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| Abstract of the Dissertation

Invariant Subspaces of Shift Operators
for the Quarter Plane

by
Om Prakash Agrawal
Doc tor of Philosophy:
in
Mathematics
State University of New York at Stony Brook
1983

In this paper we deqide when two shift operators on
ﬁ?GDQ),rthe Hardy space, restricted to some invariént sub-
spéée, of finite co-dimension, are unitarily equivalent.

To such pair of shift operators, there is a naturally as-
sociated hermitian holomorphic vector bundle. We use tech-
niqges of complex geometry introduced by Cowen and Douglas:
Our associated hermitian holomorphic line bundle is holo-
morphically trivial., In finding a global holomorphic cross-
sectidn of the line bundle, we made critical use of a bagis
“(°)

for H s Other than the usual one. Using this cross-

section, the curvature of the associated line bundle was

iii




computedl We use a theorem of Cowen and Douglas to

prove our result.
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I. INTRODUCTTON,

In a beautiful paper [3], Béurling studied the
invariant subspaces for the unilateral shift operator,
ﬁe proved that a closed subspace M of HQGD), the Hardy
space, is invariant for T, multiplication by the co-
ordinate function z on the unit disc I in @, if and only
if M = mHQGD) where [9| = 1 a.e. on T = aD, that is, o
is an inner function. R.G. Douélas (c¢.f. [6]) has ob-
served that the collection of operafors obtalned by re-
stricting TZ to its non-zero invariént subspaces are all
unitﬁfily equivalent to Tz and has given a proof of
Beurling‘srresult based on his observation.

What are the invariant subspaces of HBGDQ)? Here
invariant subspace means inyariant under each Tz.’ multi-
plication by the co-ordinate function Z; on thegi—discjmg
in'ﬁg, for 41 = 1,2, The obvious generalirzation of Beurling's
“(

theorem for H-(D°) fails, that is, it is known (c.f. [8])

that there ig an invariant subspace which is not of the
2(]DE) for any inner function ©. An explicit descrip-
. 2)

form oH

tion of or determining the invariant subspaces of HEGD is,

i1t seems; a difficult problem. However, seeking a model for ?

the operatorsT, on H20D2) restricted to its non-zero in-
i _

variant subspaces may help to understand the nature of the

invariant subspace. To be explicit, let G be a subalgebra




of £(¥), the algebré of‘boundéd linear operators on a

Hilbert space ¥ and let Lat(G) he theilattice of in-

variant subspaces for G . One_is interested in ' i
determining W(Lat(G)), the space of eguivalent re-

presentations; that ig, algebra homomorphisms from G

. t0 G| which maps T in G to Ty the restriction of

T to M, for M in Tat(G). In this generality, it is

ﬁnlikely'to get a usable model for m(Tat(a)). However,

for naturdl classes of operators, it is not unreasonable
to expect a good wodel for restriction operators. This
is evidenced by Douglas' observation of Beurling's

theorems in this case for G = G(TZ), the subalgebra

generated by T, in &(HQGD}), the space M(Lat(G)) is

given by a point.
2
)

In seeking models for the operators T, , on HEGD s
i
restricted to ilts invariant subspace, one possibility is

to consider ideals I in m[zl,zg], the algebra of polynomials

in two complex variables. TIf [I] denotes 1ts closures in

the Hardy space HQGDE), then {I} is invariant for multipli-

2), the algebra of polynomials in]De, then
2
).

cation by P

pal

P (D )I[I] is a restriction representation of P(D In

this case idealg in m[zl,zg] provide a model for the re-

striction of PODE) to some invariant subspace. However,

not all restriction representation of PU@E) arise from

ideals. This follows from the fact that invariant subspaces




arising from ideals are all finitely gencrated and H°(n7)
has an invariant subspace which is not finitely generated
{c.f. [8]). Which invariant subspaces arise From idecls?
in this direction, Ahern and Clark [1] proved: TIf M is
an invariant subspace of HQODQ), of' finite co-dimension,
then there is an ideal I in G[zy5%,] such that M = [I].
Herice for invariant subspacses of HEGDQ)s of finite co-
dimenslon, the wmodel for the resbrictiaon representation
of ﬁcﬂz) is given by ideals in &[zl,zg]u

—It is not known when different ideals give rige to-
inequivalent restriction representation of FUD ) Howaver,
in a Tew cases this is known. For example, let
0= By < p2<n,a<pr and 0 = . < q <,D°<ql be integers

E

r-1
and let A be a finite subset of 102, and let

A
KN B
B.q

+
{r ¢ @z, ,2,] 2 i i, j(x) 0 for each % in A;
,L& i‘r‘:pk,‘qu&;lﬂk’_Sn}.

Note that V(I§ q); the set of common zeros of polynomials
~ 2

in Ip q° 1s equal to the set A, In the case when the seb A
Pl . - -

consists of just the origin; Berger, Coburn and Lebow (2]

showed that all the restrictinn represzntations are in-

"‘) -
efuilvalant, bthat is, the repressatablon @) - P‘Ea)i (0
[ Ps q]
is unitarily equivalent to the representation
o Pl . e s o o
© %) (o}, Moend only 1€ v, =B, oand g = .. Ta [4]
. : Fa ln l EN S B Ao
PR,

A

Pa4
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I@)

arising'from ideals are all finitely generated and H
has an invariant subspace which Is not finltely generated
(c.f. [8]). Which invariant subspaces arise from ideals?

In this direction, Ahern and.Clark [1] proved: If M is

EGDE)

an invariant subspace of H , of finite co-dimension,

. then there is an ideal T in G[zy,z,] such that M = [I].

“(m?)

Hence for invariant subspaces of H s, of finite co~

dimeﬂsioh, the model for the restriction representation
of PG@E) ie given by ideals in Gfz,z,].

‘-It is.nét known when different . ldeals give rise to
inequiQalent restriction representation of PGDQ). However,
in.a few cases this is known. For example, let
0 = p:L < p2<g,.<pr and 0 = qr < qr~l<...<ql be Integers,
and let A be a finite subset of D°, and let
Bi+Jf

IA 2l 1 —_—
pP.q 1272 - 1y, 4
leaz2

3 i < Pps J 5 Qe L = k= nj.

= {Ff € q[z (A) = O for each X in Aj;

Note that V(Ig q), the set of common zeros of polynomials

) K]
in Ig g’ is equal to the set A. In the case when the set A
R 3 R

consists of Jjust the origin; Befger, Coburn and Lebow (2]

showed that all the restriction representations are in-

[o}]

equivalent, that is, the representation PGDE) - PGDE)
| ' | | '[Ip,q

is unitarily equivalent to the représentation

2

©{D if and only if py = 51 and q; = ai' “In [4]

) .
5 xtody
P4




Cowen and Douglas gave an alternate proofl ofrthis result
based on their techniques of complex geometry."In this
thesis we generalize this result to the case where the
set A consiéfs of one non-zero point. We prove that the
2) 2

representation PI) - PGD l () is unitarily equivalent
o (i)

. to the representation PGDE) - (D 2 ' {B} i1f and only if
. [:[
Paq
~ ~ s b N " 2
A= B, by = Pys Oy = d; 1= L.o.r where B ig in D7, tﬁat

is, all-restriction representation of PGDE) are inequi.-
valent, Some of our results Uenerallze to polydisc in
a’. We were unable to prove that the restriction re-

presentation of PGDE) are inequivalent if the set A

contains more than one point.




CHAPTER I,

In this section we state some of the known facts we
need for our purposes. Let ¥ be a separable, infinite
dimensional, complex Hilbert space. Let £(¥) denote the

Banach algebra of all bounded linear operators on H.

Definition 1.1: Let Q be an open connected set in ij

and let Tl,...,Tm be operators in £(¥), Given an integer
n =z 1, we say that T = (Tl,.,.,Tm) ig in @n(n) if the

following conditions are satisfied:

(1) {Ti]@=l are pairwise commuting.

L
(2) ran Dp_y 1s closed for } in Q where
DT : H - HB,,.®H defined by
n-times '
DTX =.TlxD...®me.
(3) span{Ker Dpy @ M is in (1} is dense in #.
(4) dim Ker Dp_, = n for all A in g.

The class ﬁn(ﬂ) for m = 1 was introduced and studied by
Cowen and Douglas in [4] and for m = 2 by the same authors
in a subsequent paper [5], and more recently by Curto and

Salinas in {7].

Definition 1.,2: Tet  be a complex manifold and let n be

Integer = 1. A holomorphic vector bundle of rank n consists




: | . 6

of a complex manifold E with a holomorphic map w from E

_l(

onto O such that each Fibre E, = 7 ~()) is isomérphic to

A
¢ and such that for each L, in Q there is an open set U
containing XO and holomorphic functions sl?‘°;’sn from U
‘o E such that {sl(k),...,sn(k)} forms a basis for E, for
- ali AMin U, A Eolémorphic éross—section of E is a holo-

"morphic map 8 : © - E such that s(\) is in E. for each

A
X in Q. For T = (Tl,...,Tm) in @n(Q), let (ET,W) denote
the subbundle of the trivial bundle Q % ¥ defined by
Eqp = {(h,x) €0 x ¥ : x € Ker DT_k}, w(},x) = A. That Ej

is a hoiomorphie vector buhdle of rank n follows from the

following:

Lemma 1.3: ILet 0 c @mbeancmenconnected set and let ﬂl,ﬂ2 be

Hilbert spaces. Let X : Q - S(Hljﬂg) be holomorphic, that

is, 1t can be defined locally by a power serles, with
coefficients in S(ﬁl,ﬁg), which converges in norm. Let
Ay € 0 be such that ran x(xo) is closed and dim Ker Xx(\) = n

for A near KO' Then there exist holomorphic ﬂl—valued func -

tions Sl""’gn defined in some neighborhood QO of XO such

that [sl(k),...,sn(k)} forms a basis for Ker X()) for each

+

A oin QO'

Proof: See Cowen and Douglas [5], page 16 or Curto and

Salinas [7], page 8.




%

In order toc study simultaneous unitary equivalence

we need sone more notions from complex geomelry.

Definition 1.4: A hermitian holomorphic vector bundle

B over Q is a holomorphic vector bundle such that each
fibreEk is an inner pfoduct space. The bundle is sald
to have swooth (real analytic) mebric if X - HS()JH2 is
smooth (real analytid) for each holomorphic cross-section

of E. ;

1.5; Let T be a hermitian holomorphic-vgctor bundle over (.
A connection on B ls a firét order differeﬁtial operator
D: & (Q,F) = 81(Q,E) such that D(fo) = df ® o + fhs for

£ in 8(9) and © in € {n,E), where 8(0) denotes the algebra
of com?lex valued ¢ -functions on Q.and eP(0,E) denotes the
gpaceg of smooth differential'p—forms with coefficients in
E, that is, eP(q,E) = 6(Q,APT*(Q)§E), Now given a connec-
tion D on a hermitian holomorphlc vector bundle E over a,
we deflne an operator D : SP(Q,E) - 8p+l(Q,E) by using

Leibnitz's rule

D(f®c) = af ® o + (-1)Pf A Do

for f in &p(ﬂ) = 3(Q,APT*(Q)):

a p-form on ) and ¢ in & (Q,E). An easy calculation shows

that Dg(fa) = f(Dec) for f in e(Q) and ¢ in € (Q,E).




SR m~

2

s _
Thus D~ 'is a bundle map from E to ATT¥(Q) ® E and we

define the curvature K(E,D) = K as the ¢”-section of

2

2

Hom(E,AT*(Q)®E) by K = K(E,D) = D"

For more complete treatment see Wells [9].

How is simultaneous unltary equivalence between two

~

m-tuples of operators T = (Tl,...,Tm) and T = (Tl,.,.JTm)

in BDCQ) related to the associated hermitian holomorphic

vector bundle E and E_? The relation is given by the

T i

foliowing:

Proposition 1.6: Let T = (Tl"'°’Tm) and T = (Tl,..o,ﬁm)

be in BD(Q). Then T and T are similtaneously unitarily

equivalent if and only if  E;, and E are holomorphically

T
and lsometrically equivalent, that is, there exists an

isometric holomorphic bundle map from ET onto E .
T

Proof: See Cowen and Douglds [5], page 16,

For operators in §,(Q), the simultaneous unitary
1

equivalence 1s related to the curvature of the associated

line bundles as the following proposition shows.

Proposition 1,7: Let T = (T,...,T,) and T = (Fy,...,T )
be in Bl(Q). Then T and T are simultaneously unitarily
equivalent if and only if the curvatures of the asgsocilated

line bundles are equal.

Proof: See Cowen and bouglas [5], page 16-17.




CHAPTER II.

In this section we state and prove our main result,

2

2.1, Tet D° = {(zl,zg) € lzil <1 1i=1,2] be the

bi-disc in €°. We let HdGDg)-denote the class of holo-
- morphic functions onjD2 which satisfy the following

condition:

sup [ |fr|2dm2 < o where M° is the distinguished
OSr<lﬁE2
boundary
ijmg, dm2 is the normalirzed Lebesque measure onT[‘2 and

- - e
friz) = f(rzl,rzg) for z = (zl;zg) in M-,

2y, £(z) = 1im £_(z)
-], r

exists a.e. onfE2 and the following are hrue:

Propogition 2.2: For f in HQUD

(a) £* is in LEGTQ) and £ = f in LQGTQ)

(A T |

Zz, Ls the Taylor expansion

P - m
(b) 1If f(z) = % e 7

m, nzQ
of f in HQGDE) and
10 iB ime ., ind
e T,e )= % . a_ e Te is the
) m,n@%g

Fourler expansion of £ in‘LEGTE) then

c = & fo = 0 and & = 0 o ise.
Cun nn r m, m,n therwise

Proof: See Rudin [8].
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B2 @?) = {f e 1°@®)
' . 48, 18, ~imb. -in®
am " - 1 J"E’]Tjglrf(e l’e 2)8 le Qdmg
> {27) 00

0 form< 0Oorn< 0}.

Note that'HgﬁT?) is a closed subspace of LQGTE) and hence

a Hilbert gpace.

“)

Proposition 2.4: The map from HQGD

= HQGTE) given by

) "{‘- . . ? 4 -- -‘
f = £ is an isometrical onto ilsomorphism.

Proof: See Rudin [8].

Under this identification we treat HQGDQ) as a closed
subspace of LEGTQ); For more detailed study of these con-

" cepts see Rudin [8].

Let ' 0 = pl<p2<...<pr and Osqr<qr~l<"'<ql be integers
and let A = (kEAE) be a point in D°.
' 14
Definition 2.5: We denote m£p’Q),= (f € B°(D°) : meaij(x) -0
: - - leazg—

for 1L = p,, 3% qp
21l k,lsksr)

“)

Observe that mip’Q) is & closedﬁsubspace of H?GD




' ' 11

Definition 2.6: We define S, on m£p,q) by

— v - 3 s . (p5Q) -
8T = Pm(p,q)(zif)’ i= 1,2 for £ in mx' , where
X

P o

is the orthogonal projection on H ]DE) onto m£p’Q)

mip,q)

'and_zl,zg are independent variables,

-Note that S, and S, are bounded linear operators on
1 2 .
m£95Q) and depend not only on the point A but also on

p's and q's.

2.7: Lebt ¥ bé & functional Hilbert space, that is, ¥ is
Hilbert space of complex yalued functions on a non-empty

set X such that the evaluation map £ = f(y) is a bounded

linear functional for each y in X. Consequently, by the

Riesz Representation Theorem, there exists, for each y in

X, anlelement Ky in ¥ such that fly) = <f,Ky>, where < >
denotes the inner product in ¥. The function K on X xX defined
by K(x,y) = Ky(x).is called the kernel function for H.

“@®)

Observe that H 18 a functional Hilbert space., It's

kernel function is given by Kw(z)= 1 for

(L-w2) (1-w,2,)

each w Ejmg. P

K is the kernel function for m(p’q)

as can be seen quite easily.

In order to study the pailr (81,52), we require a basis

for.HEGDE) other than the usual one.




Propogition 2.8: For L in I, the unit disc in I, the

G ENLECES .
- )m+l

functions defined by e (z) form a complete

m (1-)=
orthonormal basis for HEGD).

Proof': Suppose m > n. Then

16 m
L perelia Ji-12

5 TTH
|~ e -
0 1-%et?  (1-Fel® 1 3et? 1o

f

<eﬂ’}’ en>

de

1 Igﬁ(ele“k )m-n (l“,K|2) 1
= 18 ~1
0 1l-kre l-he 1-xe

-\E 1Az

{em} is an orthogonal family. Now

. ig ZMyq (4 12y . 19
e I = 2 12 e =" A=) e — 1 sance Sl =1

1-)e |1-%e | L-xe
and = [Tl 8 = —2— where K, is the kernel
0 |i-xe "|" 1]

function for H-(D) defined by K (2) = L . This shows

- - . l-\z

that (e} is an orthonormal family. It remains to show
that this family is complete, that is, if <f,em> = 0 for

all_m'z O-then £ = 0, To show this we prove that such an

f has a zero of infinite order at \; and since f ig holo-




morphle on the open connected set ID, f is identically

equal to zero. Wow we claim that if (f,ej> = (0 for
J = O,l;,,n,n then f has & zero, of order at least n + 1, ’ B
at X. We use induction. This is obviously true for

1= 0 since {Foey> = 0, then 0 = <fe> = J1-|1|% £(1)

and hence f has a zero, of order = 1, at A. Assume

<f,ej> = 0 for j= 0,...,n, then f has a zero, of order i

= n-+ 1, ab \. Suppose <f,ej> =0 for j = 0,1,...,nH1,

it

: J
1 (o, 10y etfn \/1-(n ]
o e N (Try) Yoy de
0 l-de l-he

Then 0 = <f,ej>
J=0,1,...,nt1

(1-12]%) f(z)(l~fﬁ§j dz - Jizgéiéﬁ(j) .

L - 277 {0)
2ri pp (Z_A)Jkl

)

i

by the Cauchy integral formula,

for j = 0,1y...,nFLl, where

g(z) = £(z)(1-%z)7

= Jl:%%ifkéo(i)f(k)(R)hgjmk)(k)

by Leibnitz's rule, where

| hj(z) = (1-%z)Y for j=0,1,...,nd1,

But by the induction hypothesis, f has a zero, of order

= n+ 1, at 1, that is, f(k)(k) = 0 for k = 0,1,...,n,. : 1




morphic on the open connec ted setim,_f is 1dentically
equal to zerc. Now we claim that if <f,ej> = 0 for

J = O,l;...{n then f has a zero, of order at least n + 1,
at h. We use induction. This is obviously true for

n =0 since <f,ey> =0, then 0 = {f,e> = J/1-|A[° £())

. and hence I has a zZero, of order = 1, at A, Assume
<f,ej> = 0 for j = 0,...,n, then f has a zero, of order

Zn+ 1, at . Suppose <f,ej> = 0 for j = 0,1,...,0t1,
|

. . - J'
. i@ ]
Then 0 = <f,e> = 4= [“Tpel?) (&1 1IN 4
| J 2r g 1-7el® 1oEte

]

j = O’l’.!ljn_f—l

(lrIX}Q) £(z)(1-%z)" ” _Ji=a”
2Tl ‘[..:[T (Z—}\.) a

by the Cauchj integral formula,
for J = 0,1,...,0kl, where

.

g(z) = £(z)(1-Xz)"

TN PR ERINY

Je k=0 d
by Leibnitz's rule, where
hj(Z) = (l"".?-\'.-Z)J for J:O,l,..o,n‘f*l.

But by the induction hypothesis, f has a zero, of order

zn+ 1, at A, that is, f(K)(k) = 0 for k = 0,1,...,n.

T CTTIU e




Hence 0 = <{f,e

which implies £™"1) () = o

. since hn+l(k) = (l~]x[2)n+l + 0, proving what was required.

Corollary 2,9: For'xl= (kl,Kg) iniDg, the family f{e

mn m,nz0
is a basis for HQGDE) where
—m— il ' n
mn m-- oyl - *
klkg(l xlzl) (1 Ao 2)

Proof: Proposition 2.8. shows that the family (e} where

Jlulxlig(z—xl

em(z = is a basis for HEGD) and hence
(l_-}-\- 2 )m-l—l

)m

i

{fm] is also a basis for HEGD) where

' = m =i
Aq(z-Ny) »
£ {z}) =/ {1-]x |2) R S = l (z). It follows
m’ 1 Xm(qu Z)m+l 3 ®m
1 1 1
that e (z) = £ (z,)f_ (z ).is a basis for HQGDQ)
mn m-1’/ " n'"2 *
orollary 2.10: {e } Kk =1,...,v is an orthonormal
M, N m2pk+l :
nqu+l
basis for m{p,q) and {em n} for all k, 1 < k s r ig an
s .

mspk
nsqk'
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(p,q)”
N

(pra)™

orthonormal basis for mk

and dim W

r
= 3 (qK+l)(pK-pK_l) where py = -l.

Proof': This follows from the definition of mip,q) and

corollary 2.9,

Proposition 2.11: The pair (Sl,sg)'is in @lGDQ\{k}).
\ | 217k Eptho
Proof: The map n(z) = (—— , ———=) is a biholomorphic
: l—KlZl l—)\gz2 :

map fromZID2 onto itself. This map'n induces a unitary

operator U : m(P’q) - mip’Q) defined by

Mo
1 .
(UF) (2) = n' (2)%f(n(z)) where
- 1 awi ' : zi—li
n (2) = det(g==)i,0 = 1,2 1.(2) = —=—— 1= 1,2,
Zj 1-h;24

We get the following commutative diagram:

mép,q) s, mép,q)c>mép,q)

U ueu

m{P>a) Us n(Psa) g (p,a)

A A

" . (p3Q) - -
where Dsf = SlfC)ng acting on mo and Dsf = 8. f®S. T

(p,a)
A

1 2

(p,a), is unitarily

acting on my Hence Dg acting on W




16

equivalent to D

acting on mép’q

N (pra) ' .
o acting on Ing . But the pair (51’82)
) is in @lomg\{o}) (see Cowen and Douglas
[5] page 20). Hence the pair (81,82) acting on m{p’q) is in

B, 0\ (11).

Propositionéhl?:let(%)c 0 < @m, QO connec ted bounded, then

8, (a) <R (0

O)'
Proof: See Cowen and Douglas [4], page 193,

We want to calculate the curvature of the associated

. _ , . 2 .
line bundle Eq, for § = (81,82) in @lGD Nv)) .

Proposition 2.13: KS(m),'the curvature of the associated

bundle Eg, for §'= (51352) in ﬁlﬂme\[k}},-is given by
Ks(w) = 30 logHKwH + 30 log Fp,q,k(m) where
2p, 4 1+2 2q, +2.
41 fwy -} S RN k
1 "1 2 "D
By, qalw) = 3 |—=—= ——
’ = — —
* k=111 xlwl 1 ngg
2p +2 S 2q,.+2
N k _ k
_ ; w4 kl Wy xg
and a -1

r1

Proof: A 'holomorphic cross-sectlon for the line bundle

E. is given by P

g p,q)Km' Hence the curvature for the

n




7

. . . ooy ] 2
bundle Eq is given by Ks(w)l— o3 logﬂPm( )K&”

S

p,q

= 33 1Og“ﬂh(p,q)Kw“2' We want to compute the norm
X

' L
e )X 1. Now by Corollary 2.10 a basis for m{qu)
n(psa)w
A :

is given by [eij] 1= p, J=aq,l ﬁ_K < r where ey  is

as in Corollary 2.9.

5 r Py 'qk o
Hence | p LK@” = 5 % = |Kp LK@’eij>’
niP>a) k=1 i=p, +1 j=0 m)EP"”
r Py EY , ﬁ

Z 2 . .
el e 41 j=0[eij(m)l since K

Pg-a,

L
is the kernel function and ¢4 are in miPJQ) .

p q _ 21 g 2]
~ ; 21{ ZK 1 Wy —Aq Wo=Ao 3
T e 2 - - R D
k=1 I=p,_,+1 j=0 HRXH 1-Aqwy T-Apusl  f2-Ayw, | | 1-Xgu, |
Wi 1M
. 1 roo -y ARy
= ey 2 5 )
_nhlh RN R S ST A | Wy
l—klwl
Qqh+2
) wgakz
1 -h LW
x =25))
Wokpo
lmkeme -
i




X7
| O -
i i : = «30 P K
bundle B, is given by Ks(w) O log“ m(p’Q) w”
A
= 39 log||P (p,q)% |°. wWe want to compute the norm
m)\'qu w :

L
)Kmnen Now by Corollary 2.10 a basis for m{PJQ)

1lﬂn£p’q

< is gilven by [eij} i <P dsq, 1= ksr where ey 18

as 1in Corollary 2.9.

\ . ’ r - pk qk.
Hence | P k%= = 5 s <P K e J>,2
| B 5 4 s
(p,a)t Y k=1 i=p,_ ,+1 J=0 . (p,q)* ® %
i k-1 97V |
A . ‘ \
' I l pk_ q Kk
= X z 5 2 .
k=1 i=pk_1+1 J:o'eij(w)l since Kw

L
is the kernel function and e, are in m£p3Q) .
LJ .

r pk qk 1 wl—kl 21 w?~k2 2d 1
=2 * 2 P T = = — 5
k=1 i=p,_ .+l j=0 [K,{|° 11-X 0, T-hpwsl  [1-Rqwy [T 1Ko, |
N Epk_l+2 o. 2pk+2
W1mh 1M
5 5 2 | _ 5
-HKlH | 1-X 0 [T 1-Now, |7 k=1 - W kg
oo qu+2
1 - 2_ 2
. ‘ l“}\.2w2
x| 2)
W A
1~ |-E2
1-dsuy
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by summing the geometric sequence

2p + 2p 2 2q, 12
k-] K _ K
ol I S BT [ Y
_ k=1 1 xlml l*llml l—x2w2 -
wa~h WA
l l 2 "2
PR CEE N LIEE WO EICE )(1—\ H, ‘ )
2p, 472 op, 2
P ! wy Ay
3 - i e
B k=1 l—klml l—llwl
g ( wl-ll \wl—hl )
=1 l—klml 1 klwl
o Eqk+2
Y 2_
l—xemz

T x n?(ll—iimllgénmlﬂxl|?)<|1~iéw2|2m;m2—x9|9>'

denominator we get

Simplifying both the numerator and the
2p, 12 2q,+2 2p, 2 2q -+2
T o "ll k-1 wg—kz r wl—kl K wgﬁkg k
1-2 e — + 2 -
~ k=1 [1-k;u,y 1-)hoWs k=L [1-kywy 1-x s
N ] — 5 5
-1)
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by summing the geométric sequence

) 2pk_l+2 Epk+2 QqK+2
? UJ—L-}\J_ UJl"')\.-l ) wg“}.g
2 (e — 1 - — )}
~ k=1 1~klwl lmklwl l—‘)xgw2
N A 2
' : S WA
= 2., — 2 w1 oD
e 2 PRy 12 | 1R, | P (2 |t ) (1| 2B )
. _ l—-klwl l—}gmg
lon EpK_l+2 o 2pk+2
T
5 "‘l_.'_l _ ___l_l )
k=3 -Vl—--klw:L l—xlwl
2pk_l+2 ,2pK+2
r ml_’kl U-)l"')\-]
- 3 (|~ - — )
2q, +2
Wo=ho £
X | & =

1= 12Ky 17Ty =2 1) (12T, | 2= w2, 2)

Simplifying both the numerator and the denominator we get

§ wl—kl 2pk_l+2 - ) Eqk+2 . wl—xl ka+2 wg_kg Eqk+2
1-2 — + 3 — —
~ =1 l—klwl l—AEw2 k=1 l—llml l—)\gw2
B 2 ) ‘
(l*,wl| )(1_|UU21 )
(qr+l= -1)




i3

By 15 (1.0
= éixwil (l P;qj}\-(w)) .
P e Pg, P
-1 Y k-1 @k =
. - 11 2 "2
where Fp a k(m) - 5| e o
il ke=1{1leh g0y 1-Xpwn
Zp, e 2g, 2
Py i Ay
SR b e Paho |
k=1 l"‘)\llﬂl l'-kgujg
and qr+l 2
ry 2 2
L O e N LN
b mkp,q

il

(w)

EN R N e SN MRS N

which impliés, after taking logarithms of both sides

. 2 o
Lo Pmip;.q)Kw” = Logl BT+ 1og T 4 (0)
— ) 2 —n I
Hence Ks(w) = 00 iogHKmH + 93 log Fp,q;k(w)°

2.,14: Tet S(p,q,l) = (81’82) and S(p,q,ﬁ) = (El,gg) be two

pairs of operators on m(P’Q) and mép’Q), respectively for

X
= 2 i~ . Lald i~ .~ "cu N .
A B inD 'and tet 0 £ Py<...<p_, 0 € § <G 4%..<q be integers.

Then by Proposition 2.11 s(P23:2) 55 4p fﬁl(IDQ\{l]) and

e

S(p,q,ﬁ) is in ﬁlGDa\{B}), By Froposition 2.12 we obtain
: s . 2
S(p,q)k} and S(DstB) both are in ﬁlGD \N{r.B}). Now we
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2p +2 2q,+2
il | F ' wo=As «
where p}qu(w) 2 - .
k=1|1- klwl 1 ngg
Epk}E EqK+2
s T \ Waho
k=1 l"iiwl 1 iéwg
i and d.. 1 -1
- I o . 2
vow 11 o k% = I -l
m , (p,q)
A mk
d
I - P E, @) = PR ()

which implies, after taking logarithms of both sides

(w)

log|| P

o 2
m{p,q)Km“ = 2ogllx |[7 + log ¥

DsU,A

Hence K (w) = Y logHKwH2 + 30 log F S (w).

b,4d,
2.14: Tet glPs@sh) _ (8,8,) and s(B.d,8) (3,,8,) be two

pairs of operators on m£95Q) and méPJQ),

. 2 Land o~ ~ ~ o~ .
A48 inD 'and let O = Py<e.<py, 0 = G <q;_1<...<q be integers.

respectively for

 Then by Proposition 2.11 S(plq’x) is in ﬁlﬁmg\{k]) and

s(p’qﬁa) isg in B L (D “\(p)). By Proposition 2,12 we obtain
Sgp,q,k) and S( ,q, 8) both are 4n B OD \{K B}). Now we
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state and prove our main result:

P,d) and X\, be as before.

Theorem 2.15: Let (p,q) and

(p
If the pair S(p,qjk) = (Sl,Sg) is simultaneously unitarily
(B,q,8

eduivalent to the pair S ) - (S 2), then A = B.

Proof: DBy the discussion preceding the theorem we see
that both S(p,q:k) and S(p’q’B) are in BlGDg\{k,B}) and
by Proposition 1.7 the curvatures of the associated line

(U})a

bundles.are the same, But by Proposgition 2.13 K

‘ «(psasn)
the curvature, is given by'KS(p,q’x)(w)‘m 30 log[]KwH2
+ Sé log Fp g k(m) and thé corresponding curvature for
- . ‘ K

SFp?q’B) has a simllar expressiono Now the equality of

K (g (@) with K (0) on DN\(,8) implies
SA 2 S(P:Q:B)
EY: log ¥ (w) = 00 log T (w) Onimg\{K,B3 and hence
B Padsh non
pPsdsB
egquallity holds onTT2 since Fp S and F_| are both real
. 2 2

p>q:B
analytic in a neighborhood of CL D \{X Bl. Now

o 3° log F (w)

3 log T K(w) = 3 —— Pod.h dEiAdw. and hence
EERE i,j=1 Bwiéwj J
we have
2
2 0%log F
0“log F o
Og__psQ:k(w) — — pP,q.8 _ Oﬂf@e .
awiéwj awiégj

Recall that




2L

2p, .2 2g, 42
w1, IR TRE VO
(ll}) = % 1 "1 2 "2 |
: e T
CERES k=1]1-X, 0y AESWRTIR
, N 2pk+2 N Eqk+2
R ! ] .,“;’..%‘Wa
k=1 lﬂklwl l-kgwg
Rewriting we get
oo Eqk+2 e lo. 2pk+2 N 2qk+l+2
- (0) 27 P Woho
Pra,X = > T = =
s 1 ngg k=1|1 AqW0q 1 Aoy
N 2qk+2
L2t )
1—12m2 ’
bifferentiating F with respect to 0., we get
Podsh :
- . oy QPK+2 o 2qk+l+2 N qu+2
S L 75 N =S~ I e A 22 2 "2 )
2p
(1-]27 1) (ws2q) Y k
A, 1"l 171
= S - S h: (pk'{‘l) S E——
(12, 5) % (1K) k=1 1R,
2q, , 42 2q, +2
k+1 ¥
< (|Y2e _|Bere
oF X
Bt yigh respect to W

Differentiating, once more,

bwl

)
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2p +2 2q,+2
k-1 k
, R Wo—h o

Fpsqak(w h 3
4 k=1 l-llwl l-—)\gw2 I
op 42 2q, +2 |
K K
k=1 lﬂklml lmlgwg ;
Rewriting we get ﬁ
Eqk+2 Bpk+2 2qK+l+2 ﬁ
15 (m) + = i
p.,an ke — ru kw :
>t 1 kgwg k=1l,1 klwl 1 Aol i
' N qu_‘[‘g
_ w? 2 )
l—ngg i
Differentiating F with respect to w,, we get f
- P,oqAsX L
- } 5. 2p,t2 - 2qk+1+2 N 2qyt+? ;
PsG,A _ s d 1l "1 ( 2 72 _ 2 2 )

i op
(- )y ry) w,n, | K
1 11 1 "1
(1"7‘1“’1) (1-xlwl) =1 1-Kjw,
2q, 42 2q,+2
| wg'lp k+1 wg")‘-g kK
X (=== - == )

oF

Differentiating, once more, —2292} with respect to u

awl
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we get
o ~ o - -
a Fp,qj?\ _ (l“,)\l, )(J—_h\g )(wl"xl)(wg"}\- )
- ) — = — 2
. aUJgaUJl (l'"?\lwl) (1—7\2 2)(;-'}\1031)(1" ng)
Py 2y, g
2q,
Wo~hy
L=\ ~w
, 2 2
3F 5F
Now pig’k = ek g on e
Bwl aw2
W,y =A
as |-=—2—| = 1 when |wi| =1, 1= 1,2
T-hog
and Fp,q,l =1 oniﬂ2 for the same reason.
Differentiating log F Tfirst with respect to w. and
Psd,A 1
then with respect to W, We get
e ) 2
0"log T 3°F, oF I3
008 "phash 1 s (F \ Psdoh _ P.d,) ° Dods))
" P-4, "y —
éwgawl (Fp,q,ﬁ _ ngaml | oW, Bwl
2
3°F -
= —Pada onf.]T2 slnce K = 1,

Bmeaai | Ps>dsA




23

oF, . SF
Fp;qal - DsQsh _ 0 0:1’_!1‘2,
Bwl Bwe
Since
2
2 0“log F
0% log F ~ .
— Poda) _ m;p,q,B for i,j = 1,2 onﬂwg
awiawj awiamj
We have
3% agFN .
Poda.h = p_aq):B 01’1']1['2 (l)
Bweawl amgawl
But ] '
2 2 o _
0 Fp:qu — (l—IXJ_I )(1“!k2| }(wl_)\l)(wg“)\g) r

_ — = (p,+1)(q, . -q,)
- e ¥ P = K k1 %%
Bugdiy  (1a gy )T (1-T0,) (1T ) ) (L-hgin,) k=1 1

and
W (181D (118012 oy o) (B B) s
Qu 3y (1-8,u;) (lv@émQ)(l—ﬁiwl)(l~82@é) k=1
onﬂwe.
Hence from (1) and using Iwi| =1 for i = 1,2 we gat
(- 1 =10, 1P, =
+lhy 2l Jug®p > (Perl) (a5 -q,)
— ] (2] - s )
[lmklmll El—xewz{
. 25 7. 2 — B " o o
(-1, 19018, T wym, = (B 1) (4, -0
- A 20 Ty Tk kR on 72

[2

= o
1-By0, 17128,
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oF OF '
Pssh DsGar _ 0 on TI'E.
BWl awg
Since
- ) 2
8210g I \ o"log ¥_ 5 o
—Padat —E2ob por 1,5 = 1,0 on T

.Bmiawj Bwiam.
We have

3Py ‘ agFN N

p:Q,’)\. — pP,g,8 OHTTE (l)

Bmgawl ameawl .

But

Py g DD (=112 (00 ) (5,5,

I
= — = — —— = {p +1)(a,, -9, )
dupdy  (1hqw)) T (1-T0,) (1K wy ) (Lagi,) k=1 & EFL UK
and
aQF : o 2 -

0,d,8 _ (l"|61| )(1-1g,1 ) (wy -8 ) (05-8,) ; (5 ~ ~
— - — 2 — — . pK-i_l)(qk‘l'l_qK)
w0, (1-g,w,) (1—@2w2)(l~81wl)(1—32m2) k=1
onTTg.

Hence from (1) and using |w.| 1L for i = 1,2 we get
(-1 1901051200y, 2 (b
M 2l /W% & WPihd) (a9 -a;)
- = - 2
Il_xlmll !l"lgmgl

5 5 : on T
B, |

Av




2h

from which 1t follows that

-

) 2 ) a = 2 1. z
C(;‘-"U-ll )(-L"])‘QI )ll“‘ﬂlwli }-1«“52‘5’2! .

E

s Zyey g 19 2 A 2
= glkepy [T, Hiagw [RES NI on T ....(2)

where

- .
c o= Q{pJQ) Z}‘z‘ll(pk‘*.l)(ql{_‘}"f_mqk) + ¢
i .

03

’ ~ S . o~ e ~
and ¢ =c(p,a) = 2 (BHLI{G 1-4,) % 0.

k=1

Now

2

— I o, N Ty g -~
]lhklmll gluhgmef {(l+]hll }nhlwl“klwl}{(i+|k2|)~l2w2~k2w2}
o oy .

= (l—i—l)"li )(j"}‘!lgl )")\l(;"l")\gi )UJ}-
- Ty Pl s (e 1D e (s P y
1 gl Amprhan ity @ terT it Mg i

+Al%@ﬁ@+kﬂ?%y2+kfﬁgwg+lrE%pe

{using ]wi} = i)

Hence from {2) we get

-~
v . ey

c-.(;j,,.gMﬁ){::,.7-1>\21’9){(1-;_“;!,1i"3)(;;_+,i52;9%@(“;5&[?-‘}‘;.;ralm-;gg;g)gfa o

o . o . — e .,.A s —
= ﬁ2(1+¥513)w2"52(1+zﬁll2)w2+8152W1m2+51ﬁ2m1w2+&132 192

.
.
N

R ICEY N 1S T SR LS P

YO-18,17) (21




from which it follows that
o 2 — o o
C(l""llll )(l“llgl )ll"slw_l' |l‘52w2|

= &i-l8y |F)-18, 1 2) [1hqwy P10, 12 onm® ... (2)

o B L
and ¢ = ¢{p,q) =k21(pk+l)(qml q.) F 0.
Now
F1-% 0w, | ) L=k w I2 = {(1+]x |2)—f'w SR }{(l+|X“|%~X'w Aot )
Lo 1 %1741 pl /=il mhoty

Il

(2410, 1) (3 o 2) T (14, 12,
- i‘l(i+|x212)ml->\2(1+lxlf Jwg=hg (L]0 B W,

+ klhgwlw + A Xgmlw 4—xlk2wlw24-klk2wlw2

(using |uw,| = 1).

Hence from (2) we‘get
e (1-Iaq [5) (11, | ) [ (18 1%) (18,1 %) B (1418, )i, B (148,

— 2 . _
= Bo(1418, g8 (14 8y | )08, By 0,58, Bl BB Bl 0y

- F(2m08y 12 (118,17) (3 1ag 12) (11241 2) K (24 12)
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2
- x1(1+|x2[ )wl 2(1+1x | )wg—x2(1+|xl§ RIKlemQ

+ A h WA

+llk2wl o lk

Wy RUPLZIE

Since these polynomials in Wy Gia Wy and Eé are equal on

ﬂg, the coefficients of these polynomials must be equal.

So we have constant term:
o (112, 12) (1-1np | P) (248 17) (24 8,1
~ 2
= B(2-18,12) (118, 7)1 0y PV (1 Ap 1% et (3)
coefficient of w, : c(l~|r [2)(1—1k 12y8, (1+] 8 [2
1° 1 ot IFy 2
= 8218 1218, DIng (24 1y 1) e ()
1 2 1 :
g1 M

Dividing (4) by (3) we get = 5 e ()
1+ |6y | 1+

Taking the absolute value and cross-multiplying we obtain
2 2
181 (2 0g 1) = a1 (248 ]%)
2 2
18,1 + 1B lIxg17 = Inql=Inglleg 17 =
= (lall"llll)(l"l}\lllﬁl!) =0 = Ikll = |Bl|

since |x1} < 1 and |By| < 1.

Hence from {5) we get Kl = Bl. gimilarly equating the
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e (2|

1

2[ wl o l+|kl[ 2ﬁ1+|x | ® +xlx2 1o,

+ ko 1M1 Ry kot Dt Ky,

Since these polynomials in wq, Ei, w, and w, are equal on

2 2
Tg, the coefficients of these polynomials must be equal.
' 8o we have constant term:
- 2 2 2 2
=g A=) (28 17) (1 fe |

i

= B(1-]8, (%) (1-18,17) ¢ 1+|x 5) (1,12 el (3)
coefficient of w, : c(léjx 12y (1=, 1708, (1] 8,2
| 1° M L~ AR

- E(1~I31l25(l~IBé|23l1(l+‘K2l2)"f(h)

| By M
Dividing (4) by (3) we get i S ceen (5)
148 | I+ nq |

Taking the absolute value and cross-multiplying we obtain
2 2
1By [ (Tt Ia %) = Iny [ (1+]B ]
2. 2
IBlI + lBlllkll = lkl|"|kl[!51f =
= (18- D (@=Ing]1851) = 0= |ny] = [8y]

since |A;| < 1 and [g,]| < 1.

Hence from (5) we get Ay = By. Similarly equating the
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coefficients of Eé and dividing by the constant term

Bo Mo
5 = 5 Which implies A, = 8,. Hence
1+]Bol IERPON

we get

&

X = B what we are required 50 show.

Theorem 2.16: TIf the pair S(p,q,k) = (81,82) on mg’q

s gimultanecusly unitarily equivalent to the pair

o n(BE)

r~ o~ _)\ . , ~
S(p’q’ ) = (S- 382) N , then r = S, pi = p. and

L
q, = a. for 1 = 1,...,r=8.

1

Proof: The complete unitary invariants. for the pair

g(Psasn) _ (8,,8,) on mip,q) are
2 2
3“logl| p K|
n(Psa)
A for i,j = 1,2.
awiawj
2
3“log F (W, >0, )
. Let ng’q)(w W) = PoGod” L7 27 here ¥
1] . 1 2 awa&)‘ p:Q3}\
IO

is glven by Proposition 2.13. Thus the complete unitary

(p,q) + (l~|w

. . -2 .
invariants are W% ilg) for 1 = 1,2 and

Ws =M.
w'](_g)q)’wégbq). Let ‘Ti(wl-’wg) = —--%_—-—-—-—]:- j. = 132 and
I1-h.w.
) ivi
1 2p, 42 pg, 42 r 2p, +2 2q, +2
T e B e e o L L T P B
p,q'“1% 1 2 =1 1 2

Observe that ¢p q is bl-circularly symmetric, Noﬁ
3
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jog ¥ (wyme) = log ¢

Pad,h (T]_(ml.‘amg))'lig(mlgme))n

Psq

Hence, by chain rule, we get

MY (p,q) it X
= w-.." s S 2,
LTS IR B F )Ia%l Jo=1,
G log ¥ (
where w(p Q){4 zﬂ) RN *¥1: 0
dd dz .7 .
Jd
ot o s 10 N roy ji.: 1 16 ,Eﬁ L9 ;
Let z = re” 4, v » 0., 'Then "5 © {Br ?-gﬁ}p Thus
“psad(y 5y - L S - T
JI (rlgrg) = Hw{ar% t rjxg¥5}log Y }q(rl’PQ}‘
J .

Fix x, + 0 and let G(r 1J0) log ¢p;q(rlpr2). Then we

have lr Wp = e ;EL), 80
L7 3Vl b
1 1
{*) I I Wp’q(s r?}ds =1 éﬂt- and hence
. ¥
(%) alr.,r,) =1 rrl i3 rtoﬁ(p-ﬁQ)(q r Yds dt + G(0,r,)
_ L Y A

Using the formula similar to (*) for Wég“q) when ry + 0

and baking the Lialt as Ty 7 O we gob, again with Ty Lo,

¥ éﬁi(o ry) = 4 lim I qqq(rlgt)dt  Hence using the
- OY, o rl..)O 0

fact thab @¢{o,1) = 0 we hava

.,}:-v”: N ~
Glo,r,) = & [ %2 lim f"t,w(”d‘i\’(x' »t)dt ds.
2 1 0 &

. d 3 30 .




P w,) =
LLog Fy oy (0p0p) p,q

Tog ¥, (11 (w,0,),m,(0,,0,)).

Hence, by chain rule, we get

| oT .

(psa),. _ o(p,q) 42

Wjj’ (wl,wg) WJJ’ (?EZE)‘SE§| J = 1,2
N( ) aglog 1]1 (lezg)
“where ' wibed (%02,) = b
Jd rr2s dz .07
dJ
B 16 - o _ 1 ~if; o 13
Let 2z = re . r = 0, Then vl e [g; - ?-Sgl, Thus

ﬁ(pJQ)(r r,) = L 57 + QL.mgm}lég ] (r,,r,)

Jd lrte 4 3ro Ty 5rj p,g-T1’ 27"

J

Fix r, + 0 and let G(rl}é) = log V¥

have 4y wP29 - 9 EXL)

1711 ar Ty g 2 5°
1
(%) 4 f wp,q (s rg)ds = Ty 96 and hence
. ar
1
l
(**) G(rl,rz) =1 f joswﬁ’q 5,r5)ds dt + G(O,r,).

Using the formula similar to (¥*) for Wég’q) when r; # 0

and teking the limit as r; 2 O we get, agaln with r, F+ 0,

oG ~n,q ' .
O.r = 4 1im we2*(r,,t)dt. Hence using the
2 or, 20,r,) - r 0 Io 2p {1y BdE- °

fact that G(0,1) = O we have

) = b "2 l llm S ey p,q)(

g(o,r tldt ds.

oy




Combining with (**? we geb

T or 3T e P 2 B . [2 4]
Wewr thie pair 8 = (dlpug)

iy alBa M)

aruivalent to the palir | Babo

a B
S y o oy(Bau) .
lwntias K(.““f L0 = ., 40 mnich In tum fwp &
dmpties Jia ?_kj 0 Lq} {‘~L9w2) which in turn iwmpliet

Y S 3
NS C 3
W l'f. Lj" }} ( 4 -PZ?) { (L‘-}lpﬁ)g) e

o

Pl Eald

gid hence W s%g) = W‘g u)(éiﬁzﬁ)

o, From this

and (%% ) we obbain

which inplies § (Ynﬁrﬁ} = ”(flﬁr9)—

P i . -
TR A Y S L O T S & S e A - At L

o Sl P R ~ I

¥ and ¥ are real analytic, in fact polynomials Lp
P e

- g
E: =3 -3!’(1
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Combining with (**) we get

ds dt

(x*%) G(.r]_—"r2) = 4 Izl I Sw(p:‘Q)(S’rg)

0 il

+ 8L 8 Ry ,t)dt ds .
1

0 8 l__}o 0 22

(p,a)

(poash) g 8,) on is unitarily

‘Now the pair S

equivalent to the pailr S(p’Q9K) = (Slﬂsg)‘on m£93Q)

implies W(p’q (QP ) = W§§’q)ﬁhl,w2) which in turn implies
W(P:q . | |9 _— P,Q)( ) Wfﬁ;@)( )IBT'|2

Jd %127 EwJ WysWo 33 122/ 135

~(p,q) _ ~(5,9)
and hence JJ’ (z l,zg) wjjj (lezg)
AT . (2
since .gmiJ > 0. From this
J

and (***) we obtain

log ijq(rlire) = log ¢~ N(rlﬁrg)
: p.a
which implies wp,q(rl,rg) = N(rl,rg).
_ pP,q -
and hence r = 8, p; = ﬁi, q; = airfor i=1,2...r=5 as
¢p g and §_ . are real analytic, in fact polynomials in
? p,q
r. and r

1 2
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Corollary 2.17: If the pair s(P>dsn) = (81,8,) on miﬁﬁq)
is simultaneouely unitarily equivalent to the pair

S(pJQJB) — (Sl-’ on m(pﬂq) then

52) 8

~ N

A= B, r= 8, Py = By qi:qi 1= 1,.00,r=8,

Proof': Combine Theorems 2;15 and‘20l6
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