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Abstract of the Dissertation

THE SCHUR MULTIPLIER OF THE EXCEPTIONAL LIE GROUP G,

by
John Charles Hurley
Doctor of Philosophy
in
Mathematics
State Uhiversity of New York at Stony Brook

1983

This dissertation gives a procof that the second
homology of the compact exceptional Lie group G,
considered as a discrete group is iIsomorphic to the
second homology of the special unitary group SU(2),

also considered as a discrete group.

The above homology groups are Eilenberg-Maclane

homology groups, with G-trivial Z coefficients, and

Ho(G) is known as the Schur multiplier of G.

The above result is then used to provide further

information on a conjecture of Milnor's. If G is a
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compact Lie group, wWe use G8 to denote G with the
discrete topology. Then we show that the natural map
n: BG8 -——> BG between classifying spaces induces an

isomorphism
ﬂ*: Hi(BGS’FP) —*-> Hi(BG,Fp)

of their homology groups with mod p coefficients for

0 £ i £ 2, where G = G, . Here H*(BGS) is equivalent to
the Eilenberg~MaclLane homology of the group G, and
Hxg(BG) is the singular homology of the topological

space BG.
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Introduction For any group G,we use H;(G) to denote the

i-th Eilenberg-Maclane homology group with ZG=-trivial
integral coefficients. These homology groups have been
used to study the homology of K(J7,1)} spaces, in the
solution of scissors congruence problems (see Sah[141]),
and algebraic Ketheory (Berrick[2], Quillen[121). The
second homology group, H,(G) , is called the Schur
multiplier of G. This group was used by Schur[17,18] to
study certain representations of finite groups G, and
calculation of the Schur multipliers of various finite
simple groups was important in the classification of

the finite simple groups.

For any Lie group G, one may forget the topology
of G and consider it as a discrete group, denoted Gg.
We use BG to denote the classifying space of G. Then

the following conjecture has been made by Milnor[11]

for any Lie group G:

The map H*(BGS,FP) -———3 H*(BG,FP) is an izo-~
morphism for any prime p, where the action on Fp

is trivial.

Milnor has shown that the conjecture holds for G a

solvable Lie group, and that it depends only on the Lie
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algebra of G. The general case is reduced to the case
where G is connected, simple, and simply-connected (if
convenient)., In this case, Milnor has shown that the
map is surjective. The conjecture is trivial for Hy and
Hi. Sahl15] has shown that the conjecture is true on
the Hy, level for the classical Lie groups, and gives an
extensive outline of the known results on the conjec-
ture, Most of the results on H; for i > 1 are on the H,
level, either as "K2 calculations", or direct H2 com=-
putations, The higher homology is extremely complicat-
ed, and analysis is involved in addition to the
geometry and algebra used to calculate H2; in Parry-Sah
£13], Rogers!' L-function is used to study H3(SL(2,R)) '
and several authors have made use of the dilegarithm to
study scissors congruence problems and H3(SL(2,C)) .
For further references see Sahl15], Parry-Sahl13] and

Dupont-Sahl5]1.

An important result at the Hp level is the fol-

lowing theorem of Sah[15] :

Let G # 1 be a simple, simply-connected,

compact Lie group of classical type. Then HQ(G) =

H5(SU(2)) under a natural inclusion map.
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In this dissertation, we show that this theorem is
also true in the case where G = G2, the compact excep-
tional Lie group of rank 2. We use the representation
of G2 as the group of automorphisms of the octonion
algebra to study its action on a special chain complex.

8

The second heomology of GY is then computed via a
spectral sequence. Many of the techniques useful in the
case of classical Lie groups are also of use in the
present case. In group homology calculations, success
usually depends on the proper choice of resolution ;
the independent chain complex used by Sah in the eclas-
sical case is useful alsoc in the present case. In ad-
dition to determining H2(G2) , We show that the con-

Jecture of Milnor 1is true on the level of H, for the

group G2.

It seems reasonable to make the following conjec-

o~

ture: H2(G) ® H,o(8U(2)) if G is any of the exceptional
Lie groups Fq,E6,E7, or E8, and that the conjecture of

Milnor alsc holds for these groups. We hope to consider

this in a future work.
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I, Preliminaries

In order to study the group G, we will need a
convenient way to describe it, Just as the orthogonal,
unitary, and symplectic groups are groups of transfor-
mations of the vector spaces over R, €, and H , we may
describe 62 as the group of automorphisms of a certain
algebra, the octonions, denoted by 0. In this section,
we examine the properties of this algebra, alsc known
as the Cayley division algebra. References for this and
generalizations of this algebra are Jacobson[6,7] and

Zornl[23].

Definition 1.1 A compoesition algebra is a (non-

associative) algebra A with unit 1, together with a
non-degenerate quadratic form N such that N commutes
with the product in A, i.e. N{xy) = N(x)N(y) for x,y €

A.

The algebra A is a vector space over a field F ,
together with a bilinear product xy on A, We will only
" consider the case where F = R, although many of the

results hold for arbitrary fields. In the case of the

octonions, the underlying vector space of the algebra
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is eight dimensional over the field F = R . We have a

symmetric bilinear form < , > associated to the quad-
ratic form N, given by
<x,y? = N(x+y) = N(x) - N(y).

Using this, we c¢an supply A with an involution
¥3A ~——> A , given by x* = <x,121 = x. The factor
<x,1>» is called the trace of x, and is denoted T(x) .

Before proving further general properties of com-
position algebras, we observe that the original Cayley
algebra arose as a generalization of the complex num-
bers and the quaternions, It is frequently convenient
to use the following basis for the octonions, and also
it gives some indication of the origin of the formulas
obtained in the more general setiing of composition

algebras. We set
X = Exiei, 017, for x £ 0,

where ejy is the standard basis for the vector space R8.

With the appropriate definition of multiplication of

these basis vectors, the e; form a basis of the

1

octonion algebra 0. For 1 £ 1 £ 7, ei2 = =1 and ejej =

-ejey for i # j. The guaternions are contained in O by

ineluding H in R® so that 1 = (1,0,..,0) , i =

(0,1,0,...,0), ete.. The other rules necessary to make

#




S R S T R

this an algebra are obtained from the construction of 0
as the (=1)=-double of H, (See Jacobson [T],p #425-426),
Note that the complex numbers are contained in O

as R[e1] where e12 = =1

as usual. Also, note that the
description in Zorn uses the cross-product defined in

Definition 1.11 instead of the usual one from [7].

In terms of this basis, we can define the standard
norm for the octonions by N{(x) = z:xi2 » Where the x;'s
are the coordinates relative to the basis. The
involution becomes
¥ = Xgeg - ijiei , T £ 17,
analogous to complex conjugation. By writing the norm
in terms of the basis, we see that <x,y> is positive

definite. We record the following properties of the

norm and the involution from Jacobson[6] :

(1.2) xx' = N(x)1 = x*x,

(1.3) (xy)* = y*x*

(1.4) (x)* = x

(1.5) x + x = T(x)1 ,

(1.6) x2y = x(xy) , (xy)x = x(yx) , yx2= (yx)x ,

(1.7) X y + y*x = <X,y>1 ,




These relations are true for all composition
algebras, and are readily proved. The relations of -
(1.6) are the alternative laws, In general, composition
algebras need not be either commutative or associative:
the quaternion algebras are not commutative, and the

Cayley algebras are not associative.

Next, we show how composition algebras can be
built up from lower dimensional algebras. This con-
struction is needed for the classification of composi=-
tion algebras, and resembles the construction of the
complex numbers from the reals. For proofs, see

Jacobsonl7] .

If A is a non-associative algebra with unit and
involution *, we can construct a new algebra B, called
the c-double of A, that is of dimension 2°dim A, where
¢ # 0 is an element of the base field F. The underlying
set of B is just A x A, the vector space of ordered

pairs of elements of A, with the usual coordinate-wise

sum. The product is given by the following:

(1.8) (u,v)(x,y} = (ux + cy*v,yu + vx*) .
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It is easy to see that this makes B an algebra over the

base field F, with unit 1 = (1,0) and involution given
by (x,y)* = (x*,-y). The symmetric bilinear form is
(1.9) <lu,v),(x,y)» = <u,x» - clv,y> ,

and this is non-degenerate. We note that by dimension
counting and Lemma 3 of Jacobson [7T], every composition
algebra # 1 is isomorphic to a e¢-double of a proper

subalgebra,.

Having indicated the basic construction of the
octonion algebra, we now wish to examine their struc-

ture more closely. We recall several definitilons:

Definition 1.10 : We say that elements x,y of A& are

orthogonal, denoted by x | y, if <x,y> = 0 . For a
subalgebra H of A, we denote by HL the set of all y € A

such that <x,y>» = 0 for every x in H.

The elements of 0O orthogonal to (F*1), i.e. the

set of x € A such that <x,1> = 0 = T(x) , analogous to

"pure" quaternions, are important in the sequel, and
the set of these is denoted by Oo' If x,y are R~

linearly independent vecktors in 0o , Wwe note that to-

gether with 1, they generate a quaternionic subalgebra
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of 0, We will use H to denote quaternionie subalgebras

of 0, and K for guadratic subalgebras of O.

The reason for our interest in the Cayley division
algebra is that the exceptional Lie group G, has been
shown to be the group of automorphisms of the composi-
tion algebra 0. The definition of an automorphism of
composition algebras is clear; note in particular that
an automorphism must preserve products of elements from
0. In addition, it is a subgroup of the orthogonal
group of 0, O(O,N) ,i.e. the group of isometries of O,
relative to the norm N. To help deseribe this group, we

record the following definition:

Definition 1.11 We define the cross-product a X b by

a X b= 1/2 [a,b] = 1/2 (ab-ba), for a,b & 0.
Note that this product is zerc if a or b € F*1, Clearly
a Ka=0 , and the product is R-bilinear., It is
easily seen that if a,b € 0, , then a X b€ 0, . The
relation with the ordinary 3«dimensional cross product
is clear ; for an intuitive description of the

L]

octonions, see Zorn(23].

Definition 1.12 The scalar triple product is defined by

fa,b,e] = - <a,b K ¢>, for a,b,c € 0,




This is an R-trilinear map from 0 to R. As shown in
Jacobson[6], [a,b,¢] = [e¢,a,b] for a,b,c € 0,, and this
together with a X a = 0 implies that it is an alter-
nating map. From this we obtain the following, giving a

insight into the nature of the cross product:

Lemma 1,13 If a | b, then a,b, and a X b are pairwise

orthogonal.

A useful characterization of g € G, is that it is
a 1-1 linear map of the subspace OO into itself that
preserves the forms [a,b,c] and <a,b> . We alsoc note
that G2 is transitive on quaternionic subalgebras, i.e,
given Hy; and H,, we can find g € G, so that g(Hq) = Ho,
The subgroup of the group of autoemorphisms G of a com=-
position algebra O that fixes the elements of a
subalgebra H of 0 is denoted Gy, and is called the
Galoils group of O over H. We record here the following
results of Jacobsoni6] on the Galois groups of various

subalgebras of Cayley algebras:

Theorem 1.14 (Theorem 3, [6]) Let C be a Cayley alge-

bra, k¥ a quadratic subfield. Then the Galois group Gk

of C over k is isomorphic to the unimodular unitary




group U+(kl,{xy}) of the three dimensional space k'L

over k relative to the norm {x,y} defined by

1

{x,y} = <x,y> + u™'j<ix,y> ,

where k = F[ 3], 32 = ul .

Theorem 1.15 (Theorem 5, (6]} Let C be Cayley, B =

quaternionic subalgebra. Then the Galois group Gp of C
over B is isomorphic to the multiplicative group of

elements of norm 1 of B.

Several remarks should be made on the special case
of the standard Cayley division algebra. We note that
the norm of Theorem 1.14 is just the usual one, given
by N{x) =22x12 , obtained by setting u = =1, and j
= ey. We see also that N(x) £ 0 if x £ 0, and so O is

a division algebra, i.e. if x # 0, we can find x~

such that xx™! = 1 = x~'x. By setting x=1 = (N(x))“1x*,

L is an inverse for

and applying (1.2), we see that x~
X.

In Theorem 1.15, we see that Gy = Sp(1) by con-
sidering Sp(1) as SU(1,H), i.e. 1-dimensional matrices

of unit quaternions. Alsoc, we may identify Sp(1) with

SU(2) through the standard isomorphism induced from the

identification of H with C2.




I.2. The independent chain complex

A reference for the results of this and the fol-
lowing section is Sah[15] . We will construct a chain
complex over the coset space G,/3U(3). By Jacobson [61,
this is equivalent to the sphere SG. The identification
is given as follows: let S6 be the set of unit vectors
of 0,. From the proof of Theorem 2 of {61, if g € Ga,
it has a fixed point x4 # 0 in 00. Since g is R~linear,
we may normalize so that N(xo) = 1 , which is therefore
a point on 36. (Alternately, one may apply the
Lefschetz fixed point theorem to the G, action on 86).
If K is the quadratic subalgebra generated by 1 and Xg
then the Galois group Gy of K is isomorphic to SU(3),
i.e., a point on the sphere is determined by an element
of G5, wup to an element of SU(3), and thus the struc-
ture as a coset space is as desired,

In order to apply the spectral sequence, we will
need an acyclic chain complex. Following Sahl15], we
use the independent chain complex Cy with vertices from

86. By definiticen, C; is the free abelian group on the

i
set of all independent i-cells (VO,...,vi). These cells

are ordered (i+1)-tuples of elements fronm 56 (from the

above, a point on 56 is identified with a unit vector




10

in 00) such that any ordered subset of the vy with at
most 7 elements are R-linearly independent. The
boundary B:Ci «——> Cy_q 1s the usual one, familiar from

topology or group homology:

BC(VO,...,Vi) = ZJ(-1)J (Vo,-..,Q’j,---,Vi) ’

A .
where v.: means to omit that vertex.

1

A complex that is more geometric in nature is the
semi-simplicial complex whose nondegenerate cells are
the independent i-cells. If we form the standard geo=
metric realization WiM9 of this complex, then Cy 1is the
complex of cellular chains on wind with the independent
i-cells as a basis. For the construction of the geo-

" metric realization, see Milnor[10] or May[9] .

The action of G2 on 86 is similar in many ways to
the action of U(n,F) on 8™ in Sah[15] , essentially
since Go is a subgroup of 0(00) = 0(7), where we have
taken F = R, We record here some of the properties

which hold for the two chain complexes.

(1.16)  Cy is acyelic with augmentation Z . Equiva-

lently, Wwind 35 acyelie.
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(1.17) G acts cellularly on WiPd and the

complex wind?G is also a CW-complex.

{(1.18) Cx ®g Z = C*(WindfG), the complex of cellular

chains on wind/G.

(1.19) The action of G is determined by its action

on the vertices. wind/G has only one vertex,
or, equivalently, G acts transitively on the

vertices of wind oy Co ®z Z = Z .

(1.20) The stability subgroup of any i-cell acts

trivially on the i-cell.

Proof of 1.16 : Given any finite collection of i-cells

Cy s j € Jd, the formal join x V cj is an independent

(i+1)~cell if and only if x is a unit vector not lying
on the various faces of € j with less than 7 vertices.
Since the index set J is finite, we have a Zariski open
dense subset of such unit vectors x in 86, and thus we

can always find a vertex for the cone. Then by the

formal cone construction, cj is homologous to 0 . See

Viek[21]1, Appendix I for more details.




12

I.3. The spectral sequence and group homology

In this section, we set down notation and state
basic results on the homolegy theory of groups and the

sSpectral sequence that we use to compute H2(G2).

For an abstract group G, one may define the group

homology as follows:

Let Bn be the free ZG-module with generators
[x1,...,xn] all n-tuples of elements x; in G, and
Xy F 1, for all i, We may normalize this by setting
[x1,...,xn] = 0 if Xy = 1 for some i, We denote this
complex by B(ZG), or simply By for a fixed group G. If

A is a2 G-module, we may define the homology groups of G

with coeffiecients in 4 by

The homology on the right is the homology of the chain
complex By ®g A, By the comparison theorem for resolu-
tions, the homology groups may be computed by using any

projective resolution in place of By .

For any group G, if the action of the group ring
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ZG on the coefficient group A is assumed to be trivial,
the Eilenberg-Maclane homology Hy(G,A) = A, If we use
trivial integral coefficients, the first homology
H4(G,2) = G/[G,G] , where [G,G] is the commutator sub-
group of G. The group G is said to be perfect if G =
[G,G 1 ; note that in the case of trival G-action on Z,

this implies that H,(G) = 0.

A standard technique in the homology theory of

fibrations and of groups described as extensions of

groups is the use of spectral sequences. From knowledge
of the homology groups of the base and fibre (resp.
kernel and cokernel), plus the action of the base on
the homology of the fibre, the homology of the total
space can be found in certain special cases. In gener- Ay
al, computation of either the E2 terms or the differ-
entials is too complicated. The spectral sequence we
use is the homology spectral sequence with second index

filtration described in Sah{15], which we record here

for convenience,
The spectral sequence is derived in the usual way

from a double complex of ZG-modules. The individual

complexes are as follows:




We define an acyclic Gechain complex with augmen-

tation by

»

L]

-

N

=
o

N

o

N

o

which is an exact sequence of G-modules M together

j?
with G-homomorphisms which we denote by BM, and an
augmentation € : MO —> A, In the present case, M
Wwill be the complex of cellular chains associated to a

cell complex defined over a space on which G, acts

cellularly.

Next, we consider a ZG-free or ZG-projective res-

olution of the G-trivial module Z :

vee —> Cy —> L. —> Cy ———> Z —= 0,

for example the standard bar resoluticon. Recall that
He(G,A) = Hy(Cg ®g A) if A is a G-module. We may then
form the double complex Cx{(G) ®; My with (i,Jj)-th term

C;(G) ®; M; and total boundary 8 = 3; ® 1 + € @ Oy

J
where the sign € is (-1 on Ci(G).

The first index filtration with 'd = BG leads to:

!521’0 = H; (G, 4) and 'ES, , = 0 for j > 0.

1,7

14
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From this we see that the second index filtration "E

converges to Hx(G) ,

Hi"‘j(G,A) ===z "E1i,j = Hi(G'Mj)’ and "d1 = -aM-

In the present case, we ignore the sign, as it has no

effect on our results.

The following lemma, due to Shapiro, allows us to
calculate the "E1 terms of the spectral sequence by

reducing the calculation to a subgroup.

Lemma 1.21 (Shapiro's Lemma) If K is a subgroup of the

group G and N is any {(left) ZK-module, then

He(G,indpON) = He(K,N)

where indKGN denotes the module N considered as a Z

with the action induced by the inclusion of K

G-module,

in G. (see Cartan-Eilenberg [431, X.T7.4) .




16

II. The Stability Subgroups G(j) .

The stability subgroup of G fixing an i-cell
(vo,...,vi) is denoted by G(i). The knowledge of these
subgroups, together with the Shapiro lemma, allow us to

calculate the terms of the spectral sequence,

We state the following definition for convenience
in describing certain special types of cells:

Definition 2.1: We define an independent 2-cell (u,v,x)

to be of Type I if (t,u,v,x) generate a quaternioniec

subalgebra of 0, It is said to be of Type II if

(1,u,v,x) generate all of O,

Note that because of dimension restrictions on compo-
sition algebras and their subalgebras, (they only exist
for n = 1, 2, 4, and 8) every independent 2-cell is
either Type I, or Type II., We can now state the main

result of this section:

Proposition 2.2 : The stability subgroups G{(j) of an

iﬁdependent j=cell v = (vo,...,vj) are given by:

(a) G(0) SU(3)

(b) G(1) SU(2)

(e) G(2) sSu(2) , if v is of Type I
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{1} , if v is of Type II
(d) G(j) = f1} , for j » 2
Furthermore, G(j) fixes pointwise the vertices of v.
Proof: We observe that if a g € G fixes an independent
i~cell v, it fixes (pointwise) the subalgebra of O
generated by 1 and the vertices of v. Part (a) is ob-

vious from the representation of 56

as a homogenous
space, The second assertion and the Type I part of (e¢)
both follow from Theorem 1,15 and the isomorphism of
Sp(1) with SU(2). The second half of (e) and (d) follow

since (1,vo,...,vi) generate all of O and G acts ef-

fectively.

Note that part (e) shows that the stability sub-
groups of ji-cells are not necessarily conjugate to each
other in G, Next, we examine 2«simplices and their
homology classes, and show that we need only consider
Type II simplices in homology calculations. Further-
more, we prove a result on circumcenters for
2-simplices, showing that we need only consider inde~
pendent Type 11 2-simplices that are of the form
x ¥ (u,v) in homology calculations. Here ¥* denotes

orthogonal join.
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Lemma 2.3: The type (I or II) of an independent 2-cell

(u,v,x) is preserved under G-action.

Proof: Since elements of G are vector space isomorph-
isms, the dimension of the subalgebra generated by
u,v,x is invariant under G-action, and therefore so is

the type.
We recall the following definitions from Sah{151] :

Definition 2.4 We call an independent i-cell

v = (vg,...v3) an iso-i-cell with lateral invariant s

if <v0,vi> = s holds for i » 0 , and denote 1t by

vg < (vys5444yvy) . By convention, O-cells and l=cells

are iso~i-cells.

In Euclidean space, for i = 2, an iso-i-cell is

just an isosceles triangle.

Defintion 2.5 A unit vector z is said to be a

circumcenter of v with lateral invariant s for an in-

dependent i-cell v = (vo,...,vi) if <vj,z> = s for

IRENIREE
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We use the ecircumcenter to change problems involving
arbitrary i-cells to ones involving iso-i-cells through

the following observation:

BC(VOQ(V1,...,V1)) = (V1,-.-,Vi) - VOQ aC(V»},...,Vi).

The product { is extended additively to chains. We will
say that (v1,...,vi) is circum-subdivided into
vy d Bc(v1,...,vi). The cell vy < (v1,...,vi) must be an

independent cell.

Lemma 2.6 Given an independent 2-simplex (u,v,x) of Cyg,

there is a circumcenter z, Furthermore, z may be chosen
so that the boundary of the resulting independent
3=simplex {u,v,x,z) consists entirely of independent
2-simplices of Type II., In addition, the Z2-faces of E

this 3-simplex are z * (v1,v2), where the v; are taken

from u,v,x and * denotes orthogonal join.

Proof: Let H be the quaternionic subalgebra generated

L . R
by l,u,v. Choose a unit vector z in H that is inde-
péndent from x so that
L L L1
z € H (v=x)" —~ (u=-x)
Ll

(which is at least 2~dimensional over R). Since z € H

we have z | u and z | Vv, andg £hese together with
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z | (v-x) imply that z | x. A computation of the vari-
ous inner products (e.g. <u-x,u~z>) shows that z is a
circumcenter of (u,v,x). To prove the second assertion,
we note that for any term in the boundary of {(u,v,x,z),
either two vertices are in H and the remaining one is

1 .
in H sy Or vice-versa,.

Lemma 2.7 Every Type I simplex ¢ is homologous to a
sum E:vi of Type II simplices. Furthermore, the v; can
be chosen so that ¢ - E]H_is the boundary of an

iso=3-cell,

Proof: If e = (uq,up,uz) is of Type I, let H be the

quaternionic subspace generated by 1 and the u Choose

io
a circumcenter z for (u1,u2,u3) by lemma 2.6. The
simplices (ui,uj,z), i # j, are then of Type II. A

calculation of the boundary of (u1,u2,u3,z) gives the

result.

Note that in this case also, we may choose z so

that the 2-faces of the resulting iso-3-cell are

orthogonal Jjoins.,
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III. Acyelicty results for windsg:

We must show that the reduced chain complex Cy4 is
2-acyeclic to make use of the spectral sequence de-
sceribed in seetion I.3. It may be possible to show
n-acylicity, for some n > 2 3 however, we use other
arguments to prove results involving higher degree

terms.

Theorem 3,1. wi“d/G is 2-acyclic .

To show 1-acyclicity of W % |, we proceed as fol-
lows: let (u,v) be a independent t-cell, and let B be
the quaternionic subalgebra generated by 1,u,v. Let x
be any unit vector in Bl. Now consider X = F[x]. Then
the Galois group Gy = SU(3), and acts transitively on
S = unit vectors in Oon F[x]l. Thus we can find g € Gy
which fixes x, and such that gu = v, and therefore
(x,ﬁ) “a (x,v), i.e. (x,u}) is congruent under the G-
action to (x,v). Note that <x,u> = <x,v>. Then any in-

dependent i-cell (u,v) is homologous to 0 in wind/G,

.8, wind g is l-acyelic.

[

We now show the 2-acyelicity of WiPd | Let ¢ be

any 2-cycle of Wind/Gz. By 2(6, we may assume that
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e = Ej nj cj is made up of Type II 2-cells, and each

ey may be chosen so that x ¢ (u,v) = x * (u,v) ., By the

transitivity of G on isomorphie non-isotropic

subalgebras, we may assume that Uy, vy lie in a single

quaternionic subalgebra, for example H, and therefore,

X: € HL. By using elements of Gy, which fix x

i we 3ee

i
that (ui,vi) is Geequivalent to (uj,vj) if <uy,vy?> =
<uj,vj>. For such (ui,vi) we can move Xy by an element
of Gy so that (xi,xj) 4 (ui,vi) is an independent

3-cell. We now have a sum (with possibly different ni) :
¢ = yngx; 4 (uy,vy)
with n € Z and <ui,vj> pairwise distinct. Then

Zni ((Ui,vi)-(xi,vi)+(xi,ui)).

Z:ni (ug,vy)

Since the remaining (ui,vi> are distinet, the ny must

all be zero, i.e. ¢ 1is a boundary.
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IV Main Theoren

Theorem 4,1 Hy(G,) = H,(8U(2)) .

Proof: From Sah [151], HQ(SU(E)S = H,(8U(3)), so we will
show the isomorphism for SU(3). We first show the
surjectivity of the map:

ix : Hy (SU(3)) —— H,(G,)

induced by the inclusion i: SU(3) — G,. We use the
independent chain complex Cy4 of section 1.2, whose
vertices are ordered i-tuples of independent unit veec-
tors in 00. We then have a spectral sequence converging
to the Eilenberg-Maclane homology of 62 with trivial

Z coefficients:
(8.1) Hi"'j(Gz' Z) £==z=zz== "E. . = Hl(Gz,CJ),

based on the second index filtration on the complex
Ce(G,) ®; C2(5%) with boundary 3 = 33 ® 1 + € ® d;. The
sign ¢ = (-1)1, although it is not important for our
purposes, and so formulas may be off by a sign. The

differential is

¥, ngr
d*®: E p,q
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and the graded structure in E® is given by inclusion ‘

of "EQL,q in "Ea;_1’q_1 as indicated by the direction

of the double arrow in (4,171)., We will compute the terms

ng b j by using the results of section 3.1 and the
?

following consequence of Shapiro's lemma:

where ¢ ranges over distince G-orbits of j-cells on
wird, since the stability subgroups G(j) of a j-cell
act trivially on the j-cell, by using the universal

coefficient theorem we obtain:

- ; ind
(4.3) Hi(G,C3) = IT H;(G(3)) @ cywn%/6)

where the sum ranges over equivalence classes of sta-
bility subgroups G(j) under conjugation. For j # 2, all
of the stability subgroups G(j) are conjugate, and so
the sum in (4.3) has only one term. For j = 2, the sum
contains two terms, reflecting the different stability
subgroups for Type I and Type II simplices. Since G(2)
= 11} for Type II simplices, there is again only one

term in the sum, and so

_ : ind
(4.4) Hi(G,Cj) = H; (G(H) @ cj(wln /G),

where we use G(j) = 3SU(2) for j= 2.
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We will now fill in the terms of the spectral se-
quence by using (4.4). We note that the boundary ngl 15
just 9g. Since Hy(G(J)) = z, "EZ; 4 is just the j-th
homology of the reduced chain complex Wi%9/G. From
I11I.% , this is 2-acyclic and =so "E20 1 = "EEO > = 0 .

¥ L
2 2 - 1 1 .
For "E®, (, we have "E%, o = Hp(SU(3))/d'("E', 41}; the
image of “d1: "E1i 11— "E1i o 1s not a priori zero.
H ?
This will not cause us any difficulty, as we are only
showing surjectivity with this argument. Next, since
the isotropy subgroups SU(3), 3U0(2), and {1} are all
perfect, H{(G(J)) = 0, for all j > 0 ; and therefore

ngl, .= 0 for §j 50 .

»J

Since Cx(Wind/G) is reduced, Co(wi®d/G) = z , and
50 "E12’0 is just H,(3U(3)). We summarize the results

in the following diagram for “E2

H3(wi“d/s)
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Finally, since ng e—w3y MEX is surjective, we see
Prq P,q , |
that d: H,y(SU(3)) —=> H,5(G,) is surjective. Note that
E3 need not be equal to E2 since the image of ‘
2,0 2,0

d3:"E30 —_— "E32'0 is not necessarily zero.

Rather than sﬂow the isomorphism by showing that

d3 is zero or by the 3-acyclicity of Wind/G, we show

that the map Ho(SU(3)) ———= H,(G,) is injective by f

considering the following commutative diagram:

i £ 4

Gy ————> 0(7) =——=> 0(8)

SU(3) > SU(4)

f3

Here we view the orthogonal groups as transformétion
groups of 0, which is just RB if we forget the algebra
structure. Then 0(7) is included in 0(8) as the sub-

group leaving F*1 fixed, and G, is included in 0(7) as
:R7

the subgroup of orthogonal transformations of O,
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that also leaves fixed the triple scalar product

{a,b,ec].

The map from SU(3) to SU(Z) is the natural inclu-
sion, and the map from SU(Y4) to 0(8) is given by for-
getting the complex structure and taking the real part
of the hermitian norm. By theorem 3.1 of Sah[15], the

*
induced maps f are isomorphisms on the level of Hj,

J

for j = 1,2,3. Then 1ig is injective,

We note that the preceeding techniques would have

to be expanded to get results on the H3 level.,
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V. The isoorphism conjecture of Milnor

If G is any Lie group, we let G8 denote the same
group with the discrete topology. If we use BG to de-
note the classifying space of G, we can consider the

following conjecture of Milnor's :

The map H*(BGS,FP) ———-> H*(BG,Fp) induced by the
natural map G8 -—=> G is an isomorphism, for any

prime p.

s

The homology group H4(BGY,F) is the Eilenberg-

MacLlane homology of the group G, as we see by the fol-

> &

lowing., In the case where G is discrete, the space BG

)

has fundamental group G8 , and EGY is the universal
covering space of BG8 . By the arguments in Maclane
(Theorem 11.5) relating the homology of a space modulo

its fundamental group with the group homology of the

fundamental group, we see that H*(BGS,A) is the

Eilenberg-MaclLane homology of G. The homology group
Hy(BG,F) is the (simplicial) homology of the
topological space BG. In both cases the action on the

coefficient group F is trivial, i.e. untwisted.
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To relate the two homology groups, we will need
the following definition: For any Lie group G, the
homotopy fibre G of the map G8 —> G is a topological
group consisting of all pairs (g,f), where g & G8 , and
f is a path from the identity element to the image of g

in G. The multiplication is pointwise. (See Berrickl[2]

or Thurston[24]).

The aim of this section is to prove the following

piece of Milnor's conjecture:

Theorem 5.1 For the compact Lie group G, and ¥ ¢ 2 ,
the map H*(BGS,FP) _— H*(BG,FP) induced by the nat-
a®

ural map from ~—=> G is an isomorphism, for any

prime p.

We shall actually prove an equivalent condition shown

by Sah[15], namely:

(5.2) For i > 0, Hi(BE,Z) = Hi(BE) is a Q-vector space,

Another equivalent formulation is the following:
emma 5.3 {(Lemma 1,[11]) The isomorphism conjecture is

true for a connected Lie group G if and only if the
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associated space BG has the mod p homology of a point,

for every prime p.

We will also need the following:

Lemma 5.4 (Lemma 6,{11]) : If G is a connected, semi-

simple Lie group, then H1(Ba) is zero, and there is a

split exact sequence
0 ——> Hy(BE) ——> H,(BGO) ———> H,(BG) ———> O ,

where H,(BG) can be identified with JT4G, since G is

connected,

Next, we record the following result of Sah:

Theorem 5.5 {(Theorem 5.1, [15]), Let G be any con-

nected, simply-connected Lie group with Gc denoting its
connected, simply-connected complexification. Suppose
that Gc # 1 is a simple complex group of classical
type. Then the natural complexification homomorphism

induces injection on Schur multipliers:

Hpo(G) ———> Hy(Gg) 2 K,(C) = Kp(€)™ IT Ky(€)™

The image of H,(G) is K2(C)+, a Q-vector space of the

dimension of the continuum,
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We can now prove the main result of this section:

Proof of Theorem 5.1 : By Theorem 4.1, H,(G,) =

H,o(SU(2)). By 5.5, H,o(SU(2)) = K,(C)*, which is the
positive eigen-space of K,(C) under complex
conjugation. As shown in Sah-Wagoner[16], this is a Q-

vector space of the dimension of the continuum.

Then, since G, is simply connected, by 4,1 and 5.4

we see that HE(BG2) is also a Q-vector space,

We note that in view of Theorem 5.1, Theorem 5.5

also holds for G = G,. According to Sahl15], results of

Steinbergl19 ] show that Thecrem 5.7 helds also for the

split G, case.
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