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Abstract of the Dissertation

Characterlstic Classes for Modules
over Cyclle Groups

by
Iris Cox Hayslip
Doctor of Phillosophy
in
Mathematics

State University of New York at Stony Brook

i

1982

In thls paper we study the Charlap-Vasquez characteristic
classes vi(M)sHE(é;Hi-l(M,Hi(M,K))) for the case where M 1g
an n-dimensional vector space over the field:Fp, P prime,
and 8 < GL(n,p). We employ a special resolution of Z for M,
particular cholces of subgroups &, and the chaln homotopy
techniques of Charlap and Vasguez to obtaln results on the
classes Vi(M)eH?(Q5Hi_l(M,H1(M,K))) for (n,p) = (2,3) and
{(3,2). These tégether with the Naturality Thecrem of Charlap

and Vasquez provide some results on the universal classes

T e (6L {n,p) sHT 0L, (M,5) ).




In memory of Innes Warner Cox

iv




Table of Contents
Page

ADSEract .uecesvrvsnscasnsssssssssssrscosnsscavsas 111
Introductlon cieeesescscssssnsennsssssvsvssnasans 1
Preliminaries and Free Abelian Ca8e suuseseenancna b
FANLEE CASE suuvevsosacossacavosssssaonnsnonnanns 9
GL{2,8) sueneansensvsacsssssssonsnssoncasnssssons 10
GL{3,32) eviisovesctsoansonsnnsonssnssennessasnnss 24
Appendix ...,........................,o.........a. Ly

Bibliography IR I A SR R B N N R B A B R N F2

‘(‘T




ACKNOWLEDGMEN'TS

I would like to thank Professors Leonard Charlap
and Chih-Han Sah for thelr patience and asslstance
in this project and Susan Addington for support when

I needed it,

vi |




INTRODUCTION

Suppose & 1s a group, M a module over Z[{%] the lntegral
group ring of ¢ and let D, be any resolution of Z for M,
One cannot 1n general define an action of & on the modules
Di in a natural way, but the notion of a ¥~gystem approxi-
mates an action of & on Di" lOne part of a ®-gsystem conslsts
for each 1 and each ved of a Z-homomorphilsm Ai(c‘) : Dy = Dy
which 1s a chain map satlsfying an appropriate semi~linearity
condition. Now Ai(ﬁ)oAi(T) # A,(07) In general; but they are
chain homotopic via Ui(c,'r) : Dy = D, ; and these maps U, are
a measure of the obstruction trn the existence of an action of
¢ on D;. For each 0,Ted, Ui(U,T)eHom(Di,Di+l) defines an
element in Hom(Hi(M,k),Hi+l(M,k)) which is Hj‘(M;Hi+l(M,k)) if

the coefficlent group k 1ls sultably chosen. Thils deflines a

o-cochaln wo T for & with coefficients in Hl(M;H.l_H_(

which ig a cocyele, if the resolutlicon D, is suitably cho-

M,k) )

gen (l.e. small), and bhe conomology class correspending to

w 1+l is

i 1
Vl+..|.(

M)EHB(@;Hi(M,Hi+l(M:k)))

and called the characterigtlec class of M. The characteristic
classes vj'(lvl) depend only on &, M and the action of & on M,

Now suppose we have the extension O = M =7 =+ § = 1

where 7 1s the semidirect product of & and M. In [ 2 ]




z

Charlap and Vasquez showed that the map dg’q H Eg’q o Eg+2,q-l
in the Hochschild-Serre spectral sequence for this extension
can be obtained by forming the cup product with the class

v (M), When M is free Abellan and finitely generated so
We-can consider & < GL(nZ), Charlap and Vasquez [ 3 ] have

computed the classes vr(M) and proved various theorems ahout

characterlstic clagses in thils case including:

(¥} Theorem: If M is Z~free, then VE(M) = 0 iff‘%%M) = 0

for all n.

The problem conglidered in thls paper 1s that of de-
termining theclasses vi(M) where M 1is a vector space of
dimension n over the finite fieldizp, p prime, and where
$ < GL(n,p). Some results on this problem were obtained
by Sah in [ 8 ] and [ 9 ] by methods other than the use of
the chain homotopies mentioned above} in particular VE(M)
has another group theoretlcal interpretation which yields
results including the fact that vo(M) # O for & = GL(n,2)
where n > 3, However, no such interpretation is known for
vi(M) with 1 > 2.

In this paper we develop some computatlonal technigues
for vi(M) when 8 = GL(n,p), for small n and p, using a specilal

cholce of resolution D, and direct construction of & -systems

in low dilmensions. These fechnigques are carrled out to

compute:




1) VE(M) and VS(M) where & < GL(2,3) and

11)  vo(M) and vo(M) where & = GL(3,2).

We hope the procedures used in 1) could be extended (with
use of a computer) to find some Vi(M) for 1 > 2,
$ = gL(2,p) and p > 3. Moreover, it mey be possible to
extend the procedures used in ii) to find vi(M) for
3 < gL{(n,2) with n > 3, 1 > 2. The main result obtained
from ii) is the fact that no theorem analogous to (¥*)
exists in the case where M is finite.

The calculations rely on pariticular cholces of sub-
groups ¥ < GL(n,p). Results on the classes Vi(M)eH?(GL(n,p);
Y

H M;Hi+fM,k)))for the whole group GL(n,p) are obtalned by

using the naturality theorem in { 3 ], which says that 1r°
Vi(M)eHE(‘i?sH‘i-l(M,Hi(Mﬁk.))),@ < GL(n,p) vi(M) # 0 then

?i(M) 18 81SO nON-zZaro. Moreover, if & 1s chosen to be a
p-Sylow subgroup of GL{n,p) then vi(M) = 0 will imply the

M) = 0. |

universal class ?i(




Preliminaries and the Free Abellan Casé ‘ 4

Let & be a group, and M a module over Z[&], the integral
group ring of &; i.e. there 1s a homomorphism ¢ : & =~ Aut(M).
M 1s called a ¢-module and the actlion of ¢ on M 1ls wrltten
c.m where c-m = ¢(o)(m). Since M ls itself a group, 1t also

can act on another group to form an M-module. TLet D = (D,,d,)

be a projectlve resolution of the trivial M-module Z, 1.e. an
exact sequence of projectlve M-modules

d d
—l * 0 e 2! —Q':—l’—ﬂ-o.—gﬂ g —
D : =D, =D ., D, == Z = 0.

0

Definitlon 1: (®#-system). A ®-system for D consists of two

gequences of functions:

A, t ¢ - Hom, (Dn,Dn) and

U ¢ & x & - Hom

n /4 (Dn’D

n+l)

with the followlng propertiles:

1) eAO(c) = g

11) d.A (o) =

nn An-l(g)dn’ nzl

111) An(c) 18 g-linear, 1i.e.

An(c)(r-x) = c(r)oAn(c)(x) for xeD , reZ [M]

i7) dlUO(G’,'r) = AO(UT) - A,

[
—
Q
S
=
.
O
Eam N
=
S

11) dn+lUn(c,¢) + Un_l(G,T)dn = An(UT) - An(c)eAn(T), n=l,

1311) UH(G,T) is oT-linear, i.e.

Un(ajT)(rx) = gt(r) U {g,v)(x) for xeD , re? (M].




If T' 1s both an M-module and a & -module such that
c(mey) = o(m)*o(y) for all ced, meM, vyel', then A, can be

extended from D, to HomZ:[M](D*,?) by

This map induces an action of & on H'(M,T) which 1s in-
dependent of the 3-system and the cholce of resolutlon D.
Analogously, there ls an action of & on Hn(M,T) induced

from
U(XH®Y) = [An(c)(xn)] ® Y for x,eD,, Yel'.

Thig action of & on ern(M,P) will be denoted by g,(x).
Now let k be a principal ideal domain on which M

acts trivlally. The unlversal coefficlent theorem yields
H(M,4) = Hom, (H,_(M,k),A)

where A i3 a k-module on which M acts trivially. The group
Hn(M,k) can be consldered as a trivial k-module and trivial |
M-moduie 80 18 a posslble cholece for coefficient group A.
Let filg HomZi[M](Dn’Hn(M’k)) be a cocycle represent-
ing the cohomology class in Hn(M,Hn(M,K)) corresponding to
the identity map in HomK(Hn(M,K), Hn(M,K)). Then An(s)-fn

represents the same cohomology class 8o for each ge? there

‘ n-1 ;
- nl -t t 4
exists F_ e Hom M](Dn~l’Hn(M’K)) such that

Z |
A (o) - £ < thldn. Define un(c’T)eHDmZZ[M](Dn~l’Hn(M’K}) by |

n




Definition 2%

n-1 n-1 n-1 n
COR - S AR LM i

n
( aT g

u{g,7) = A (Thl,d—l)]-

n-1 1

Theorem I: un(o,T) is a cocycle representing an element
wn(c,«r)eHn“l(M,Hn(M,k)). And w1 % x @ - Hn_l(M,Hn(M,K))

ls a 2-cocycle for ¢ and represents an element

2(

vleH n~l(

?:H M,HH(M,k))L Furthermore, the cohomology class

of w depends only on the action of & on M, (It is in-

n=-1

g’ the ¢ -gystem and regolu-

dependent of choiceé of fn, F

tion D.)

Definition 3 (Characteristic Class): The cohomology class
2 -1 th
( i

of wleH (2 3H" M,HH(M,k))) 1s called the n”" characteristic

1'1( n

clagss of M and 1s denoted v (M) or v .

Theorem II (Naturality): Iet h : &' = & be a group homo-

morphism. Then ¢' acts on M via h and the action of %, i.e.
g'(m) = (h{(c'))m. Denote by M' the 3'-module M under this

actlon. Then h induces a homomorphism

n* HQ(@,Hn“l(M,Hn(M,k)) - B (s’ ,Hn-l(M',Hn(Ml,k)))

and h*(v7(M)) = v™(u').
The proofs of theorems I and IT can be found 1n [31l.

Suppose M 1ls taken to be free Abelian of rank n and @

a subgroup of GL(n,Z). Then Theorem II implies that a non-

, i .2 1-1. .
zero characterlstic class v ¢H (%;H {M,Hi(M,k))) will 1if¢




to a non-zero class Vv eH
2

Len®(aL(n,2z); ENTHOLH, (1,k))).

The classes Vi eH (GL(n,Z); H ""(M,E, (M,k))) will be
called universal. Also, M may bhe taken to be a module
of rank n over a finlte field,IFp, of prime characteristic
and & a subgroup of GL{n,p).

The principal importance of fthe characteristic classes
arlses from the Interpretation of the second differential
in the Hochschlild-Serre spectral sequence for a split group

extenslon, Let G = the gsemidirect product of M and %.

Given the extension
O M= G=3% = 1

there 1s a spectral sequence (Hochschild-Serre) E?’q(B) = HHg:3)
where Eg’q(B) = B2 (¢;8%(M,B)) for a sultable coefficient mcdule
B. In [2] and [ 3] Charlap and Vasquez showed that the

second differentlal dg’q : Eg’q(B) - Eg+2,q—l
spectral sequence may be interpreted as a cup product with

(B) in this

the characteristic class v'.
Another Iinterpretation of the characteristic classes

is as follows. Let M a ?-module and
d

w n
D o»ee D, — Dy g™ *°° = Dy~ %Z = 0 any resolution

of Z for M., Then & doesn't act on the component modules

D, in any natural way. But a -gystem for D is an approxi-
mation to an action of ¢ on Di’ i.e, 1f there are no Z -

aT)

homomorphisms Ai(ﬁ) : D, = D; which satlsfy Ai(c)@ﬂi(T) = A,

3 (

3




then the homotopy part of the 3 -system Ui(U,T) is non-

vero and measures the obstructlon to an action of & on Dj.

Alsc in [ 3 ], Charlap and Vasquez computed Vi(M) for

M aZ~free module and as a result proved the followlng.

Theorem IIT: If M is Z-free, EVi(M) = 0,

Theorem IV: If M is Zi-frse, then VQ(M) = O 1iff

Vi(M) = O for all i.

An alternate proof of Theorem IIT whilch doesn't uge
( p

b-gystems or specific calculation of v-(M) appears in

[ 81.)




Finlte Case

We conslder in the followlng, some cases where M is
a vector space of dimension n over a fleld with p elements,
b a prime, and & 1s a subgroup of GL(n,p). We wish to in-
vestigate the characterlstic classes vi(M) and to determine
1f a theorem analogous to Theorem IV exists in thls case.
No formula for computing v in this case is kinown,

however, some of the groups H-(GL(n,p); Hn-l(

MyH (M,k)))
which contaln the universal classes have been computad in
[ 8] by other methods, (see Appendix). We compute v® and
v3 in some exampleslfor finite M and particular subgroups
of GL(2,3) and GL(3,2). The procedure constructing the
?-system In these cases 1ln theory works for GL(n,p)} wilth
arbltrary p and n 1f ? is chosen to be particularliy simple
but the technique is8 very unwleldy. The questlion ariges:
which subgroups of GL(n,p) may be chosen to ilmsure that 2

non-zero universal class VisHE(GL(n,p); Hl"l(

2( i-l(

M3E, (M,k)))

will restrict to the clase voeH ®sH M;HL(M,k)))?

Let 8% = the subgroup of GL(n,p) consisting of upper
triangular metrices with 1's on the diagonal. Then &7 ig
a p-Sylow subgroup of GL{n,p) and a non-zero universal
class must be detected on this subgroup. However, con-

struction of the &-system even for 2 = ¢*, n = 2 is too

cumbergome, For n = 2, 8% = Z%) and the same procedure
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as in Example 1 below should work. In Example 2, the
case for GL(3,2), &% = Dy (dihedral grouo) and the con-
structlion of a &*-system 1s too difficult. Therefore,
we choose a subgroup ¢ = the group of all matrices in

GL(3,2) generated by

1 O 1
O 1 1
0] 0] ]

so @ ® Z,- It turns out. that thls cholece of & 1s suf-
ficient to detect the universal class VB, i.e. show v° # 0,
The calculatlion of v for the free Abelian case relied
upon the cheoice of a partlcularly simple resolution for M
which facllitated the constructlion of the chain map An and
homotopy Un In the ¢-system for arbltrarily large n. We
are unable to do this in the finite case. Perhaps there
is a more efficient resolution than the one employed in

these examples.

Example 1: (GL(2,3)) _
Let M =Z, ®Z, and let & be the subgroup of GL(2,3) |
conglsting of upper trilangular matrices with 1's on the

diagonal, |
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so & =l Define action of & on M 1n the natural way

but write 1t multiplicatlvely:
o(s,t7) = (779, ¢9)

2, 1 i +2 7 j
(st,89) = (s313,4d)

a

for ¢ the generator of &, (si,tJ)eM, 8 and t generators

of 223.

Now let X = (X,4,0,) be the usual free resolution of

Z for ZZB, l.e.

d 9 o
_- a e 8 .—-I:-l—i -k.‘l‘.—i 2 80 -—-}—‘-¢ -g-a —
X Xy X, 1 Xy X, Z= 0
Xy =Z[Zq]
for all 1.

multiplication by 1 - ¢ when 1 is odd

1 multiplication by 1 + £ + t2 when 1 is even.

Now construct a resolution (D*,d*) = D for M by the tensor

product of resolutions D = X ® X, specifically

1) D= @ X ® X. .
B i4j=n * ‘!
— b} 7 - i | :‘i

d, = ®(3,01d) @ (,l) (1dy®9,) !

where idj denotes the ldentity map on Xj‘ The augmentation

e : D.— Z 1is obtained from the composition

O
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£®e o L,
XO®EZXO Z & Z

I

where f(n®m) = nm and e 1s the usual augmentation in X

= % n. .

namely if X, = 2 n,0 then e(KO) s

UGZS UEZB

Fach D 1s an M-module via the action (m,n)(a®b)
= (ma) ® (nb) for (m,n)eM; a,bezzﬂz3]. We fix notation
for elements in the components Di of D as follows. Since

XL =EZFZ3] for all 4L and D, = p+§=iXp ® Xq, denote by Sy

the generator ofiz3 inside Xp and by tq the generator of
223 inside Xq. So 3 ® tq denotes a generating element

P

of the summand of Di correspondlng to Xp ® an

Lemma 1: The followilng Z-homomorphisms Ai : Di - Di

satisfy (1), (11) and (iii) of Definition 1:

Ao(l) = Al(l) = Ag(l) = ldentity map

AO(G)(Si®tJ) - gitigyd

0®%0 o "®%

Ao(og)(sé®tg) = sé+2j®tg

Al(c)(sﬁgtg) = 57 ey

Al(cg)(si®tg) = siBlg4

a (o) (efotd) = sttt + 57 ettt

8,(6) (sfmtd) = o Pepd + 5Tl 4 g 1FEIHgIHL

1.3y _ Ji+3o.d
Ag(a)(sl®tl) = gl Jgt

1 1
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Lo.dy _ Ji+io.d
Ae(ﬁ)(se®to) = 85 “®t

A (02)(si®t3) = gl 2dgtd

2 1202 1 1
AQ(GQ)(SéStg) - s;+23®tg
Ag(c)(sé®tg) = s-tetd - si+j®ti+l - 51 eedte
- si+j+l®ti+2 +Asé+j®tg
Ag(cg)(sé®rg) _ Sé+23 ot + Si+ej+;®ti+2 A
. Si+2j+2®ti+2 v 520 GHD Sé+2,j®tg+2
AB(c)(s§®tg) = s%+J®tg
Ay(a”) (sgmtd) = a5 “Jetd
AS(U)(sé®ti) - sé+3®t£ + 83 eyt
AS(UE)(Sé®ti) - Séwj@ti + S§+23®tg+l + Sg_+2j+l®tg+l
A3(g)(s§®tg) = si+3®tg + s§+j®tg
8y (0?) (alotd) = 2] S%+2J®tg+1 + gir2lpy]*?
By(@)(sgetd) = s5FIed + oM leelt 4 olterd 4 oIttt
AS(QE)(sé®t%) = sé+23®t§ + si+2j®tg+l + si+23+l®tg+l
| b sl gltaiIg e skr2dgydtl :
¢ s Rglte S%+23+1®tg+2 . S§+23+1®tg , ?
Proof: Define AO(U) 1 Dy = Dy by Ao(c)(sé®tg) = sé+d®t£.

Thig clearly satlsfies (i) in Definition 1. The other Ay

are deflined by starting in dimenslon 0 and solving equations
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(1i) for A, subject to condltlon (141). Then define Ay
by solving (ii) using A;_, subject to (1ii). TFor example
1

we compute A3(a)(sl®tg). Ay must satisfy (11)

dahy(s70td) = A,d, (s0td)
= ( )[S ®tJ - é+l®t% - s%@ti - si@ti+l - si@ti+2]
= Sé+3®t% B i+w®ti+l _ Si+j®ti+2 B s§+j+l®ti+2
+ s;+j®t% - Sé+l+j®t% + Si+3+l®ti+l
. S§+g+1®t£+2 . si+3+2®ti+2 B Sé+J+l®tg
_ Si+i®ti _ i+j+l®ti+l _ Si+j+2®ti+2
- si+j®ti+2 + sy dor) - o1t THleyd
= d3(si+j®tg+sé+j®tg).

The following is a typlcal check for g-linearity. Tet

o= (sK L)eM, then o{r) = (SK+L,EL), and let
d = s§®t%eD3. Then
8y(0) (rd) = Ag(a) (s, 0t
_ si+j+k+4®tg+& . S§+3+K+g®tg+L
= (sk+&,tb)(si+J®tg+s§+j®tg)
= o(r)-As(a)(d).

Other o-linearity checks are dene in a similar fasghion, n




i5

It is possible that computation of Ai could be done
by computer. The difficult case 1ln all examples is for
m
Ai(T)(sO®ti).
Given A; as above, A, (oT) # Ai(o)oAi(T) in general

and the next step 1s to find a chaln homotopy U.

Lemma, 2; The followlng maps Ui(G,T) : Dy =D

141 satisfy

(Lv), (1i') and (ii1') in Definition 1:

UO(U,T) = O for all o,Ted

Ul(l,T) = Ul(w,l) = 0 for all Ted

Ul(a,w)(si®tg) = 0 Y g,Ted

Uy (0,0) (sgetd) = o

Ul(c,ce)(ségti) = -sé@tg+l

U, (6%,0) (s5989) = ~sletdtt

Ul(cg,oz)(sé@)ti) S I

UE(U,T)(Sé®tg) = 0 ¥ o,Ted

UQ(I,T)(X) = UE(T,l)(X) = 0 V Ted, xeD,

Uz(c,c)(si®ti) =0

Ug(c,cz)(si®ti) = s%@tg+l

Ug(c?,c)(simi) = sé@tg""l

rjg(ug,cg)(si@)ti) = séﬂétg”

UE(cs_.c)(sé@tg) = s%"’ei"@ti*’l + 2(3?‘23@1;{*’2)
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Now choosgse k =Zq 2 trivial & -module. Consider
Hn(M,K) as a trivial M-module and trivial k-module.
We need fneHomz:[M](Dn,Hn(M,K)) corresponding to the
ldentity map in HomK(Hn(M,k), Hn(M,kD. Then, by
the Kinneth theorem Hn(M,k) is isomorphic to a direcst
sum of copiles of k, one copy for each pair (p,q) such

that p+q = n, 1i.e,

H (Mk) = & {g >
h pra=n P4
where <gpq> = k =2Z, and &g is a generator. Now define: |
n, 4_,my _ 4 ,.m
f (sfgtj) = 8y for ngtjaDn'

Note that fn(s§®t?) = £%(1;81,) since H (M,k) is a trivial
M-module and f is an M-homomorphilsm [sé@t? =(SL,tm)'(li®l;)
o

where (s&,tm)eM and - denotes the M-action on D,].

The action of & on Hn(M,k) 1ls given by the following:

e pa—
- =~ -

01 o1 |

h!
9 (210) £10

e -
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~ £ J

= f (sé@tl).]

Consequently F? = 0 for n s 2, 7e®, so for this example
n -1 =1

uo,1) = (o1), (270, (r77e7)].

Lemms 3: For the resolution (1)3 o,ted, u(o,r)e
2

Hom,, [M](Dniﬁm_l(M:K)) for n = 2,3 are given by the following:
ug(p,T)(si®t8) = 0 for all p,Ted
2 2
u (r,1) = u"(l,6) = 0 for all Tecd
e io.dy i
u (036)(so®tl) - gzo
2, 2y, i3y
u“(0,0%) (85®t5) = -g,,
2, 2 Lo,y _
2,2 2y, 1.9y _
u (U N )(so®tl) = 0
3 WEEN
u (D:T)(S§®to) = 0 for all p,ted

uS(T,l) = u3(l,¢) = 0 for all Ted

3 1.
u (U’G)(Sl®ti) = €34
3, 2y, 31 ]

u(o,6) (s7885) = g5,

1°(0%,0) (s2td) = g5,

3,.2 2 i,o.3 !
u”(e,0 )(sl®ti) = 0 |
S(T,p)(sl@)t‘]) = 0 for all T,ped.

4 o0° k2

Proof: The following 1s a typical calculation:
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ug(gg,c)(sé®t£) = 1*f2(Ul(c'l, (02) l)(Sé@ i))
= l*fg(Ul(cg;G)(Sé@’ti)
= 1,9 -sJot 1

Other calculations are done gimilarly. [

Propogition l: For & c gL(2,3), M = ZU®%sy vg(M) and VS(M)

are both zero.

Proof: We have ug(c,T)eHomM(Dl,Hz(M,k)) representing the

class WE(U,T)eHl(M;HQ(M,k)). And wo : 8 x @ - HJ‘(M;HE(M,]&))
1s a ®-cocycle which represents vgeHg(@;Hl(M,HE(M,K))). To
determine whether v2 = 0, we need to know if wg is a co-

ey

boundary, l.e.if thereisa map ¥ : & - H (M,H, (M,k)) such that

3)  ufla,t) = o¥(r) - ¢lar) + ¥(o)

where g-y(r) denotes the actiocn of & on Hl(

ol

M;HQ(M,k)). For

any ge?, Y(o)eH M;HQ(M,K)). Let ¥_ represent thls class;

erHomZ:[M](Dl,HE(M,k))f Now, 1f u“(v,T) represents a

nQ

coboundary then

4y UE(G,T)(Xl) = (°¢TH¢GT+¢G)(X1) for any x €D, .

Hy (M) = <g > + (g, + {g;,> (where {g;30 =k =2,) so

1
o’

for any ve$, there exist n m;eZ% such that




2%

1 2 3
3)  ¥,(1®L1;) = ngggp + R8s t N gy,
1 2 3

be(11®10) = m g, + M 8oy + mEy g

and silnce HQ(M,k) 1s a trivial M-module, we have

lotdy) =
by (85®65) = ¥,(1,21,)
1.0y

Now v- = O because ¥ can be deflned by setting (in equations

(5)):

my = ny =0 Cfor 1 = 0,1,2
1 _ I _
my = 1, nU = 1
1 T
o a
2 2 _
mc = 0, nc 0
2 2
mg"-’-'l,[’12=l.
o} o

3 .
We have u (c,T)eHomzz[M](DQ,Ha(M,k)) which represents
WS(U,T)GHE(M,HSCM,k))Q The cocycle WO :d x B - Hg(

represents the characteristic class vaeHQ(@;HE(M,HB(M,k))),

2

M,Hg (M, k) )

The class VB = 0 if there exists a map ¢ : & = H

whose boundary is v3, i.e. ws(c,w) =g§(t) - §(or) + ¥(o).

M3Hg (M,K))

Denote by wc : D2 - Hg(Mgk) a representative cocycle of
y(a).




Now HS(M::K) = <503> + <g30> + <g12> + <g21> where
<gij> = Zy. We will define y_ on generators of D, by
determining elements of Z@; 'Li, mi, ni for any T8,

i =1,2,3,4 such that

_,1 ) 3 k
11"1'(‘10‘812) B LTgO3 + LTg3O + LTng + LTng

1 2 3 4
be(191)) = mgos + W gy + W1y + My

1 2 3 L
ww(léglo) h nTgOS + nTgBO + nTng * nTgEl

and satisfyling

6)  w(rsp)(xp) = (=4, ) (xp)

for any r,ped, XEGDg. In this case the map ¢ can be defined

by taking:
i i
7) n,=4-=0 for all 7ed and for all 1
1 1
m. = 1 m = 2
a c2
m22 = 0 m22 = 2
%) ]
mg = 1 m32 = 0
o]
|
4o 4
m = 1 mo, = ¢ where o generates 2
g i
mi = for all 1L
l - €

The ni, mls Li are determined by solving a sysftem of equaﬁions
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determined by 6). For instance, if we wrlte out 6) for

X (ll®ll) and p = T = ¢, the generator of & we obtalin:

-
8)  u(o,6)(1;91)) = (0¥ -y y+g)(181).
g

The left hand side is equal to 830 by (2) and the right

hand side can be expanded fto obtains

£30 z_(a$a'¢de+¢c)(lf®ll)

i}

G‘lfc(ll@ll) - wcg(ll@’ll) + Vg(ll@’ll)

830 = Tx (¥ (8,(67)(1191))) = ¥ ,(1,81,) + ¥ (1,81,)
a

830 = 9« (¥, (1,®1,)) - ¢62(11®11) + 4,(1,814)

_ 1 o 3 I
830 = T (My8ogtl s T gy o1 8oy )

-

3 4 )

2
- (m 2g03+m02g3o+m62g11+m02521

= Q

2 3 4
+ (Mgt gyt S+ gny )

1 2 3 - .
830 = W, (8t ot8s1850) + mogqy + mylgy stes,) |

( 1 2 3 U ) j

n
+ m (851%83,) - mc2g03+m02g3o+m62%11+mceg21

1 2 3 4
mngS + mchO + mcgll + mchI .

Equating coefficients of gij on both sides yields:

1 1 i _
mg - m o + mc = 0
o
i 2 3 4 2
mﬁ + 2mCj + mc + mc m-, = 1
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i 3 3 _

mc + 2mU - m o = 0
c

1 b

ma + E'mc - mUE - O a

Writing out 6) for all r,ped and other x23D2 ylelds a

i 1

system of equations in Li, mys B, for which 7) is a

solutlon, u

In this case v2 1s known to be zero since the group

H2(

GL(2,3);H(M,H2(M,k)) containing the universal class
7 is zero, (see Appendix). We have shown that v = o

for & the p-Sylow subgroup above. Slnce ?8 must be de-

tected on a Sylow subgroup v’ =0 implies ?G = 0. 1In

2(

other words no non-zero element of H SL(2,3);H2(M;H3(M$K))}

arlses from a characteristic class.

The procedure of Example I could be used o explicitly

compute vz,v3 for p » 3, ¢ & GL(2,p) but calculations would

be more difficult. It is known, (see Appendix) that
7E(M) # 0 for p = 5. o

Example 2: {GL(3,2))

Let M =Z, +7Z + %, and let & be the subgroup of

2 2
GL(3,2) generated by




Then 52 =1 80 % =7Z Defline action of ¢ on M by

o*

c(rL,sn,tm) = (rL+m’Sn+m,tm) r,8,t generators ofzzg.
a [
NOW suppose X : oeo - Xn—n-' Xpop = 00 = Xy Z =0

1s the usual resolution of Z for 252, i.e. Xi = z[zzg]
with Bi = multiplication by (1+t) for i even and Bi = multi-
plication by (1-t) for i odd., Now let D be defined as the

three-fold tensor product of the resolution X :

D_ = ® X ® X ®X
? pragtayen 4G 9

d_ = ®3_® id @(—l)pid @[3 ®id +‘(—l)qlid & o, )
n p q p ;" Ta, 47 9o

where q = 4 + qy and idj denotes the identity map on Xj'
We can now construct a & -system for this resclution.

Here ri ® Sé @ tk wlll denote an element of Di’ 1 = pta,+d,,

p 1 9

corresponding to the summand Xp ® Xq ® Xq and extended to
1 2

~
fal

-be M-linear.

Lemma 2.1: The followlng Z-homomorphisms An(T) : D, = D,

satisfy the conditlons of Definltion 1.

A.l(l) = identify map for all i

k) = ré+k® s%+k® tg‘

load
AO(U)(rdgsO®tO
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i Jo.ky _ itk j+k_ .k
Al(c)(rr®sd®to) =r] ®s5 ®tg

1o do ky _ d+k_ J+k. .k
Al(c)(rd®sr®to) = r3' sy Rgto

1o donky _ itk j+k_ .k itk Jtkdl, , k+1
Al(c)(rdgsdgtl) = 15 E&so ®t, + ry sy Dty

i+ Jtk, k41
+ ro %Ssl ®to

i3 .k ik, S+kg  k
Ag(o)(r ®sU®t ) + ry 5830 Rty

2 70770

Ag(c)(régsg®tg) = ré+K®sg+K®tg

Ag(c)(rig)sj'j-@tg‘) = rjj:+k®si+k:®tlé

Ag(a)(ré®s%$t§) = ré+k®si+&®t§ + ri+k+l®si+K+%®tg+l
+ ré+K+;®Sé+k+l®t§+l - ré+k®sg+K®tg+l

Ag(c)(ri®s%®tf) = ri+h®sg+g®t§ + ri+K®si+k®tg+l

Ag(g)(réysg®tg) = ré+k®sg+k®t§ + ré+k®si+K+l®t§+l
+ ri+K+l®sg+K+l®t§+l + ri+k+l®si+k+l®tg
+ ré+K+l®Sg+K+l®tg+l + ré+K®Sg+k®tg+l

AB(U)(r§®Sg®tg) = ré+5®sg+K®tg

a4(e) (rgpsdets) = ritiesdthgtk

AB(q)(ré®s%8tg) = ré+K®si+K®tg

1o Jo ky _ i+k_ J+k_ K
AB(U)(rl®SégtO) = r; ®sh ®t, |
1o dgwk itk g+l ko itk gk k+l 5
( = g : |
A3(0)(resgty) = r77@sy Bty + r3 @sT B N
N E0 S B 5 S |

To

1 0
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A3(c)(rji®si®t§) = iﬂi sy ®th + r“k@ f“l@tléﬂ
- ré+K+l®Si+K+l®tg+l + ré‘+k+l®sg+k+l®tlé+l
_ %.+k®sg+k+l®tlé+l
(c)(ro®r ®t%-f) = é+k®s%+k®ti; + ré+K® %+k‘®ti5+l
" }J:.+K® J+k+l®tl(§+l IL+K® J'H{ lé+l
+ I_:T2_+k+l®sj_]]:+k+l®tl(§+l + I‘é.+k+l®sg+k+l®tk(§+l
+ ré‘+k+l® g+l{®tlé+l !
A3(q)(ri®sg®tg) - ri+K®sg+k k l+k®SJ+K1 K-i—l ’
n 1+K J+k®t _ I.:I.-i-}.§+l %+k+l®tki‘.+l | ‘
+ ri+K®SJ+K®tK+l + ré—i-k-—l—l@s%-i-l{—i-l@tkﬁ-l
i I‘é+K+l 3 k®tk " ré.+k+l®sg+l(+l®tlé+l |
Ag (c)(ré®si®tg) = é’Lk fk@tg’ + r?'K@ i'{”kﬂ@tlf*l
+ é+k®sg+k+l®tif+l _ ;H«:@ JO+K®,GLJ<":+1 ' B
- rltipgdtily il | Lty el ‘
~ r'i+K®s.‘j"i-K@tK + réﬂi_ S5 K@tl{+l
+ r%‘+K®sé+k®tg“+l r%’+K+l®sg+k+l®tg
Ay(g)(r O®SJ®t3) = ré+K® 5 k‘@tg‘ é+k®sl k@té“‘ '|
" ri_+kc®sg+k.+l®tg+l é+k®82 l{®tlf+l
+ ri+k+l®si+l(+l®tlff—l + ré+k®sg+ki+l®tl§+l
+ i+K®sg+k®tg + r;k@ i’*’kﬂ@tg ' |
. rg)-m: 1g sItaei r%_+l_{+l®sg+.k.+l®t}(§+l !:
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With the above definitions, An(l) - An(c)°An(c) # 0

in general and a homotopy Un(p,T) : D, = D, may be de-

fined ag follows:

Lemma 2.2: The following maps Uy satlsfy the condltlons

of Definition 1.
Ui(c,l) = Ui(l,c) = 0 for all i

Uo(g,c) = 0

Uy (g,0)(r ®sl®tk) = 0
Uy (0,0) (rg@sdetd) = o
Uy (0.0) (ripedeel) = —rlosdotitl - rithesdpyitl
- r2®s%®t§+l
Ug(ﬁ,c‘)(ré@si@ti‘) = ”rg®si+l®tg+l ' é+l®s3®tk‘+l
Uy (o, )(ré®s%®tg) =0
Ug(c,q)(ré®sg®tg) =0
U2(U’G)(Ti®si®tg) = 0
Uy(a,e)(r i@s%@tl) = r_jfl J®tk+l . ré_@gg@tgﬂ
Ug(c‘,c)(ré@s%@tg) = ~r;‘®si+l®t§ _ ri®sg®tg+l
-~ r ®Si+l®tg+l + ri+l®si+l®t§+l

(continued)




29
_ r¥®sa®tk+l _ 1+l®sg+l®tk+l
1 Yo 1
1+1 k i+l J..k
+ O ®83®t + r3 ®Sd®t0

+ r3®s l®tk+l

The proofs of lLemmas 2.1 and 2.2 are omltted since the
computatlions involved are analogous to those appearing in

the proofs of Lemmas 1.1 and 1l.2.

We now let the coefficient group k =222. Define
n —
f (ra®85$tc) = g, Where rdasb®tceX5®X58Xc'and where g,
1s the corresponding generator of'Hn(M;K) = ® <gabc
a+tb+c=n

and each <gabc> =Z,, l.e. HE(M,K) is isomorphic to six

coples of:E2 and wriltten:

+ <8py1” t <810y *+ <8110

Now by the same argument as that 1ln Example 1 we may take

F* = 0 and u™(a,7)cHom D, _1-H, (M,k)) are defined by

% (M1
the followlng lemma. The proof 1is omitted since the pro-

cedure imitates that used in proof of Lemma 1.3,

. n
Lemma 2.3: The cocyeles u (G’T)GHDmZ:[M](Dn—l’Hn(M’K))

for n=1,2,3 can be deflned ag follows:

WMo,r) = (or) 20 _ (17T e )] ]




ute,1) = u(1l,0) = 0 Tn

ul(o,a) = 0

2(

[
O

c,c)(r%®53®tk) =

b 1980%Y

2(c,c)(ri®s‘j®tk)

e 07%1%%,

I

ug(c,u)(rl®sJ®tK)

0?80ty “€110 ~ 8020 T 8200

ua(@,c)(r¥®sj®tﬁ)

o®8), 8010 T 8030

5’ (0,8) (rlesdaty)

i

€120 * €300

3 1 4. ky _

u”(e50) (ry®sg®ts) = -8510 = 8150 ~ 810 * &111
~ 8p01 T Bo01 T Epoz

* 8030 T €300

H

0 (0,0) (rlesdett) = o

u?(0,0) (riesdett) = o

u3(c,c)(ri®si®tg)

OO

Proposition 2: For 3 < GL(3,2) generated by ¢ =

and M =Z, + Z, + Zys v (M) = 0.

2 2
P
Proof: We have u (9’T)€Hom23[M](Dl’HE(M’K)) defining
Wd(p,T)eHl(M;HE(M,K)) and W& 1 8 x & = Hl(M;Hg(M,K))

30

OO

el
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1s a coecyele which represents vgaHg(@;Hl(M;Hg(M,k)))-

The clags v2 is a coboundary 1f there exists a map

3 - Hl(M;HQ(M,k)) such that
v=(psm) = o4 (1) - ¥(pt) + ¥(p).
Dencate by ¢p an element of Homzz{M](Dl,Hg(M,k)) which

represents $(p)eHl(M;H2(M,K)). If w (s,T) represents a

coboundary then

2
11) ulesm)(xy) = oV +4,)(xy) for all xjeDy
and all p,7ed.

To determine if such a § exlists we follow an analogous
procedure ag 1n Example 1. We determine how L must be

defined on 1, ® 1 ® L, eD; and use the fact that H M, k)

(
D 4, T =
is a trivial M-module so0

logd otF ).

f (1ol ol ) = ¢T(rp 1,%%,

TR Ay 4,

'Y +

If such a § exists there are elements Ll, ml, n- inzzz

such that:

1
TgOOE

b B
2011 t ¥78101 T *18130

¢T(l RL®1,) =4

>
P2l T L8h0p T4

€200
+ 4

1 2 3
)

U (L®11810) = mig o, + migqoy + M o0,

0""1" 70

I
+ 8011

=
T g1 T 8110
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1 o 3
b (1®10®1,) = nignn + Br8ang + Nr8o0g

6

|y
T Ni81o1 F D8ripe

+ nTgOll

Writing out equation 1l1) for various x,eD; and p,Ted

and substituting u® values from 10) yilelds a set of egqua-
1
T-
in computing p¢T(xl) on the right hand side of 11):

tions in Li, mi, n The actlon of ¢ on HE(M,k) is used

phe (1) = i, (A1 (p™) (3)))

The action of & on HE(M,k) is given by:

14 = id

~-"*(goozs 11 1 1 1 8002]
e(g500) o 1 0o 0 0 0 €020
ox(8500) = o 0 1 0 0o O 2500
o (8oy1) o o 1 1 1 1 €011
o4 (81 51) 60 0o o 1 1 €101
9 (8130 o © 0 0o 0o 9 8110

The system of equations in Li, m:, n# has a solution

in this case:

S -
my = ng = Ll = Q for all 1




i
my = 0 1# 2,3
2
my = 1
i
= O 3
Dy 1#5
5.
nc 1
i
LU = 0 for all 1 .
Therefore vd = (O since this explicltly exhiblts an M-homo-

morphism ¢ whose coboundary 1s vg. a

o .

We now compute v3eH2(§;H (M;HB(M,K))). Again v 1a

Mo

represented by WS ;3 X & = H (M;HS(M,k)) where
w3(c,¢)aH2(M;H3(M,k)) is represented by
us(c,T)eHomZZ[M](DE,HS(M,k)) and UB(G,T) are tabulated
in 10). We must determine whether v3 = 0., We follow a

procedure similar to the previous cases but write out a

few meore dtalls.

H3(M,k) ls a direct sum of ten copies of Z, written

with generators:
Hg(Msk) = <g003> + <gO30> + <g300>

* legrz’ ¥ (8o’ * B’

+ <g192 T <8gpy” * (8¢

+ gy -




The action of & on HB(M’K) ils given by:

04 (8003) = Eo03 * €030 T E300 * Bo1n * B102
T 801 T 8111 T 8Bgo1 t 8350 t &210

a*(g300) = gSOO

9x(812) = 81 * 111  B210 * 8030
9x(8100) = 810p = 8117 * 8100 T 300
°*<€201)_= 801 * 8210 * 300
04(8117) = €131

95 (80a1) = 8021 * 8030 T 8100
9:(2100) = 8120

7% (8510) = 8210

We recall how thils action was determined: an element of
HS(M,k) is represented by an element x ® YED, ®Z§[M]K and

gc® acts on x @ vy diagonally,

Now v™ = O 1if there exlsts a homomorphlsm

(M,k)) such that
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12) u(p,7)(xy) = [py(7) = ¥(p7) + ¥(p)1(x,)

¥ X2€D25 ¥ p,7ed.

Represent ¢(T)€H2(M3H3(M,K)) by ¥, : D, = H3(M,K) 50 ¥,
is an M-homomorphism, HS(M,R) 18 a trivial M-module. Here

again pr 18 computed by

-1
o, (x) = py (¥ (A (p77) (x))
Again for all Ted, wT(x)eHg(M,k) so there exlst elements
R R R ST AT :
as bT, oo dT, es fT in:22 guch that:

1 > 3 oy
b (1@L®1,) = al(gyng) + a(ghay) + allgggy) + allegn)

5 N 6 7 8
tag(grop) + a(ege) + acleryy) + o (8gs)

+allgyp) + o)
1 (121910) = br8gng) + b7 (ggg) + b, (8300) + bi(g012) |
# 2(8;00) + 2 (8p01) + BLleyyy) + by (Egy) |
+ 5.(8100) + 070 (8p10) |
i
b (181 ®10) = tgqos + elega0 + elEg00 + iEos |
* 028 0p * CEgQOl *olg ) + C§g021

FCr810g T Sy EBog .
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0 (1681,811) = digoq + digggo + dgggq * dﬂgOlZ
+ 428y * d25201 + dzglll + dEgoel
I CIP

¢ (1,8181) = eigoog + efgoso * efgsoo * e$g012
+ elg o + efgzol +elg ) + e§g021
+ 93%120 * eiogzlo

¢T(11®ll®lo) = figoo3 + ffgoso + f§g3oo
+ fﬁg012 + 128 0p f§g201 +flg));
+ f8 -+ f9 + flo

r 8210°

Again ¢T(ré®s%£8t§2

on HB(M,k),

) = 4, (181 ®1 ) since M acts trivially

We write 12) using generators:

13) W (p,1) (%) = (o=, + ¥5)(x,) £or x,eD,.

Proposition 3: For & the glven subset of GL(3,2) and using

resolution 9) we obtain a non-zero characteristic class

v3 () e (2 3K (1385 (M,K) ) ).

Proof: We write out 13) for various p,Ted and XeDy {note

that ¢, = 0 slnce § 1s a homomorphism) to get a system of ﬁ

\ i i i
equatlons in a kb
Jqua T2 O C.Ts

i i
dT, a

P fi, Te® . Since 1in this
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example @ 3222 generated by o, we drop the subscripts for
gimplicity, 1l.e. at = di. The values for uS(p,T) are sub-

stituted into the left hand side of 13) using 10). Recall ‘

that

H
ko]
*
~
-

_‘.‘
P S
=
P

el
1

[._.l

p—
—

b
Qo
g
e

ob . (%)

where g, denotes the action of & on H,(M,k).

14) 0 = u’(e,0) (LPL®1,) = (o¥_-y,+¥,)(191.81)

= c*(wg(Ag(c_l)(lo®lg®lo))) + ¢d(10®12®1o)

ot .
= b7 (8003t 8030V E3007 801281028201 8111802178120 8210

+ b2 3¢

€030) T P (8300)

il
+ b7 (8415781117801 078030

=
+ 5781 0p 8111812078300 ;

6 7
(8001780101 8300) + ' (E117) )

3 3
t 0 (801 2030 E120) + P (81p0) y

+ bl( + bg(

€003’ gOSO)

4 R _ |
+ b (g8g1p) + 07 (81 p) + b6(g201) L

z 8 9 10
g111) + P (8gpy) + D7 (&yp0) + BT

810/ :
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Equatling coaefflclents of £10p OR left and right hand sides

of 14) ylelds:

5
0 = 2b~ + bl

or/bl = 0 since all caleulations are mod 2. Equating coef-

ficlents of g5, in 14) yields:

6

3 + bl + b5 + b =0

2b

which 1lmpliles

15) b5+ 10 = 0
Writing out equation 13) for ua(cgc)(lé®ld®lo) results
in the same equation as 14) except "b" 1s replaced by "f",

And writing out equation 13) for uS(G,w)(lr®ld®lO) vields

the same equation as 14) except "b" is replaced by "e'.

Thig is true slnce A2 is defined on all of lO ® 12 ® lO’

-
® 1, ® lO in the same way and v~ = O

12 ® lO ® lO’ and ll 1

ln each caze. Therefore, equating coefflcients for g102

(and gSOO) as above ylelds:

W) f~ =20

17) and et =0 3




(18)

- 8510 T &p30

= u

=g

i

= g

= J

=

Uﬂ%(lfdf&l + r.®s5.8t

3

0,8)(1;®1,81,) = (ﬁ¢0_¢l+¢c(ld®if?il)

Wy (B (0) (121,81, )) + wc(lo®1rall)-"°

171 "0

+ r®s®t - 12®1O®t0) + 11:5(10@11@11)

W (Vg (121 ®1, + rl®sl®to))

+ ¥, (121,81,)

1 L2 3 Y 5
800374 €g301d 83007d 812178 o

6 7 8 9
A7 8o01Td 8119 g td7E 5

0. .1 2 3
7851 0T 8003t B30 Ba00

x (d

y = 6
T 8oyt 8 gt f g201+f7g111

8 9 10
T 801t 8100t oyt (191,91,)
1.1
2d7+f )g003
2 -2 1 .1 .k .4 8 8

+ (2d“+f +d T+ d FE T+ O+

)goso

+ (2d3+f3+dl+fl+d5+f5+d6+f6)gSOO

+ (2d4+fl‘i+dl+fl)gol2

+ (2a+fo+aterd)

€102 )




+ (2dP+£0+gtert

)g201

+ (2d7+f7+dl+fl+d4+f4-d5-f5)glll

+ (2d8+f8+dl+fl)gogl

+ (2a%+£ %+ 1 a e aBrrSaBee®)

+d-+f-+d +f €150
+ (2a1% 10 gt el gt st dOrp Jeo1o -
Equating coefficients of 8300 ylelds:
3 3 1 1 & 6

=y
19) 2d° + 2 + gt + et 4 24 4 0 - 0,

Writing out 13) for u3(c,c)(ll®ld®ll) yilelds the same
right hand side as 18) but replacing "d" with "e" and the
left hand side will equal 8100 * &3¢90+ S0 equating coef-~

ficlents of 2300 in this equation yields:

20) 2e3 + £ 4 el 4 st 4 QB 4 5 4 0 4 6 1,

Writing out 13) for ua(c,c)(lo®ld®12) and equating

coefficients of 8102 and 8501 yield:

5 5 5 5 g
b+ c” + d” + e” + £ + al + bl + cl + dl + el +_fl = 0

and b6 + c6 + d6 + e6 + f6 + al + bl + cl -+ dl + el + fl =

which ilmplies (adding)

6 6 6

=
+ £+ £ =0

L
b5 -+ b6 + 05 + 06 + d- 4+ d

[
+ e’ + e




which with 15), 16) and 17) above ylelds

6 6

= =
21) 4 + d° 4+ e’ + e° = 0.

Adding equations 19) and 20) yields

dl -+ el + d5 + e5 + d6 + e6 = 1

and this with 21) implies

1 1

Now equating coefficients of g, , in 18) yields

23) £ 4+ ¢t =0

and equating coefficients of 8510 1n 13) for uB(Q,G)(13®lO®ll)

ylelds

o) ety el - 0.

Adding 23) and 24) ylelds d + e = O which contradicts 22).
We conclude that vo # 0 since 1t is impossible to find
at, ol ot ab, e, £ wnich could define a map ¥ such that

u3(

psT)(x5) = [pu(r) = y(pr) + ¥(p)]l(xy)

for all X2€D23 and for all p,Ted. i

Propositlon 3 implies that the universal class

$G(M)BH2(

GL(B,EBHQ(M;HB(M,K))) 1s also non-zero by the




naturallity theorem (Theorem II). But since & in thiéﬁ,
example was not chosen a Sylow subgroup, Proposition 2" ” ;?;
does not imply that the unilversal class

V2€H2(GL(3,2);Hl(M,Hg(M,K))) ls zero. However, Propositilon 2

and 3 prove that no analog to Theorem IV exlsts for finite M.
Actually, we have shown that no analog to Theorem IV exists
where M 1s a sum of copies of122, It 1s s8till possible

that such a theorem holds for M a sum of copiles of:Ep with

p > 2 since p = 2 1is often an anomalous case. However, only

H

the case of p 3 would matter since VE(M) is known to be

non-zero when M is a sum of copiles ofzzp, p > 5 (see Appendix).

The same procedure as that in Example 2 above might be
2
( ot Ly + Ly + 2,

since one could choose & < GL(4,2) to be the subgroup gener-
-

useful for computing v (M) and VS(M) where M =7,

ated by o = 1 0 0 1]
0 1 O 1
0 0 1 1
0 0 0 1]
80 qg = 1d and ¢ would agaln be ilsomorphic toEZ2 making

construction of a.@~system manageable., It 1s not clear
whether thls cholce would detect non-zero universal classes,
The class vg(M) is not zero for GL(4,2) (see Appendix) but
>

v~ (M) is not known.

The cholce of resolution in calculating v+(M) in these

cases was made such that the Fg in Definition 2 are zero,




(The rescolution chosen for calculating Vi(M) for frée
Abellan M also had thils property see [ 3].) The defipi
tion of the coeyecle u™(g,T) which leads to v can be“..
thought of as splitting into two parts: one containinéf
the Fé's and the other containing Ui‘sa If the resoluén
tion chosen is "small" the Fg are zero and only the U 's |
contribute to the characterlstic class. If the resolution -

chosen for M is "large" (i.e. the standard resolution) then

the Ui are zero (& acts on Di) and only the F; contrlibute

to the characteristic classes. Computation of vi(M) is

easlest when the resolution 1s chosen in order to force

i
Fc“_Oo
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Appendlx

The following is a compllation of some other known
results concerning characteristic classes in the finite
case, almost all of which are due to Sah [ 8, 9 ]. The
metheds, some of which are outlined below, do not entall
the use of the chaln hometopy arguments. Described are
two approaches which can be used for gaining information
fegarding the characterilstic classes vi(M) (especially VE)
where ¢ = GL(n,p), and M 1s n-dimensional vector space over

IF_. Filrst, the groups H2(§3Hn—l(M,Hn(M,K))) which contain

b
the vn(M) can sometimes be computed directly or at least
vanlshing or nonfanishing results obtained. Secondly, the
clags V2(M) has an alternate interpretation in terms of
group extenslons and automorphisms. These extensions can
be studied and the VE(M) can be reallzed asg obstructions to
the 1liftlng of group actlons. The followlng contalns out-
lines of some of these methods and lists consequential results,.

Some computations of the groups HE(@an-l(M,Hn(M,K))) rely
on the description of H*(M,k)as a tensor product of polynomial
rings on M* and exterior algebras oh M* (recall M is a vector P
space of dimension n over the finite fieleFp and k =:Fp).

M* denotes the vector space dual of M, Hom(M,k). The formula

for p » 2 1s given by:

o

1) B (M,k) = @ [Ajﬁ?i(Mi) ® S
0s15]

M3)]




h5

where Ml == M2 = M but Mi lives only in degree i, Here

th

Ai denotes the 1 exterior power and Si denotes homo-

geneous polynomlals of degree i 1n n-variables.

Example: HO(M,K) = AO(M*)

AT (M,k) = At @ §° = A

B2(M,k) = A% @ 5% + AC @ gl = A2 &+ u*

H3(M,k) =AY ® 87+ AT ® S

using AO = SO =T Al = Sl = M*., All exterior powers

p
and symmetric algebras above are over the dual gpace M*,
1.8, AT means Ai(M*). However, the homology groups H, (M)
can be wriltten as vector space duals of H¥(M) so there
are formulas dval to those above.

Now vm(M)eHg(G,Hm_l(M,Hm(M,K))) and we rewrlte the
group befére using the above splitting. The coefficients

K'may be suppressed since k isZ_,

P
H (6,57 (B (14,k) )
11) = HQ(G,Hom(Hm_l(M),Hm(M)>)
111) = (6, Hom(1"™ (1) 5" (1))

using only Universal Coefficlent Theorem or the fact that
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H* 1s dual of H,.

The next step 1s to break up the coefficlents in ii)
or 1ii) using 1). For Iinstance if H™ and T are rewritten
1n 111) in terms of symmetric and exterior algebras then one
can use a weight (elgenvalue) argument to determine possible
homomorphisms in Hom(Hm(M),Hm"l(M)). Sometimes such a pro~
cedure will show thaﬁ no non-trivial homomorphisms can exist,
foreing the group to be zero.

The center of & = GL(n,p) 18 of order prime to p. Since
¢ acts trivially on its cohomology and ced® operates on co-

chalns by

c_lcc,

H

(ef)(c) = ef(e™t(e)) with o%(e)

the coefficient module for & can he replaced by 1lts fixed
points under the ;ction of the center. In other words,
after splltting the coefficients thl(M,Hn(M)) up according
to 1) some parts of the resulting sums may be ignored since

they can contribute nothing to the cohomology HQ(Q).

Example: Suppose p > 2.

-2 2(

voer (CL(nFy) 5.1t (1,5, (1)) )

= HQ(Q;HOm(Hl(M),HE(M)))

It

H° (8 3 Hom (M, A2 (M) ) )

1v) = 1o

% sHom(M,M))




47

gince the center removes the part of coefficients correspond-
ing to Hom(M,AE(M)).

Now when p=23and n = 2,Hom(M,M) 18 the direct sum of
F, and a free module for a3-8ylow subgroup of GL(2,3), so
HE(GL(E,B);FS) = 0 (wlth trivial action), sc the group con-
taining 7° for 8 = GL(2,3) 1s zero. This argument (due to
Sah) serves as an example of hoﬁ such calculations can yleld
vanlshing results for characteristlc classes. FEquatlon 1lv)
ls valld for any prime p = 3, and the group was computed
for n = 2 [Prop. 4.5, Sah [ 9 ]]:

o p
H™(GL(2,p) ,Hom(M,M) ) == :

In fact, it was shown in [ 8, 9 ] that ve # 0 for GL{2,p)
wlth p = B,

The above procedures don't work for p = 2, The problen

oceurs since
0 = AS(M) - Hy(M,k) = M = ©

is exact but does not split (it splits for p = 3). Therefore,

the splltting of the coefficients as above doesn't hold. In

(aL(n,2)sHY(

thls case the class vgeH M,HE(M))) and there is a

mapping

(aL(n,2), 1t (1,M))

H (GL(n,p) B (M,H,(M))) =
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and the image under this map 1s the characteristic class

agsscoclated to
/e
O = M = (/Ll_zz)n-bMﬂO_

Thls was shown [ 9 ] to be non-zero for n = 4. Therefore,

ve # 0 for GL(n,2), n = 4, When n = 2 the coefficient
modules are free for a 2~Sylow subgroup. Namely, Hi(M) = Sl(M*) =
homogeneous polynomials of degree i in two variables. The

monomials x?xg, a+b = 1 form a basis, <(g é)) is a 2-Sylow

subgroup. Therefore, Hi(M) 1s free when 1 1s odd and

Hm—l(M,Hm(M))) 1s always free. Therefore, V- = O for all
m when § = GgL(2,2).

2

In the correspondence of v~ to d2 in the Hochgechild-

Serre spectral sequence for the split extension

V) O M= qg=3% -1

v® = a222(£2) where fgeHO(GL(n,p),HE(M,HQ(M,k))); and

[fEJeHE(M;Hg(M,k)) corresponds to identity in Hom(i,(i),H,(1)).
let I = any 7 module which iz M trivial (1,e. HE(M,k)

-~ will work). Define E = {(4,m)|4el, meM) and define for each

2-cocyele f a group structure E(f) on E:

E(f) :+ (,x)(0o,y) = (A H 4 (x,5),xy).

This leads to an exact sequence

O~ L=E(f) =M= 1




49

which 1s a central extension of L by M. Each ge? = GL(n,p)
defines a bijective map E = E by a{4,x) = (6(¢),0(x)), which

Induces a new group structure on E:

g : E(f) = E(of).

For a l-cochain g (in Hl(M,L)), define g : E = E by

g(t,x) = (4+g(x),x). Now suppose [f]eHO(égﬂg(M,L)). For
each geb, there exists a l-cochaln geHl(M,L) such that

df-f = BLgc, or equivalently g, : E(of) = E(f) 1is a group
igomorphism which is the ldentity on each of M and L. The
action of & on the l-cochain g is og = Gogacul where o

denotes composition of maps in E, Now ggoa(gT)oggi = G(gT) -
8gr 8y SO We have an automorphism E(f)which is the identity
map on both L and M. Let A = the group of all automorphisms

of E(f) which induce identity on L and M, ILet B = the group of
autoﬁorphismsof E(f) which map L onto L. Then g,00¢B s0

there exists an action:

. A
h:e =5/,

We can identify B with HY(M,L) and in the Hochschild-Serre
spectral sequence for (v), dg’g[f] 1s the cohomology class in
HE(Q;Hl(M,L)) determined by aLg. The map h defines a group

extension:

vi) 0= HY(M,L) » X = & = 1




corresponding to the class dg’g[f]. There 1s a homomorphism

n: X= B and an exact sequence
1 -E(f) =~ E(f) x X=X~ 1,

Now dg?“[£] 1s O if vi) splits, and this is equivalent to

finding a splilt
1= E(f) Ef x @ » & = 1,

coﬁsidering % ag a subgroup of X.. In such a case the action
h can be 1ifted to an action h : & - B. Now, in the above
procedure take L = HQ(M,k), k =2Fp. Then [£] = [fe] cor-
responds to ldentity in Hom(HE(M),HQ(M)), This yilelds a way
of determining VE(M) by checking to see 1f the $-action
h:g =/ lifts to B: & = B,

Por p » 2 combine the above sequence
0 = HE(M,k) - E(f) = M = 1

with the splitting H,(M,k) = M ® A®(M) to get two exact

sequences
vii) 0= M= E(fl) = M= 0
viii) 0 = AZ(M) = B(f,) = M - O.

The part of v corresponding to viii) is killed by the

center go the determination of V2 reduces to checking 1ift-




Actually in this

Ings of ¢ -action on both ends of vii),

casge E(fl) = 6?/ 5 )%, and in [ 8 ] Sah shows that
¢ = GL(n,p) actlon can't be lifted for p > 3 on vil)

1n this case. Therefore, v; # 0 for p > 3.
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