZ(Q;I); in this case we may‘take a = 0 and

the bracket in 1-% is
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(2.9) [(x1,0),(x0, 1)1 = (o-x,-7-x;,[0,1]).

"Remark: 1In general, the complementary subspace ¢ (of

I in g) is not a Lie subalgebra of g. However, if

'8 = I-2, (2.9) shows that [(0,t),(0,7)] = (0,[0,t])

and here the complementary subspace is a Lie subalgebra.

This fact will be crucial in our future calculations.




CHAPTER III
THE SPECTRAL SEQUENCE

Let M be a left g-module and let I be an ideal of
g, With ¢ = g/1. In this ;hapter we-define a double
complex and construct a Hochschild-Serre type spectral

"sequence; i.e., Eg’q(M) o Hp(é;Hq(I;M)) = Hp+q(g;M).
e | _ D
This is essentially an adaptation to Lie algebras of the

Cartan-Leray spectral sequence for group extensions;

our techniques are in essence a rewording of-those in
MacLane [9] and Rotman [10]. First we need a technical
lemma which is the analogue of a standard resuit for
~groups (see Hilton-Stammbach [6], p. 213). -
'Leﬁma'§;l; Let M be a left .g-module and let M, denbte

the underlying vector space of M (i.e., M made g-trivial).
Then Hom(US,M) w Hom[Ug,Mo) as g-modules with diagonal

action.

Proof: An element of m € M will be written as m, € Mo'
The idea of the proof is to define maps f: Hom(Ug,M)
> Hom(Ug,Mo) and : Hom(Ug,Mo) + Hom(Ug,M) recursively

by reqﬁiring them to be g-maps. Let « € Hom(Ug,M).

12
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Define ¢ (o) by starting with {t(u)(l)}o = {a(l)}o. :

Then for z € g, force ¢(a)(z) as follows: 1

z-{€(a) (1)}, -{e(a)(2)], | |
-{e() (21, | :

{(z-€(e)) (1)}

so we must have

te(a) ()}, = ~fe(z-0) (1)}

, ' S -i{(z-m)(i)}o _ | RPN

“—{z-a(l);u(z)}o

Continuing in this manner{.{C(a)(zzl,...,zdﬂs is con-
structed from {C(a)(zl,...,zn)}o and the requirement

that t(a).Be a g-map; the next step yields
{t(a)[zlzz)}o =-b(zlzz)—zl-a(zz)—zz-a(zl)+zzzl-a(1)}o.

€(a) is well defined on Ug since o itself is.

Going in the other direction, for B € Hom(Ug,Mo),

start with ¢(R) (1) = ﬁ(lj. Then for z € g,

(29 (B (1) = 2- (B (1)) - $(B) (=)
| = 2:8(1) - y(B)(z).
But
(W(z-8)) (1) = (2:9) (1) = z-{8(1)},-(8(2)},

-B(z)
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(regarded in M) so comparing the two eXpressions, we
must have $(B)(z) = B(z) + z-B(1l). As with ¢, we continue

in this manner; the next step yields
v{B) (lez) =.B(lez) + Zl'.B(Zz) + 32'8(21) + lez'B(lJ-

One checks at each stage that ¢ and ¢ are mutual

inverses; e.g.,

{leewd (BY (M1, = (w(B) (1), = {B(LI},,

Wee) (@) (1) = €(a) (1) = a(l),

(e (B) (g = ((B) (2) - 2w (B (L)},

H

{B(2) + z-8(1) - z-B(1)},

H

(8(2)},. | .

Corollary 3.2: HomI(UB,M) 2 HomI(Ug,MOJ as ®-modules.

' 1
Proof: 1In Hom{Ug,M) =3 Hom(Ug,Mo), take I-invariant

elements. ' ' ‘ , B

There is a result analogous to Lemma 3.1 for the
tensor product with diagonal action.
_ . )
Now consider the cochain complex 1 with uJ =

HomI(Cj(g),M), and coboundary induced by the boundary
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in C4(g). It is a consequence of the Poincare-Birkhoff-

Witt theorem that the enveloping algebra Ug is I-free.
Since the tensor product (over k) of an I-free
module and a vector space is again I-frec;

Cj(g) is I-free for cach j > 0 and C,{(g) is an I-free

resolution of the trivial I-module k. Hence it may be

* %
used to compute the,cohomolpgy of Z; i.e., H*(I;M) =H (U).

.The diagonal action of 9 on HomI(C*(g),M) commutes with

_ %
the coboundary, yielding the action of ¢ on H (1;M),

Lemma 3.3: For p > 0, q > O, Hq(®;HomI(Cp(g),M)) = 0.

Proof: Tt suffices to prove this for p=20; i.e., for E

Uy, the free g-module on one generator. .For any Lie

algebra L with Lie subalgebra S, consider the (coinduced)

S-module HomS(UL,A), for A an $-module. Shapiro's

Lemma for Lie algebras (see Caftan;Eilenberg (21, p.

275) says that HQ{S;A) P Hq(L;HomS(UL,A)), Take L = g/1

and S = 1/1 = 0. Then HomS = Hom u(oy = Hom, and the

left side is 0 for q > 0, yielding H%(o;Hom(U(g/1),A)) = O

for q > €. But U{g/I) =~ k ®1U5 (as ¢-modules) and adjoint

associativity yields Hom{U(g/1),A) =~ HomI(Ug,A), This

proves the lemmaz modulo a subtlety. In Shapiro's lemma,

A is taken to be an S-module and here S = 0; hence A
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is just a vector space. But the action of & on
HomI(Ug,M) uses the action of g on M, However,
corollary 3.2 takes care of this by saying that the

¢-modules in question are isomorphic. B

Now we construct the spectral sequence. Fof
p,4 > 0, define £P*% = cPo 1% = Hom(Ep(@),nq)- The
,bigraded module £ haé tﬁo coboundary .operators:
dy: €229 +eP" 1 is defined by (dg£) (c) = (d'£)(c) for
c € Ep+1(®), where d' is the coboundary in C*(®,ﬂq), and
d: £ > P s defined by (d,£)(c) = d"{£(c)} for
c € Ep(@), where 4" is the coboundary in u*.

In accordance with the 'standard sign convention",
set d =.d®+(-1)pdn. This makés £ into a double complex.

The (cochain) complex associated with £ is as usual

denoted by Tot(f) and is defined by {Tot(ﬁ)}n - 8 P9,
' o prq=En

Our spectral sequence is the one arising from the first

filtration 'F(Tot(£)): {'B(Tot(£))}, = @ @ gPA,
' -  q=0 p>i
Denote this spectral sequence by E(M). It is standard _

that

(3.1) ngﬂ(M) - BP9 Tot (£)).
_ P -




Proposition 3.4: Eg’q(M) ~ HP (o HY (1) = HP % (g M) .
o : o p

Proof: _Cénsider the first iterated cohomology of £;
ice., HPA(g) = ker(dy: P > P2y q (Prah).

For each fixed p, this is the cohomology of the p«E}u1

cOluﬁn, and H”p’q(L] is a complex with coboundary

on: HWP-%(g) » HP*LoA(c) induced by dj. Now take
*cohomoloéy with respect to 3" to yiéld a bigraded module
H'pHﬁp;Q(L). iﬁ is a ;tandard result'that Eg’q(M) =
H'pH"p’?(£). Now H”p’é(ﬂ) is the qEB cohomology space
of the Lomplex Hom(Ep(é),u*) = Hbm®(cp(®),u*). Since
Cp(@) is @-frgé; it isi@-projective and Hom (Cp(@),")

XY

is an exact functor. Hence
_ - , ' %
P2 9(e) = HHom, (€ (2),17))
| o
Hqu)-(Cp(q)) :rH. (.H )) s

since cohomolegy commutes with exact functors. So
H"p?q(ﬂ) m'Homé(Cp(®),Hq(I;M)). Pass to cohomology:'

H'PH P () i {Hom, (C, () ,HA(2;M))} or ED 2 (M) ~

HP (o;HY(2;M)) .
We now;show ;ohvefgence. Consider the spectral

séquence arisihg from the second filtration IIF(Tot[L))

of Tot(L): {IIF{Tot[ﬁ))}i = @ 8 £ P9 Denote this
o q=0 p>1

17
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sequence by E'(M). The second iterated cohomology
H"pHﬁq’p(L) of £ is computed by first faking cohomology

of the thfrow of £, and then of the columns. Again,
h

it is standard that EsP 9m) ~ HPH TP M), The piR
) - * . .
row of £ is C (@,Hom (C (g} ,M)), so H'q’p(ﬂ) is the
'q-t——}l cohomology space of ¢ with coeff1c1ents in Hom (C (n),M).
Lemma 3.3 says this is 0 if q > 0. If q= 0,
¢
HO (93Hom, (C, (8),3)) = (Homy (€, (3) ;1)) -~ Homy (€, (3),M)

"hence

- Hom (C_(8),M) if q = 0
- 0 | if q > 0. :
Passing to cohomology yields
] HP (g;M) if g = 0
. P,q
B5P>400) E
0 _ if g > 0.

Hence we - get nonzero terms only on the base q = 0; ' i
i.e., the spectral sequence collapses. Hence sk (g;M) =~ g
‘ ,n OEM). Now if £ is. elther spectral sequence derived

from a double complex t and if E collapses, then
n,o

£,

~ HO (Tot(c)) (51nce there is only one nonzero
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factor in the filtration). 1In our case, this yields
Hn(g;M) 3 Hn(_Tot'(J:)), and combining this with

(3.1) yields ES*9() = HP*%(g;m) m
p

e
o

:
:
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CHAPTER 1V

THE PRINCIPAIL MACHINERY

£ *
In ch. III, we have described H (I;M) as H (H*).

- - * - - *
However, if ® is the cochain complex ¥

]

Hom,, (€4 (1) M) ,
ES ] *

H (1;M) is of course also H (¥ ). .Since both Cx(Z) and

,Cx(g) are I-free resolutions of k, there exist I-module

chain maps

Jar CalD) > Culs)  and  wa: Cala) » Co(1)

over the identity map of k; The main focus of this

chapter is to describe j; and w*.(aﬁd a certain chain

homotopy si) explicitly, for later use in computations.
Let {Xu}aeA be an ordered k-basis of the abelian

ideal 1. Since elements of the form <x e ey X >
%7 %n

with a;<--<a form a k-basis of E (1), elements of the

form 1®(§%{...,§H} form an Ifbasis for.Cn(I). Hence we

may define an I-map on C,(Z) by describing it on such
elements; equivalently we may define it on <x1,...,xn>
as long as the given recipe is alternating and multi-

linear. Indeed, this is what is done for the differential

(2.4). Note that since 1 is abelian, the second summand
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in the differential disappears and we have dﬁ(l@{kl,...,xn>)

#

n . '
1+1_ ~
El(_l) X4 ®<k1"“"xi""’xn> for X; € 1.

i
The chain map j,; is constructed as follows: for
n=90, CO(I] = UL and we define jo(l) = 1, PFor x €1,

this includes % in g as Jo(x) = j(x) = (x,0). Fora > 1,

igs Cn(I) - Cn(g) is defined by

"(4.1) 318G, .. x ) = 18(x7,0) 5.+, (x,,0))

Note that jn is functorial in the sense that jn = UjﬁaEnj.
" We must show that j, is a chain map. Firstly, we

verify commutativity of

e T

UL —3 k —7 0

W

: Ug — k—0.

B

We have egjo(l) = eg(l] = sg(l) S0 egjo = eI. For n > 1,

commutativity of

dI
G =D ¢ (D)
jn i J, jn-l
Chlg) —— C _1(8)

g
dn
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must be checked. Ifn =1,

13 (18x) = d(18(x,0)) = (x,0) while
- at _
jodyle x) = jo(x) = (x,0).

Now take n > 2. Then

i+l.

11

2(1)

i d 086, ox ) Z

_1(xi®<x1,...,xi,...,xn>)

- 21(131*1(x1,m)@<1x 0oy (5,0 5 G, O
.z

while

Sin 08 xp,..x ) = AR ((xg,0),. .., (x5 00))

n
=z

.+1 ) . A .
Lfdf (x5 0) @0y, 00,00, g 0050, O, O

sz (DMRe,0,00,01,00,0,.
1<i<j<n J

051005+ 055500 - 0,0

Since I is abelian, the second summand disappeérs and
. I _ 1.
Jn-19n = dadn

The construction of the chain map Vg: Cx(g) » Cs(I)
turns out to be surprisingly difficult. Essentially,

this i1s because each Cn(g) has a far more complicated

structure as an I-module than does each Cn(I)‘ We now
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explgre this structure. Expand {Xa}aéA by,{yB}BEB

(a compleméntary basis) to an ordered k-basis of q,

where A n B = § and A U B is ordered with each a € A u
precediﬁg each B € B. Since Ug is k-free on {nyJ} | :
I a. flnlte 1ncrea51ng sequence in A and J one in B,

it follows that Ug is I-free on {yJ} Purthermore,

Cn(g) 1sxk-free on-{nyJ ) ((XQIJD,...,(xai,O),yBI,...,yB_>}

where a1<'f'<Qi < 81<'ff<3j’i’j3p’ and 1 +j = n, so is

1-free on {YJ.@ <(Xalxm’_,,,(xa_,O),ysl,...,y8_>}, ' : 3

The existence of Yx 1s of course guaranteed by o

general:theory. However, ¢, will be Tequired to satisfy
n

4.2y oy = Td (forn > 0)

(3:3) 3,080,000, 0] = 18¢xpaene, [y, (e, 01,0 x))

S
M
pomt

for n > 1,'xi €I, and y in the complementary subspace.

P will also be required to satisfy other conditions;

these will be dealt w1th in chapter VII The method,

both here and in the‘future, will be to show that Ve o~ : i

can be inductivelY defined so that the required condi-

1
y

tions are satisfied. - : . i




24

Remark: As with j,, we will write y, in:terms of
arbitrary elements X4 in I rather than basis elements
xai. We shail a;so dp this with expressions involving
x the elements y of the complementary subspace, when |
~permitted (i.e., when the gifen formula takes the same
| form on arBitrary elements as on basis elements). This
is for typographical convehience only (and to follow
,convention, as with_thé differential}; it should always
be kept in mind that / is being defined on an 1-basis
of Cn(E).

- We first define ¢ . Define
(4.4) P, (1) = 1
(4.5) bo(yp) = 0 if T # ¢

since Ty (1) = eT(1) = e3(1) = 1 and

EIIPOCYI) = EI(U) =0 = Eg(yl)’ the diagram

Eg .

ol |l

U — k—>0

eI

commutes. Note that ¢oj0(1) = wo(l) = 1 so (4.2) is

satisfied; also note that since Vg is an I-map,
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Yo ((x,0)) = x for x € 1.
For n > 1, to satisfy (4.2) it is necessary and

sufficient that wnjn(lﬁ(kl,...,xn>) = 1@(&1,...,xn>,

. or

6) GRG0, (5, 00)) = 18¢e x|

We need only check that this is compatible with commuta-

.tivity of
an
| Chlg) —C ;)
(4.7) v, l‘ , l .
Cl1) —2 €y (1)
n

If n = 1, dly, 18(x,0)) 4¥(x) = x while

wod%(lﬁ(x,o)) U ((x,0)) = x. Ifn > ;,

1

ann (18 C0x1 00, o0, 0, 00) = dZaamdxy, ... x )

H

n i4] ~
izl -1)7"x; 8 <X1’ 5 Xy 5 om ’Kn>
while

%Pfﬁﬂﬁﬁﬁfmgn.dﬁfm>)=

n
= I
i=1

GOy 05,0 8 €60 5y 00, e, (090 )
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n - N
i+l .
= ~§1(-1}1 xi.(1®<x1,...,xi,...,xn>) since
¥,_q 1s an I-map. |
n : ~
- - 1+1 . )
= iEI(—l) X5 i <X1"'f’xi"f"xg>' . : |

We now turn to (4.3).. The diagram (4.7) indicates
that once Pp-1 is known, defining ¥y involves solving a
‘ndifferential equation™; i.e., for y € Cn(g), wp(p)

is a‘solution‘a of
L = i |
(4.8) dn{a) wn—ldn(“)' N _ . |
First take n = 1. We must solve

at(s) = v B3y @ (x,0)) for 5. The right side is

H

bor @ (x,0)) = p ((x,00y) + g (Iy,(x,00])

13

x-wo(y) + [y, (x,0)] since I is an ideal,

[y,(x,0)] by (4.5).

Since [y,(x,0)] = d](1 & [y, (x,0)]), define

(4.9) P8 (x,0)) =1 & [y,(x,0)].

This is (4.3) for n = 1.
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Remark: Note the writing of y(x,0) as (x,0)y + [v,(x,0)].

This will be repeated almost incessantly in the future.

~ Now assume (4.3) for n-1. We must show that the ;

,right-hand_ side of (4.3) is a solution of (4.8):
nln@®<mym,~m L)) =

SR O o
Ci=1

nﬂﬂﬁﬂ)ﬁﬁxﬁhuu@ 2050 eny (x,00))

i+l

= §(U U1 (0,00 @ KGRg,00, 0, (51,000, G, 0)

i=

n- . ~ Y
. 5 DNy (601 @€, 0, e (x50, (L, 0))
S 3 enitl
,i=1

P 80 O 8 0,00, (x50, L O0)

+ 21( 1)1+1[y (x.,O)}‘®‘<x1,...,xi,...,xh>.
i= ;

Now apply the induction hypothesis to the first

summand. For each fixed i,

g O 8 {0x, 00,00, (6,005, (3, 00)) -

= 51l8 <X1,...,[y,(x 0)],..., 1”“’Xh>
j<i




1

28

* 1. 18 {kl,...,xi,..,,[y3(xj,0)],...,xﬁ>,
S P :

so summing, the whole expression becomes

i, ~
N 1("1) (jilxl @‘{Xl"'-,[y:(xj:OJ]:--':Xi:“"xn>

et o

410+ 1 x; ®<x1,...,xl,...,[y,(x 01,0 0xN)

3>
n o - T
i 1 ~

+ _El(‘1)1+ [y, (x;,0)] & (xl,...,xi,...,xn>
i=1 | 5

On the other Siﬂe, for each fixed i,

GO 8, 1, 0 L))

T ' '+1. ': ~
A R T ECUREC R A RN
i+l

DMy, 0] @(xl,---’X- REN

H

v 3 ) ", @(xl,...,[y cxl,on,...,xj,...,ﬂ :
J>1

i
i
|
S

summing over i,

i n. ., : ;
dn(]_zll 8 <X1: sy [Ys (Xlgo)] PRTIPI ,Xn>)

i L ol 0
(4.11) = 'E ( E ( 1? X & <&1,...,xj,...,[y,(xi,O)],...,xn>
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n . ~
. .Zl(w1)1+1[y,(xi,0)] R A
i=1

The third summands of (4.10) and (4.11) agree. As for

the others, note that there is a term for each pair of

~integers 1 # j between 1 and n in each of the expressions;

call this &i j in (4.10) end g . in (4.11). Since
I“i,jl = [Bj,i] and aj j occurs with sign (—1)1+1

>

while g, . occurs with sign (-1)J+1; the expressions
J,1 ’ )

agree.

" Remark: When one tries to define L/ explititly on other

I-generators of Cn(g), it is seen that this is somewhat

easier to do in the case g = 1.4 in the sense that certain

- expressions can be taken to be zero that cannot be

made to vanish in the general case. However, (4.3)
holds for any extension, and it is perhaps instructive
to see why. Write y = (0,g); then Iy,(xi,D]] = geX;

1
and (4.3) becomes y_(y 8 ((xl,O),...,(xn,0)>)
) |
z

i

1 ®'<X1""’U'xi""’xn>’ which is given solely in

i=1
terms of the action of ¢ on 1. However, expressions such

as wn(y5®<y81,...,y8'>) are not, and we shall see later
n

that in a sense it is the dependence of ¢, on the

extension that controls the second differential.




By fiat, we have wnjn = identity of Cn(I). Although

In¥n is not the identity of Cn(g), both j,.¥, and the

identity cemplete

' a8 8
e > Cu(BY ¢ 1 (8)> L oC (8) — ko> 0

!
N
n b /
= ¢ ¥ a Y —
cee > Co(8) o Ch-1(8)>...»C (9] X k+0.
n -
Hence they are chain-homotopic via an I-module homotopy -

Sx. TFor future wuse, we shall desire a hemotopy with the

following property
(4.12) s §_ = 0.

To construct s,, we follow the same procedure as
with yz above. Eirst~so is constructed; we then define
sy inductively so that {4.12) is satisfied. For each

n, s, must satisfy

(4.13) a3

«S_ + 7

ml%=jﬂh_ Id

]

If n = @0, this b%ﬂomes-d%so jo by - Id. Since |
jowo(l) = 1, we start with sg(1) = 0 (hence SG((X,O))=O);

and since o (ygd = 0 if 14 f, we must solve d%{so(yl)} =

~Yy- Note that &?(—1 ﬁry) = -y so0 that

30
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(4.14) se[y) = -1 & vy
is appropriate. And d%(—yB e Y & Yg ) =
1 p-1 P

_ysl e+ Yg Y SO that for p > 2, so(yal.... YBPJ =

p-1 "p

-y e Y, & vy works. Since s 3 (1) = s (1) = 0
By Bpﬂl Bp o- o ) ’

(4.12) is satisfied.
Next assume that s, has been défined so that (4.12)
is satisfied for n-1; i.e., sn_l(l @(CKI,O),...,
(x, 1-0>) = 0. Denote 1 @ {0x3,0) .., (x,, 00
by u. Since j ¥_(u) = u = 1d{(p), the right side of

(4.13) vanishes. But

i+l

o ' - ’ ~
Sp,-1950w) _21(—1) xi-sn_l(lQ<(x1,0),,..,(xi,O),,,,,(xn,0)>)

i=

) =0
by the induétion hypothesis; hence Sn(“) = 0 is
suitable.

Our use of these chain.maps will be in a comparison
of the two cochain complekes that are used to define
H*(I;M). We have already treated H*(I;M) as H*(n*),

u* =7HomI(C*(g),M), in chapter III. Now we consider

D* where p" = Homl(cn(l),M). For the time being, the

assumption that I is abelian i$ dropped. As a vector
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space, V" is Hom{En(I),M). Since I is an ideal of g,
the adjoint action of g on I ektends to En(I) by
derivations and this turns Hom(En(I),M) into a g-module

by diagonal action:

£ (g 12,51 oY)

[

@Y (X)) = e g ) - )

OTr as is more common,

, ‘ _ : | n
(4.15) (z.f')(xl{...,xn) = z=f‘(x1,...,xn)-izf'(xl,...,[z,xi],...,xn).
. ‘ This action has been described by Hochschild and
Serre ih [8] and it induces the éction of & on Hn(I;M).
However, (4.15) is not;in general an action of & on the
techniques. Under the‘vector space isomdrphism
Hom(En(I),M) 4 HomI(Cn(I),M), f e HomI(Cn(I),M) and
f' ¢ Hom(En(I),M) corgespond where f(1 8& <X1""’Xn>) =

f‘(xl,...,xn). This endows »™ with a g-structure:

/

(z-) (1®<x1,.._,xn>) = z.f(1 @(xl,...,xn)) - _zlf(ltﬁ(xl,..,.,{z,xi],...,xn}).
! T . - is

i
|
|

We once agéin restfict:to I abelian and M I-trivial;
‘then both terms on the right side above vanish if

2 €1. Hence ¢ acts on »" via

‘ I R n _
(4.16) (0-8) (18 5+ +.,X)) = z.f(m(xl,...,xn>)-_z:lf(1®<x1 o (2,315 s ))
, : ' i= :
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where z € p‘l(c}; we may of course take z = (0,c¢).
Note that if n = 0, we identify £ € ©° with £(1) € M and
we then have (o-€)(1) = z.£(1}.

% ; :
via wn’ compute the action of ¢ on this element, and

|
* |
~ ' We return to j,; and ¢,. Since jn =3, n" +_Dn w
* |

and y" =¥, " - ", if f € 1 we may move f to U |

. ' |

: _ % :
then move back to ¥ via jn' The following proposition

.tells us where we end up. B ) ‘ |

_ * %
' Proposition 4.1: For f ¢ »™ and o € o, jn{d-(¢n(f))} = O.f,

"Pquﬁ: If n = g, jz{o-(wz(fjj}(lj = .

{o- (Fop ) 3(j, (1)) =
'{U-(fowo)}(l) =
o C0,0) L (Eop ) (1)) - (£ou, X(0,0)) =
(0,0)-£(1) since y_(y) = 0
for all y in the complementary subspace by (4.5).
Since (o-£)(1) = {0,0)-£(1), this gives the result if |
n = 0. Now suppose n > 1, Then
|.* * . -
Jn{O'(IIJn(f))} (1®<X13°-',xn>) =

'{U-(féwﬁj}(jn(lﬁ<x1,...,x£>))7=

(o= (Fop) ) (18¢0x;,0) 5., (x,,00) =




(0,0) - £(18(x, , .. x )
by '5(4. 3).

(0,0) - £(18¢x, , ... ;xn>)_

The right side is

(szj(1®<&1,...,xn>0 -

34

(0,00 £, (R xy, 00, .., G, 0D 3£y, (0,008 ((x,,0),,,,. (x,,00))

nn

o R8s 100,00, 6,0, (6, 0))
=

n
- I
i=1

£(18(x ,...,c-xi,...,xn)).

(o,c).f(m(xl';...,xry -

n
‘Elf(m(xl,. o 000,001, ,x )
1:

- (0,0) -f(l@(xl-, X D) -

1=

'n _
) ftl@(xl"'"U'Xi""’xh>)‘ 5
1 ,
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CHAPTER V

HOMOLOGY

The techniques in the next chapter will require the

cqnéideratidn'of the homology spaces Hn(I;M) as &-

modules. In the case at hand, where I is abelian and
. the g—module M is 1-trivial, this is quite easy since
chains énd hombiogy coincide. However, a complete
treatment, aﬁalégous té that of Hochschild-Serre used i
in Chap%ef IV for cohomology, is given below. Agéin,_
Mis an&_g~modu1eland i any ideal of g, until further
not;ce.: ;

| We think qf the chains Cn(I,M) as M Q.En(l) with j
boundary (2.6). Diagonal action makes M ® E (1) into !

a g—mbdule:l
) L : | n , . |
{5.1) z-(_n@{xl,,..,xnp = -m.Z ®<X1""’Xn>+m®i£1<xl’“"[Z’Xi]""’xn/

The:negative sign is fequired here since we are starting |
wifﬂ a right g-module ﬁ. If M had been taken tc¢ be a !
" left gqudulé, no”hegative sign is needed in (5.1},
but one would then bé %equired in the first term of

(2.6). (5.1) does not make the chains themselves into

a ¢-module since the diagonal action is not I-trivial.
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However, a short computation shows that the action
commutes with the boundary, so an action of j on the
homology groups Hn(I;MJ is defined. For this to iﬁduce
an action of the quotient ¢, the ideal I must annihilate
Hn(I;M). This will be shown by establishing identity

(5.2) below. The above considerations apply in

]

particular to 1 g itself, and (5.2) will concern this

-situation. Let g € C,(g,M) be.of the form m&ﬁ{zl,...,zﬁ>
and let z € g. Define an element qz € Cn+1(5’M) by
a, = m ®‘<z;zl,...,z;>. More precisely, a, is determined

from g as fqllows: the.mapping hZ: gi;;;ig -+ En+1(g)
n times

défined by hz(zl,...,zn) :_(;,zl,...,zn>_is multilinear

-~

and alternating, hence determines hz: En(g) > En+1(g)
with hz(<zl,...,zn>) = <z,z1,...,za>f Then o, = f_(a)
where fz = ;dM ® hz'

 We now establish an identity relating a, to the

action of g on C (g,M).

- Proposition 5.1: For o € Cn(g,M) and z € g,

(5.2) z.q + d(az)-=-(da)z.

" Proof: Firstly, let n = 0. Then o € C,(a,M) = M so

¢ =mé€ Mand z-00 = z.m = -m-z. Since o, =m8 z,




37

il
o

d(az) = m-z and z-q + d[ch)

It

-(da),

Now suppose n > 0. By (2.6),

n +1-
(da)z=.21(_— )1 (mz)@(z Zl""’ ,...,z>
=

1<i<j<n

+ 3 [1)1+3m ®<z [z, z shzgseens 1"“’Zj"”’zn>‘

Next the left side of (5.2) is computed.

_ : n . - n
d(a,) = m2) 82,00,z + iil(-l)ﬁz(m-zi)®<z,zl,...,zi,...zn>

+ 2: (1]1+1+1 ®<[zz]zl,..., ,...,z>
121

S

1+1+3+1 ~
¢t zi,...,zj,...,zn>;

+ Iy

m@(’[z.,z.] ZyZig g ey
“1<i<j<n 1y

the signs are due to the fact that in Cgs %3 occupies-'

the (i+l-).§-1~:- position,

‘ n : .
(m-z) ﬁ(zl,...,zn>+ 'El(-l) (m-zi)@(z,zl,...,zi,,..,zn>
1:

n i A
+ '21(-1] m & <[z,zi],zl,...,zi,...,zn>
i=1 ' '

'+‘ . . . ~ Ay
+ ;. -DVne [z.,2.1,2,2 ,...,z-,...,z-,...,z).
1<i<j<n < L A | 1 J n
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Add this to

' n
Zeg = M-z ﬁ(zl,..,,zn>+ m R 151_<Zl"“’[Z’zi]’”"zn>

[}

. n .
' 4411
-m-z ®<Zl,-..zn>+ 151("1) m & <[Zazi];-.-,zls-.-,

~
Y

After cancellation, we obtain

I3

1<i<j<n

Lo ~ " i45
iEl(—l) (m;zi) ®*<z,zl,...,zi,...,zn> * oz (-1)7 "'m &

. N A ~
<[Zi’zj]sz’21"'"zi""’zj’""zﬂ>
- \

n .
= - 1 -
= iil( 1} (m zi) ®f<z,zl,...,zi,...,zn/

i+i+1 ~ ~ .
+ z (-1) e <i,[zi,zj],zl,...,z-,...,z.,...,zn>

<i<j<n L J
= ~(da),- |
By linearity, (5.2) holds for all 4 € Cn(g,M). - m

 Proposition 5.2: Equation (5.1) induces an action

ef & on H,(I;:M).

" Proof: We need only show that 1 annihilates Hn(I;M). ' |

Since o, is the image of o under the linear map fz,
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«, =0 if a = 0. Let a € C,{(I,M) be a cycle and let

x € I. The above observation yields (da}, = 0 and then |

by proposition 5.1, _ |

X-a = 'd(ﬁx) l
= d(jax)f
so x-a is a boundary. o n

Once again, specialize to the situation where I is
an abelian ideal and M is I-trivial. 1In this case, the
chains and homology coincide, éo ¢ does act on the
chains themselves. This can be seen directly from
(5;1): if x € I,,thé assumption that Iris abelian

forces the second summand to vanish and the assumption

that M is I-trivial forces the first summand to vanish.
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CHAPTER VI

THE CUP PRODUCT FORMULA

We choose our final coefficients A to be an
associative k-algebra with identity for which the
. hypotheses of the universal coefficient theorem are

'satisfied (e.g., an extension field of k or an associa-

tive division algebra over k). Regard A as g-trivial
and consider A, HN(I;A), and HN(I;A) as coefficients
for'thefspectral sequence in Chapter III. For a fixed
integer N > 1, set

. gPra - pPsq

: Er? o= B (A)

Ebr Y = E?"q(HN(I;A))

Eg?q = Eg’q[HNCI;A)), for r > 2 and p,d > 0.

'HN(z;A) is an A—module via a.(a'@X) = aa’ 8 X.
By the universal coefficient theoremn, there is a split

exact sequence
1

| R ,
. 0 ~Bxty (Hy_; (1:0),0) = H (13A) 3 Hom, (5 (1;4) ,A) = 0.

Since A is of course A-frce, the Ext term vanishes and

Py is an isomorphism; éxplicitly;{pN(u)}[a & CN)

asu(CN) for u € HN(IgA); a € A, CN € EN(IJ- The inverse




ﬁ&l will be needed later; it is {p§l(v)}[CN) = V(lAQCN)}
Note that we are again identifying chains with homology
and cochains with cohomology Py yields a homomorphism

~ o ay HY(134) @ Hy(1;A) + A defined by
au(u 8 8) = {py(W)}(B); hence

. qy(u @ (a@CN)) = a-u(CNj. ;
It is sfandard that for_g—modﬁles P,Q,;R, a pairing
P® Q> R gives a spectral sequence pairing
eD>Upy @ 2209 (q) - EPPT 9" Ry | where there is
diagonal action on P @ Q. Hence for Qg to yield
a spectral sequence pairing, the following propositioﬁ

is needed,

" Proposition 6.1: qy is a g-pairing.

]

" Proof: We must show that qN(z- (ul '(,a ® CN)))
z-qN(u 8 UlﬁCN)]- Since qy maps to the g-trivial
module A, the right side is 0 and since A ® Ey(1) has
trivial action on 'the first'factor, we must show
qN((z.u) ® (a @ C\)) = -aqy(u @ (a 8 (2.Cy))). The left

side is

N
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ft

HApy(z-wi(a@Cy) = a-{(z-u)(C}

a;{z-u(CN) - u(z-CN)}

"

-a-{u(z'CN)}since:u(CN) € A.

The right side is

“py(wia 8 (2:C) = - afu(z-CY). "

_Remark: It is not absolutely necessary that A be assumed to
be g-trivial. If A is'allowed to possess a ¢-structure and
the above pfoof is chased through, it is seen to hold
so long as the g-action satisfies the following com-

patibility condition with the multiplication of A:
z-(alaz) = [z_-al)a2 + al(z-az).r

Hence induces a spectral sequence pairin
N P q P

wzrﬁg’qﬁ %g',q' - Eg+p',q+q" and if we denote
(B8R by B U B, it is standard that
(6.1) d,(BUp) = T,(®) v g + (-DP*E y d,(B)

Also, the isomorphism ¢p,q: Eg’q[M) Y Hp(@;Hq(I;M))

is compatible with this pairing in that
' . ; PN ] — ’ f A
(6.2) ¢p+p"q+q'(BUB) = (ql)p q¢p’rq(B) U ¢p',q (B)

where on the right side, we take the cup product in

*
H (9;-).




As mentioned in the introduction, our cup product

formula expresses X € EE’N as the cup product of elements,
of EE,O and Eg’N; i.e., we use Eg’o R Eg’N - EE’N. The

corresponding pairing via ¢ is
(6.3) £: BP(@H H(1;0)) @ B0V (130 (1300)) > H2(03H (1))

Since pf.= q = 0 in (6.2),.there is no sign change.
,This pairing is explored.in the proof of proposition
\ 6.3; now we cook up the sécond factor in our formula.
The action of I on HN(I;A) is tfivial, so there is
an isomorphism g: HN(I;A) S HOCI;HN(I;A)). This induces,

for each p, an isomorphism
8 HP (030N (1;4)) ~ HP(o;HO (23N (2:A))), and since
ED>N o #P (058N (250)) and

Eg’o R Hp(@;HO(I;HN[I;A))), we obtain an isomorphism

HP(osHM(15A)) & HP(osu0(x3Hy (134)))

(6.4) ! 22 | | 8

Ez’ 5
0
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Again by the universal coefficient theorem, we get

a split exact sequence
‘ N Py
0 - Ext, (Hy_q (1;A),H(1;A)) + H (L:H (T;A)

Homy (H (134) 1y (£:0)) + 0.

We make the assumption that Hi(I;A) is A-free for all

i. Once more, the Ext term disappears yielding

Py HN (238 (154)) = Hom, (Hy (T3A) ,Hy(1;A)). Let

_gN € HN[I;HN(I;A)) correspond to the identity map;
. ' N, _ :
i.e., pN(g ) = IdHN(I;A)'

- Proposition 6.2: gN is annihilated by ¢.

"PrOogz' Let ¢ € ¢ and let z € ppl(o). Denote
<Xl"-"xN> € EN(I) by Cy and.(xl,...,[z,xi],...,xN> by ;
Cl; with this notation, the action of & on gN € HN(I;HN(I;A))

becomes

(6.5) (o-gDCy = z:gV(cy -

For a ¢ A, oﬁ the one hand

"{pN(gN)}(aﬁlCN) = a-gN(CN) while on the other,
'{PN(gN)}(a RCy) =a@Cy.

N
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Hence |
. ‘ )
(6.6) a-g (CN) = a ® CN'
Take a = 1,5 then g¥(C) = 1, @ C. and also Negly =
| A’ N AY N g
N
1A ﬁ c—. Sol
N 1
2+ g (CN] = z-(,lA R CN) |
' = lA %] (Z'CN)"-
. ; N .
Now z-CN = T C} SO
i=1
; 5 N i
| 1, 8 (2.0 = I (1, 8 ¢H)
‘ . i=1
N .
= 1 gNeeh |
| 7 i=1 |
. 7!- N — : . '
and by (6.5), o.g = 0. _ B
_ | |
S0 g € (N (LH (1)1 ~ I (@;H(L3H (1;4))) ~ ES’N . |

: : : R |
Let b € HO(@;HN(I;HN(I,A))) and fN € Eg’N correspond to gN. |

" Proposition 6.3: Let X E'Eg’N. Then x = 6(x) U fN.

Proof: The statement is almost a tautology since x
and 6(x} cofr'espond under a canonical isomorphism and
fN corresponds to an identity. We use the pairing (6.3)

and show that if o € HP(o;H(1;0)), @ € Hp[d);_HG(I;HN(I;A))),

_ 0 : o
and B € H (@;HN(I;HN(I;A))) correspond respectively to
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x, 8(x), and fN,under ¢, then £(o & B) = o, Note

that B hN as defined above and that £ is constructed

as‘follgwéz the g-pairing Ay induces a cup product
pairingfaz_HO(I;HN(I;A)) R HY(1;Hy(1;A)) » HY(154)
which in;turn induces E;

| Let u € H (L;A) and u E*H (x; H (L;A)) correepond

~

to u under 8. We flrst show that

-

i
jamy

6.7y sia g

Just coﬁpute:

&=
]

W) = atis@ e gMcy)

a-{ay(u @ g" ()}
a-{py(w) (¢" (Cy))}

Py () (a-gN(c)

ey (5@ 8 gM3ca

N

It

since pN[u]-is‘an A-map.
| py(w) (2 8 CY) by (6.6).

61nce Py 15 an 1somorphlsm, s(uRg ) . .

'Now EQI@Il) is computed Let a € Cp(® HO(I;HN(I;A)))

be a cocycle representlng o and observe that

gN e 1Y (T;H(1;A)) = C (o, i (1;Hy(1;A))) represents nN.

N

Then E(o ® pN } is represented by a U g’ € Cp(Q,H (T;A))

where
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— N — N
| @ u ey = sGEy) 8 M |
alep) ' }

by (6.7),there a(cp) is the element of HN(I;A) corres-

i}

E ponding to §(c ) under 8. This defines an element

a€ Cp(¢ H (I;A)); since a(c } and a(c ) correspond

under 8 for each c_, a and a correspond under

0, : cP(@,HN(I;A)) Peo,u(1;8(1;4))); since T is a
.cocycle, so is a, and it defines an'element of

HP(&;HN(1;A)). Since ¥ is induced by 0,, O and this

class correspond under &, but since o and 8(x) correspond ;

under $, so do this class and x by (6.4); i.e., a = class

of a. Finally a u gN = a gives £(o & hN) = q, n

éroposition”6.4: For x € E%’N, dz(x) =.[—l)pe(x) U échN)

Proof: By proposition 6.3,

d,(x) = d,(8(x) u £V
= 3,0000) v £+ (DP %) v 4, Y
by (6.1}, i
= (DPe() u &Y o
since EZ(GCX)) € Eép+2’—1 = 0, ™ , o
Now consider the d1fferent1a1 d2 ﬁg’N > Eg’qu. |

~

d2 1nduces a homomorphism
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H (03" (130 (234))) > 12 (oM (asm (1540))

by completing the diagram

d
. RO, Z RZ,N-1
o | s
HO (031 (1;H (1@»«——~a H(@H (I%“IMD

We shall call this map D , indicating.its dependence

on the extension a; we have ¢2 N-13

d, (M = D, (hY). Note,
however, that the domain and range of Da do not depend
on the extension, but only on I, ¢, and the structure

of 1 as a d¢-module.

The remainder of this paper will be spent computing
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CHAPTER VII

COMPUTATION OF THE REPRESENTATIVE ]

The problem has now been reduced to the computation 2
of the facto;-az(fN), or equivalently, ¢?»N'1(&2(fN)).
£N is an element of ﬁg’N = Eg’N(HN(I;A)), where of
s course HN(I;A) is I-trivial, so we ﬁork in the following
setting.

Take M to be any I-trivial g-module and let
u é E%’N{M). W¢ will firét compute ¢2’N'1(d2(u)) and
later specialize to M =,HN(I;A), u = fN_(so dz(u) =
d,(&M). | |
For u € B Non, o0Nw) € v0;nN iy = ¥zl
Hence (once again identifying cochains and

0’N(u) is annihilated by B c-{¢0’N(u)}= 4]

coﬁomalogy), ®
¥ o € & For notational convenience, write f for
¢0’N(uﬁ; think of f as an element of HomI(CN(I],M).
We theh have o;f = 0 V 0 € 9o.

We seek a representative 2-cocycle (in

o, mM1im)) for 95N T(d, (). The following

technique (used by Charlap-Vasquez for the group

extension case), coming from Godement [6], will be used.
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Let ¢ bé a double complex and E_the'spe;tral sequence | |
derived from the first filtration of Tot(€). Then
X E Eg’q(M) can be represented by xP>q . Prla-1 ¢
b P09 5 €p+1,qf1 where d”(xp’q) =0 (av: ¢P9 Cp’q+1)
and &' (xP>Y = (-1)Par P19y (g o089, (PHLLA, |
Furthermore, d,(x) € Eg+2’q-1(M) is then represented byr |
d'(xp+l’q_1) + 0 € Cp+2,q-1 ® Cp+3,g-2_ In our case, 7 :
‘x is u, ¢Prd js (Pr9 . CP(¢,u9), d"ﬁis dﬁ, and d' is i
dy (all as defined in Chapter III). |
Now €2V = ¢0¢p 4 = u¥ = Hom_(Cy(g),M). “Define
F ='¢N(f) € HomI(CN(g),M).: Since Y, is a chain map, |

the diagram

lpN+1
DN+1 v N+1 -
W] %
‘ VN 5 N A
N |
is commutative. Hence dn(F) = 6§(F) é
= 830N e) u
ke by (7o) o

0

Hence F will play the role of xp’q(=xO’N) in the

Tepresentative for u.
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Now dy: %o, 0™y » clio, V) so d,(F) € clee,nly
and for o € ¢, {dQ(F)}(o) = g.F € HN. o-F is computed

below:

o-F = a- V()
& N
= (Id) {o- (v (£)} |
T (jN‘pN'SI\I—ldﬁ‘d§+1SNJ*{0'- CREID]D

0" to- e - (63 st 1o e

- Gl e Ve |

i

WG g (D))} - 88 (- (fte)yesy o)
- osylelo N em))
The last term disappears:‘

6%(0'(¢N(f))) = o-aﬁ(wN(f)) {(the action is compatible

with the coboundary)

and

f

BN (5) = sl (fopy)

(6§f3°wN+l since ¥y is a chain map .

g.f

]

. ) % * '
Ry proposition 4.1, jN(o-(wN[f)))

= 0; hence the first

term also vaniches. So




g-F = ~ag 1 { (o N (£)))esy_;} and

{4, (M)} (o) = -88  {(o- (WN (£))) o5y

pefine Y € LN = clio,uN Ty by v(o) - -(q-(wN(f)))asN_l

so that .
(dy (¥)) (o) = 88, (Y(0))

o-F

(dQ(F))(o)and since p = 0,

d¢(F) = (—l)odu(Y). Hence, Y is an appropriate

DP+1,a-1._ 1,N-1

(=x ) for a representative of u, and u is

represented by F + Y € LO N g 1,N-1 Therefore, d,{(u)

is represented by dQ(Y) + 0 =,d¢(Y) € LZ’N'l = C (o, hN 1)

2,N-1

Now we need a representative for ¢ (d (u)), where

_ o % % % . _* * %
here think of H (z;M) as H (» ). Since j : u - »

n . . * * ES ® _ pq
induces the isomorphism H (g ) ~ H (p }, if x ¢ EZ’ (M)
is represented by o € Cp(¢ uq) p’q(x)-e Hp[®'Hq(I'M))
is represented by p ¢ Cp(® Hq(n )] where 5(01,...,0 ) =
class in Hq(p )} determined by j {a(ol,...,c J}. Since
we identify cochains and cohomology using H (v ),

this says that ¢2’N_1

(dz(u)) 1s represented by

X € ¢?o, BV 1 (z;M)) where X(o,1) = jN'l{(d@(Y))(c,T)}.

52
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Now (d®(Y))(U,TJ = U-Y(t) - T-Y(o) - Y([o,7]) so that
X(e,1) = 5" o)) - Ny - 3N evre, )

CRICHUACIPEENINS |
N e N )y esy 1

Heton- V) Tosy ).

. But the last term is {{c - N (f))}osN 1°95-1

=0 by equation (4.12).

We have¥provedr

Proposition 7.1: lLet u € EO N

2,N-1

(M) and denote ¢O’N(u) by

f. Then ¢ (d, (u)) is- represented by X € g2 (¢,H -1(I;M))
where

X(o,7) = jN'lcr-{(s-(wN(f)))osN_L})—jN‘l(o-£(r-th(f)J)ésN_1}).

The remainder oféthis chapter will involve a more
explicit calculation ef this representative. We shall
flrst requ1re more formulae involving the chain map yx
and the homotopy Si-: As mentioned in Chapter VI, matters

are somewhat simplifieﬁ when g is the semidirect product

of 1 ahdle.




Proposition 7.2: wl may be chosen with
C (a): o
| (b):

if By < By. 1f g = 1.9, the same formula holds if
By > B,
(c):

~

if B4 < B,.

If g = 1.8, the same formula holds if By >By.

" Proof: (a) woﬁ%(l & y) =y, ,(y) = 0.
g =
(b) wodl(ysl 8 yBZ) wo(yslysz)

=0

if B1 < B, since y81%% is an I-basis element of Ug.

If g, > B we have y, v, =y, v + ly, ,v, ]. The
1 2’ B17 8B4 B," By By 7By

first term is an I-basis element, so v (y_ vy, ) = 0.
: - © By By

If g = 1.2, the complementary subspace ¢ is a Lie

subalgebra of g; since wo(y) = 0 for all y in this

subspace, wo([ysl,yszj)l='0 and we have ¢0(y81y62) =

again.

(7.4) b10g Vg 8 (600 = 18 Iyg L lyg L (x,0)]]

54
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(c) wod§CY51Ysz B 0600) = ¥, (yg vg (x,0)) | |

il

¥y %1 (x, O)YBZJ ¥ (ysl [YBZ, (,0) 1)
= x-wo(yglysz) + I[ysl,(x,o)]-wo(ysz)

" g, a0 (7 )+ g 5 5,011

The middle two terms vanish; so does the first if

r

1l

By < < BZLI We are left with [yﬂ ,[YB , (x,0)711
el [yB ’[Ya  G6,01D). i By > B, and g

1

1.9,

the argument in (b) ShOWb that the first term again

vanishes, hence the formula remains valid. v

Remark: 1t is importaht to observe that (7.3) does not
hold for all yl,yz in the complementary subspace 'since

it does not hold for all YB and YB However, since
‘ 1 2

(7.3) holds for all basis elements if g = 1.0, it does

hold for all Yl and yz in thl case: if g =19,
(7.5) 13w1(y1 8 y,) = 0.

Now, we consider ¢ for n > 1.

Proposition 7.3: For n > 1, ¥ may be chosen with
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7.6y 01 R {(xg,0),.,(x,01,0),7)) = 0
(7.7) bn(rg 8 ((xl,O),---,(xn__l,OJ_,yBZ)J =0

if BI < 82. If g = 1.0, the same formula holds if

Proof: (a) First let n = 2. Then

335018 €000,9)) = 9y (5,00 87) - by (78 (5,00) - (18 [(5,0),37)

x'wl(lﬁ}q -1a [y, (X’O}] -18 [(X’O) ’Y]

[

0-18 [y,050] + 18 [y, (x,0] by (7.2)
0.

Now assume (7.6) holds for m and compute

v, a3, a 8 (205005005 (%, 0,70 =
L
% (-1)
i=1

e 0 (RCG00, 5 (00,1, B, 00,7

D raKog,0, ., x,00)
n .
. _zlc-l)l*n”wntl@({(xi,m,y],(xl,o),...,
i= _ .
(7500, ., (x,0)),

where the last summand comes from the fact that the only

nonzero brackets are those of an (ki,O) with y, and y
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is in the (n+l)—— slot. The first summand vanishes by
the 1nduct10n hypothesis, the second is computed by
(4.3), and the third by (4.2) (since [(x;,0),y] € 1).

We get

n .
: BT ' .
‘ 151("1) 1 Q<X1:~-'3[y,(xi’0]]:-'°sxn>

L yitnel 1o o
1('1) 1 ®<[(Xi’0)9YJ,Xls'-°;Xis---:Xn> .

+

s

i

i+n+1

Since (- 1) 18 <[(¥i’0)’Y]’Xl""’xi""’xn>

o itn+l+il L B | |
cﬁl)l T g, Iy (g, 00,

GO e (x0T,

‘

Cone sigh'interchanges‘within the bracket and i-1 to

push the bracketed factor to the jth

slot), everything
cancels.

(b) First let n =?2. Then

:

!

- ':” - _5 : 37 BLG0),, D)

=.X"”l_(781®y32)'+ {}’31,(x,0)]~w1 (lﬁysz) -18 [Ysl,[ysz,(x,ﬂ)]]

- 18 Iyg » (600, 17,
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where the third and fourth terms are by (7.4) and (4.3)
res?eétively. " The first two terms vanish by (7.3) and
(7.2) and the last two cancel by a sign interchangé, SO

¢2(Y81 é_<(X,0),YB£>) = 0 is suitable.

~ Now assume (7.7) holds for n. Then

Y d*’gq(yB @{(xl,m,...,(xn,m,yg \) =

5 (D) i*lwncYﬁl (55,0 8 {Gs0) o5 (50D, 6,00 g

i=1

ki

+-(71j“+2¢n(y813’352 8 {x;,0) ""’(xn’o)))

o+ zlc 1)““% t @([(xi,m,ysz],cXi,O),...,(x{,o),...,(xn,m}.)
. ]_“ . ’

(7.8) = 21( Hi* L 0, 07 ®<(X1’°)v--’fx1’03’ 5 Gs 07 )
: i= ‘
R _
« 2 ey ,cxl,on 005,01, 50, ) Vg,
it

RN RN s, ® <(x1,0),,...,(xn,0)>3

o - 21( i (ys ®<[YB G, 01, 0,004, (7, 0),
=

The first summsnd vanishes by the induction hypotheses;

the second vanishes bylt7.6). The following formula
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may be seen to hold for the third summand:

40 Ve, 8 <00, 05,00 =

It
I 18X,y 5y, S (x,00]0,. .. ,x
i=1 4 By B T n

(7.9)

oL LA X,y (x5,00], 00, Ty, 5 (x,000,. s,
lkﬁfﬁp < 1 Bl i 82 3 ﬁ&

1I<i<j<

* )X nl ®<X1’.”’[YBZ’(Xi’O)]’“',[YBI’(Xj,O)]’...’Xn>

for w > 1, if B < 8,.

In the first summand of (7.9), the bracketed factor

appears in the i:c-h slot; in the last two summands, in

the iE£ and'jEE respectively. The proof of (7.9) isr

an extremely tedious induction in the spirit of the

procf of (4.3) and will be omitted. Note that for n =1,

[7:9) reduces tb (7.4). '
Since {ysz,(xi,O)] € 1, the it corm in the fourth

summand of (7.8) is

-1y @(iysl,[yBZ,(xi,O)]Lxl,...,xi,...,xn>

i+n, " i oo
+ 1 (1) 1@([ygz,(xi,on,‘xl,...,[yﬁl,cicj,on,...,xi,...,xn}
j%i§3'slot

j<i
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+ L DMy, L0000 ],% e Ry [ 0 ).
i< <Y32 i 1 i [31 3 ’51>
i +

ljzh-slot

Now sum over i to yield i

n R \ ~ .
gy 110 .
R REY <[Y81" g, » 05 01130

(720 v 3 (DM a(ly, 6, 00x,., ‘
' 1<j<i<n yA ,
[YBI, (xj ’O)] L ’Xi’ ‘e ,Xn>

¥
§+12% slot
y o2 (DY Ry 0000, e e SN0 NI
1§_i<'jin( ) <[sz R ,[ygli( 300
-jﬁh-slot
Note that the third summand of (7.8) is (7.9)
with a sign of (-l)n in each term; call this (7.11).
In the first summand of (7.10), push the bracketed factor
to the‘izh slot; the sign becomes (_1)1+n+1—1 = (-l)n-l
and hence this summand cancels with the first summand

of (7.11). In the second summand of (7.10), interchange

1 and j to get

{411 ~ .
A G R B Y (SR S 1) 1 U S (VR ¢S SO
]ii<jf_n < Bz J S 1 . Bl’ 4’1 ‘ b4 ] n)

i+1-5-E slot.
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Move [yB { 0)] to the J_E slot via j-1 interchanges;
this moveél[ysl,(xiﬂn] to the iﬁh slot and makes the

sign (- l)J+n+J 1. (—l)n-l; so this summand cancels

with the second of (7. 11}. Finally, in the third
summand of (7. 10), push [yB ,(x. 0)] to the 1—13}l slot

the other bracketed faétor remains in the j—h slot and
the sign.is (—l)lﬂﬁ'l-1 (-1 1 50 this summand cancels
w1th the thlrd of (7 11)

ThlS proves (7. 7) for any extension, as long as

By < Bz If Bl > By, all the summands in (7.8) wili be

the same except perhaps for ¢ (YS YB 8 <(xl,0),...,(xn,0i».

Thus to show that (7. 7) holds for Bl > B? if g =1.0,

it sufflces to show that (7.9) does:

Sy, O e, 8 ,0),...,(~< ) =

“’n(”ezysl @ <cx1,0j,...,(gn,0)>) + g 7 ) 80,0,

g | e G, 0)).
Sinée YB yf -is.now a Basis element, the first term is
2 "1. o '
given by (7,9) with Bliaﬁd B, reversed:

(7.12) + I 18 x,...,[y ,(X-,O)],---,[Y L (,01,..00x
1<i<j<n < 1 62 i . Bl 3 , n)
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+ L lﬁ X,‘-.-,[Y ,(X-,O)],..., Y !(X',O)]H"'.’“ '.
 1<i<j<n <1_ By [y32 3 x“>

Since b%lgkz]lies in the complementary subspace,

| xpn({ysl,ygzi 8 (x},0),. .., (x,,00)) =
S n. o =
7.1 11 @(xl,...,[_[yﬁl,yszl,(xi,on,..«,x,,}.

~Now add (7.12) and (7.13) to get
0 Vg 8(0,. x,,00) -
1

n : ) | '
511 ®<X a.--;[}iﬁzs[yBls(Xi’O)]] + [[YBI,YBZ], (Xi,(})],.-,_,xn>

(7.14) + T |

L0 Iy, (0T, [ya (5,00, o |
1<i<j<n & TR By 3 “n/

BT -V SN Y I S IR 0,01, .., x ).
1< & REC T By” 5 Xn>

The second and third summands 0f7(7.14) agree with the

third and second respectively of (7.9). By the Jacobi

iden&ity,

[y.ﬁz’[yf’,l’ (3;,_0)]] “+ EI[YBI’?’BZI’(Xi’O)] = {yﬁl,[yﬁz,[xi,om

hence the first summands also agree. : w -
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Again, (7.7) holds for all Y1:¥Yy When g = 1.0:

(7.15) 7 ‘:' wn(}’l ®<(x1’0)3~'-i(oxn_130)33r2>)

One more technical result involving the homotopy
s* shall be required before we can return teo the main

argument,

" Proposition '7..74_; For n > 1, S, May be chosen with

(736) 50800, G0N (™ML (6,001 0 )

" Proof. Fi-rstllet n = 1 and recall that s1: C1(g) + Cy(3)
must batlsfy dzs1 = jl{pl - Id- sod%. The right side

applied to y ® (x,0) yields

I8 (x,0) -y 8 (x,0) - 5o (7(x,0))

ji(l@[y,tx,om Y 0) - x5,00 - I, (0] s, ()

18 Iy, (,0)] - Y8 (5,0 + (5,0 8y {

since s Ll) = 0 and s (y) - -1 8 y. ‘

'

‘ _ | ‘ '._=' dg(l @{(x,io) ,y>) S0 ' | |

18 "(.[x.,ﬂ) ,y>
(*1)21 ® ((x,O), y> is appropriate.

|
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Now assume that (7.16) holds for n-1 and write
§ for y:®<tx1;0),...,(xn)[0>. Then it must be shown
that |

(7.17_) dg 8. (0™ he{x J0)5 -0, (,50) 7)) = J 0, (8)-8-s5__,d3(8) .

Work,out'the right hand.side: by (4. 3), we get

zla aedx ,...,[y,cxl,on,...,xn)) -y & 050,00, (x,00)

+1
151(,-1)1 1 005,0) @((xl,m,...,(xl,m,...,\ 0D

n |
'__' '21(1 8 <(X1,0):---,[_Y, (Xi,o)]s'-' ,()S]:O)>) -y Q <(X1,0):'"- :(%’OD
; - i=] ‘ ; B

+ zl(l)x = 1cy®<(x ,0),...,(x1,0),...,(x ,0))
D=

+ 221( 1) s ey 5015, 3 (18 {000,000, 054,00, (x, 0.
_;1‘

By (4.12), the last suhmand vanishes. Apply the induction

hypothesis to the thlrd summand; the'iEE term has sign

(- 1)1+n so. the rlght sxde becomes

n

;:1(1@<c5c1',03,...,'b%,(xi,m],...,cxn,m)) -y 2,00, -, 05, 00)
i=1 . ot :

(7.18) n’

+ zl( 1) 1,03 8 (5005000, (x,0), o, 0,00,

For the left side,
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. d§+l ((—1):[1*}11 ‘@ <(X1 ’O) LA (Xn’o) :Y>)

z (1fwﬁ+rﬂc
- 1=]

+ (-pyrimlely @<(x1,03,..,.,c:e- L0 | é':

20 @((xl,m,...,(x- 0),...,(x,,0,7)

(7.19)

. :-'l"' I‘} ( E,_}rn+l+l+n+1l @([(xlao),)d (XI,O):'-'s(Xl’O):"’:[ O)>
-1=1 :

"The second summands of7(7 18) and'(%.IQ) agree; the first
of (7. 19) is tha th1rd of (7.18). As usual, i inter-
changes are necessary to convert the 1EE term of the
third summand of {7-19) into the form of the first

summand of (7 1%3, the sign becomes (- 1)n+1+1+n+1+1 =1,

as de51red ' ‘j . ' "

At ong last we Teturn to the calculation of the

representatlve X inm prop051t10n 7.1. Recall that
' i

X = 3 Lo 0NN esy 9N o (- N oy B

To éliminateaali‘thé-grmuping,'we first observe that

i

N(f) = fwa € %" and that each expr6551on inside the : |

curly braukets a%ave 1s in uN 1. Hence all the actions
of the elements of @ are on elements of o = Hom (C (g),M).

"Since the &- struatm1e is given by diagonal action and

p((0,0)) = g, we have CG-F) (ep) = (0,0)-F(c )-F((0,9)-c )
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for F € u™. Since M is I-trivial, we may write caF(cn)

to give
(7.20) (6-F) (c,) = 0-F(c,) - F((0,0)-c).

To simplify the notation, let Myt M+ M be the map
Mg(m) = g-m. The first term of (7.20) then becomes _
(MUOF)(CH). As for_the second term, let Ac: Cn(g) + C,(m) |
-be the map AU[cn) = (0,5)-cn; the second term then

becomes (F°A¢)(Cn) so that (7.20) becomes
(7.21) 0F = M oF - FoA .

This is now used to decompose X{oc,7). Observe

that it suffices to decompose the first term and then _ .

switch the roles of g and 7; i.e.,

X{o,} = X3{0,1) - X,(0,1) where Xo(o,1) = Xy (r,0) .

(Note that X, and X, individually are not alternating!)}

So we write

X(o,1) = Xl(c,T) - Xy(z,0)5 Xy(0,7) € HomI(CN41(I)fM)' :

Write ao for ¢o- (q;N(f)) = g- (fowN), Then we have |

llN-l

leg,T)‘= (T;{acosN_l})OjN_l. Since a € s {7.21)

gives
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Xl(G,T) =- [}‘gtotacosN_lJ - (aUOSNvl)QAT)djN;l

-a o5 oA
a

N-1"%¢°IN-q

. — N v
since sy j°iy.3 = 0. But feyy € U so a_ = Mjo(£eoy) -

o
(fowN)DAU hence
(7.22) - Xq(o,m) = Mofoposy joh ofy 3 + fodeAsosy oA oy ;.

The case N =1 is handled sepafately; we evaluate

(0,11

- {fowloAUesooA%oﬁé)(l)- (MoEop, o5 0 05 ) (1)
: = (foppehes oA ) (1) - oqgofo¢losooAT)(1)

= (oo 05,) ((0,1)) - 01, ooy 25,) ((0,1))

= - (fopy oA ) (1 8(0,1)) + 04 oFoy;) (18(0,7))

by (4.14),

= - ey} ((0,0) ® (0,7));

the -second term is 0 by (7.2). Hence the second term
vanishes identically and we have {XI(U,T)}(I) =

-£(9, ((0,05) & (0,7)). Hence
(7.23)  {X(o,1}} (1) - £y ((0,1) 8 (0,0))) - £(y;((0,0) 8 (0,7)) .,

" If N > 1, we bave a similar caiculation:
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REVICHIMICI RERRT MRS
(fo@ﬁoAUOSN‘IOATOjN‘lJ(l ®~<xi;...,xN_£>)

- ﬂ""c°f°"’N°SN-1°AT°5N—1) (1 8<xy,0 0,2 ))

It

(Fohyelyosy oA (1 [ <(x1,03,...,cxN %

- Olefbes, 1A ) (1 8 CONRCUN)

It

(Foby® 2050 (0,00 8 {6,001, O)

j [ ofowN 1) (0, 0 @((xl,m,...,( 1:00)

e (fowNoA e <(x 200, G150, (0,0

H

A (1)N*"1cM ofowN)c1®<(~<1,0),...,(N1,0),co,r)>)

by (7.18) : , | |
(1) (fowN)((o o) @((xl,m, s (1500, 0, T)}), o

the second term vanish_es by (7.15). Hence | ‘

"{X@“ ,T).}(1'®<x-1,..._j,x _1}). = ' .

; (—1) afchcco °) RO, 1005 (0,7))

[ R gf(wN((o,@ @ {xp50050 ., (1,00, (0,000))})

Now suppdse that g is the semidirect product of |

I and ¢. By (7.5), the right side of (7.23) vanishes; by | i

(7.15), the right side of (7.24) vanishes. So the
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cocycle X representing ¢2’N‘1(d2(u)) vanishes iden-

ticaily; We have proved

" Theorem 7.5: Let g be the semidirect product of I and

®. Then d, = 0.

We now turn to a computation of (7.23) and (7.24)

*in the general case, It is necessary to compute :

wl (ysl & YBZJ and IPN(Ysl 8 <(X130) 35 .- (XN—]..’ 0) :Y82>) i

when.Bl} 82. First we handle N = 1. 1
Proposition 7.6: (a) If B; > B,, we may take

it 8 )'-1‘-82}1 : ] (sz B,

YL (y y =18 x where [y, ,y = (x,",0, )

| 1278y 78y B By’ B2 By 8y

(b):.

: ( @l 8 ) & BZ :
{7.25) vy (y Yo = ¥ y =1&x |
(7:25) V1) BYg," Vg, Vs, P |

| ‘ . '
for all BysBye : ' : fm | %

. Proof: aj) p.d R =

;o (dj, Pof1 gy ayBZ) Yolg s,
. : ?
; = f + s
. %(yszysll wo([ysl YBZ]) |
= \po({YBI,YBZ]) since 11_
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yszyslis a basis element.

B, B
2 P2
= ¢ ((x;7,0,°))
fottte YR,
B2 1 Ba.
= XBl = dl(l @ XBI). E

(b) Note that by the anticommutativity of the : |

bracket, x.1 = _x 2 £ v, 8y, ) = 18 B2
‘bracket, x = =X, . If B, > B Y, {y y = X :
' 82 . Bl ‘ 1 2’ 1 Bl 82 Bl i
‘ : S ,; _ , : 32
and Y,(y, 8y, )} = 0 so ¢ e Ry, 8 -y B yvep ) =18 x,°.
1778, 778 R T R P By
L < '- - ( o) !
If B, < By, v (y, Sy = 0 and Y, (y, 8y = 18&x =
1= TE TR s, 1778, 778y B2
:'le | f ' :
O Xg s SO (7.25) again holds. n
) 1. . :‘ :

- By Vlrtue of the expre551on in (7. 23), it is really
(7.25) that we are 1nterested in. Observe (by linearity)

that q;l(yl ﬁyz S Y, @y‘l) =1 @xl for all Yi2Yay where

{ylgyz] =‘(xizg§j. Buﬁ we can compute both x% and Uf

in terms of.the egtension:

‘ Write Yl (0 g ). and Y = (0,02); then

*[y‘lﬁ,vz] I(o,og,(o,o-zn

g

1(a(01’69’[61’62])
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(recall that a is a Z-cocycle representing the class of

the eitension) SG wWe get
(7.26) [€0.07),(0,0,)] = (a(oy,0,),[0,,0,])

and x% = a{ql,cz} {also c% = [Gl,cz]). Applying this to
(7.25), #,((0,T) ® (0,0) - (0,0) & (0,1)) = 1 8 a(t,o0)

and this gives

-Corollary 7.7: Ef N = 1, {X(o,t)}(1) = £(1 ® a(t,o)). R

For N > 1, the idea is similar, but the computations b

are of course more tedious.

- Proposition 7.8: (a) If By > By, We may take

(7.27) ‘Hn(yslg {(xl,o_),...,(xn_l,()),y62>= 1 @(x_,...,xn_l,xzi :
(b):
40y 8 (@1,0),...,&11_1,0), 82> " Yy 8 ((x 00
| (5015007 ))
(7.28) .

= 1 @{xl,,....,xnﬁl,x%) for any BysBy-

“Proof: (a) Unfortunately, another tedicus induction is

required. We first observe that since for ced,

[(0,0),(x,0)] = -x, the identity
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B
(7'29) [yBla[szy(X:O)]] - [yEZ’[yBl,(X,O)J] - [(0,0’ i))(xso)] =0

82
holds since ¢ = [o

] and o
B

N (0, *x)~0, (o, -x)=[0
1778, By BT By By

0, 1°X
B)7 8y

Let n = 2. Then
d%éygl a < (5,007 ) =
¥ (07g, (,0) @76, ~ 40 g 8 o60) - 0, 8160 1)
- x.q;lcysl%z)} gy CoOT-91 (875 ) = 00y 3, & (x,00) |
R UAEREYE 0O ® by L 60])

x 8 o2 187 [ (x,01] (( 2 0 & (x,0))
.X X - 3 3 X, - 3 >
R 78,8, Y1 *8) *

8
910005 @ (,0) + 18 [y, LIy, ,.0]]
¥, (g 8" V8,
: e’ 18 Ve 2 lye 007 - x2 g
=X X = > » LX, - X
By 78," Vg, By -

B
- 18 (697,601 + 18 [y, , Iy, ,(x,0]11.
B B B8
1 1 2
. B, . "
The first and third terms comprise dx{l ®‘<x,x82>)
' 1

and the others cancel by (7.29). Hence wl(yB R <%x O),yB >)

= 1 @‘(x XB > is Ju1tab1e Now assume (7.27) for n.

Compute




g ' : =
wndn+1 @81 8 <[X1 :O), M) (Xny 0) ,YB2>) =

n

44 141
151_6-1_3 Xl ®<(x1,0J,--.,(x1,0),---,(x UJ,YB>)

n . ~
+ _21{-1)1”1[y31,(xi,031~wn( 1@((x1,o),...,(xi,m,...,
i=1 _ : ,
0),}3 »
+ -1 g ¥y 8 {Cx50), .0, (x;00)
'n Bz Bl 1 n

B,
" EDM 0700 8 (0,0, G, O

+

B8 _
(DY, (0057) & (6,00, 0, 0

+ ii(-l)“% Og, @ (zyBZ,(xi,on,cx 0, (5,00,
(x,,00))
(omitting some steps that are the same as in preﬁious
caIculations). The first term is given by the induction
hypothesis, and the second vanishes by (7.6). The third

is computed by (7.9), the fourth by (4.4), and the fifth
and sixth by (4.3). We get

n : B
- 1+1 ~ 2
r (-1} 3 RAX, XXX )
i=1 < 1 I Bl

n
+ p (DM e Kyiene, [y, Wy ,(X-,UJ]],---,x\
) < 1 B, By’ n/

73
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+ o (DMae <x1,...,[ysz,(xi,on,...,[yBi,(xj,OJ],...,xn)

+ ) [—l)nl f{x ,.;.,[ ,(x:,001,..., »(x:,07,...,x
e ( 1o g 00 L g 05,00, )
B n B
n+2 "2 n 2
D] o 8 {ig,ennx Yor RAORE. {xl,...,.[co,crgl),(xi,on
""*&n)
+

B

n .
A R GO ) R
1= - ) .

+ 3 Py e gy NCTN )} IC NN RCIN ) § ST
'15j<'i£n < 82 1 1 Bl ] 1 )ﬁ'l>
- B +

5+1°% s10t

+ DY (y L x,007.x oKy Ve a0 1o )
1<i<j<n . < By 1 1% 1 +31 37 Xn>

jzh-slot.

There are now nine terms. The first and fifth together
B
2

nXg )). Exactly as in the

. I
comprise dn+1(1 & {kl,...,x )

proof of (7.8), the fourth and eighth cancel, as do the

third and ninth. In the seventh, move [yB ,[yB ,(Xi,O)]]
1 2

to the iEh slot wia i-1 interchanges; it then occurs

with sign (-l)n—1 and then the remaining terms cancel by

virtue of (7.29).




(b) This follows precisely as in the proof of
prop051t10n 7. 6(’0) .ﬂ

Fin;al'lly, we note that (7.28) holds for all Y1sYyt
g wn(ylﬁ<(x1,0),-.-,cxn_‘l,m,yz) - ¥ 80005, (x 1,00y, ) ) =
(7.30) |
2
1@(}(,..., 10X >

for all yl,yz,_where [yl7Y2] —(X]_’ 1)

Finally, applylng (7.30) to (7. 24) yields our final

form for the representatlve X.

Corollary 7.9: TIf N » 1,

: {X(o,t)} (1 ®<Xl" .. ,XN_1>) = (-l)Nf[l-ﬁ <x1, ce ,XN__l,a(U,T]>) .

75
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CHAPTER VIII
.PONTRJAGIN MULTIPLICATION

The main formula of the next chapter will express
d (f ) in terms of a Pontrjag;n multiplication; i.e., a
homology product. This multiplication will be described
in general termsrin this chapter, following techniques
’in [1}. Due to therspecialized nature of our'assumptidns,
however, the main fofmula could be derived without
the general Pontrjagin product. |

Let A be any abelian Lie algebra and define
€: A8 A~ A by 6{X1,K2) - Xq * xé. Slnce both A and
A ® A are abelian, ¢ is a Lie algebra homomorphlsm (1T
is not if A is not abelian).

Now we recall some general theory. 1If g and g'
areiany.two Lieralgebras and n: g +~ g' a Lie algebra

homomorphism, every g'-module A acqulres a g structure

|
by change of rings wia the induced map Un: Ug » Ug': '
X*a = n(x)-a for x € g, a € A. Now if R and R' are any
two algebras over a commutative ring A and if M,M' are
R,R'-modules respeétively, then the-tensor product

M QAM' is an R @AR’_module in the natural fashion:

(ro r")-(m@m*) = (r-m) & (r'.m"). Applying this
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to the situation where M is a (U)g-module and M' is a
(U)g’¥module, M & M' becomes a Ug @ Un'-module as

described. But there is an isomorphism Ug 8 Ug' =

U(g 8 g') where (z,z') € 885" cU (g ®g') corresponds
toz®1+18z'. SoM®M becomes a (g @ 5') -module
via (z,2').(m@m') = (2 81+ 1 8 2')-(m @ m') or
(z,z") - mBm') = zm@m' +m@2'-m', Furthermore,
*1f M is g-free on {mi} and M' is g'-free on {m!}, fhen E

M® M is (g @ g')-free on {m.

. 8 mi}. : |

Next, suppose that C is a free, acyclic A-complex.

By what has just been said, the tensor product complex

C & C, where (C R ), ® (C.8C,) and 8(c, R c) =

r+s=n
\T : .
8r(cr) & cg * (-1} . 2 as(cs), becomes a free, acyclic
(A ® A)-complex. Since ¢ makes C into an acyclic
(A 8 A)-complex (although C may not be free as an
(A ® A)—comple@, the comparison lemma gives a chain map

h: C8 C~ C of (A @& a)-modules. Now examine the condi -

tion that h is an (A ® aA)-map. On the one hand

h((xl,xz).(cl R cy)) = h(xlél R c, + c; 8 xzczj; while

on the other,

(xp5x3)-h{c; @ c;) = e(xy,x;5)h(c Q.czj _ | |
= (x1+x2)-h(c1 R c,).

Hence h satisfies | o _ ' . |




(8.1) h(xlclﬁcz toy Rx,0,) = (xi+x2')-h('c1®c2)

Any h sat1sfy1ng (8 1) may be used to define the homology
product

Slnce A is abellan its enveloping algebra UA is
commutatlve. Hence if M and N are A-modules, M @AN
becomes one via x-ﬁn@rﬂ = (x-mj§11==n1®(x.n). Let P
.be a thifonkmodule. We have seen that M &N is an
(o & ﬂ) module and ¢ turns P into one. Let B:M & N > P
be an (A & A) map We claim that if § is regarded as a
map of M ® N to P, then it 1s an A-homomorphism., The

A
fact that B 1s an (A @ A )- map ensures that B8 1is wel]—

deflned (and therefore a A- map): since 8(x1-mn + m@xz-n)

(x +x )-BOn@rU, X ; x and x., = 0 yields f(x'm & n) =
1 "2 1 2

x-Bﬁnﬁrﬁ; X7 = 0 -and X, = X yiélds-s[mﬁﬂx-n) = x-BUn@&ﬂ.

- Returning to h: C R C » C, this shows that when h

is regarded as a map from C RaC to C, it is an A—map.
:canonidal ‘
Now (M & C) @ (N 8 C){ - 7 (M 8 N) ﬁﬂ (cC & C)

B
together with C @ C -+ C gives (M R C) @A (N & C)
(M & N) ) C The passage to homology is well-defined
and ylelds the Pontrjagln product Ho (a;M) @ Hy (A;N)
mm(a M & N)

One nice feature of the standard resolution Cu(A)

is that a sultable h.can be explicitly described. Denote

78
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Cx(A) 8 CL,(A) by E,(A) and bear in mind throughout that

UA is commutative. We have a map hn,m: Cn(A) & Cm(ﬂ) -
Cnﬂn(ﬁj defined by hn,m((uﬁx) R (veY)) fuv @ (XAY) and
this defines a map h,: Ex{(A) » C,.(A) with hp: Ep(ﬂ) - CP(A).

Proposition 8.1: The ﬁnap hy may be used to compute the

Pontryagin product.

»

Proof: We f-irst show that h, satisfies (8.1);

hn,m((xl(uﬁ){) R (VvRY)) + ((uﬁ}(). 3] X2°(V@Y])) =

hn,m(([)_clu@){) R (v&Y)) + ((ugX) & (xz\rﬁiY))')'

xuv 8 (XAY)+ ux,Vv 8 (XAY) =

: 7(x1+x2)uv ® (XAY) (since UA is commutative)

Gy +xp) - (v 8 (XAY))

Gepxg) by L (W@ & (vaY)).

We next see that hy is indeed a chain map. The [y

boundary 64 in E,(A) is defined by ' :

G@ON, 8 VAV = Guen) 8 oa) + i

(DPwex) e @ vew). | |
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The augmentation e' is defined via

eRe mult
CQ(A) 8 CO(A) — kR k — k;
R
we check commutativity of
t
E

£0(A) —3 k——3 0

wl o

. E :

eho(lﬁl) =e{l) = 1and ¢'(1R1) = e(1)-e(1) = 1;
on all other generators,' both compositions are 0 since
e(x) = 0 and h, is multiplication in UA.

Now look at

8
ELA) D5 £ 1 (R)

hn \Z hn-l

- D
o G T G )

If .p+q = n,,hn_lﬁﬁ((u®<x1,...,xp)) R (v R <Xp+1""’xn>)) =

hn_l(dp(u®<x1,...,xp>) 8 (vﬁ(xp+l,...,xn>)

+

(—1)p(u ﬁ(xl, ‘e ,_xp>) ® dq(v@(xp+l, cen ,xn>))

(-1)i+1],1n_1((uxi & <x1, v ,;i, e ,xp>) & (v@ﬁcpﬂ?...,xnﬁ)

il
[ arien]

1

DL (ady,. N B g 80X X))
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i+l ° :
(-1) uvxi®<xl,...,xi,...,xn>

0
H

i=1

- 8, (e eox)) = Sy (B {xy,. %) @ SIS

Hence h, is indeed a chain map. ™
* ‘ .

We will use hy in Chapter IX as a tool in the deriva-

*tion of:the main formula.




CHAPTER IX

THE MAIN FORMULA

We apply the results of Chapter VIT to the case

M= HN(I'A), u = fN, in order to derive our main formula.
DN, ) = 92N, (e ). since 622Nl
.is bl in H (&; H (1; H (1; A})) and hN corresponds to

gN € H (I;HN(I;A)), think of ¢0’N(fN)‘as gN, where of

Here, ¢

course pN(gN) = l1ldentity map of'HN(I;A). Hence in the
notation of Chapter VII, we take the element £ to be gN.
Once again, we are identifying cochains with cohomeology,

and chains with homology.

Lemma 9.1: g1, @ (xl,...,xN)) = 1A®<x1,...,XN>

Proof: 1, & (xl,...,xN> {pN(gN)}(lAﬁé<kl,...,xN>)

"

A le (lUI®<X1,...,X >)}

g U”UI 8 <Xl’ e ,xN>)

where the second equality idéntifies A R EN(I) with

H
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From Chapter VIII, we have a Pontrjagin product
P: Hn{I;N) QIHm(I;M) > Hn+m(I;N QIM). Since we consider
N and M I—trivial, so is N @IM and we consider
P: Hn(I;N) ® Hm(I;M) - Hn+-m(I;N®M). P is induced by

the chain map ha in Chapter VIII and is given by

(nBm) &

It

P((n@,(u@X}) & (m2, (vAY))) ((u&) R (RY))

Ihn,m

]

(ftn) 8 (WRCAY)).

We now compute

- HI(I;k) ® HN_ltI;A) = HN,(I;kﬁA):
]P-('(lkﬁx(luiﬁx)) R (a @I(IUI!&{}CI,...‘,XN_J&)))) =
(1388) @y (Ly @<, xp, ... xy 4 )

Identify k & A with A as usual and identify I with
Hl (_I;k} = k @I Cl(l) via x «-» lkﬁI.(IUIQ x)); this
gives : I@HN_I(I;A) - HN(I;A) as
o Pix 8 (a ®1(1U1®<X1""’XN~1 J)) = a @I(IUI®<X,X ,...,XN‘_1>), .

- and a map P': I » HomA(HN_l(I;A),'HN(I;A)) given by

(9.1) {P'[}()}(aﬁi(lulﬁ<}(1,...,XN_1>]) = a @I(1m®<x,x1,_..,,xﬁ_1>) |
= -1V, R (L@, - %y LX) |




Recall that pglll- Hom,, (H,_ 1(1 A),Hy (T3A))
(I Hy(I;A4)) is given by {pN 1(8)}(CN 1)

B(l - 1) Thinking of B € HomI (CN_l(I),HN(I;A))
instead of in Hom(EN_l(I),HN(I;A)), {pI:I%l(B)}(IUIQ

(xl, e ’XN-:1>)- = B(lAﬁaI(lUI@(xl, . ,XN_1>)) .  Then

{p;}:_llap' (<))} (1, @ (xl,...,de)) - (—1)“‘11A 8y (13,80 5+, x_ )

(—I)N'llA 8 {xl, A ’XN—l’X>

in A 8 Ey(Z). Denote pI:I%l_GP' (x)) by Ipv:
(9.2) P(x) (L8 (x ' = -V ek, >
. U 1"“’XN-1>) (-1) 1, <X1""’XN—1’Xf

Now P": I - Han(I;HN(I;A)) is a ¢-module homomorphism :

{foP"(x)} (1U1 & <X1’ . on ’XN-1>) = g.{P"(x) (1UI ®<X1’ s ,XN_1>
- . ,

I.'IP"(X)(I R{X7,+0030°Xs,.0n, )
PO 0xgs )

(_DN-I

c.(lAﬁ(x ye e Xy l,x))

, N-1 :

N-1

-1 rl, &<{x,,...,0- X3 ,X
1 A < N 1 >

N
- >: 1 @{xl,...
)N-l

-0V, §a<x1,... X
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N-1
-(1_)NV1 I 1, f¢x

o A 1""’°'Xi""’XN-1’X>

(-pN1

-

L8 <X1?"f’XN-1’O'X>

ﬂP.;('o.;;) }'(;‘_31 adx,, - g )

It N 1 we have

fl

UI) 1, 8 x.

(9. 3)' JP"(X) (1
So P'" induces ,P*° 2 (@ I) > He (@ SHNC l(I sHy(I54A))):

if 8 € H (@ 1) is represented by b, ¥ (B) is represented
by b where b‘(c T) = P”(b(o t)).

~ Proposition 9.2: Du(hN) = Pgila).

Proof: Recall that hN e u° (1; i 1(1 H (1;A))}) corresponds

to fN € Eg N, s0 ¢2 N- 1(d (f )) = D (h ). By corollaries

7.7 and 7.9 taklng £ to be g a representative of
D, (hN] is X where

! {X(c,rj'}_(lm) = gN (1 falr,0)) if N =1

Ko, 1)} uﬁz a SSERERRELNPYD : |

;% ('1)NgN(1UI @(xl,...,xN_l,a(o,T£>}

if N > 1. By lemma 9.1, this becomes




{X(o,t)} (1 8 a(t,c}) 4if N =1

vr? = 1a
{X(U,T)}(lUI R <Xl, - ’xN—l>)

= (-l)NlA ® <x1,...,xN_1,a(o,T)>.

But P, (o) is‘ represented by a' where a'(o,t) = P"(a(o,1)).

So by (9.2) and (9.3),

'{a'(c,T)}(IUI) =1, & a(o,7) if N =1
(9.5)

{a! (g,T)}(IUI ®<x1,. - ,KN_1>)

(-1)N'11A ® <x1,..,,xN_1,a(0,T)> .

Comparing (9.4) and (9.5) yields X = -a’ B

If we identify Da(hN) and :12 (fN) via ¢, combining

propositions 9.2 and 6.4 yield the main formula.

Theorem 9.3: For x € EE’N, dz(x) = (~1)p+19(x) Ur,(a).




CHAPTER X
CONCLUDING REMARKS

First and,fﬂremost, it is hoped that this spectral
sequence cen be put to some practical ﬁse in cohomology
computations. | |
. The Vanishimg of‘d2 fer the semidirect product is an
interesting phenomenon. Charlap and Vasquez have shown
in [4] that this does not always happen for free abelian
groups, aIthough it is quite difficult to find examples
with dz # 0.

Looking at the problem from_a different perspective,
both group cohomology and Lie algebra cohomology are
special cases of the theory of cohomology of supplemented
algebres. We would hope that the problem could be
considered in this more general setting end that fhe
answer would inciude both the results in this thesis and
of Charlap and Vasquez. Going one step further, ohe
~could consider the problem in the setting of aesociative

algebra cchomology, which itself includes the cohomology'

]

of supplemental algebras.
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