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A smooth dlstribution W of k-planes on a smooth
Riemannian manifold M is sald to be Infinitesimally transi-~
tive 1f for gome local basis of vector flelds Xl""Xk for
the distribution, the Xi's, along with all of their com-
mutators, span the tangent space of M at each point (locally).
The 1nverse functlon theorem then implies local transitivity:
any two points of M may be joined by a plecewlse smooth curve
Y- which 1is horizontal, i.e., a.e. tangent to W. Define a
metric d on M by d(ml,mg) = inf{length v) where inf 1s over all

horizontal paths vy joiningm; to my. This 1 called the Carnot-
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Caratheodory metric associated to W and 1t arlses, for
example, on certalin nllpotent Lie groups as a Hausdorff
limit of the family of Riemannian metrics obtained by
applylng a sequence of contractions to a left invariant
Riemannian metric, I study the Hausdorff dimenslon of the
non-gmooth metric d as well as 1ts tangent cone, in cer-
taln cases, by using technlques of approximation by nllpotent
Lile groups which were developed by Rothschild and Stein in
thelr study of hypoelllptic operators. In the cases for
which these approximation methods work, an effecti§e formula
for the Hausdorff dimension is found 1in terms of the com-

mutator sequence of the distribution.
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Notatlon

M. = gmooth manifold, TM = 1ts tangent bundle, exp: TM = M

the exponential mapping.

it Ki’ 1 =1,...,n are smooth vector fields on M then,

for gach multi-index I = (il,igﬂg.e, Kk

for j = 1l,...sk, Wwe denote by X

i) 1 < ij < n

r the commubator of

Or{jer KI[Xi 9[X12,.05{Xi }Xik]oea]n

i k-1

The order of a multi-index I as above is |I| = k.

If J = (31,32,...,%) then (1i,J) = (il,jl,jg,..,jk) etc,

"exp" will also denote the mapping: W x T{TM) x M = M
defined by:

exp(t,X,m) = expm(t«x)o
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§1. Introduction to Carnot-Carathéodory metrics

We wish to lnvestigate Carnot-Carathéodory metrics
whilch may be defined on a smooth manifold M which is
equipped with both a Riemannian metric and & smooth dls-
tribution of n-planes satisfying HBrmander's condition.

A smooth distribution assigns to each point p € M an

n-dlmensional subspace of the btangent space TpM, and this
subspace depends smoothly on p. A set of vector fields

Xl’X2’°"’Kn satisfies HBrmander's condition of ovder k

at p if the st‘and their commutators up to and including
those of order k span the tangent space TpM° A commutator

of order k is one of the form [X sa0a]X o Xe Jawels

1

A dlstribution satisfies HSrmander's condition at p by
definition, if a local Easis of vector flelds for the dig-
tribution satisfies this condition (at p), This does not
depend on the cholce of local basis since the subbundle of
™ generated by the Xi's and thelr commutators of order =m
depends only on the dilstribution: 1if a new set of Xi‘s is
chosen which generétes the same distribubion, the new com-
mutators of order k are expressed as linear comblnatlons
with coefficients in C*(M) of the old commutators of order
Si&'(including the X;'s, of course).

Rlemannian manifolds equipped with such distributions

arlse In a varlety of sltuations. For exanple:




1)  Several authors (HSrmander, Folland, Rothschild, Stein,

Gpodman..o) have lnvestlgated regularity properties of hypo-

2 2 2
1 -+ X2 + oees Xn + Xl’l"l-l’

where the vector filelds Ayseeady g satlsfy Hormander's

elllptic operators of the form X

condition, It is Iinteresting +to try to cast this ana-
lytical work into a more geometrical form, and the Carno

metric, defined later, seems to be a natural and important

geometric Invariant of this set-up.

2) Carnot metrlecs also arlse as Hausdorff limits of nil-
potent Lie groups by replacing a left-invariant Rlemannian
metric, g, by B; g where the Bi‘s are real numbers whlch
tend to zero as 1 -~ =, Under certaln conditlons, the

sequence of metric spaces (G,Big) converges, in the sense

of Hausdorff (see Definition (1) below) to the group G

equipped wlth a Carnot metric defined by a left-invariant
distribution (see Pansu). Thus, it appears tnat a local

study of Carnot metrles might, in these cases, be related

to the glchal geonretry of the group.

3) A third example may be taken from non-linear control
'theory or non~nolonomic mechanics., Here sltuatlons arise
where one wlshes to move a point from one position iIn its
ﬁhase space to another, while obejing certaln resfra}nts,

In an optimal time. A ball rolling on a table wilthout

slipping is a simple example (M = SO(3) « R- and the
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disﬁrib&tion is defined by the "no slipping" congtraint).

We wlll soon see how to define a slngular (i,e., non-
smooth) metric in such a situation. Firstly, though, we
need to state a result which says that Infinitesimal transi-

tivity (Hormander's condition) implies local transitivity.

Chow!s Theorem: If a smooth digtribution W satisfies

Hirmander's conditlon at P &€ M then any polnt ¢ € M which
is sufficliently close to p can be jolned to p by a piece-
wise smooth curve which is almost everywhere (a.e.) tangent

to the distributlon.

Remark: Thus, any two polnts of M wmay be so Joined 1f M
1s connected and if the distribution satisfies Hormander's

condition at each polnt of M. A curve which 1s a.e. tangent

to W wlll be called horizontal,

Since we will need to refer to the proof of Chow's

Theorem later, we provide a short version here.

Proof: Firstly, choose a linearly independent set from
- among the Xi’s (a local basils for W ﬁear p) and their com- %
~mutators which spans Tp(M) for each p € M (locally), and
suppose that the associated mﬁitiuindices are Il,.a.IN.
To each multi-Iindex I we associate a flow on M as follows:

i

Set ¢i(t) exp(txi) for L = 1,...n and for I = (i,J), set

61(8) = 6 (~/E)e s, (~/F)e0 (/oo (VE).




=

3 N

= (tl,...tN) €ER, (t

|
We now define a map ¢':ZR -+ M, PFor each \
)Oouo'5¢

define 6 (%) = @ (tN)¢¢I

N N-1
Slnce 1f @, and ¢, are any two smooth flows then

N-1

|
[@lgég](t) has zero flrst order part t = O, [@l,az](t) |
18 O(tg) and 80 [¢l,®2](J57 is ¢t-smooth, J
Therefore, all of the ¢.. above and ¢ are Glﬂsmooth. !
One proves easlly by inductlon that
éI(t) = Kp o= [X) s[Xy se0e5X; 11ou0], s0 the differential
1 2 N
of ¢ maps S%E to XI. d = lseoonne Thus, ¢ 1s non-singular
at the origin ahd so it ls a local Gl—diffeomorphism there.
Now the definltion of ¢ shows that any point g near p can
be reachea by a plecewlse-smooth curve where '"pieces' are
integral curves of the X,'s (beéause g = ¢(t) for some ).

Obviously-such & curve 1g horizontal, so the theorem is

proved. _ Q.E.D.

Notlce that, for small t, the point @I(t)(p) lies A

roughly in the direcﬁion XI and at the dilstance t from

p, and that the plecewlse smooth curve Jjoining these two ]

polnts, which appears implicitely in the definition of ¢,

tl/éknl (k=|1]), whereas one would

has length of the order
expect from the Campbell-Hausdorff formula for Lie g roups

that these polnts could be jolned by a horizontal curve of
1
length of the order t /k s at least 1n the bese cases. We

see, then, that the mapplng ¢ will not be of usge 1in making

sharp estimates for the Carnot-Carathéodory metric.




Definltion: The Carnot-Carathécdory distance between the

points p and q in M, denoted by d,(p,q), is defined as the
infimum of the lengths of all piecewlse smooth horizontal
curves Joining p to q.

This (locally defined) metric on M is the object of

our study.

Remark: Since all Rlemannlan metrics are locally Lipschitz
equivalent, the Carnot metric ls independent, up to local

equlvalence, of the cholce of Rlemannian metric.

Historical Note: “he names of Carnot and Carathéodory are

attached to this metric through theilr work on thermodynamics.

In that thecry, the infinitesimal amount of heat "8Q" added %o

a system ls expressed as a linear combinatlion of the changes
In thermodynamic parameters. These latter define coordlnates
for the phase space of the system, on which is therefore de-
fined a linear form (l-form) &{y. For adidbatie processes no
heat transfer occurs, so_the pelnt in phase space describing
the state of the system moves along a path for which 6Q = O,
that 1s, the path 1s horizontal with respect to the distri-
bution defined by Kernal (5Q). |

As an example, consider the Helsenberg group. This 1is
a three dimenslonal, simply connected, nilpotent Lie_group

with the one dimensional center.

In B> with coordinates (x,¥,Z) Wwe obtain a model for




the Helgenberg group by'defining the vector fields

8

A d X 0,
A=Sx -5 z

3
5w Y=gyt ous [KY] s S5

noj<

and usling the Campbell-Baker-Hausdorff formula to define
the. group multiplication (ses Adams} Bourbaki...).* Notice
that X and Y generate the kernal of the l-form

w = dz + %{ydx—xdy). Thus, a curve C, tangent to the
digtribution generated by X and Y and which Joinsg

(x',¥" ,2") to (x",y",2") may be projected to the x-y plane:
(x,y,zj = (x,y) to obtaln a curve joining (x',y') whose "area"
(=j;(xdy~ydx)) 18 equal to fch': z" - z', Evidentaly, any
such curve in the (x,y) plane may also be lifted to a hori-
zontal curve joiniﬁg (x',y'2z') to {(x",y",z"). Thus, any

two polnts in]R3 may be jolned by a smooth horizontal curve,
and from the lgopermetric inequality it follows that there
ls always a smooth minimal curve, namely, one which pro-
Jects to an arc of a circle. The minimal curve is unigque

unless (x",y") = (x',y!'), in which case any cirecle of the

appropriate area will do.

Remark: The projection of the curve C to the x-y plane
may be descrlibed intrinsically as follows: by the map
induced by left multiplication, carry all tangent vectors
to ¢ baék to (x',y',z'), thus obtalning a curve in.T(M)(x‘,y‘,z‘).

Now lntegrate thls curve to get a curve which lies in the

* Adams, J.F. "Lectures on Lle Groups" New York, W.A. Benjamin 1959
N. Bourbaki "Eléments de Mathématique XXXIV, Groups et Algébreg
de Lie", Hermann, Paris




plane which is the kernal of w at (x',y',2'). This latter
curve ls isometric to the pfojection of C. This follows
from the fact that left translation carries a tangential
vector at (x',y',z'), say aX + bhY, to the vector

d o o - .
a szt b 37 at the origin (i.e. 1dentity), and this ib

just the projection onto the x-y plane.

Notice that, gince X and Y are orthonormal with re-
gpect to the obvious cholce of left-invariant Riemannian
metric, the above remark also implies that the length of
C (w.r.t. this metric) = length of projection of ¢ w.r.t.
Euclidean metric. So, for example, d((0,0,0),(0,0,z)) = :
length of cilrcle of area z ~ ./z. This shows that the f

Carnot metric is, in general, slngular. In general, we may

demonstrate the existence of minimal horizontal curves which

are absolutely continuous by a standard and elementary method

(cf. Fllippov): one chooses a minimizing sequence of curves,
Ehen shows that an approprlate limit curve exists. We may,
for thils purpose, restrict our considerations to curves of

speed <1, whereupon the problem becomes that of minimizing

the time requilred to travel from a point p to a peint q.
We also shall take our manifold M to be isometrically em-
bedded In some Fuclidean space with norm |- . '

Choose a sequence, xi(t), of horizontal paths with x,(0) = p

and Xi(ti) = q such that t, = t = inf{t;}. These curves are

uniformly bounded and equlcontinuocus since H%i(t)H < 1, 80
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we may choose a uniformly convergent subsequence with limit

x(t). The equicontinuity ihplies that x(t_ ) = q and uniform

- convergence implies that x(t) is Lipschitz with constant 1,

since the x,(t) satisfy this property. Thus, x(t) is

absolutely continuous. |
To see that x(t) is horizontal almost everywhere, con-

sider a point bty of (0,t_) where %(to) exlsts, and chooge

a small, positive number €. For all t sufficiently close
x(t) - x(t
to to, the secant t - t

o)
approximates within e the

Q
derivative k(to)o The former is, in turn, arbitrarily

Xi(t) - Xi(tO)
well approximated (for fixed t) by the secant: by
1f 1 is large. This last term is equal to E"%“F“ jt ii(T)dT,
0t
9]

For t close to to and ty = 7 < &, ii(T) lies in the

e-neighborhood of w(x(to)), W denotes the distribution
spanned by the Xi's. Since thils nelghborhood is convex,

the integral also lies in the nelghborhood. Therefore,

%(t,) is arbitrarily close to W(x{t,)) and so is, in fact,

in D(x(to)). Q.E.D.




§2. Hausdorff dimension and %tangent cone of Carnot-
Caratheodory metrics

curves., 1In general, slnce dl ig singular, cone may ask what

For the Helsenberg group, there were smooth extremal
|

the fangent cone of the Carnot metric looks like, and what

its Hausdorff dimension is. In certain cases, we can

answer these questions. Note that the answers do not
depend upon the orlglnal choice of Riemannian metric.

Here are the definitiong of these hLerms:

Definition (1): The Hausdorff distance between two sub-
spaces of a metric spéce z is defined as-HZ(X,Y) =
inf{e[Y c Na(X); X Ne(Y)}’ where N_ denotes the e-nelgh-
borﬁood.

For two metric spaces X,Y, one takes the infimum of
HZ(X,Y) over all lsometric Imbeddings X,Y = z, and denotes
thils by H{%,Y). A sequence X; of metric spaces converges

In the sense of Hausdorff to a metric spacé Y if

1im H(Xi,Y) = 0.

1m0

The tangent cone of the metric &, 1g the Hausdorff

1
1imit of the sequence of metric spaces(M,rdl) where rd

L
“denotes the metric dl multiplied by r > 0, and r = =,
(This glves the usual tangent space when applied to a
Riemannian meﬁrie.) 5

(Here one must use llmits of metric spaces with base polnts.)
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The Hausdorff s-measure (620) of a subseb X (Hé(X))

of a metric space is defined (up to a constant factor) by
coverlng X by sets of diameter =< ¢, taking the infilmum of

{ s (diam)é) over all such coverings, and then taking
covering

the 1limit of this (increasing) sequence of numbers as e = 0.

The Hausdorff dimension of X 18 equal to

inf{6|H%(X) = 0) = sup(8|HY(X) = ).
In [Gr], Gromov provides a condition, called uniform

compac tness, which guarantees the existence of a limit

metric space fof a sequence (Xi,xi) of proper metrile
spaces with distinguished points. (Proper means each
cloged ball is compact, )

- The Helsenberg group may again be used as an illustra-
tion. The Lie algebra,:g, of G admits a famlly of dilatlons,
that is, a one parameter group of Lie algebra automorphlsmnms,

denoted by & t 2 0. These are defined on X and Y by

£
at(x) = tX, 6t(Y) = tY, and extended uniquely to auto-
morphigms of g. The automorphisms may be made to act on
G via the exponential wmap.

The dilation &, multiplies volumes by tLL {rather than
t3), since In exponential coordinates, 1t takes (x,y,2) to
(tx,ty,tgz)° It i8 clear that the Carnot metric is homo-

geneous of degree one with respect to 6t’ i.e. ét multiplies

lengths of horizontal curves by t. Thus, 1if Bt denotes the




ball of radius t w.r.t. dl’

S :
vol(Bt) = vol(ét(Bl)) = § voL(Bl),
which easlily implies that the Hausdorff dimension of the

Carnot metric on the Heisenberg group is four.

The homogenelity of dl implies that the tangent cone
(at O) of (G,dﬁ is equal to (G,dl) itself, since &, 1is an

lsometry between (G,dl) and (Gjtdl),

If the reader would like %o become better acqualnted
with Hausdorff 1imits, he or she may demonstrate the fol-
lowing (or any of the other examples to be found in [Gr]).

Leﬁ X be the free Abelian group of rank two with two
flxed generators. ILet d be the word metric on X, and let
e = ldentlity. Then the sequence (X,xid) Xy = 0 converges

to the planeIR2 with the Minkowskl metrile

dist((a,b),{(a',b') = |a-a' [+[b-b!

@

We saw above that the homogeneity (i.e., exlstence | |
of a family bf dilations) of the Heisenberg group allowed
us to compute its Hausdorff dimension and Lits tangent cone
wlth ease. Based on this observation, we seek, for the
more general case of a dlstribution on a manifold M, a family
of pseudo-~dilations on M. These appear most naturally if

the plcture resembles that of a Lle group with dilations.

Fortunately, such an approximation result already exigts




In the work of Rothschild-Stein, under certain conditions on

the distribution.

Deflnition: A famlly of dilationsg on a (finite divisional

real) Lie algebra g 1s a l-parameter group {yv.} r » 0 of
= iy

Lie  algebra automorphisms of the form ¥, = exp(A log{r)
where A 1s a dlagonallzable linear transformation of g
with positlve elgenvalues.

Clearly, a Lie algebra must be nilpotent to admit a
family of dilatlons. However, not all nilpotent Lle groups
do admit such families. Dyer constructed a nilpotent Lle
algebra all of whose automorphisms are nilpotent. Dilations
are not nilpotent, 80 such groups do not admit dilations.

To state the theorem of Rothschild and Stein, we assume
that, besldes satisfying HSrmander's condition of order m,

the vector filelds Xi are free up to step m i.e., the Xi‘s

and thelr commutators of order <m satisfy no linear re-
lations-except antlcommutivity and the Jacobl. identity ahd
thelr consequences. Thls 1s the same ag gsaylng that the
dimension of the space spanned by the Xi‘s and their com-
mutators of order =m is-the same as that of Gn,m’the simply-
connected Lle group whoge Lie algebra is the free nilpotent
Lie algebra of step m on n generators, denoted by gn,m‘
Denote the generators of gn,m by Yl,...Yn and let Y. be

the dilation defined on the Y;'s by Yr(Yi) = rY, and extended
) e ' |

uniquely to all of - (and Gn,m




Set Y, =Y, for § = l,...n and for k = 2,...n,
let Ylk’YZR"" be & maximal linearly independent set
of the commutators of order k.

The ij's form a basis for gn,m‘ Taking cocrdinates
Wwith respect to this basls and composing with the exponen-
tial map; one obtains coordinates on Gn,m In which the
coordinate functions are homogeneous of degrees ly...m
(with respect to Yr).

A vector fileld X on Gn o Ay be written
3

X= 28..,Y.1,
. i K
g kT

. [es] . tC‘;
%ﬁié ¢ (M), If we expand the B e in
their Taylor seriles about O in the coordinates defined
above, X will be exhibited as a formal sum of homogeneous
differential operator (if f is a homogenous function of

degree i (w.r.t. Yr), then ijk 18 a homogeneous operator

of degree Ki)a We say that X 13 of local degree = ) if

.-each term in this formal sum is homogeneous of degres =\ .

We then have the approximation theorem: (Rothschild-Stein).

Theorem: Glven vector fields Xl"“'Xn on M, free up to
step m and satisfying HErmander's condition of order m in
.an open:neighborhood U of M, there 1s, for each p € U, a
QLffeohorphism b, 2 U~ V (a neighborhood of the origin

in Gn,m) whose differential, 6,, maps X; to Y, + Ry, Where
Ry 1s of local degree =0,

The dllations now act on M locally vlia the diffeomor-

J
i
1
i
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phism 6, and they may be used to estlmate the (Riemannian)

volumes of gmall balls 1In the Cernot metric, as well as to
determine the structure of the tangent cone of this mebkris.

We may now work in V, & neighborhood of O = origin

° n;m.
Definiticons (2):
w  = the distribution spanned by Xl’°“Xn (= Y1+Rl"°Yn+Rn) ;
W, = distribution spanned by Yr%(xl)"'°Yr*(Xn) ﬂ
where vy = dlfferentlal of ¥ ;
Ty o T I
d, = Carnot metric associated to W, (and the fixed left !

invariant Riemannian metiric on G, m)
3

W = distribution spanned by Yl""Yn

d = dCarnot metric associated to Wm.

I

B_(k) (resp. Sr(k)) = ball (resp. sphere) of radius k with
respect to d, 1 s r s o, '
With the above assumptions on the distribution W, we

have the followlng results:

Theorem 1: The tangent cone of (M,dl) is lsometric to

(Gh,m’dw)‘

Theorem 2: The Hausdorff dimension of'(M,dJ) is equal to




(see Folland).

Q, the homogeneous dimension of Gn m
. p
Let g = 81 P8y D evs D gsE L = {0} be the descend-

ing central sequence of g. ILeb r, = dim(gK/g ). 'Then

m k+1

q_ == E KI“ - ‘
k=1 5

Thecrem 1 is proved by showlng that:

1.1) TThe quasi-isometric distance between :r‘-d:L and dr tends
to zeroc as r tends to oo, (By quasi-lsometric dlistance we
mean log (infimum of metric distortion* over all homeomor-

phisms £ : M = M)),

1.2) d_ converges, in the sense of Hausdorff, to d_ as r - =,

One may then apply the simple estimate

. H{X,Y) .
Lemma O: + TTam(%T & diam(YI'g C(X:Y)

where diam = diameter and (X,Y) = quasi-isometric distance
between X and Y, to obtain Theorem 1.
Theorem 2 may be obtalned from an estimate of vol(B;(e))

{vol. = Riemannian volume ) :

s% o h g vol(Bl(e) <c e?  ror some C > 1 and all small ¢.

This, in turn, follows from the estimate:

* The metric dlstortion of a map f: (M; ,dy ) (Ms,ds) between
IS AT
o f\X)sf(y)) dl(X3YJ

dl(x5Y) dg(f(XT:f(yjf

metric spaces is defined as sSup max
X:yEMl
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Lemma 1

1 | C .
Bl(ay) = Yl/T(Bl(l)) < Bl(?) for some C > 1
and all large r,

along wilith the fact that Y, multiplies volumes by rQ

(cne lets ¢ = é? on %, in turn),

Proof of Lemma O: ILet us first prove the simple estimate

(+); suppose that X has a mebtric dy» and Y has a metric d,.
(5,7 < = = there exists a homeomorphism £ : X = Y whose
distortion is arbiltrarlily close to (X,Y). Identify Y with
X via £, 80 we now have a singie space X with two metrics

dl and dgo We may imbed each of these metric spaces iso-

metrically into a single metrilc space, namely, ¢°(X) F
(continuous functlons on X with metric d induced from sup
norm) by sending X-E X to the distance function di(x,-).

Call these two imbeddings F, and ¥, : X =» C*(X). For any

XX, € X, ldl(Xl’XE) - dE(Xl’X2)I < diam(X) + diam(Y) which

impiies H(X,Y)| = diam(X) +diam(Y), thus we may suppose that
that (X,Y) < 1. Now the two lnequalltles

d, (X,,X,)
1271272
Ilog(EETXI:XET)I < (X,Y) and max{d, (X,,X,), d5(X;,%,)}

< dlam(X) + diam(Y)

imply that ]dl(xl’XE) - dg(xl,xg)]»s (diam(X) + diam (¥)).

(l—e"(X’Y>) < ¢(X,Y) if (X,Y) < 1 for some constant G,
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Thus d(Fl(xl),Fg(xl)) < ¢{X,Y) for all X, €X Q.E.D-

Proof of Lemma l: Consider now the estimate in TLemma 1:

This may be paraphrased as follows: Up to bounded distor-

tion, v, applied to curves or vectors in Yy (Bl(l)) which
. ) T
are tangent to W, multiplies lengths by r. For the proof,

let x4 € 5,(1). To estimate the Carnot distance of yl/&(xo)

from 0 ¢ Gn m? We need to estimate how Y. acts on vectors in
2
W whose base point lies in Yy (B(1)). Let y € B(1l) and let
~/r

(v,e R).

+ Zv,R, 1

2y
L) Lo

Thus yr%(v) = r-?viyi + ?vin*(Ri(Yl/r(Y)), since

vy, (¥,) = »r¥,. Now, the definition of 'R, has local degree
ry' 1 1 L

vV eu(yy, (y)). Then V = 3v,Y,|
r

1Tty |Yl/r(Y)

= 0" implies that the length of Y. (Ri(yl {y)) remains
* r

bounded as » -~ « (Proof: the homogeoneous terms in the

formal expansion of Ri as a sum of homogeneous operators

. o . i
look like ajk,ijk if ajk has the formal expansion |
s
a. = 2 a, where a. is a2 function hom T |
Bk 2 ji,m Whe Sk, m ne n ogeneousg o g

degree m. Slince ajk,m(yl/r(Y)) = rumajkjm(Y) and

Vo, Vglry, (90 = Y (), we have: Yo @ ety () =

.lc-m 1 - 1 -
X ajk,ijk(y)' Ri of local degree e¢ 0" means k - m £ O,

- 80 such a term remains bounded (ln fact 1t decreases) as

r = o, This implies the result).
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H| |H

Also, |Ri(y )))[ =~ 0as r = o me arns

%/r(y

Riemannian length), since Ri(O) = 0. Therefore,

v, Y + 2 R,
1 In"f*(v)| 1 II‘ ivj- i|y ivin*( l(Yl/r(Y)))’
* Ty T | | ( ) » 1 as r « w
2v.Y. + Zv R, (Y
g L1 Yl/r(y) § 11 }_/r(y)

and 80 this expresslon 1s bounded below and above by %-aﬂd c
regpectively for some C > 1, for all sufficlently large r.
From this sstimate on vectors we get the estimate on

curves. If p : [0,1] —~ Gn,m ls a path in Gn,m Joining O

to ¥, (xo) which is tangent to the distribution W a.e.,
r .
and which lies in v, {B(1)), then Yr(p) is a path joining
/T ‘

0 to x and its length 1s therefore bounded below by a

O)
positive constant (= Riemannian'distance from O to XO).

From the inequality on vectors given above, we gee that

const. s length(yr(p))_s c.r length(p),

which gives the left side of the inequality in Lemma 1
(with a new C). We will see below (Proposition 1) that

dr = d_ in the gensge of Hausdorff., This implies that

B (k) < Br(K+6) for all sufficiently large r, and.some 5.
Also, it 1is clear that Bl(l) c B_{k) for some k, so

B(1) < Br(K+6) for all large r. This shows that we may
choose a plecewise smcoth path, ﬁ, tangent to Wr and Jjoin-

ing 0'to x,, of length < k+3 = const. Then p = v, (%)

A
o /r




s tangent to W, Jolns 0 to Yy (xo) and gatisfies
r

/

length{p) = const/r for some constant,
This gives the right side of the inequality in Lemna 1

once statement (1.2) 1g proved.

Proof of (1.1): HNote that we have proven that
length(y . (p))

1im(
reo 1 length(p)

) = 1 (this follows from #) which is pre-

cisely the meaning of statement (1.1},

We now wish to prove (1.2),

Proposition 1: dr converges, in the sense of Hausdorff,

to d_as r - ». Thlg will be done by using two lemmas:

Lemma 2: 1im W, =W, the 1limlt referring to the cl

I=tco

topology on the space of distributions (for any N < ),
Proof: W_ is spanned by the vector fields {;wy (X,)} =
—_—— T ror, i

X

1 1
{Yi-+ S, U%fyl r)}o Agaln, by definition of R; has

local degree = 0" one sees that the CN norm of yv_ (R,ey )
I'* 1 l/r

1s bounded on a compact set by the CN norm of R; on this
‘set.* The latter if finlte since R; 1s smooth. Thus

iv (R, *y Y- 0tnclt ag r - 0, Q.E.D.
rr,ti %/r :

Lemma 3: If W_ is a smooth distribution satisfying Hormander's
conditlon and if Wr 18 a family of smooth distributions con-

verglng, in the CN sense for any N, to W, as r = o, then dr

* K-m( and k - m < 0.

a., .,
Jk,m JK)(X)

Yr*(ajk,mYJk”l/r)(x) -




‘eonverges in the sense of Hausdorfl to d_-

Preof: Flrst let us note that irf W satisfies Hﬁrmandé%f
condition of order m, then taking N =z m, we see that wrvd0§sf
also, for large r. (Derivatives converge = commutators'céﬁ;i:'?i
verge). We will need the following uniform estimate on thé i::; f

slze of the dr's, whose proof will come later.

Lemma 4: There 1s a function F(p) » O deflned for p >0,

such that 1imF(p) = 0 and B(p) Br(F(p)) for all suf-
p=0

flclently large r : R < r £ » (this R may depend on p).
Here B{p) denotes the Riemannlan ball of radius p
centered at 0 € Gn,m‘ Thisg says simply that if two points

are Rlemannlan close, they are dr—close for all large r.
| Now, as 1n the proof of Lemma O, in order to estimate

HﬁM,dr), (Mdm)), we need to estimate, for every palr of points

p,a € U c M, the difference ld_{p,q) - dr(p,q) . This estimate
must be uniform for all pairs of points and all r = R, and 1t
must approach zero as R = «», This is done by producing, for
each piecewise smooth curve Joining p to g which is tangent to
wrl a curve tangent to Wr2 Joining p to q, ﬁhere d is uniformly
close to g (1.e. d(q,q§) = ¢(R) where ¢(R) depends only on R,
R& ry Ssr, <o« and ¢(R) » 0 a5 R = w.) Moreover, the lengths
of the two curves will be equal. Then, slnce by Lemma 14,

drg(q,a‘) s F(e(R)), we have ldrg(p,q) - drl(p,q)l < F(e(R)),

so'H(dr »d., ) < F(e(R)) » 0 a8 R = « and Temma 3 will be proved.
1 T2 =

Notlice that by Lemma 4, we may assume that all curves which




we conslder have length = const., and unit speeds thus
the time of travel is < congt.

A curve Cqs tangent to er and joining p to g satisfies:

& n r -
¢, (0) = p, e, (t) = = a (t)x l(c (t)) a.e., where the X 'sg
1 1 1=1 4 1 1 i
r o, N
generate wr (and lim Xi = Xi in ¢7). Deflne & new curve,
T=too

. n
tangent to W_ , by: 02(0) = p, cz(t) = 3 e, (t)).
I’2 - «

We may assume that {Xi} 1 - l,...n, is an orthonormal set

°

for all r, so that [¢,(t)] = c,(t)] a.e. and therefore,

length (c;) = length (c,). If T s the final time, 1i.e.
cl(T) = q, ¢,(T) = §, we must estimate d(cz(T), cl(T))
(d = Riemannian distance)

n I

(epmey) (6) = [ 2y (6)(x,

n r r
n yz iilai(t)(xig(cg(t))—Xil(CQ(t)))dt‘

r r
Now, 1f ry,7, = B, then |X;%(c () - X, (e (t))] = ¢ = o(R)

2
where ¢(R) =» O as R = 0, Thls is because the Xi’s converge,
n n
Since 5i(t)] =1, = af(t) =1 so 3 Iai(t)] < 1,
1=1 1=1
r

Furthermore, since the Xi's are smooth and we're working

In some bounded set, these are numbers R and L such that for
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I3 (e (6)) - Xjle () = L Heg(t)mcy (8)]] for all i
: o ~ : n
where we use the norm HVH = H(Vl,VE;---Vn)H = izllvi['
(The Lipschitz constant I is uniform in r since the Ki's
converge in Ul). Thus :

Hce(ﬁ)wcl(t)ﬂ < szgucg(t)—cl(t)ﬂdt

+ e{(R)t = T, Igucg(t)~cl(t)ndt + eT

for 0 = t < T, We now apply the following estimate (see

p.11 of ref. 8).
If y(t) is a continuous function satisfying:

|y ()] < M(1+k j;]y(t)[dt) then |y(t)] < M eKM‘t(t>o).

-

v
Proof: Let v(t) = ft[y(t)[dt. Then v{t) < M(1+kv(t) = THky
ZIeol o

- log(l+kv) < kM = 1 + kv < eKM, but |y] < M(l+kv) Q.E.D.

In our case, y(t) = [lc,(t) - ey (6), M = er and
kM = L, so Hcg(t) - cl(tN!Se'iheLt. Setting t = T and

rewrlting t for T, we have
ek ”Cg(t) = Cl(t)” < e(R)teLt.

By the remark at the top of page (21), T < const. So

la-all = e(R)-const. Thus d(g,q) = ¢(R)*const. and Lemma 3

is proved. Q.E.D.

< M




Proof of TLemma 4: Recall that 1n the proof of {Jarnot's

1w M which is

Theorem we produéed a ¢'-smooth map 6 ¢ R
a c¢'-diffeomorphism near the orlgin., We may assoclate

such a er te each distribution Wr for large r. If p is
sufficiently small, then there 1s a p' > 0 s.%. B (") o ®B(p)
and 0 is a diffeomorphism on B_(p'); also, we may choose

p' = O as p =» O. By the estimate *** above, we see that

for s on the sphere of radius p'-in]Rn,

dist(er(s)gem(s)) < ¢(R)T T 1f v > R, If we take R

LT

large enough to insure that ¢(R)T e < %, e.g., then 6,

1s homotopiec to ew]sphere(p‘)

B(p/2) = M. On the otherhand, if there is a polnt

in the complement of

y €B(p/2) such that y ¢ 8_.(ball of rad.p') then

8 D) is homotopic in M - {y} to the constant

rlsphere(p
B
r

map x. = 8_(0). But 9 is not homotopic in

0 mlsphere(p')
M-y to x. Thus B(p/2) Br(ball o' ). Q.E.D.

Lemma 1, (1.1) and (1.2) together now glve Theorem 1.
Theorem 2 follows easily from the volume estimate ** ag
follows: Choose a maximal set of disjoint balls (in the

Carnot-Carathéodory metric) of radius e, The number

Vol(Bl(l)

Ne’ of such balls does not exceed T -
c e

The set

f concentric balls of radius 2¢ cover B 1). Each has

1.
diameter =< 4e and, so, the Hausdorff &-measure of Bl(l)

vol(Bl(l) 5

- 1s at most lim(——:rﬁﬁ—n—. €”) = 0 if 8 > Q. Thus dim < Q.
ew) ¢ g '




ok

Conversely, given any covering Bl(l) by séts of dlameter
€, there 15 an assoclated covering by balls of radius €,

80 the number, Ne’ of sets 1n the covering satisfies:
N

Q & th
N »cre™ = 3 vol(i”" ball) = vol(B,(1)). Thus
C il
8 vol(Bl(l)) 5
% e = 3 ¢ . Taking in f over all coverings
covering ce

by sets of dlameter s ¢, then taking lim glves Hausdorfs
g0

~meagure of Bl(l) = 1f 6§ < Q. Thus dim = Q. This

proves Theorem 2. B QeE.D.

Remarks:

a) The estimates above imply more: ‘Hausdorff Q-measure

1s commensurate with Lebesque measure (on Bl(l)):

v
(2 = 1 < (cev.)u

an® Q

where Vg = volume of unlt ball in R® and p = Lebesque measure,

Q

o = @~dlmensilicnal Hausdorff measure.

b) Lemma 3 says that the mapping:

Infinitesimally transitive distribution = assoclated
Carnot-Carathéodory metric is contlnuoug in ﬁhe topologles
used there. An invariant of an Infinitesimally transitive distri-
bution is the order of this map w.r.t. c'-distance on the left side
and Hausdorff distance on the right. The proof of Lemma 3

implicitely contalns the estimate: H(dr,dm) < [c’-dist.(Wr,Wm)]l/m

if'Wm satlsfles Hormander's condition of order m.




The mefhbdﬁdégcfibed above for approximating (M,W)
by a nllpotent Lie group wlth a lelt-invarlant distribu-
tjon applies ln more ‘general sgltuations. We may extend

Theorems 1 andjd from the free case to the homogeneous

cage,
Definlticn: TILet £ = £l be the free Lie algebra of rank
r.¥ For 1= 1,...r let £l+l [& ,S] An ideal I of &

1s homogeneousg if the vector space T is isomorphlec to the

direct sum of IAx%/_
IAL

the Lie aigebra L 1s homogeneoug if 1t ig isomorphlc to the

541 B 1,2...r . We shall say that

quotinnt of a free ILle algebra by a homogeneous i1desl.

We then have the following simple theorem:

Theorem: Any homogeneous T.le algébra admlts expanding auto-

morphisms (dilations) (see Dyer).

Proof: § admits the obvious canonlcal familly of dilations

defined by 6t(Yi) = t¥, and linearity. Homogenelty implies

that 6t(I) © I and so the dilations 5, act on the quotient

S/I = L. Q.E.D.
‘Example: ILet M= {z,w) : Im{w) = HZHE, z €%, w e ).

This is a hypersurface (codimenSLOn one) in e, The

holomorphiu tangent spaue to M has complex dimension n

and 1s spanned by L = Er_'+ 21 ZJ g% 1< J=<n. (To

* That 1s, there exist r elements'Yl,,.ch whilch generate - |

& as a Lle algebra, and & enjoys the universal mapping property.




sea that the LJ are tangent Lo M, note that M = {f = 0}
where £ = w - W - 21“2“2 and I,f = 0.) Iet'TG denote the
'conjugate vector fields. Then one may check that 0 =

_(LI’LJ) = (Li’Lj)’ (Li’L,j) = aij

-m_l_- r.:, . . =I I. == o8 L .
define X, Re(LJ) YJ m(IJ), z (XJ,YJ

to check that XJ’ YJ and z together span the real tangent

3 A
(-2 M=+ ), I we
i/V3w 357

), it is easy

space M at each point and satisfy the Helsenberg commutation

relationsg:

all'other commutators commute. This Lie algebra g is the
real Heisenberg Lie algebra of dimension én + 1, It may
be written as 5/1 where £ = free two-step nilpotent Lie
algebra I = <[Xi,Xj], [Xi,YJ], [X5,¥5] - [XJ,YJ]> 1<£i< ]« n.
Thus we are dealing with a homogeneous ILie algebra.
We will say that a Lle algebra L 1ls homogeneous up to

step m 1F L/Lm_"l ls a homogeneous Lie algebra. Suppose now

that the vector flelds Xl"“xn on M satisfy Hormander's
conditlon of order m and are homogeneous up to step m. TLet

%/Lm+l’ o =

L be the Lie algebra spanned by the X&s, g =
gimply connected nllpotent Lie group assoclated to g. With

notations as in Theorems 1 and 2, we have the following results:

Theorem 1': The tantent cone of (M,dl) is isometric to

(G,d_).




Theorém 2"+ The Hausdorff dimension of (M’dl) is equal
to Q(G). Here d_ is the Carnot»Carathéodory'metric asso~
clated to the distribution WOO generated by the lmagesg of
p/Lm+l

the Xis in > denoted Y,.

Proof: The proof ls the same as for the free case, once
the theorem of Rothschild-Stein has been replaced the
fellowing generalization (which is equivalent Lo the com-
bination of their previouély guoted theorem plds thelr

"1ifting theorem").

Theorem  (Rothschild-Stein; see Goodman): Suppose \ is a
partial homomorphism (i.e., a homomorphism "up to step m")
from a graded Lie algebra g into the Lie algebra of vector

fields on a manifold M which is surjective at s point p € M,

Define a mep: g = M by v = eXp(h(O)), and the assoclated

map & : G = M. Then the vector flelds k(Yi) may be lifted

to vector flelds Y, + Ei on G (locally) where R, 1s of

local degree = 0.

When the distribution generated by the Xis is homogeneous
up to step m and satisfies Hormander's ccndition of order ni,

one defines % by x(Yi) = X, and extends to a partial homo-

morphism. Since the differential A, is bijective at O in

this case, 8§ is a local diffeomorphism. The proofs of

Thecorems 1 and 2 now épply. Q.E.D.




$3. Further questions:

a) The space of horizontal curves is itself of Interest.
The path space of a smooth manifold M 1ig & Serre fibration

over M X M. Is thie so for the space of horizontal paths?

What can be sald about exlstence and regularlty of minimizing

horizontal paths?

b) Are there igoperimetric inequalitlies for the Carnot-

Carathéodory metric? Note thab Folland and Stein have proven

generalized Sobolev inequalities for the situation discusged

here, Plerre Pansu has obtained an lsoperimetric inequality

for the three-dimensional Helsenberg group.

¢) Can one reasonably deflne curvatures and a Laplace

operator for the Carnot metricg? One approach nlght be to

define a Taplacian on l-form through a variational problem:

minimize the Lgnnorm of the restriction to W of the 1-form w,

where w varies within a cohomology clags. The associated

Buler~Lagrange operator is one candidate for a lLaplacian. |

A "erude" laplacian may be defined, and the difference of

the two, if a zero order operator (Bocher's formula) may be

taken to be a mean curvature for the Carnct metric,
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