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To. some Hilbert space operatorsT possessing an open
set of elgenvalues O, 1t 1s posglble to associate a hermitilian

holomorphlce vector bundle E The curvature of ET then pro-

TQ
vides a unltary invariant for the operator T. Our problem

18 to find reasonable estimates for the curvature MT(w),

We flvrst obtaln necegsary and sufficlent conditions
for a certain 2 x 2 matrix to admit C10 ag a spectral set,
This characterizaticon enables us to estimate the curvature

. . 13 .
¥ lw) in terms of the Szegd kernel for the region Q or
T g

111




more preclsely ”T S ~% (w,w)“. As an applicatlon, we

produce examples Lo show that HTh = 1 and HTM < l/r

are not sufficlent for T to admlt the annulus (z|r <

i = 1}

ag a gpectral seb.

Next we prove that the curvature ineguallty 1s sharp.
If 0 ig simply connected, 16 ié pogsible to compute the
curvature of the operator M; 3 Hg(ﬁj o [e (), which happens
to be equal to nﬁﬂ(m,a)g. When (i is not slmply connected we
can find no single operator with thls extremal property. Never
the less glven a fixed { in Q, we find an operator T depend-
ing on { so thaf E = ,ﬁ Q,Q . We apply this result
to show that the two notiong of spectral set and complete
gpectral set are actually the same for certain 2 x 2 matrices.
Or, equivalently if ClQ 1ls a spectral set for such a matrix,

then 1t posgesses a normal R(cif)~dllation.
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1 a neonzero nllpotent operator of order twe. Relative

to an eppropriate bagls we have the matrix representatlon

m hr.[‘(w)
. Now %T(w) bears a simple relationship to
0 W .

hT(m), namely MT(m) = ~hT(m) .

e

A Extremal operators in a slmply connected region.

Given an operator T iﬁ Bl(Q), how are we goilng to
estimate the curvature MT(w)? Assuming ClQ is a spectral |
set for T seems to provide some estimate on HT(W). But then
one hag to ask how good are these estimates? We will show
that they are indeed best posslble. First, we state an

elementary i

Propogitlon 0,1. Suppoge T is in £(#) and C1Q is a spectral

set for T. If h < ¥ is a ratlonally invariant subspace of T

and S = T]m then ClQ 1g also a spectral set for Su'

Let B.(Q) consist of the operators T in Bl(n) that admit

L
Cl0 as a spectral set. Silnce ker(T—w)2 ls a rationally 1ln-

variant subspace of T, 1t follows that C1Q 1s a spectral set
for the operator N = T| . Once we know that C10 is

W ker(T-w)
8 spectral set for Nw then the curvature lnequality follows..

In particular, if Q0 happens to be the unit disk ID and
- 2 —
(w) 5 -(1-]u[?)"2,

T € ﬁl@D) then we obtaln X




Since we intend to prove this statement in a somewhat
more general setting later (Thcorem 1.1), we do not produce
a proof now. However, we observe that the backﬁard ghift
operator Ui which 1s in ﬁl@D) has curvature precisely equal
to w(l~|m]2)m2, This is merely a computation and resists

generalization to more complicated domaing,

Now, let Q be any simply connected region and T be 1n ‘
ﬁl(ﬂ). As before we obtain MT(ﬁ)fﬂwﬁﬂ(w,E)z, where %Q(w,m)
ig the Szegg kernel for the region {1, At this polnt it's
naturai to askﬂif ClQ has to be a spectral set for T, when-

ever T satisfies the curvature inequallty. We are unable

to resolve this gquestion.

To show that the estimate HT(m) < éﬁh(w,ﬁjgis best
poséible, we must look for an operaztor T in gl(Q) satisfying
RT(w) = —ﬁﬂ(w,af{ To carry out the search, let us see if we
can compute the curvatgre of "an operator T € Bl(Q) in some
reasonable manner. For any T In Bl(Q), if v is a nonzero

holomorphlc crogs-section of E then corresponding to v

T)
there 1s a natural representation T of the Hllbert space ¥
as a space of holomorphic functions on @ = {w|w € Q) defined

by (Tx)(w) = {x,Y(w)> for x € ¥. Moreover, since

(TT%) (w) = <z, v (W)> = <x,wv (w)> = w(Tx)(w) for w € T,

1t follows that T 1s the adjolnt of multiplication on T(¥%).




I we set K(h,w) = {y(w),v(X)>, then ¥ is the reproducing

kernel for T'(W). We can express MT(m) in terms of ¥ by
means of the formuls

2

MT(M) = _ém: 1og K(m,@)nio
SIS :

The map & - X{Z,w) ie & holomorphic section of the bundle

ET and MT(m)dmAd@'is the curvature defined with respect to

the metric <K’K>w = K(w,w). Since all holomorphic bundles

over an open set of { are frivial, our problem Lles in choos-

ing an'appropriate metric on the trivial bundie over Q1 so

that the curva%ure with respect to this metric equals

-ﬁg(w,ﬁ). How do we choose this metric? The following

lemma is very suggestive.

Let'dgs = hzdwdﬁ“be a metrle on Q. The Gaussian curya-

ture of the region Q with respect to the metric dgs is then

glven by the formula

¢(h®) = -a(log h)/h°.

If 0 1s simply connected and ﬁn(w,ﬁ) is the Szego kernel for

the reglon O, then d°s = ﬁh(m,ﬁ)gdmda'is the Polncaré metric

for Q (Ahlfors [4]).

_ o _
Lemmea, 0 log ﬁh(w,mj_l = —Rn(m,ﬁﬁgu

Swdw
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Proof. néwm-log ﬁﬁ(w;mjml
O O

]

/h A Log ? (w,w)

%2 %2(& st )
—D . 1
Since ﬁﬂ(w,w) dwdw 1s the Poincare metric for Q, we
2
know that C(ﬁg) = -4, therefore — log ﬁh(m,@j"l = ~ﬁﬂ(w,ﬁjz
Swow

‘The reproducing kernel for the usual Hardy space Hg(ﬁj-
is the Szégg kernel function. Now, we can consider the
2(

adjoint of multlplication M, on H(T) as a candidate for

the extremal operator. éne must flirst show that M; 1s in

B,(Q). Once this is done, 1t follows that

‘ 2
¥ L (w) = 3 log & - {w,w) .= £ (m, , w € Q.

Mz dwdw 9]

To complete the proof that M; 18 the extremal operator, we

have to verify the relation ﬁ;ﬂﬁ}m) = ﬁn(m,ﬁj. We will prove
. _ o : ,

all this (Propositipn-Eal'and 2.2) later for an arbitrary
region Q. Some time back, D. Purohlt used the Riemann map T
of an arbitrary simply connected region T to show that the

- extremal problem for such a region éan be reduced to that of
the disk, He found the operator M; : HQOD) - HEGD) to be
extremal in the class'ﬁi(n)‘ It 18 easy to verlfy that the
operator M; is unitarily equivalent to the operator

%

¥*

M* 1 BHO(E) -~ BO(A).

Z

b. Extremal operator for a region that is not simply

connec ted,




p

As one might suspect, when the region  is not simply
connected, the sgltuation is‘rather complicaﬁed. Fortunately
the proof of the inequality HT(w) < eﬁh(m,ﬁﬁg.does not de-
pend on the connectlvity of the reglion Q1. One of the'dif-
filculties 1s that the Szegg kernel for a non~simply connected
reglion ﬁ does not yleld the Polncaré metric for it and our

previous techniques fail. Perhaps, even more surprising is

2 ~
the inequality — log ﬁQ(m,E)_ < —ﬁh(m,@)d which essen-
Ot oW X o
tially says that ¥ « (W) g -ﬁh(m,@)g. 'So the operator
M. )
7

*

1 HO (W) - O

1) definitely fails to be extremal in ﬁi(n).
At'present we do not know 1f there is any slngle operator'in
ﬁi(ﬂ) that would be extremall ﬁhat 1s the next best thing we
can do? Let us ask 1f the inequality is sharp pointwise, that

s, given a point { in 0 does there exist an operator T in

B,(n) so that at least
%o(0) = R (6,7

For =sach given point {, we are able to produce an
operator in §l(Q) that satisfies the curvature equality

at least at the point {. Flrst, we.define certain Hilbert
space'Hg(éﬁjm) of analytic functions on O determined by a
positive measure m on the boundary o0 depending on the given

point {. As before, we consider the operator

2(

e — ) o
MT o H(30,m) = H°(3d0,m) as a candidate for the extremal




—1

is in %l(ﬂ), we would like ~VE

A 2 s
) = ~Kd(w;m) . This ilnvolves

operator. Once we show bha b m:
to establish the equality, ¥ _(w
' M.

by s

some work, which we will take up later. These operators have ?]

been studlied in a more general setting (AbrahamsenDouglas_

[2]), where they are known as bundle shifts.
C. An application to generalized dllations.

At pregent one may say that the theory of operators
‘related to the unit diskjm-is well understood., One early
resultithat can be quoted in thils context is due to Von-
Neumann and sﬁétes that (AbrahamséHDouglas [3], Douglas [117)
any operator T in £(M) is a contraction if and only if CID
is a spectral set for it, Which means |p(T)|| = \pMD for all

polynomials p. Shortly arfterwards Sz-Nagy proved that- 1f the

operator T 1s a contractlon then there 1is a'strong unltary
dilation U on a superspace X centaining ¥. That 1s to say,
for every polynomilal p the operator p(T) is the compreésion
of the operator p(U) to ¥ namely, p(T) = Pﬂp(U)|ﬂ. Now we

obtain Von Neumann's inequallty as a Corollary, slnce

z € a(U)}

»e

e (T} = lo(u))} = sﬁptl.'p(z)l

-t

s sup{|p(z)]|

z €D} = Hme.

Thus the followlng three statements are equivalent for an

operator T in £(¥).




(1) CID is a spectral set for T.

(1) T ims a contraction.

(i11) T has a strong unltary dilatlon.

In an attempt to extend the equivalence of (1) and
(111) to more general sets X, one is led to consider normal
R{(X)-dilation N on fhe superspace ¥ D ¥ of an operator T on
#, where Weﬁassume the operator N 1s normal with 1ts spectrum

contained in the boundary X and m(Tj = ﬁ@(N)In for every o
in Rat(x). Tt 1is immediaté that if T has a normal R(X)-
dilation then X is a spectral set for T. The nontrivial
converse whén ¥ 1s simply connected was established by Berger,
Folas and Lebow (Douglas r11]). When the region X is not

simply connected, 1t 18 not known Lf the exlstence of normal

R(X)-dilatlon for T is guaranteed whenever X 18 a spectral

get for T.

We can reformulate many of these results into statements
about operator valued representation of Rat{X). Such re-
presentations need not be continuous. The following example

1s due to Abrahamse [1].

l .
Let T == , X = {z| |z| =1} and fn(z) = g™,
0 1 . '
I
Then |[f || = 1 and e (o) = _—
0 1

We notice that as soon as we assume X i3 a spectral set for T,




b

-

not only £ - £(T) 18 continuoug bubt indeed 1t ig contrac- o
tive, Towever, we dc not know if this hypothesis 1g enough '

to guarantee a dilatlon for the operator T. 8o, what is

necessary 'is an appropriate strengthening of the notion of
the spectral set. One such concept 1s due to Arvescon [E};
which he calls complete spectral set. He 1ls then able to

show that the reglon X is & complete spectral set for the

operator T 1f and only if 1t has a normal R{y)-dilation.
It remalns to see when these two notlons are the same. We ﬂi;
show that a reglon X 13 a spectral set for certaln 2 x 2

matrices 1f and only if 1t is a complete spectral set Ffor

these matrlces. One half of this assertlon is trivial, to

prove the other half we use the existence of extremal ocperators

in _Bl(ﬂ) .

Some of the results (Theorem 2.3 and Corollary 2.1) we
have dlscussed here were reported without proof by Bruce

Abrahamse in a private communication (February, 1979) to

Ronald Douglas.
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1. CURVATURE INEQUALITIES.

We begin with a well known definition of gpectral set
which we refeormulate in varlous ways sultable for our purpose.
- We suppose Q 1s an open bounded set in @. Let Hol(Q,D) and
Rat(ClQ) be the holomorphic functions mapping tﬁe region ﬁ
into the disk D and the rational functlons on c10 without

poles respectlvely.

Definition 1.i. The set Gl is a spectral set for T in £(¥#)

if ¢(T) < €1a and he(l < lflly for all £ in Rat(C10).

Let us call an Q reasonable if for f in H°(n) there is
a sequence'of rational functlons Y with poles outslde the

set C10 go that |y |, = £l . and Yn(w) - f(w) for each w in Q.

g
'If Q is a finitely connected Jordan region, that is, the bound-
ary of consists of simple analytic curfés, then {1 is reason=-
able (Gamelin [12]). Since we can define f£(T) whenever £ 1ig in

1°{n) and ¢(T) < N, the following remark is self-evident.

Remark l. oSuppose o{T) < N and 0 18 a Jordan reglon. Then ClQ
1g a spectral set for an operator T if and only if [ £(T)}| = 1,
for all £ in Hol{Q,D).

Remark 2. Suppose O is again a Jordan reglon and o(T) < Q .

Then || £(T)!| € 1 for all £ in Hol(Q,D) 18 equilvalent to say-

ing \£{T)}| = 1, only for those f in Hol(n,D) that vanish at
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any one given polint §{ in Q1. For our convenlence we let

-

Hol(Q,{,D) denote the set (£ € HoLQ.D) 1 £(¢) = 0).

One half of the assertion is trivlial, to prove the other
half let us take an f in Hol(Q,D) that does not vanish at .
Suppose £({) = o then [a| < 1 by the maximum modulus principle,
so that ma(z) = (z—&)(l-az)"l is a conformal map of the unit
disk D. The function g = g f lies in Hol(Q,D) and it vanishes
at (. It follows that Hg(T)H < 1.and Von-Neumann's Theorem
now lmplles that the unit disk ID is a spectral set for g(T).

By thersame token, the unlt disk 1ls a spectral set for
-1 '
(

Pa

g(T)). Bauivalently |l£(T)| = lo  (a(T))]| = 1.
Now, we are ready to prove our maln

Theorem l.l. Iet O be a Jordan region in €. For each fixed

w in 0, if h(w) is a positive number de%e?ding on w then Cl
W hiw

1s a spectral set for the matrix | if and only 1f
o w J

n(w) <Bupl|f' (w)] : £ & Hol(0,w,0)}] .

Proof. For any polynomial p one can easily verlfy that

® h{w)

p .
0 1Y)

If p and g are polynomlals such ‘that q # O on ClQl, then for

the ratlonal function f = p/é, the ugual functional calculus

VRN




Since the spectrum of the matrix under consideration consiats
of the single elgenvalue w, which is contalned 1n.Q1, it follows
that tﬁeearligr remarks i and 2 apply to it. ,We then find,
the set CIQ is golng to be a sp%ctral set for : hlw) 1r
W
and only 1if
h(w) _ :
£ < 1 for all f in Hol(Q,w,D).

0 w
{

or equlvalently we must have
0 £ (w)h(w)
¢ o

£ 1 for all f in Hol(Q,w,D),

which is the =ame thing as saying

[fl (w)lh(w) < 1 for all f in Hol(ﬂ,w,’lD),_

or  h(w) < [sup{|£' (w)] : £ € Hol(a,w DNt

Corollary 1.l. For any T in B,{(Q) if c1q is a spectral set
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then
Xp(w) < -[sup{|f' (w)| : £ € Hol(Q,w,D)})2. b

Proof. Since Ker(T-w)2 is a rationally invariant subspace

of T therefore, N .= T| » admits C1Q as a spectral ; o
W 2 . i

Ker(T-wm) H

set, which was pointed out in Propositlon 0.1. It c?n)be , ﬂf
) W h(w il

shown that N has the matrix representation [ T ]

with respect to an appropriate basis. The Theorem applies - E

to this matrix and conséquently we obtain the desired in- i

equallty.

-1 . ’
(g0 72 = ww) < foup(|z(u)] ;£ € Ho1(0,u,D)}] 7%,

We wish to reformulate thisg inequality in terms of the

Szegg kernel for the domaln Q. ILet us broceed wlth the re-

levant definitions and theorems, most of which appear in

Bergman [6],

Let m be a positive measure defined on the boundary aQ,
that is mutually absolutely continuous with respect to the
arc length. Let LE(Bﬂ,m}'be the space consisting of complex

functions on a0 that are square Integrable with regprect to the il

measure m, where the inner product is the usual one.  We also j
introduce the Hardy clags Hg(m) conslsting of analytic func~
tions £ on the. region O so that ]f[2 admits a harmonic majorant.

"The properties of Hg(

Q) are well known (Rudin [13]), in
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particular each £ in HQ(Q) possess a well behaved non-
tangential boundary value in L2(89,|d2|). Tt 18 natural
to define the class HE(BQ,m) to be the one consisting of
functions £* in LE(BQ,m) that are the boundary value of
some f in Hg(ﬁ).’ The class HQ(BQ,m) is a closed subgpace

of a separable Hilbert space, namely Lz(an,m). Therefore,
HE(Bﬂ,m) 1tself must also be a separable Hilberﬁlspace. Now,
the existence of the reproducing kernel for a Hilbert space ‘1s
equlvalent to boundedness of'the point evaluation functional
a@ : fom () fdr eaéhuw in Q. For the Hilbert spacé

' Hg(éﬂ,ldz]) the boundedﬁéssbfthe‘functional ¢ follows-from
the Cauchy integral formula; Consequently HE(bn,[dzl) pos~-
sesses a well defined reproduc?ng kernel say, ﬁ&(z,ﬁj. This
is the classical Szegg kernel function, it has the representa-

‘tlon
Ry(2,7) = = e (2)5TTT,
2

where {en} 18 an orthonormal basis for H an, |dz] ).

On our domain Q there exists another Kefnel, ﬁ(z,g) de~

- termined by the following propertles:
(1) ﬁ(z,c) is regﬁlar in C10 with the exception of
& simple pole ﬁith the resldue at z = (.

(£1) For w in the boundary dQ, %{z,fﬁ and ﬁ(z,g)

are connected by the relation

: fi,z(z;g—}]dz_l =Il/iﬁ(z,g)dz.-”.......(*).
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We record here one more relatlonship which will be useful

to us later

Vb, okEDaz > 0 on ...l ()

If FC(Z) = F(z,{) denotes the function

F(Za Q) = %&JE)/ﬁ(Z)C)3

then FC maps the reglon 0 onto the n times covered unit
disk D, We now congider the problem of finding among all

functions f in Hol(R,w,D) the one that maximlzes £ (w)] .

Schwarz Lemma (for multiplying connected domains): -

If the functlon f 1s in Hol(Q,w,D), then

£ ()] = 7y () = R,w),

where eﬁuality holds if and.éhiy 1f £(z) = e Fw(z).

| Whenever Q; 15 a subset of Q, it follows that Hol(Q,w,D)
is a subset of Hol(nl,m;D) and we obtain the monotonicity of
kérnel functions, that is,

Rolws®) = sup . £'(w)| 5 sup £ ()] = Ry (w,%).

. fEHOL((ywsD) | f€HoL () s D) 1 |

Since both ﬁn(m,aj and ﬁﬂ.(w,ﬁ) are real analytic functions,
: : Tl

they can not be equal on any open set, Therefore, we can

find a point w in any oren gubset QO"Qf Ql s8¢0 that

ﬁn(m,@) j %G (Uf'ja:‘-)n 7 ’ - , .‘ > o
7L _
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- We now restate Theorem 1.1 and its Corollary using

the Szegg kernel,

Theorem 1l.1', For w in 0 and F

= Ry (2,8)/5(z,W), the

get C1Q is a spectral gset for

W h(w)
7
0

w

( ) |
if and only if
" _

< 1 or equivalently h(w) < ﬁh(m,ﬁ)-l

Corollary 1.1', For any T in Bl(Q) if C10 is a spectral set,
.then | _ _ -
: o _
to(w) s =(Ro(w,®) ..

Our next task is fo find 1f the inequaiity_
HT(m} < —(ﬁn(m,ﬁﬁ)e 1g sufficient for T to admit C1D
&8 a spectral set. Once the gquestion 1s asked one beglns
to wonder If the hypothesis of belng a spectral set was really
‘necessary in obtaining the cur&aﬁure inequality.  The follow-
Irg proposition shows that-ye can get away wiﬁh much less,
Since the function Fg(z) = ﬁn(z,tﬁ/f(z,c)_extends to a holo-
morphie function on a reglon containing €1, it follows that.
we can define FQ(T) by the Riesz calculus, whenever U(T)VC cin,

‘In particular, for T in Bl(n) and o(T) < C1Q we have

Proposition 1,1(1). HF;(T)H < 1 for some fixed { in 0
then x = R (wsw)” for all w iIn Q.

'(2)6 Iz HF T)|| £ k for all w in O then




1 —\2
HT(w) £ - /Kzﬁn(w,m) for all @ in Q.

Proof. Note that F (T)] = F (7] "~ ,). There-
- w Ker('I"—m)2 w Ker(T—w)2 :

fore, if HFw(T)H < k for each w, we would obtain

0 F(why(w)]|| Fy(w)  Fl()hg(e)
= llF (r]
0 , 0 - 0 Fw(w) Ker(T-w)
= |7y (T)] I‘(T_w)gn < |F (D] = k.
Bquivalently by /]F ()| = k R (w,®)7" for a1l w tn 0.

Next, suppose we only know that HFC(T)” < 1 for somé
fixed ¢ in Q. if Fw 1s .any other Riemann map of Q then
there 1s a MObius transformation ¢ of the disk D, so that
¢F, = F.. By our hypothesis H@(FN(T))H =RHZE"’Q('I")_]\ s 1,

We can apply Von-Neumann's Theorem to concludé'ﬁﬁét
qu( Hm_l(mF I = 1,for all w in Q. Thus we are
able tp apply the techniques of prevlous paragraph with

k"——la.

Let us apply the results we have obtalned so far, to
show that |7} < 1 and |T™H| = Y/r are not sufficlent for T

to admit A = {z|r £ |z| = 1} as a spectral set. We begin/:

with a lemma, that can be found in Williams [18].

2)1\
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Lemma, l.1., Consider the two dimensional shift A2 whose

matrix relative to an orthonormal basis is_{g ;]. Then : }}f:

o + gagll-= /2 (g} + /4lal® + [8]7).

Proof, If_¢h(z)_= (z-a) (1-8z)"T for |a| < 1, then lo,(z)] < 1.

for |z| < 1 and Ima(z)] = 1 for |z] = 1. Hence by the usual j
functional calculus Yo (T)]| < 1 end lo (Dl = 1 1 7| = 1. ;ﬁ‘
S |
Now we have |lg (A5)]] = 1 for-all |a| < 1. Since

]

)t < +(1-]al?)a,

P (Ap) = (Ay-a)(l-ah,) ™" = (Ay-a) (1438

o)

which ylelds | . | | | - %

la, - a(1-[a[®)] = (1-]al?)"T
we put A = a(l-la]g)—l and compute

(1-1a12) = L (14 JEZ 5 1)

to arrive at o ' il

lay =) = L2 (1 + van|% + 13, | i

The proof 1s now complete 1f § ¥ O. For B = O, the result

ls obvious.

We remark that, the norm can bhe computed directly or

-

by computing the eigenvalues of (a+gA2)(a+§A2)*. Now to

produce the degired examplesg, let us consider




19

fw 1 - |w]
T = » Where w € Ay = {z]|J/r £ 1}. We can
. 0 w

- apply the lemma to verify that
%)

1
1 1 —é"(l"wl
oW

Tl = 1, whereas 77 = and llT‘ln < l/r,j

0

el

ig equivalént to 1/2, (T—%—E,-(l—lwlz) + o l hle +TITLL(1"’“’I2)‘2}
: w - W W

S.l/?.
o 4ul® + (1-10)%)2 = (2]w|Z/r - (1-]w]2))2.

o 42w ® 4 rP(1-1w]®)2 5 Blw[® - 4)w)Pr(1-]u)?) + 22(1

' The last statement is correct since fw]2 zr,

As we have polnted out, there is.an w in every open

o2 —\ -1 -
subset of A,, satisfying 1 - '|y|< = ﬁm(w,w) ;,ﬁﬁ(w,w) 1

For all such w inVAO, we can apply Theorem 1,1 to show

that A Is not a spectral set for T.

_ _ (i 1 -7 o
In particular, let us fix T =| s lw] = p. -
, 5 " _

Then one may also apply the following theorem due to Williams
[187, |
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Theorem., If an operator T on & finite dimensional vector
space ls completely non-normal and ||T{ = 1, then the unit

disk is a minimal spectral set for T,

Since |7l = 1 and T is completely non-normal it follows
that D is a minimal spectral set for T. But HT_lH = %/r and-

the annulus A can not be a spectral set for T, the dilsc I

being mlinimal.




no
=4

2. EXTREMAL OPERATORS.

Some extremal problems arising In classical Hllbert i
space theory wlll be useful to ue, which we will discuss
first (Bergman [6]). Tet Q be s Jordan region and m be &
positive measure on the boundary a0, that is mutually
boundedly absolutely continucus with regspect to the arc
iength measure. Ag before we define Lhe Hardy class Hg(aﬂym)
wlth respect to the'measurg m, For any point ¢ 1ln ¢ we let
My = {f € Hg(an,m)': f{w) = 1} aﬁd my = {f € Hg(aﬂ,m) : f(w) = o ;f

and f'(w) = l], We now consider two minimun problems. o 'H_

0. To find the minimunm ang over the subspace W

l. To find the minimum ang over the subspace 1, -

Even though the existence and uniquenecss of the solution to ‘f”{?

both of these problems are well known, we guote here a lemma

from Sulta [16], which immediately establishes the extremality

of certain functions, B |

Lemma 2.1. The function F in HQ( o

3Q,m) is a solution to
(1) Problem 0. if and only if F is orthogonal to

(£ € ES(3a,m) : £(w) = 0}

(11) Problem 1. 1f and only if F is orthogonal to
o,m) + £(w) = £'(w) = 0].

{(r € Ho(
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Proof. Since the proofs of (i) and (ii) are similar, we
only prove part (i1ii) here. Assume F is the extremal func-
tlon and let F, be any other function in HE(Bn,m) satigfy-

ing F,(w) and Fi(w) = 1. We set g = F - ¥, to obtain.

s 1

IF +egll® = |FI® + rel2(F,0)) + |e|2)e)? = 7|2

Since ¢ 1s arbitrary we have {F,g> = O. Conversely we find
from {¥,,g> = O that, |

2 2 2
7ol = = el + {7y - 7
which implles the extremality of the function F.

Since we hafe éhosen the measure m to be mutually absolutely
contlinuecus with respect to arce length measure on the-boundgry an
1t follows that the point evaluation Ffunctional on H2(an,m)-1s
continuous for each point_w_ﬂqthe reglon Q. We are now assured
of the existence of a reproduciﬁg kernel function Km(-,w) for
2(

the Hilbert space H™(dQ,m)}. -We now define two functions f

0

and fl’ which turn out to be the extremal functlon we are

lookiﬁg for.

Suppose K%k are the various partial derivations

yJTk — _
szjagk‘Km(z’Z)’zzw.' Set fO(z)_= Kﬁ(z,w) and_
K, (2,8) —B%Km(z,fﬂgzw K00 g0
! fl(Z) = / o
KOQ ;-0 x10 11
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: . 4 g . e

Clearly if g is any function in H7(on,m) satisfying g(uw) = 0 Jl
thenl(g,fo) = 0 and simllarly if h 1s any functicn in Hg(aﬂ,m) ' ﬂ;

- satisfying h{w) = h'(w) = 0 than h, f L> = 0, TIn view of Lemma |
2.1, we see that fo and fl are bhe extremal functions for bhe _' gﬂj

Problems O.and 1.respectively. If we denote the solution to Il

Problems 0.and 1.by lo(w) and x;{w), then one can compute

without much difficulty, the value . o

holw) = I1£51% = Yk (u,5) and
2 . T 12 .
Xl(m) - ”leQ - ng/(KgO I.l.ll ’KOll ) KOO[ BE ng Km(GJC)—l! 1, e f

Let M* : (an,m) - H(3,m) be the adjoint of the multi- ¢

plication operator. Agsuming 1t is 1in the class E (), we

obtaln the curvature inequality. For each point w in 0 we

have,
¥ () = ° log K (¢,8)] <R (w,w)? = £ ¢ M

We now wish to prove this Inequality in a completely dif-

ferent manner using  ideas that can be found in Suita [16]

‘and Burbea [7],

i

|

, — i

Theorem 2.1, For all polnts w in @ we have, ¥ *(w) < —Rg(w,w)g. §
M 4

Proof. Let F be the mapping function, that is,

Flz,u) = ﬁn(z,ﬁﬁ/ﬁ(z,w). Now, define a function ¢ so that




C{;}(Z) = F(Z:w)Km(ZsUJ)/ ?“Km) '

e B N — —
where Ky and K denote the nuubers ﬁn(m,w) and K (w,w)
respectively., Since P has a zero at z = W, therefore

w(w) = 0. Also
@ (0) = ¥ (s () Rty + 2w,k (@R K

Siuce F'(m,Eﬁné ﬁh(w,ﬁj, the first term reduces to 1 whereas
F(w,@j = 0 and the second term vanishes, so o' (w) = 1. Thus
the functlion g lies in thé‘subspace m,. But Hflne being a
solutibn:tdg'uin{ufuglf € ml‘}f?rces

2
el nfln k%0 aia_c_ 108 K_(¢,3)17L.

‘On the othethaud,_ |
boll? = Y/s o T 1P 215y (5,8) 2am = (& () (w,3)1 72,
A s | |

since |F(z,w)]| = 1 on the boundary 3dQ and-“Kﬁ(z,EjHE =K {(w,w).

o
Puttlng everythlng together we obtalin

| e 2 — - —_ -1
el ® = R (w, W) K (0,@)]7" 2 [, (w,0)% 4 (w)]™,
_ _ ‘ Mz
It 18 interesting that the lnequality can be shown to be

strict if the reglon Q0 1s not simply connected and m 18 the
-usual arc length measure on the boundary 3 {Burbea [ 7 1 and
Suita [16]). We now proceed to find out when equality can
occur. Far each flxed point w in the region 1, let m be the

' measure lﬁ (z,w l |dz|. For this particular cholce of the

T




megsure m we have

Theorem 2.2. ¥ ,(w) = ~ﬁn(wjﬁjg.

Proof. As before,-let ¢ be the function defined by

@CZ)‘ F(z,) K, (z,0) /ﬁ L

Again we find 7 "'--V'i_zi
-1

ol = (R (w, )%k, (0,5)] a-[Kmm,a)}cM*(w)rl

Z

where we will have equalilty, 1f @ can be shown to be the
extremal function. Now Lemma 2.1 plays an. important role
 and reduces our problem to merely showing that g is ortho-

genal to the subspace {f € Ha(an,m) : £' (@) = f(w) = 0}. So

for any function i in'this subspace let us compute,

(P, = (z)F(z,w) K, ,w[ﬁ (z,w) ldz{

( 21&01{ |
K, z,ﬁ)ﬁn(z,ﬁ) i:-g--zi-iga-Idz| - e Il

Ifz)“@ﬁ

BW%th BQ ﬁ
B z 2.0) w z,m) L (z Idz.
(271‘.1%“K ) ( ) —ﬁn‘—“"""(z’zﬂ_) Km(st)ﬁn(\,w) ( :W);dzl

j'fz)ﬁ z,0)

(2viﬁhK

But for every function f in HQ(Bn,m),'we'also have

1 = %
_<f’ﬁn(w*“>>— QTrﬁ — ffz)lﬁn »®)|?az|

- kzmﬁn(w,&?) a{z £(z)R, (2,0)0(z,0)dz.

Since the functlons f and ﬁh( s@) are both holomorphic

in the region G and the function i( >w) is meromorphic there
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except for a simple pole st z = W with residue 1, 1t

follows that

£ l/é (w,w)” = £(w).

Uniqueness of the kernel function now implies that

Kﬁ(z,a) = l/ﬁ (9,5) for all z in Q. Continuing, we cbtaln
O:' 3

{f,e

i

2—-.-......._.
l/ EWiﬁth anf(z)ﬁ(z,w) Km(z,ﬁﬁdz

2?1%5 ﬁ(z,w)gdz.

Now, ﬁ(z,w)2 ig agaln meromorphic on the region 0, but this
time 1t has & double pole at the point z = w. At this pbint
the function f has a zero of order two at. the leagt; therefore,
the product f( )ﬁ(.,w)2 remains holomorphie on all of the

-

reglon (. It follows that {g;f> = 0.

This theorem suggests that the operator M; is a natural
candidate for our extremal operator, In fact, we have the

following

Theorem 2,3. For each flxed w in the region 1, if m be the

measure ]ﬁﬁ(z,w Y| “|dz], then the operator M on the Hilbert

space HE(BQ,m satisfies

X () = R (w,5)°
0




We reilterate, 1t only remains for us to show that the

operator M} 1s in the class B, (Q) and ﬁﬂ(w,ﬁ) equals RM(E,w).
. - 4]

Let us recall. that every Operat@r T in BJ(Q) 1s uniltarily _ jﬁ

equivalent to the adjoint of the multiplication operator on

a certain Hilbert space of analytic functions. With a litile - i

effort we can prove a converse,

Proposltlon 2,1, Let ¥ be a Hllbert space of analytic fune-

tions on the regilon Q, equipped with a reproducing kernel I

function K : Q x Q@ —~ .. Suppose the operator M, maps ¥ into
1tself, Then it is bounded and each g in @ ig an elgenvalue
for the operator M*. Ify, in addition,each w € {0 is a Smele

eigenvalue,thﬁn the cperator M lies in B](Q)

Proof, Suppose that <fn,gn> 1s in the graph of the operstor

M, and suppose that <fn’gn> - {(f,g>. Since convergence 1in

the Hilbert space ¥ implies pointwlse convergence, therefore,

fn(z) ~ f(z) and gn(z) - g(z) for all z € Q. Now,

g, = M,f = zf and zfn(z) - zf(z) for all points z € Q, it .

follows that g = zf = sz. An application of the cloged graph
- theorem shows that the operator Mz 18 bounded. For then, we

‘have

<Ot - DR LT, = ux( o), 2> - C(EK )2

= <K( ,w),M P - K( ,W),>

I

wf(w) - wf(w) = 0 for all @ in Q.




20

Thus each w in the region ﬁ;is an elgenvalue fq; the operator
Mz. Now, ran(Mzéw).= (f € #/f(w) = 0} and since |
point evaluations are continuous, it follows that ran(MZ~m)

1s closed. Alsoc since the operator (Mz—w) iz one-to-one, it
follows that the operator (Mzeﬁ) is surjective, Since the
funetion K( ,w) is the eigenvector corresponding to the elgen-

velue @ € Q, we have Span Ker(M,-®) = Span K( ,u) = ¥,
W el o wENR

Tt 18 now clear that if we assume W to be a simple
elgenvalue for the operator MZ, then 1t will lile in the
clags B, (T). e

Corollary 2.1. The operator MZ on the Hilbert space HE(an,m)

is in the class Bl(ﬁj.

Proof. We need only show that each w in [T is a simple elgen-

value, Since each function f in Hg(an,m) can be wriltten as

£(z) = £(w) + (z-w)22L= Tl) - pore £(2) = 2(u) ¢ 1213 1y,

Z - W YT < w
it follows that ran(MZ~w) hag codimension 1.

Proposition 2.2. For all w in Q the function ﬁh(ﬁbw) equals

R (w,w).
]

Proof. TIet F be the function that maps Q onto the n-times
covered dlsk. The corresponding function F¥ mapping the |

reglon @ 1s given by the formula F*(z,w) = F(Z,%), where z

and w are now in Q1. Since the function ﬁn(E;w) can be defined
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as - F(Z,u)| , it follows that R (u,§) = a7 Fzw)| =
Z= ' 0 . _ Z=
g .
I F(z,w) | = ﬁn(w,w).
Zz=yy

Now that we have solved the extremal problem, let us
apply 1t to obtain some results on complete spectral sets.
Before defining thls we offer a generalization of Theorem 1.1

that we proved earlier.

il

Let a(r,s)r (Y”l—l)'

max{ |o(r)| : o € Hol(n,s,D)}.

-2
I

i : y
Theorem 2,4, (€10 is a spectral set for the matrix [o if

and only if [t]| = @-l(r,s).

Procof. Let p(x) = a +-al(x)+...+anxn, £hen

0]
, . )
r ot 1 O r & T (r+8)t
p = aao + al 4- aE 2 +- -.0+
0 s 0 1 0 8 0 8
S ( n":"A:-r'n“"?s'+...+sn"l)t
a
n

0 sl

plr) aJ+aq(r+s)+‘..+a (rn"1+rn~25+...+sn-l)t

n .

Lo - pls)
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2 2 n

r-g ro-s r-s 1
p{r) (al r=3 2 Ty Teeetey v )t i
0 p(s) /!
Lt |
p(r)  Z5(p(r)-p(s)) I

0 p(s) |

Now, let o = p/é-and g#0in Q. Then via the usual functional

caleulus we obtain Al
. : [HlliH
-1 I

fy t 7 5 r &

¥
O

Q(I’JQ(S)(I'~ST (a(z) (a))

a"t(s)

E] if and only if

Now, ClQ} will be a spectrai set for [g

r t o
@ s 1 for all @ in Hel(0,s,D)




which In turn 1s equivalent to

< 1 for all p in Hol{Q,sm),
5 g l |

That 18, |[t]° = | 28] 5 (——"s - 1) for all § in Hol(q,s.n),

[o(r)]
We say that the region ClO is a complete spectral set

for the operator T if the map o ® In:Rat(Cln) M - L(d) ® M,

1s contractive for each n. Here ¢ 1ls the map @ = w{T) and M

is the ¢* algebra of nxn complex matrices. Now, we are ready

to prove the followlng

Theorem 2.5, If C10 is a complete spectral set for the matrix

fg g],tmmnclﬂ 18 also a complete spectral sebt for [g gg

wherever |wl < |tf.

Proof. TFiret, for [w| = |t| and any three k x k matrices

A, B and C, we show o o e

A wB fA . tB
< t . .
cJ QO a

If [%] in T 18 a unit vector, then

= 1ax)2 + Jloxl® + [w||BYIZ + Re w<AX,BY>.

0 ¢ )X
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Let w = |wig, t = |t]F and {AX,gBY> = |[<AX,aBY> [F, then

1AXI® + Jov)® + Jwl|BY)® + 2 e w(AX,BY>

- Jlax)? « 1cYll® + fwllEYl® + 2|w|RedAx, qBy>
s Jaxt® + Jov)® + JullBe)® + 2]w] |<ax, 059> |
= laxi® o+ lox)® + jul5vi? + 2]wi<ax, %6 B>
< JAx|® 4 (g, D2+ [6]1B(% 4, Y12 + 2] 6] 5ax &/ BY>
Bs /. g -/ 4y
A tB) ( X 2
o o) eply
¥For each unit vector [§] in ng wé have producéd another unit
: X
vector } satisfying
ﬁa/sﬁif
A uB) (X A tB\( X
< _ ‘ . |
o ¢ o ¢ /ea)Y ! e

Now we take the supremum on both gldes over all the unit

vectors to obtaln the desired lnequality.

: Now, to prove the statement about complete gpectral sets
r ] T t

we need only shpw that ”(wij Vo= (@ij | )iL

' : 0 g 0 g
for all (mij) € Rat(Clﬁ)@)Mn.

Let ug set A = (wij(r>)kxka B = (mij(r)-mij(s))kxk

r
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and G = (¢1J(S)ka. As shown 1n the proof of Theorem 2.4,
. ,
r ul (mij(r) r-s(wij(r) @ij(s))
@ij | = L‘ ‘ | ’ s 50 that
RRCEE 0 9, ;(8)
r W
applying some elementary row operators to (wij ) |
" |
O Y okyex |
we obtaln
w
/7 . / i :
.r, . v (cpij(l))k,xk (I,_S)(fpia(l") ¢ij(8))kxk
: )
0 8 0 (@ij(s)kxk
A @/ B
/(r-g)
0 C
£ a ¢ B
| ¥ /(r=8)
Similarly, (@ij ) o~ .
0 i 0 G
ﬁj_,/ i
s T8l L 18] - e ﬂ |
nee ! /Ir"s] < /IP“BI’ 1t follows that l
0 ¢

A ?/(r_s) B

| and the proof 18 compiete.
I\ c
We wish to determine whether the region C1Q is & complete

t
gl

whenever Cl0 isg s

gpectral set for [g
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spectral set for 1t. The two theorems we have proved so
far reduce the problem to finding whether the region C1Q
18 a complete gpectral set for the matrix [g m(r,s)] a

a
We are able to answer thls question only if r = g and

o(r,r) = %h(w,@)hl.

Corollary 2,1, If the region ClQ is a spectral set for

[g '3] then 1t is also a complete spectral set.

Proof., We need only prove that the reglon ClQ is a complete

r R (e, )7
spectral get for 0 r . Recall that, for any point

‘r in Q there is a subnormal operator T in ﬁi(n) wlth curvature %

equal to -ﬁh(r,?ﬁg, The normel extension N of the operator T |

‘ r ﬁg(r,?j”
provides a dllation for the matrix s Arveson's
0 r

.

regult [B] now implies that ClQ is a comﬁlete spectral set for it.

|
|
|
|
|
]
;
I
|
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3. THE ANNULUS,

For many slmple domalns, computations involving the cur-

vature are quite complicated, One can easlly verify that Ui
is an extremal operator in ﬁlGD) and ¥ ,(w) = -(l—[w|2)h2,
_]_

To illustrate the difficulties involved, let us outline an

alternative procedure. According to Theorem 2.3, the operator

Mx

-

|

HQGD,m) - HQ(JD,m)j where dm = Iﬁb(ssfjl2|dz| is extremal
in ﬁlOD). Since, g

(2,0 B (2,0 - |1§D 2,7)12]dz] = [2"3%dz| = 0, for

n#n and similarly [|R(2,%)]72|2"2|R(2,0) |2 az| = (127]2]az| =

1t follows that {%ﬂ z.G) =1 n1 form a complete orthonormal set

in Hzﬁb,m). Now, the kernel function Km(zsg) for the space

chm,m) can be expressed as

B, (2,8) = 2 R (2,7) 72" %D(ws.:)_l

 NER %@ O R (2,E).

We are ready to compute the curvature of the operator M;

I

using the formuls,

52
¥ i(w) = - == log K _(w,w)
M, dwow
or ¥ 4(w) = - i Log|R (w,3 R (w,®)
FAN W == . L]
M dwdm ’
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Since %b( »C) is a non-vanishing holomorphic function in D,
1t follows that logfﬁb(m,f)[2 1s harmonic., Consequently,
82

¥ (w) =
M: duwow

. 103 %D(wﬁ')-l-a —(l-'lwl?)“’?‘

As one might expect the curvature of M; does not depend on

the point §{. Indeed for any palr of points ¢{ and {' in D,

the curvature of the corresponding operators are equal in DD,
Therefore, the Cowen-Douglas Theorem implies that they must be
unltarily equivalent. In particular, if { = 0, then H2GD,m)
1s the usuval Hardy space and M; 12 the backward shift operator

*
)

e For each { in D we now have

() =% (w) = ~(1-w]®)72.

M, [

The situatlion for any arbitrary gimply connected domain

1s more or less the same. The trick 1s to show that
ﬁh —'“l ﬁ h'"l ﬁ z,w) ls the kernel function for Hz(n,m)

without having to find a compiete orthonormal set-iln HE(Q,m).
In spife of conslderable effort it has not been possible to
~earry ouf similar computations for an annulus. Fortunately
we can compute the curvature for a family of operators {Za}_
related to an annuius, It 1s known that the operators Z;
are all glmllar to one ancther (Sarason [14}), For any pair

o and B we wish to prove ¥ ( ) /% *(w) -+ 1 a8 w approaches
Z 4 ‘
g
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the boundary. Once proved, it would provide evidence in o ﬁ?
favor of a conjscture announced Iin Cowen and Douglas [ 9 ]. _
The opesrators za were filrst deflned in Sarason [14],'we re- : -l

produce some of his work here,

One can choose a covering space of the annulus

A = [z]ro < |z] < 1} to be a subsurface of the logarlthmic

surface where the logarithm surface conslsts of all palrs of

real numbers (r,t) such that 0 < r < = and - @ < t < « with

local conformal coordinate given by (r,t) - r eit. Let ﬁ

he the subsurface defined by ro,< r<1, o be the map of ﬁ
| St

onto A deflned by o(r,t) = r

b
!

. The palr (ﬁ,m) constitutes '“f-q

a coverlng space for A. Any mercmorphic function F on ﬁ will “-J

he called modulus automorphic 1if it hag the same absolute

value at all polnts of ﬁ lying above the same point of A.

For such function F the minimum modulus principle implies that

F(r,t+2r)/F(r,t) = A 1s a constant of unit modulus, called the w

multiplier of ¥. The unique real number o in the interval [0,1)

satlsfylng \ = eEWiu is called the index of F.

For 0 £ g <1 and 1l s p < o we define Hg(A) to be the 4

collection of all holomorphic modulus automorphic functions P
. !
F of index o satlsfylng | | |

gup IEWIF(r,t)Ipdt < w, : il

r0<r<l 0

The collecticn Hg(A).iﬁ a complex vector space., It can ‘
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be shown that the elements of Hﬁ(A) possess nontangential

limits at almost every boundary point of ﬁ. Hence with

each F in Hﬁ(A) we can asgoclate & boundary function x

defined almost everywhere on the boundary of A by

x(eit) = F(l,t) and X(roeit) = F(ro’eit) for 0 = ¢t < 27,

It follows from Fatou's lemma that x € IP(dA). We denote
'by Hg(BA) the linear manifold in IP(34) consisting of boundary
funectiong of elements in Hﬁ(A). The class Hg(A) congists of

precisely all of functions on ﬁ that can be chtained by lifting

functlons of class HP(A). Consequently HS(A) coincides with

| 2 (34), and so is & subspace of LP(dA). TLet us define the
modulus automorphie functlon E@ on ﬁ by setting Ea(r,t) = raelat.
The index of E_ 1s a. For each o we let w, be the boundary

3 7 At |
lt) = r%e;at '}é

for € &t < 27, Then Hg(A) consists precisely of all products

" ity _ _dat |
Punction of E, that is, wa(e ) = e and wa(roe

o . - ~ |
E F with F in HO(A) and thus_H&(BA) conslets of all products i
i

w, X with x in Hg(BA). Since the transformation x = @ x of

IP(dA) onto itself is a bounded linear transformation, we

conclude that HE(BA), the image of Hg(aA) under this trang=-
formetion is a subspace of IP(dA) and hence a Banach space. |

Similarly., Hi(ﬂ) 1s a Hilbert space under the inner-produckt |

|
[ e i

— l 2']7' . 5 _l - aETF X 5 .
<F@ =~/ 3 F(1,t) 6(1,t)dt + =/, jO Flrgst) Glrgst)ds .

The funetions Ea+n? n=290, *1, *®2,,.,, form an orthogonal




34

set, which i1s complete in Hi(A). For 0 s ¢ < 1, define

itF(

2.
the operator Z, on Ha(A) by (Z&F)(r,ﬁ) = re r,t).

Any holowmorphic modulus auvtomorphle function ¥ of

Index ¢ has a "Laurent expansion"”

o

F(r,t) =_§ CnEa+n(r,t),

which converges at each point of ﬁ. For rg < r< 1

l/zW X?T]F(I':t)lédt z__%:lcn,2r2(a+n)°

Therefore, F belongs to Hsfﬁ) if and only if the gums

x 2 x 2 2{g+n)
mélcnl andnélcn[ rg
are finite. We can now think of Hi(A) ags a welghted sequence

2(a+n))l/2
G

n= 0, 1, iQ;..q « The multiplication operator Za on H

space (Shilelds [15]) with weighte 8(n) = (l+4r ,
2
ﬂ,\
1s therefore unltarily equilvalent to a weighted shift operato

A)

l/? AL

. s D _ )
on L2@2)3 with welghts a = {(l+rg(“4nﬁl)) /(l+rg(a+n)) 3
n=0, #1, #2,.., . Suppose @ 1s any point in the annulus A

and (an)m' in LE(ZZ)is an elgenvector of Z; corresponding to
e ()
the point w. We can then show that.“nan+1 = 0w, whlch leads to

L * a V




Yy

Therafore each w in A 18 a sluple elgenvalus for the

(cx.+.1)) 1/ I

n= -oo

operator Z: with elgenvector [(l+
-1/
if we choose a, ﬂ*(l+r§&) @

an operator T (Shields [15])

. Define the lower bound of

m(T) = inf(|Af|

el =

If the ovperator T i8 injectlve and 1s represgented as Mz on Lg(a)

then _ _
) (T)ﬁinf'&%k-)‘ I’l=l,2,...

- o ' l/ . l/r
In particular,'m(za) = inf(l+rg(&+k+l)) 2/(1+ g Qﬁk) 2 _ 1.
k

Since, || (Z -w)fl| = 12 2]l - fufll = (n(z_)-lw)le)] = Q-leDif] »

for each w in the annulus A, 1t follows that (Zu-w) 18 bounded

below. Consequently the operator (mem) has closed range which

In turn implies that the operator (Z;-E) 1s surjective, Lastly

(aﬂ)n be any sequence in @2@2) that 18 orthogonal to the

space spanned by the elgenvectors of the operator 2: then for

each w In the annulus A, we must have

Y,

(el ) 77207 (g 9> -
or, n}: m»(1+rg(m+n))'l/ “z e =0,

It now follows that an = ( for all n and therefore the

i(A)o The proof that

elgenvectors of the operator Z; span H




Z; lles in Bi(A) 18 now complete. Tha map

T ((l+rg(d+n))ﬂl/2wn)m

. deflnes a nonzero holomorphic
Y= =0y

sectlon of the bundie E . We compute the curvature of R %

' Z : ‘ z
T : : o

using the induced metric w - Hw(w)nz as follows.,

2
= - =2 Toglly (w)]I®

Suow

- d° 1og(§ (l+r2(a+n))“l(

- o )
Jwow e

wey )

(;n2(l+rg(u,+n))—llw12n)(; (l+rg(ﬂ.+n))“l;m’2fl]_

L, ® - 2
- (2 n(u2lednlyly, 20

.‘_oo

[+.4] I} "'Z. >
(3 (1+rg(“+_“)) lw] &™)~

00

Flnally we wish to verlfy that ¥ _(w)/X *(w) - 1 as jw] ~ 1
i

Za. B

or r,. To simplify notation, let us write x for |w[2 and X,




1

Adding together we obtain

o _ ml_ot._l’l . o
% __§§¥H = (Xfil)fgix)-kz : :O z (XO/X)H-Z ——f—$ﬁ (Xox)n.
~o l+x0 0 ' 1 x0+x0 0 1+x8

Let us simplify notation further by setting

f(x) = (mee)Cl~x1 and
o lwxuwxn oo x¥
. 0 "o n 0 n
| B .(x,0) = & ———= ( ) = I ———— (Xx.%)
i 1 xg+xg %o/ 0 1+x‘["}ﬂ'1 0

S0 that we can write

w n

X
z — = f(x) + B.(x,a),
— 1+Xg+n 1

The erucilal point is that the function f does not depend
on o and apprcaches = as x - 1 or Xgs whereas the series
Bl(x,a) depends on o« but remains bounded as x - 1 or Xqe

Similarly one can show

o I
X

I n W = g(x) + B2(X,0L) g
— X
a
P on® X = n(x) 4 By (x,a)
n I; el x) 3 X,0
- X
o

It follows that

[RGB, (x,0) MEG)+B (00 HI=[g(x)4B, (x, )17

¥ ox(w)ie 4(w)= _ >
'z, Za L{n{x)+B5(x, 8) H{£(x)+By (x,0)}1-[g(x)+B,(x,8) ]

[f(x)+Bl(x,s)]2

[£(x)+B, (x,a)]°

X




Now,

ag x ™ Oor XO.

It is not difficult to verify tna{g the other factor
also approaches 1 as x = 1 or e One way to make sure
everything works ls to divlde both numerator and denominator
by the factor h(x)f(x) and then observe that lim g(x)%@(x)f(x)

exlats and 15 finite ag x = i or Xy

The Cowen-Douglas Conjecture: If T and T are operators in
Bl(n) each having Clg as a k-spectral set, then T and T

are similar if and only if

1 ¥, (w) /% _(w) = 1.
lwl=o0 T T
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