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Abstract of the Disgertation

Normal Two Dimensional Triple Point Singularities
by
Chunghyuk Kang
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1982

Let (V',P') be a triple point singularity of a purély

two-dimensional analytic space V', Then there exists (V,P) with

V a hypersurface, P a triple point sinéularity of V and such that

V and V' hafe isomorphic norﬁalizations and resolutions. Suppose
that V has a ﬁrojection to ¢2 with a suitably simple branch locus Q.
Let } be the topological type of the minimal resolution of P. Let
T be the topological type of the resolution of P using Q. Then f
is determined from Q@ via ap explicit computation. An algorithm 1is

given for finding the equisingular type of the plane curve

singularity Q in terms of T.
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LIST OF SYMBOLS

= two dimensional analytic space

= the sheaf of germs of holomerphic functions on '
= the stalk of the sheafl (7 over P.

= fundamental cycle

= maximal ideal of C%.

= gupport of the divisor of D

Hi

ZdiAi be a cycle, an integral combination of the Ai

-~

i

the sheaf of germs of holomorphic functions on N whase
divisors are at least D where(7 is the sheaf of germs

of holomorphic functions on N.

Convention of weighted dual graphs: Vertices without specifying

genera are of genus zero. We write the multiplicity di
of Ai in a cycle D = ZdiAi by placing that integer in

the corresponding pesition of the vertex.

+ 3A2 + AE + A

4
Let D = ZdiAi be a positive cycle. Let B < supp D.

Then D|_ = Ze.A, is a cycle where e, = d, if A, © B and
]B it i i i

e, = 0 if Ai ¢ B.
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INTRODUCTION

. The classification of normal two dimensional singularities

can be studied by the resolution of singularities. The resolution

problem has been studied by Zariski [Z2], Hirzebruch [Hz], Hironaka

[Hr], Brieskorn [B1l and Abhyankar [Ab)., 1In resolving a two

dimensional singularity P, one replaces P by a compact analytic

space A. Because P is a normal two dimensional singularity, A 1is

one-dimensional. TLet A = UAi be the decomposition of A into

irreducible components. Thus each Aj is a (possibly singular)

Riemann surface. It is easy to reduce all considerations to the

case where the Ai are nonsingular, intersect transversely, and no

three meet at a point. There is a purely topological but very

important criterion due to Grauert [Gr] and Mumford [M] which says

that A comes from a resolution if and only if the intersection
matrix (Ai'Aj) ig negative definite.

The classification problem of isolated singularities of

complex surfaces have been studied from varicus standpoints. Taut

singularities in the sense of Tyurina [T2] have been studied by

[B2], Laufer [L3] and Wagreich [W2]. The

‘Gravert [Gr], Brieskorn
analytic structures of the taut singularities are, by definition,

their weighted dual

The topological classification of normal two dimensional

gularities has been studied by Mumford [MI, Wagreich [Wi, W2]

nd. Brieskorn [B2].



Let P be a singularity of -a normal two dimensional analytic
space V., Im 1964, M. Artin introduced a definition for P to be
rational. Rational singularities have also been studied by, for
instance, Duval [D], Tyurina [T1]}, Lipman [1i] and Laufer [L2]. In
1970, Wagreich introduced a definition for P to be weakly elliptic.
Weakly elliptic singularitles have been studied by Wagreich [Will,
Laufer [L4], Karras [Kl, K2] and Saite [Sa].

One of the important questions in normal two dimensional
singularities 1s "the classification of all weighted duval graphs for
hypersurface gingularities."” ﬁ;uble points are hypersurface
singularities. It is known by [Ki] ﬁhét double points determine
plane curve singularities analytically. Wagreich'{W1] proved that
for double points Z¢Z > -2, Then Laufer [L5} showed how to translate
the topological classification of double points into the topological
classification of the corresponding plane curves. It is a natural
fquestion to ask for a theory about normal triple pointk singularities,

Let (V',P") be a gingularity of any purely two dimensional analytic

space V', Then there exists a hypersurface singularity (V,P) such

that V and V' have isomorphic normalizations |G & R, Chapter 3].
Note that the multiplicity of V at P énd the multiplicity of V' at
can be chosen to be the same.
Now let P be a triple point of V. Then by the Weierstrass

reparation Theorem,V may be locally defined by

Vo= {(x,y,z) L= zB-Fazz’sz"Fc =0} and P = (0,0,0);




a = a(x,v¥), b = b{x,y) and ¢ = c(x,y) are holomorphic near Q = (0,0)

and f is of total order 3 at P. Also with a nonsingular change of
. o ' o . 2
local coordinates, we may eliminate the coefficient in z~ of f.

Therefore hereafter we assume that V iz locally defined by

Vo= {(x,y,2) + £ 23-+392-%2q =0} and P = (0,0,0)

where p = p(x,y) and q = q(x,y) are holomorphic near Q = (0,0) and f
is of total order 3 at P. TLet p :V’#~¢2 be given by p(x,v,2) = (X,y)
and let B = {(x,y) : -108(p° + q2) = 0}. Note that -108(p> + q°) is
the z-discriminant of f for V. Then B is the branch locus of p. Q
is a.plane'curve siﬁgularity. Plane curve singularities have been
studied extensively. Their equisingular or topological classification
is well understood [Z2]. We shall use the topology-of the resolution
of Q by quadratic transformations to describe the equisingular type
of Q. Tor a normal two-dimensional gingularity P of V, there is the
minimal resolution ; ;§'+ V. Let r:N -+ V be a resolution induced
by the projection  using the resolution to Q (See [Ll, chapter 2]
‘or it will be done later in this thesis). Let } and I' denote the
topological type of the enbeddings 6f }_l(P) and r_l(P) in ﬁ and N

espectively. 1In this papé; we shall relate ; and ' to the equisin-

ular type of { where P is a triple point and Q is the associated
rlane curversingulariﬁy. In Section 2 we give numerical criteria

r which components of the discriminant locus are part of the branch

cus, We also determine the order of the branching. [ determinpes

but not conversely. The examples of Proposition 3.6 show that




In Section 4 we inpose condition (4.1). This seems to be a reasonabie
condition. Suppose that the above V satisfies (4.1). Let r:N = V

be the minimal good resolution. Then N is obtained from N by at

most 5—~time quadratic transformations at each Sj’ 1 <3 E‘R in
A = ;_l(P) (Theorem 4.7). Also given V with (4,1), there is an
algorithm to determine the equisingular type of the plane curve

singularity from ', the topological type of the embedding of

A=+ (P) in N (Theorem 4.8).




§1  Prelimiparies

Gunning and Rossi [G&R] provides a good general reference,

Let V be a complex analytic subvariety of a domain in ¢m given by

(z)y =0, 1 =1,2,...,r}. Ve assume that

V= {z = (21,22,.,.,zm) :f1

V is reduced, i.e., that {fi(z) 1di = 1,2,...,r} generate the ideal
1d{V) at each.peoint in V.

Definition 1.1 A point P € V ig a regular or nonsingular point of
of |
V if the jacobian [ﬁ;}J(P)’ 1 <j<m i€ 7T where I is a subset of
N :

{1,2,...,r} and {fi}, i €1 is a minimal set of defining equations

for V at P has maximal rank, If P is not & regular point of V, then
P is called a singular point of V. WNote that [G&R, Proposition 9,

p. 1591 the set of singular points of V is a nowhere demnse subvariety.

If P is a regular point of rank k, then k is called the dimension
of V att P.

‘Definition 1.2 Let V = W., 1 <4<k, be the decomposition of V

cinto drreducible components. By [G&R] note that for each i the set

of regular points of Vi is comnected and the dimension of Vi at any
ﬁ?gular point P of Vi is coéstant. The number is dencoted by dim v, .
?ﬁén dim V is defined by max dim Vi? 1 <1 <k. We shall say that

is pure dimensional if all components of V are of the same dimension.
singular point of V is a two dimensional singularity of V if V is

1rely two dimensional,




Definition 1.3 A quadratic transformation at a point § in a two
diménsional manifold M consists of a new manifold M' and a map
m M > M such that % is biholomorphic on ﬂnl(M-Q) and T 1s given

near W”l(Q) as follows. Let (x,y) be a coordinate system for-a

polydisc neighborhood A(O3r) = A of @, with @ = (0,0). A' =7 ~(A)
has two coordinate patches Ul = (u,v) and U2 = {(u',v") with u' = %
and v' = uv, U1 n U2 = {u # 0}. m{u,v) = (uv,v) and

®lu',w') = (v',ulv").,- Thus:A = {(x,y) 3|XI < Tys |y | < r2}’

U1 = {(u,v) 1 Juv] < Tys [v] < TZ} and U, = {(u',v') : [v'| < e

2
|u'v'| < rz}. A quadratic transformation as defined above is often
called a monoidal tranéformation, a Uéﬁrocess or a blowing-up a£ Q.
'Quadratic transformations are canénical. Namely, let ¢t M » 1, be a
~ biholeomerphic ﬁap between the two-~dimensional manifolds M and L and
let m' : L' -+ L be a quadratic transformation at $(Q). Then there is
unique induced biholomotrphic map ¢' :M' » L' such that pom =1n'0¢'.
Let B © M be any analytic subvariety of M. Then we define the proper

transform W of B to be the closure in M' of the inverse image of B

aWay from Q, i.e., W = W_l(B-Q).

efinition 1.4 A gé:m h ofla functicn‘defined on the regular
bints of V near P is said to be weakly holomorphic at P if h is
lpmorphic‘on the regular points near P and locally bounded near P.
;E?and (7" be respectively the sheaf of germs of weakly holomorphic
ictions and thelsheaf of germs of helomorphic functions on V.

, N : r\J
is a natural inclusion [/ (7 . V is normal at P if C; C-Cg

o

isomorphism. V is normal if (7 =~ (7, i.e., if V is normal

each of its points.




Definition 1.5 If V is an analytic space, then a normalization

(Y,m) of V is a normal analytic space Y and a holomorphic map m:Y =+ V

such that

(i) M:Y » V is proper and has finite Ffibres.

(ii) If S is the singular set of V and A = ﬁnl(S), then Y-A is
dense in Y and 7 | Y- A is biholomorphic,

If PE€ V and k%,ﬂ) is a normalization of V, then the number of

points in le(P) equals the number of irreducible components of V

near P [L1, p. 37]. A normalization of any two dimensional analytic

space V alwdays exists and is wnique [L1, p. 38].

Qgﬁigition 1.6 If V is an analytic space, then a resolution of
the singﬁlarities of V consists of a manifold M and a proper holo-
morphic map 7 : M -+ V such that 7 is biholomorphic on the inverse
image of R, the regular pointsof V, and such that th(R) is dense
din M,

Definition 1.7 A nowhere discrete compact analytic subset A of an

gﬁalytic space G 1s called exceptional (in G) if there exists an
analytic space Y and a proper holomorphic map ¢ : G + Y such that
9(A) is discrete, ®: G-A » Y - &(A) is biholomorphic and such that

Or any open set UC Y, with V = @nl(U), o* 2 T(U,0) » T'(v,0) is an

omorphism. If A is exceptional in G, then we shall sometimes say

A can be "blown down" or @ blows down A.

inition 1.8 A resolution M:M =+ V of the singularities of V is

imal resolution if for any other resolution 7' :M' > V there




is a unique holomorphic ma p:M' > M such that w' = mop.
q P

Assume that V is a normal two dimensional analytic space with P its
only singularity. Then there is a unique minimal (good) resolution
miM > V among all resolutions satisfying conditions (i), (ii1) and

(iii) below. TLet n'l(P) = A = UA, be the decomposition of Tr_l(P)

into irreducib;e components,

(i) Each A; is nopsingular

(ii) Ai and Aj’ i # j, intersect transversely whenever they
intersect

B

{(iii) No three distinct Aj meet [L1, p. 917.

Definition 1.9 A branched analytic covering is a triple (V,m,U)

such that

(i) V is a complex analytic variety

(4id) U is a domain in ¢n
(iii) 1w is a proper holomorphic mapping of V cnto U and has
discrete fibres

there exists a complex analytic subvariety D« U and an

integer A such that w is a A-sheeted covering map from

vV - ﬂ_l(D) onto U - D

v - W—I(D) is dense in V,

e subvariety D © U will be called the branch locus of the branched

alytic covering. If the above integer A = 3, then T:V + U is

led a three~fold branched covering.




Definition 1,10 Let £(z) be holomorphic in a domain U < ¢m with

o .
w € U, Let £(z) =% fn(z) near w where fn is the homogeneous
n=

polynomial of degree n. If fk(z) is the homogeneous polynomial of

lowest degrec in this expansion which does not vanish identically,
then f(z) is said to have total order k at the point w; if f(z) = 0,

then the function is said to be of total order <,

.

Definition 1.11 Suppose that V is a complex subvariety in ¢r and

V is pure dimenslonal near P € V, Let m bé its maximal ideal at P.
Then it is well-known JS] that hin) = dim¢ mn/mn+l is a polynomial
for Sﬁfficiently large‘n. Suppose h{n) - a, + a;n + .., + a n for
sufficientiy large n.where éd # 0. Then the ai are rational and
d=dimv- 1, Thé polynomial h is called the Hilbert polyinomial of
V. Recall thaﬁ the multiplicity of V is at P, by definition, is
fd!ad. The muitiplicity is a positive integer.. Let V be an analytic
bvariety of a polydisﬁ in ¢3 given by {(x,v,z) : f{x,v,z) = 0} with

= (0,0,0) €V. Let m be its maximal ideal at P, Then h(n) is a
'blynomial of degree 1. 1If f(x,y,z) has a total order k, then the
Iitiplicity of V at P is a; = k. Therefore 1f V has a multiplicity

aﬁ P, then by the Weierstfass Preparation Theorem we may assume

-at'v is locally defined by'{(x,y,z) 1 f = z3 + az2 + bz + c = 0}

P = (0,0,0); a = a(x,y), b = b(x,y) and ¢ = c(x,y) are holomorphic
Q = (0,0) and f is of total order 3 at P. Also with a nonsingular

nge of local coordinates, we may eliminate the coefficient in =z

tby replacing z by z - a/3). Thus hereafter V may be locally




4
B

ic .

defined by V = {(x,y,2z) : f = 23 + pz + q =0} and P = (6,0,0) where

p = p(x,y) and q = q(x,y) are holomorphic near Q@ = (0,0) and f dis
of total order 3 at P. If P € V 4is singular then we call P a two

dimensional triple point singularity or a triple point.

Lemma 1.12 Let V = {(x,y,z) 123,+ 3p(x,y)z + 2q(x,y) = 0} be an
analvtic subvdriety of a polydisec in ¢3 with P = (0,0,0) € V and P
a singular point., Let p:V - ¢2 be given by p{x,v,z) = (x,y). Let
ﬂ':}f+'¢2 be the quadratic transformation of ¢2 at Q = (0,0). Let

a . T : -
(ul,vl) andA(uZ,vz) be coordinate patches for M with ﬂ(ul,vl) (x,v)

_=/(u1vi,v1) and F(u?,vz) = {x,y) = (v2’u2V2)” Then T may be extended
to ' :M5<¢-+ ¢3 with ©' :(ul,vl,z) *'(ulvl,vl,z) and 7' :(uz,vz,z)

-+ (VZ’UZVZ’Z)‘ Let V' = (ﬂ')kl(V). Let w:N' > V' be rhe normali-

zation of V', There is a map pl such that the following diagram is

commutative;

M

and p' = pl(Jw locally represent V' and N' respectively as three-




Proof Let A and p be the total order of the zero of p(x,y) and
a(x,y)} at (0,0) respectively. Then the local defining equations for
V' are the fellowing:

3
(1.2) Z7 + 3p(ulvl,vl)z + Zq(ulvl,vl)

3 A

1
z” + 3vlpl(u1

,vl)z _l_ 2‘\"1(:11(111:\’1)

,3 |- - .
27+ 3@(v2,u2v2)4 + 2q\V25u2v2)

3 A ' U
z- + 3V2p2(u2,v2)z + 2v2q2(u2,vz)

where Pqs q1 are holomorphic near (“1”V1) = (0,0) and Pys q2 are
holomorphic near (u2,v2) = (0,0). Then py is given ?y pl(ul,vl,z)
= (ul,vl) and pl(uz,vz,z) = (UE’VZ)' So the diagram (1.1) is
commutative. Also, pl and p' arve three-fold branched covering maps

‘by Definition 1.5.




§2  Resolution of Triple Point Singularities

Recail [B&C, p. 1807 that the discriminant of 23 + 3p(x,y)z-
+ 2q(x,v) =0 with respect to z is D = —lOS[pB(x,y) + qz(x,Y)] in ¢2.
Recall that V of Lemma 1,12 may have a nonisolated singular point
P = {0,0,0). Let D % 0, otherwise a resolution of V would be trivial.
Let B = locD..' B contains all points above which p may fail to be a
covering map, where P :V’+'¢2 is given by o(x,v,z) = {x,v). B is the
branch locus if p is thought of as a branched covering map. B is a
plane curve. Let Q = (0,0) be the sinpgularity of B. Let us loock at
a resolution prﬁcesé in terms of iteratioms of Lemma 1,12, Without
loss of generality, we may work near just (u,v) = (ul,vl) = {0,0) in
M'of (1.1). Let Bl be the branch locus for pl and B', the branch
locus for p'. Then clearly B' < Bl“ Also if B' is singuiar at some
for (1.2)

point, then so is B at that point. The branch locus B

1
2u 2
41

1
(u,v) = vmbl(u,v) = 0} where m is the total

2u

is {VBApi(u,v) + v

order of the zero of vjlpi(u,v) + v qi(u,v) over v = 0, Then we

‘get the following,

Lemma 2.1 If N' has a singular point of (p')ml(0,0), then (0,03)
a singular point of {bl(u,v) = 0} or {v = 0} is part of the branch

locus of p' and bl(0,0) =0,

Since N' is a normalization of V', it is enough to show

hat if Q is a regular point of B', then N' is regular above Q.

see [G, Theorem, p. 48].




Now suppose that (u,v) = (0,0) is a singular point of B',

(2)

Let M be the blow-up of M'at (0,0) and apply Lemma 1.12, Also

using (1.1} from our blow-up of ¢2 we get (2,1),

w2 N

L

2y - (2

- ¢2

We may iterate the process of geing from (1.1) «to (2.1) for

(n) LGV RREVIC:Y

gso long as the branch locus B has

s
of = ow
o pn 1
. . . (n .
singular points, To see that a nonsingular B( ) exists for some n,

we may proceed as fellows. After m dterations, let

on;l:}ﬁno > ¢2. Let w(m)

T = THOT, 0 .s.0T
m—-1 1

o 9 be the prpper

transform of B = {p3(x,y) + qz(x,y) = 0} under T Let E(m) =

T;l(0,0). Then E(m) is, by definition, an exceptional set of the

first kind. Let E(m) = UEgm), 1 < i <m, be the decomposition of

g

into irreducible compoments. Let (Bm) = (~108(p3-+q2) oTHP

(m)

i 3

w(m)

+ EeiE 1 <1i<m, be the divisor of (934-q2)c)Tm. Then
e - i

first to find the branch locus B(m) for p(m), we need the following

Propositions,

mma 2,2 Let W = {(x,y,2) : f(x,y,z) = 2>+ 3p(x)z + 2q(x) = 0}
e an analytic subvariety of a polydisc in ¢3 with P = (0,0,0) € W

dPa singular point where p(x) and q(x) are holomorphic in x.




Hote that W is independent of y, TLet p:W - ¢2 be given by
p(x,y,2) = (x,y). Let D be the discriminant of f(x,y,z) = 0 with

respect to z, Then D = 71 (t,-—t,)2 = —108{p3(x) + qz(x)] where
i<j 1 J

the ti = tj(x), i = 1,2,3, are solutions of f(x,y,z) = 0 for =z,

Assume D £ 0. Let w:W + W be the normalization of W. Let p' = pouw.

Let ¢<X>[z] be the polynomial ring in =z with cecefficients in ¢<x>

where ¢<x> is the ring of power series expansion of x. Factoring

f(x,v,z) in ¢<x>[2], we have the following cases: Observe that

irveducibility in ¢<x>[2] is the same as irreducibility in ¢<x,z>
(See [G&R, Lemma 5, p. 71]1) which 1s equivalent to frreducibility

in ¢<x,y,z> by connectivity of regular set.
(i) If f(x,v,z) has three distinct linear factors in ¢<x§[z],
then p' = pow is 3 -1 over the locus x = 0.

If £(x,v,2) has one linear factor and one irreducible

guadratic factor in ¢<x>[z], then p' is 2~ 1 over the locus

x = 0,

If £(x,v,2z) is drreducible in ¢<x>[zJ, then p' is 1 -1 over

the leocus x = 0,

reover, in case (i) D has a zero of even order in x and in case (ii)

has a zero of odd order in x over the locus x = 0,

By Definition 1.5, it remains to show that in case (i)

ds a zero of even order in x and in case (ii) D has a zero of

order in x over the locus x = 0. In case (i) note that D is a

of a holomorphic function in x and so the proof is obvious.




In case (ii) we may assume that f(x,y,z) = 23 + 3plxlz + 2q(x) =

2 : '
o - . = - = s L

(= rl)(z -Frlz%-?z) where T rl(x), r, rz(x) are in ¢ x> and

z2 + x 2 + r, is irreducible in ¢<x>[z]. Note that 3p(w) = wrf + r,

and 2q{x) = ~r.r., Then D = ~108[p3(x) + qz(x)]'= (212.+ r )2(r2 - hr_ )

172 ) 1 2 i 27t
2
But Ty - érz must have a zero of odd order in x over the locus x = 0,

, 2 Co. , o "
otherwise z %:rlz -+ r2 is neot irreducible over ¢<x>. Thus D has

a zero of odd order in x over the Jocus x = 0.

Proposition 2.3  Assume that the hypotheses in Lemma 1.12 are

satisfied, Let A and P be the total order of the zero of p(x,v) and
q(x,y) at (0,0} respectively. Without loss of generality we assume

that V' = {(u,v,2) |f1 = £, (u,v,z) = 2> 3V)\P1(U.V)z + 2‘4‘“%‘3 (u,v) = 0},

Then the ZWdisériminant of fl = 4108[V3A9i(u,v) + vzuqi(u,v)] =
-108 vmbl(u;v) where'bl(u¢v)'is holomorphic near (0,0) and v X bl(u,v).
Assume this discriminaﬁt is 1ot identigally zero, Then bl(u,O) i.Og
ince bl(u,O) is a polynomial in u, there may exist CERERL in ¢

such that bl(ui,O) = 0. Let B* = {v =0} - {(ui,O) Ibl(ui,O) = 0},

here are three cases:

(a) If m is even, then p' is three to one over the locus B*e

(b) If m is odd, then p' is two to one over the locus B*.
Let m = 3} < 2y
(a) If m = 3) is even, then p' is three to one over the

%
locus B .

(b} If m = 3% is odd, then p' is two to ome over the locus B™.

15




16 -

(iii) Let m = 2p < 3
(a) Ifm =_2u Z0 (mod 3), then o' is three to one over the
1ocus R,
(b)Y Ifm= Zﬂ F O (mod 3), then p' is one to one over the

locus v = 0,

Note .that V' is equisingular along the locus v = 0 excent
possibly for those (ui, ) where bl(ui,G) =0, 1= 1,2,...k [72,

Theorem 7, p. 529]. Let ) be fixed such that bl(uo,O) # 0. Then

it is encugh to prove the above cases over (uO,O) locally. We write

{(0,0) for such (UO,O). Also we need the following theorem.

Theorem 2,4 (Hepsel's Lemma)

- s s5-1 P
let h = 2 + a.z + ... + a_ where the coefficients a, = a, (z.,...,z 3
al 1n i i i1 n-1

are helomorphic near (0,..,,0), £ = 1,...,n. Let h have the decompo=~

2 ]

itdion h(0,...,0,z ) = 7w (2 -c ) % into linear factors (with the
It a=1 n o

distinct and 81 + D) + ... F §p = s). Then there are uniquely

etermined polynomials hl,...,h2 € n—lCThaﬁI with deg(ha) = s, and

( ® for o= 1,....0 such that h = h_ **+ h
o 1 !

omorphic near (zl,...,zn_l) = (0,...,0).

0of of Theorem . See [G&F, p. 82].




Let m > 31 = Zu
A2

To apply Hensel's lemma, substitute z+v for z in the

egquation fl(O,v,z). Then we get
LT =‘{g1(0,v,z) = 23 + 3pl(0,v)z + 2ql(G,v) = 0}

Note that gl(O,v,z) is reducible if and only if fl(O,v,z) ia reducible
in ¢<v>[z], a pblynomial ring in z with coefficients holomorphic

near v = 0, If m = 30 = 24, then observe that the z-discriminant

of gl(ﬂ,v,z) is —lOSIpi(O,v) 4+ qi(O,v)] = —108b1(0,v). So if

bl(0,0) # 0, then clearly gl(0,0,z) has three distinct roots and
by Hensel's lemma gl(O,v,z) has three distinct linear factors in
¢<v>{z]. So does fl(O,v,z). Now if m > 3X = ZQ, then the zmdiscriminant

of g,(0,v,2) is ~108[p>(0,v) + a (0, n)] = -108"™ >

bl(O,v). We shall
prove later that if bl(0,0) ¢ 0, then pl(0,0) # 0 and ql(0,0) # O,
Consider the equation gl(0,0,z) = 23 + 3pl(0,0)z + 2q1(0,0). Note
fhat the z-discriminant of gl(0,0,z) iz zero. Since pl(0,0) # 0
and ql(0,0) + 0, gl(0,0,z) has one root of multiplicity 1 and the
other root of multiplicity 2. Then by Hensel's lemma gl(O,v,z) is
teducible in ¢<v>[z]. If m is even, then m- 3\ is even and by
émma 2.2 gl(o,v,z) has three distinct linear factors in ¢<v>[z].
. does fl(O,v,z). If m = odd, then m~3A is odd and by Lemma 2.2
2(0,v,2z) has one linear factor and one irreducible quadratic factor
'¢<v>[z]. So does fl(O,v,z); Now we are going to prove that
m > 3} = 2| and bl(0,0) # 0 then pl(0,0) # 0 and ql(0,0) # 0.

e —lOS(pi(u,v) + qi(u,v)) = wlOSthSA

3 2
bl(u,V), Pl(u,O) + ql(u,O)




is identically zero. So if pl(0,0) = 0, then ql(D,O) = ( and

conversely, Therefore it is enough to show that if pl(0,0) = 0 and

ql(0,0) = ( then bl(0,0) = (J, Note that pl(u,v) and ql(u,v) may be

written as pl(u,v) = F 4 v +G and ql(u,v) = H + vt-J regpectively,

where ¥ = F(u), B = H(u) are polynomials in u, G = G(u,v), J = J(u,v)

are holomorphiéznear {0,0) and v * G and v * J. Also observe that

F = pl(u,O) £0 and H = ql(u,O) £ 0 otherwise it would contradict

to the fact that v * pl(u,v) and v * ql(u,v). But u IF and u |H

because pl(0,0) = ql(0,0) = 0, ¥ow writing pi(u,v) and qi(u,v) in
3

5
increasing order of degree of v, we have pi(u,v) = 77 4+ 37y +

2 + ZHJVt + J2v2t. Since

3F62v2S + G3v3S and qi(u,v) =H

pi(u,O) + qi(u,O) = 0, then F3 Hz Z 0, Therefore if s # t then

f

the first term of pi(u,v) + qi(u,v) has a factor u and the remaining

erms of pi(u,v) + qi(u,v) has a factor either v or u because u{ F

and u

H. Thus bl(0,0) =0, If s =t and the first term of

2 . . . s ‘s
(u,v) + ql(u,v) is not Identically zero, then it is trivial.

o if s = t and (3F2G + 2HI)v® = 0, then it suffices to show that
fG + J2 £ 0 but that 3FG2 + J2 vanishes at (0,0). But we know
o232 2 o 2 e
+H =0 and 3F°G + 2HJ = 0, Thus 3F°G + 20HJ = 0 impiies
= 4H2J2 = —4F332. Hence we get 9FG2 = —4J2. Therefore
2 . 2 2 _ 2 .
"+ J% = 3FG” - 9/4°FG" = 3/4+FG” F O because G £ 0. Since u|F

is trivial.




(11)  Tet m = 3A < 2p

Let L' = {(0,v,z) :gl(O,v,z) = 23 +,3vhpl(u,v)z = 0}. Note

that the z-discriminants of fl(O,v,z) and gl(O,v,z) are —lOSVBAbl(O,V)

3 3 3
P

that b (0,0) = pico,O). So by [£2, Theorem 7, p. 5291 {£(0,v,2) = 0}

= ~108(v {G,v) + vzﬂqi(o,v)} and ~108v Ap;(O,v) respectively and
and L' are equigingular. 50 it remains to consider the equation
gl(O,v,z). Siﬁce bl(O,G) # 0, then pl(0,0) # 0. Therefore if

A Z0 (mod 2) then gl(O,v,z) has three distinet linear factors in
f<v>[z] and so does fl(O,v,z). Also if A £ 0 (mod 2), then gl(O,v,z)
has one linear factor and one irreducible gquadratic factor in

¢<v>[z]. So does f}(O,v,z).

(iii) Let m = 2p < 3A
Let L' = {(0,v,z) lgl(O,v,z) = z3 -+ 2vuq1(0,v) = 0}.. Note
:fhat the z-discriminant of fl(O,v,z) and gl(O,v,z) are

2uqi(O,V) respectively and

_'osivakpi(o,v) + vzuqi(o,v)] and -108v

hat b,(0,0) = qi(0,0).— Then by [Z2, Theorem 7, p. 529]

fl(D,v,z) = 0} and L' are equisingular. So it is enough to consider

he equation gl(O,v;z). Since bl(0,0) # 0, then ql(0,0) # 0.

hergfore if W =20 (mod 3) then gl(O,v,z) has three distinct linear
ctors in ¢<v>[z]. So does fl(O,v,z). If ¢ £ 0 (mod 3) then

fq,v,z) is irreducible in ¢<v>[z] by Lemma 2.2. So is fl(O,v,z).
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Corolliary 2.5 Under the hypotheses of Proposition 2.3, in the

following cases'{v_= 0} is part of the branch locus of o' as three-

fold covering map.

(1) ITfm> 3% = 2p and m is odd, then p' is 2~ 1 over the locus

1

v = {0 except possibly for (ui,O) where b1(ui,0) =0,

Hl

1= 1,200,k

If m = 3% < 21 and m i1s odd, then p' is 2~1 over the locus
v = 0 except possibly for (ui,O) whers bl(ui,O) = 0,

i=1,2,...,k.

*

If m= 21 < 3% and m £0 (mod 3), then p' is 1 -1 over the

locus v = [,

Therefore, by Corollary 2.5, B(m) consistas of some irreducible

(m) {(m)

omponents of W and E = UEim) satisfying one of the conditions

(n)

that Corellary. So to get a nonsingular B s, we may first

erform quadratic transformations on ¢2 until the plane curve
ingularity, that is, the singularity of {(x,y) |p3(x,y) + qz(x,y) = 0}

8 just resolved. Then the irreducible components of the branch

E(m)

are submanifolds, has normal crossings. Thus

(m)

ter additional quadratic transformations, any component of W

(m) will meet that E(m)

¢h meets an Ei N with normal crossings and

(m) and Eim)
(m)

, L <di<m

éover, no three distinct components of W
But some components of the branch locus B may happen

us recall that T MTOB, 0 ves OT
™ 2 m

om and (B ) = (> +q% o )

-1

< m, is the divisor of (p34-q2)()Tm. Under




. : 3 3 .
this mapping T2 then (p )IFil— (p c)Tm)|Fi = BAiFi and

2 2 . . s
{g )|Fi = (q (le)ITi = ZMiFi, where Fi is an irreducible component

of W(m) and E(m>. Then observe that we have the only three cases

below:

(i) e, > 3A [ Zui
{ 4§ - = 1<

{ii) e:,L -3Ki 2ui

(iii) e, = ZUi <_3?\i

If p(x,y) =0 in V, then note that we have only one case (iii) since

p{x,y) is thought as of total order = near Q.
Lemma 2.6 Let Fi and F, he irreducible components of B(m) with

normal crossings and Fi ] Fj # ¢. Then after at most three time

quadratic transformations at Fi i Fj, Fi and ¥, can be chosen with

F. N F,=¢ satisfying the same conditions among (i}, (ii) and (iii)

in Corollary 2.5,

" Proof After restricting to Fi U Fj we may write

(B ) =e,F, +e,F,
m id i3
(p3) = 30, F, + 3\ F and
ii j 3
(q2)=2uF + 2u.F
£i " My

(m)

be the quadratic transformation of M at Fi N Fj'

Let Fk be the new exceptional curve and

et = .
E Tl T M1 © Ty




3

(p™) ((pa)or Y = 3)0 F

m+t Kk

2 2
(¢7) = ((q )OTmﬂ) = ZHka,

after restricting to F Obsexrve that ek = ei + ej but that

Kk

3Rk 3_3Ai + 3Aj and 2pk_i 2ui + ij because there might be additional
) »

conponents of (pJ) and (qz) at Fi n Fj other than Fi and F,. HNow

consider the fdilowing three cases:

(a) Assume that Fi satisfies the condition (i) in Corollary 2.5,

Then e, > 3A, = 2ﬁ_ and e, is odd,
i i i i

(al) 71If Fj-also satisfies the same condition, then

= 2u, and e, is odd.
1 J
. S 3 2 f .
Then we claim that (p~) and {q ) have no additional components at

k
BAR + 3lj = Zﬁi + 2uj = 2uk. Since e, 1is even and e > 3Ak =-2uk,
(m+1)

F, ' F,, which will be proved later, If so, & =4¢e, +t e, > 3% =
i K i i k

then by Proposition 2,3, F

Kk is not part of the branch locus B

“and Fk separates these two components. To prove our claim, suppose

‘that there are additional components of (p3) or (qz) at Fi n Fj.

(m)

:Let the local defining equation of V , say f, near Fi n Fj be

= 0}, where p = p(u,v) and q = g(u,v)

S hélomorphic near {(0,0), v * P, ¥V f 4, u { p and u X q and

={v=0}and ¥, ={u=0}). F. NF, = (0,0).
J i j

p(0,0) = 0 # q(0,0), then e = &4 + ej > Zuk = Zpi'+ pj but
>3t 3Aj = 2y, + ij = 2p, . So it would be a contradiction

ﬁérwise this implies e = Min(3A ,Zuk) = 21

W If p(0,0) #0 =




q{0,0) then similarly we get a contradiction, Now let p{(0,0)

3k, 3A,

3
Y Jp

q(0,0) = 0, Note that the z-discriminant of £ = -108v ﬁ-qzj

e, e
i

Jb, where b = b(u,v) is holomorphic near (0,0), v * b,
u X b. Also observe that b(0,0) # G by assumption., Since ei.> 3Ai
and ej > BRj, vmukb = p3 + q2 for some m > 0, k > 0. As in the

proof of (i) of Proposition 2.3, we write

F + v

H + th

where F = F(u}, H = H(u) are holomorphic near v = 0, G = G(u,v),

J = J{u,v} are holomorphic near (0,0), v f G, v * J and s and t are
integers. Note that F £0 and H # 0 otherwise it would contradicts
to v X p and v Z q. Now writing p3 and q2 in increasing order of
- degree of v, we have

o+ 3oev® + 3PS 4

5% 4+ amgvt + 752F,

Since pB(u,O) + qz(u,O) = 0 then F3 + H2 Z 0. But ul|F and u| B

because p(0,0) = q(0,0) = 0. If ¢ = 0 then p3(0,v) + q2(0,v) =0

implies J = 0 hecause F3 + H2 = 0. Thus we get G £0 and J % 0.

Then similarly as in the proof of Proposition 2.3, we get b(0,0) = 0.

U8 we get a contradiction,
2) If Fj satisfies (ii) in Coreollary 2.5, then

e, = 3\, < 21, and e, is odd,.
J 7 3 J N




(m)

Let the local defining equation f for V be defined as in case (al).

7'- = Fi < < T =
Now if »(0,0) # O, ;henIBAk ‘3Ai +‘3\j 2ui + Zuj -2pk but also

33X, = 3li + SAj < e which is a contradiction. If

+ =
Kk ej [=

1 k’
p({0,0}) = 0, then similarly as in case (al) we have vmb(u,v) =
24, -3\

3 J

Ip” + u q"] for m > 0. Then similarly as in the proof of

Proposition 2.3y we get b(0,0) = 0, which is impossible.
(a3) if Fj satisfies (iii) in Corollery 2.5, then
e, = 2., < 3\, and e, = 2;, 0 {mod 3).
30T 5= Ay RO )

Then siwilarly as in case (a2), we get a contradiction.

(b) Assume that Fi satisfies the condition (ii) in Corollary 2.5.

Then e, = 3X, < Zﬁ, and e, 1s odd.
i i i i

if Fj_satisfies (i1) in Corollary 2.5, then

e, = 3A, < 21U, and e. is odd.
J N 1 3

‘Then e, = e, + e, = 3%, + 31, = 3X\ is even,
3 i i

< +- <
" ; « Zpi ij __2uk and e

k

(1)

:Thus, by Propesition 2,3, F. is not part of the branch leocus B

k

and separates Fi and Fj'

(b2) 1f Fj satisfies {iii) in Coxollary 2.5, then
e, 20, < 3A,, e, = 2u, £0 (mod 3) and
i My 50 €y By FO( )

=e, +e, =3\, +21n,.
i J -1 -

'3Ai + SKj f_ﬂkk and € < Zpi + ij f_zuk.

is absurd, because.03m+1) < min((pS),(qz)) over Fk'
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(c) Assume thar Fi and Fj satisfy the same condition (iii) in
Corollary 2.5. Then

Zpi <73Ai with e, # 0 (mod 3) and

D
I

T
)

2uj <‘3Aj with ej £ 0 (mod 3).

50. e = ey + ej = 2ui + ij = Zpk < jli + BAj §~3lk'

i

1f e Z 0 (mod 3), then by Proposition 2.3, Fk is not pant of the

4
branch lecus B(m'l) and separates these two components., If e £0

{mod 3), then by Corollary 2.5, Fk is still part of the branch locus

+3. i
B(m' ) Then by the same argument as above, after one additional

blow-up at Fi n Fk and Fj N Fk’ respectively, these three components

¥., ¥, and ¥ will be separated by the new two exceptional curves

k
. . k3
which are not part of the braunch locus B(m ),

Therefore, after performing quadratic transformations n times,

by the previous discuvssion, we may assume the following:

__21_9 ¢2

We may iterate the process of going from (1.1) to (2.1)

until the branch locus B(n) of p(n) = pow, is nonsingular.

Oﬂﬁ st M= M(n) - ¢2 and

) Let = = 0 ven
)_ TET =Tom, om 1




(n) (n)

and let (B ) =W + Le B
n i1

(p3+-q2) 0oT. Then B(n)

» 1 €1 < n, be the divisor of

(n) (n)

consists of those W and those Ei

satisfying the conditions in Corollary 2.5. Any two distinct

(n)

components which are part of the branch locus B

(n) (n)

1

do not intersect,

Any two distinct components of W and UE , 1 <1 <mn, meet with
normal crossingg and moreover, no three distinct component of them
will intersect.

(n)

Observe that as long as B satisfies the above conditions
(i) and (ii) we can stop this process.
Given V of Lemma 1,12, we assume that V may have a non-
isolated singular point P. Now for éuch a resolu&iom ri:N = N(n) + ¥V
where 1 = T' oﬂ(z)c:...o1T0ﬂ oW s there is assoclated the
topological type of the embedding of A = r*l(P) in N. We shzll
ée I' to denote this topological type. Let A = UAj, 1 <3 <m, be

the decomposition of A into irreducible components. I gives the

ometric genus gj of each Aj’ the AjﬂAj or self-intersection numbers

n N and how each Aj intersects Ak’ i # k. Note that each Aj is

nsingular by construction. When V of Lemma 1.12 may have a
nisclated singular point P and r : N » V is such a resolution,
ééforth we use the terminology "a resolution by (2.2)".
Now we are going to describe T from the topological type of
the corresponding plane curve singularity, that is, the singularity
.é branch locus B of p where p:V ~+ ¢2 is given by p(x,y,z) =

~Let ZE = EziEi, 1 < i < n, be the fundamental cycle where

T2
Then ZE is also the puli-back under T = ﬂ()ﬁz(a...(nﬂn:M + ¢




of the maximal ideal {(x,y), Let X = ijAj, 1 <3 <m, be the
divisor of the pull-back under r:N - V of the ideal {(x,y) on V¥
(induced by the projection p :V,+'¢2)" For describing the Aj on N

in terms of the Ei on M, there are three cases, (1), {II) and (ITI)

below. p = p(n) : N » M is the three-fold covering map, Let us
recall that (B) = (B ) = w(“) + ke E,, L <1 < n where E, = Egn)
i n idi — 7 .- i i
3 2 ,
( = > &+ = i = F ot
and (B) Fi eibi, (p7) Fi BAiFi and (q7) Fi Zuili where Fi is

(n) (n)

any irreducible component of UEi ana W . For brevity we write

o(B) = e o(p3) =_3li and o(qz) = 2ui along Fi. We may assume

e e g -1 _ 3 M N -

that Ei = {v = 0}, e, (Ei) _,{fi = z7 4+ 3v pi(u,v)4 + Iy qi(u,v) = 0}
Mg Wy, 1

and the z-discriminant of fi = ~108{(wv 1294 + v qi) = -108v bi(u,v)

where v X Py v I qi and v I bi°

(1) Assume that Ei = {v = 0} satisfies the codition (iii) in

Corollary 2.5.
(n)

Let the local defining equation of V over Ei be

3 Ay My :
_{fi =z~ + 3v pi(u,v)z + 2y qi(u,v) = (0}. Then o(B) = e, =

2pi < BAi and Zﬁi £ 0 (mod 3) along Ei' So Ci = pﬁl(Ei) is

1rreducible, nonsingular and of genus 0. Ci = Aj for some 3. To

ompute Aj-Aj in terms of Ei-Ei let F be a tubular neighborhood of

. Let pfl(F) = G, By [M, pp. 6-13] the fundamental group

(F ~ Ei) is isomorphic to a eyclic group of order -Ei-Ei. Since

is a three-fold covering above T "Ei’ wl(GJ-Aj) is a eyeclic group

¢§e order is equal to the index 3 of ﬂl(F-—Ei).. Also [M, pp. 6-13]

- A.) is cyclic of order A,-A,. Thus we pet E,-E, = 3A, *A,.
3 i3 i 7i i3




m, because if Aj is locally defined by {t = 0} then v = 3,

Assume that Ei = {v = 0} satisfies the condition (i) or

in Corollary 2.5.

16:))

Let the local defining equation of V over Ei be

3. .M L
{fi = 727 4+ 3y pi(u,v)z + 2v qi(u,v) = 0}.

v
¢

Then (i) o(B) odd > SAj Zﬁi or

(ii) o(B) . odd = 3ki VATIN

1
Since N is Qonsingulat above Ei and p is two to one over Ei by
construction, p“l(Ei) must have two disjoint irreducible components,
that is, two disjoint spheres using the fact that spheres are siﬁply

connected., Take a tubular neighborhcod F of Ei' By [M] ﬂl(F-*Ei)

is a cyclic group of order equal to —Ei.Ei' Let G = p_i(F). Then

Ple-c ° G-«Ci - ZE‘--E:_L is a three fold covering map. Note that
. i '

G is disconnected because the set of regular points of V(D) over

any neighborhood of Ei‘is not connected., Let G = Gj U Gk' where

. " ; ) N .
Ak’ p'Gj 'Gj F is one to one and p Gk 'Gk F is

22i as we see in the proof of case (I).

1TI) Let Ei = {v = 0} be not part of the branch locus of p. Since
‘Proposition 2.3, p is 3-1 over the Ei except possibly for those

v) = (uj,O) with bi(uj,O) =0, j=1,2,...,k, C, = p—l(Ei) need

i
be comnected., Note that p_l(Ei) is connected if and only if




pnl(Ei - {(ul,O),...,(uk,O)}) is connected. We shall prove later

that CiaCi = 3E1'Ej' Then we have the following three cases:

i If pul(Ei) consists of globally three topological components,
then let Ci = Aj U Ak U AE' Then similarly as in (1)
mj smo=m = oz, Aijj = AknAk = AQ'AE = Ei’Ei. Each of
Ci is nonsdngular of genus O.
1f p—l(Ei) consists of globally two topological components,
then let Ci = A.j U Ak where 0 is one to one near a neighborhood
of Aj and ¢ is a two-fold branched cover near a neighborhood
of Ak. Then AjoAj = Eiin. Since ci«ci = 3Ei'Ei,‘Ak°Ak =
_2Ei°Ei. Also mj smo= oz wnich can be proved similgrly as
we see In case (I). Aj is nonsingular of genus 0. Let & be
the number of irreducible components of the branch locus of
0 which intevrsect Ei' Then as in the Riemann-Hurwitz formala,
Ak iz of genus (QwZ)/2, for 24 - 2B + 2C -~ % = 2 - 2¢ gnd
4L =~B+C~-2=0 vwvhere A 1s the number of O-cell, B is the

number of l-cell, € is the number of 2-cell in a triangulation

of Ei and g is= the geomietric genus of Ak'

If p_l(Ei) is irreducible, then Ci = Aj for some j.

Similarly m, = z,, and A,*A, = 3E,¢E.. Let k be the number
] 1 1 ] i i

of irreducible components of the branch locus over which p

are one to one and which intersect Ei' Let 2 be the number

of irreducible components of the branch locus over which o

are two to one and which intersect Ei' Then by the

Riemann-Hurwitz formula Aj is of genus (2k + 2 - 4)/2.




Now to prove Ci'Ci = 3Ei'Ei, we may proceed as follows.

Recall a resolution by (2.2). Let h be any generic function in the
maximal ideal (x,y). Let (h) be the divisor of the pull-back of
h under T:M - ¢2 in (2.2). Let (h) ZF + Wh. Recall that

Z_ = ZZiEi is the fundamental cycle. = -1 fAr, Ccrollary,

F gty
= () except for 1 = 1 where E

p. 135]. 1In fact by induction, Ei'ZF

1

is the curve appearing at the initial gquadratic transformation at Q.

1 and El'ZE = ~1. Recall the map p = p(ﬂ): N + M., Let
X A+ Wp*h be the divisor of the pull-back of (h) under p.

Let us recall that X = ijAj. Then either X°Cj = {} 1f Wh N Ej = ¢

or X-Ci = -3 4if W, N Ei # ¢, because Ci'(X W ) =0 and p is a

h p¥h

three~fold branched cover over B . If wonE, # ¢, then B, = E.

Thus we proved BZE'Ci = X°Ci. If there ig part of the branch locus

E of p which intersects Ei'let pwl(Ek) = C Then in case (1)

k

Ck = AS for some s and'note that X has coefficient 3z

K
K 01l AS.

Thus 3z, A *C, = 3z , In Case (II) C. = A UA =A + A as
s 1 s t S t

k k k

~divisor and X may be assumed to have coefficient z_ on AS and 2=z

k
on At. Thus FZRAS + 2zkA9-Ci= BZk. If there is not part of the

k

branch locus, Ek

Therefore X°Ci = ziCi'Ci - Esz where the sum 2 is taken over the

1 n E, £ ¢}. Since 3Z ‘B, = X-C, and ZotE, = ziEi'Ei + Iz

E k’

i.Ei' In fact we also proved that XX = -3,

Let us discuss the case (III) in terms of Proposition 2.3.

fhen we have Lthe subcases (a), (b), (c) and (d) below:

) . - “1oy .
which intersects Ei then Ci Ck = 3 where 0 (Ek) Ck'
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N o= , =
o(B) 3Ai < 2“1 and.3li Z 0 (mod 2)

o(B) = e >‘3}i = 2ui and ei.E 0 (mod 2)
o(B) = 2“1 BAi and 2ui Z 0 (mod 3)
o(B) Ski Zui
3 o 2 _
Let o{B) = o(p™) = 3Ai <21, = o(q”) and 3Ai =0 (mod 2)

1

4

along Ej.

If there is no part of the branch leocus of ¢ which intersects
Ei’ then Ci = pul(Ei) has globally three components in N.

Thus the case (al) belongs to the case (1) of (III).

Lf there is part of the branch locus, Ek which intersects Ei’
then we claim that
(1) o(B) = o(p’) = 3, < 2u = o(e®), 3\ F 0 (mod 2)

along Ek

(2) pnl(Ei) has globally two irreducible components.

To show (1) is trivial as we see from the proof of Lemma 2.6.

To show (2), there is a partial order between those Ei

induced by the order of their appearance in a resclution by
So after blowing down those Ej for which Ej appears

later than Ei then we get a 1qcal defining equation for

ey "

, some k, say

(k) _

v {23 + SVAkau,v)z + 2vuqk(u,v) = 0}

where Ei ' = Ai and u = Y- Note that connectedness

(k),-1
)T E,)

of p_l(Ei) is just dependent on the regular set of (p




(k)
(k)

in N by (2,2), that is, independent of local coordinates

for Vv over Ei' Since A = 0 (mod 2), let A = 2a.

(k)

Replacing z by z-vu in the local defining equation for V

(k) _ -3

we get L {23 + Spk(u,v)z + 2v qk(u,v) = 0}, Then

recalling (2.2), consider the fellowing diagram (2.3).

NN SN ¢

(2.3
ik
MEY
pk
e
- Clearly L(k) and V(k) have the same normalization N(kj gince

t

Kk is proper,

the fact that P and,pé are proper dmplies that w
| (k)

finite and biholomerphic over V

(k)

Ei' So there exists

(k)

,wﬁ) is the normalization of L' 7, Since

(1) (n)
(k)

wﬂ such that (N
(0

(k)

is the normalization of V and N is a resolution of

(n)

v , there exists 4 : N > N such that ¢ is holomorphic

and unique. But (wﬁ)_;(Ei) = {23 + 3pk(u,0)z = 0} dn L(k)

(k)

‘is reducible and contains {z = 0} in LY. Since {z = 0} is

independent of local coordinates needed for blowing up process

to get a resolution by (2.2), (mi)hl(Ei) should have globally

at least two components and so phl(Ei) has globally at least

‘two components. But Ei n Ek # ¢ dimplies that pﬁl(Ei) has at

'ﬁost two components. Thus the case (a2) belongs to (ii) of

Lad
]




(b)

(b1)

(b2}

= = > = c Lo
Let o(B) e, = even —3li Zpi along E,

If there is no part of the branch locus of p which intersects
Ei’ then Ci = p—l(Ei) has globally three compounents in N.

Thus the case (bl) belongs to (i) of (IIL}),

I1f there is part of the branch locus, Ek which intersects Ei,
then we elaim that

(1) o(B) = odd > 0(p3) = o(q2) along Ek
@3 p (Ei) has globally two irreducible components,

To show (1}, it is trivial as we see from the proof of Lemma 2.6,
To show (2}, ﬁe follow the same technique as in the case {(a2)

and use the same diagram (2.3);‘ Then in this case

® _ o3

1, g, =z + 3pk(u,u)z + Q,qk(u.}v) = 0}. Note that &

. Co 3, 2
has the z—dlscrlmlndnt_—lOS(pk + qk), v/ P ¥ X e but
9
V|(p§ + qi}by assumption. So pé(u,O) -+ qs(u,O) Z 0, Let us
T -1 T = = 3 =
look at (wk) (hi) {gk(u,(),z) z + 3pk(u,0)z + 2qk(u,0) 0}
by (2.3). Since the z-discriminant of gk(u,O,z) is identically
zero, (mﬁ)“l(Ei) iz reducible. Thus p-l(Ei) has globally two

irreducible components because p is two to one over E Thus

e
the case (b2) belongs to (ii) of (III).

Let o(B) = o(qz) = 2gi <.3Ai = o(pB) and 2ui‘5 0 (mod 3)

along with Ei'

If there is no part of the branch locus of p which intersects
. -1 |
E;, then C; =9 (Ei) has globally three components in N.

Thus the case (cl) belongs to (i) of (III),




L
~

(02)' 1f there is part of the branch locus, Ek which intersects Ei’

then we claim that

(1) o) = o(s”) = 2u < N = o), 2w, £ 0 (mod 3)

along Ek

(2) p"l(Ej) is irreducible.

To show (%) is trivial as we see from the proof of Lemma 2.6
and (2) Follows immediately from (1) by Corollary 2.5. This

case belongs to (iii) of (III).

(d) Let ogB) = 3Ai = Zui along Ei"

(d1) If there is no part of the branch locus of 0 which intersects

E,, then C,
i

i phl(Ei) has globally three components in W,

Thus the case (d1) belongs to (i) of (III),

(d2) If there is part of the branch locus of p which intersects Ei’

then there are two possibilities:

(1) There is at least one irreducible component of the branch
locus of p over which p is one to one.

(2) There is no such a component.

Consider the case (1). It is obvious that Ci = p—l(Ei) is

irreducible. So the case (1) belongs to (iii) of (III).

Now consider the case (2)., 1In this case, there might be

globally one component or two components of p—l(Ei)- To

discuss it more, we follow the same technique as in (a2) and

use the same diagram (2.3). Then in this case

L(k) =A{gk = 23 + 3pk(u,v)z + qu(u,v) =0}, Similarly as




(k)

in the case (a2), L and V(k) have the same normalization

N(k). Note that p_l(Ei) is connected if and only if the
regular set of (mé)_l(Ei) is connected by (2.3). (mi)"l(Ei)
=-{z3 + 3pk(u,0)z.+ qu(u,O) = 0}.. Thus connectedness of

p—l(Ei) is just dependent on the global irreducibility of

the plane curve (mi)_l(Ej). Thus the case (2) of (d2) belongs to

either (ii) or (d4ii) of (III). Tor the case (2) of (d2),
examples of Proposition 3.4 will be seen to satisfy that

pnl(Ei) is connected, and on the other hand if P is a triple

-

point of V but V is reducible neaf P then observe that p—l(Ei)

is not connected.

Now, let us recall that Cl = p_l(El) where El is the curve

appearing at the initial quadratic transformatiom at Q. TFor Aj e Cl,

In case (1) with A C19 m, = 3, In case (II) with

1

U A2 we may say that my = 1 and m, = 2 where Al-Al

-El. In case (TII) for each Aj < C

1
10 ™y =1,

There is a partial ordering < between the Aj'induced by the
order of their appearance in a resolution by (2,2). For each Aj in

(m)

ransform of a curve in N .




§3. From Resolution to Triple Point

~

Proposition 3.1 Let w:V > V be a normalization of V, a two~

dimensional analytic space, V may have a2 nonisolated irreducible

~

singular point P and mul(P) is the only singular point of V. Let

t:N >V be a resolution of V. TLet A = rnl(P) be the exceptional

i

set. A is connected. Let A = UAi’ 1

| A

i< n, be its decomposition
into irreducible components, Let m be the maximal ideal of P,
Suppose that r (m) is locally principal, i.e. that the sheaf

" (m)

r*(m){9 on N is locally free of rank 1. Let X = EmiAi’
1 <1i <n, be the divisor of r*Cm). Let N' be obtained from V by
blowing up V at P and then normalizing. Then N' may also be obtained

by blowing down those Ai in N such that Ai-X =

Proof The same proof as that of Proposition 5.1 of Laufer's paper

[L5, p. 322].

Recall wy HE R L Py 1V > MY and p' = Ql(le ' N - M
defined as in Lemma 1.12. Assume that P! is a singular point of V'
and the corresponding Q' (induced by pl) ié a singular point of the
branch locus of p'. But N! may be regular above  or may have a
‘double or triple point above Q, Note that P' is still a triple point

of V', TLet r':N* + vy’ be a reéolution by (2.2) near P' (may be

%* #
induced by r: N + V). If X is the diyisor of (r") (m) where m is

ts maximal ideal at P', then we want —x*«x* = 3 which can be proved

n (*) later. If V' is irreducible near P' then supp X* is connected.




Anyhow by Proposition 3.1 and (2.2) we nay study a resolution by
(2.2) by studying r%(m) on any resolution v : N -+ V near P for which
r*(m) is principal where P 1ig a triple point of V and m is its
maximal ideal. Recall the result of Wagreich [Wl, p. 426], if V is
normal at P and X is the divisor of r%(m) with r*(m) principal, then

~X+X is the multiplicity of P, Therefore we need to extend this

result to the following form ().

(¥}: Tet V be a purely two-dimensional analytic space near

P = (0,0,0) in ¢3. V may not be normal at P. Let m be its maximal
ideal and lét r:tN >V be g resolutionﬂnear P, IFf r*(m) is
principal and X is the divisor of r*(m), we claim that -X-X is

the multiplicity of P,

Proof of () By Definition 1.11, the multiplicity of V near P

is defined to be the degree of the cover of a generic projection

A 6n a domain in ¢2. Let £ and g be generic elements of m, Consider
(f,8) 1V ¢2. Let (f} = X + Wf and (g) = X + wg with Wf n Wg = ¢
where (f) and (g) are the divisors under the pull-back r¥. 7o find
the number of points in ﬁ_l(a,b) with (a,b) small and generic we

may choose a new local coordinate (£',g") by linear change of

coordinates for which (£'(z),g' () = (0,€) instead of (£(z),g(2))

= (a,b). Note that f' and g' afe still generic elements of m,

Then we nay write (£'y = X + Wf, and (g") = X + Wg, with Wf, n Wg,

under the pull-back r¥, Note that the number of components of Wf,

Teeting Ai is ~X'Ai. But g'o r has a zero of order X, on Ai' Thus




3&

t

g' or = € appears X, times on each component of Wf meeting Ai'

Therefore the number of points in lﬁl(D,E) is Z(HX'Ai)xi = wEX-xiAi

~XX.

Now 7 be the fundamental cyele for an arbitrary resolution : f

of P, r*(m) ©(9(-z). Also [Wl, Theorem 2.7, p. 426], the muleiplicity

of P is at least -Z*Z, Since for P a triple point -X*X = 3 > ~%+7

L]

Z*Z may be ~1, -2, or -3. Consider a resolution such that r*(m) is

principal, X = Z + D with D > 0, XeX = Z+Z + 2Z<D + D+D, DD < 0,

since the intersection matrix fpr the Aj is negative definite. 5

DD = 0 if and only if D = 0. %D < 0 by the definmition of 7.

Lemma 3.2 T£ P is a triple point and Z+% = -3, then on any resolution,

r*(m) is principal and equal to{?(—zj,

Proof If r*(m) is not principal, let Y = ZmiAi’ where m, is the

order to which functions gor, g'tm, generically vanish on Ai' Let

ry :Nl > V be a resolution on which ri(m)'is principal. Let r,mrom

Then on Nl’ letting W* denote the pull-back, X > Ty E_W*Z = 7

1
Since XX = -3 < w¥Ver’Y < Zy*Zy = =3, it is a contradiction, So

r*(m) is principal and X = 7,

%
Thus to describe r (m) for triple points, there only remain

i

the cases 7Z+7 =2 and Z+*Z = -1. If v*(n) is principal, then X > Z.

1

Reéall that X

EmjA,, 1 <3 <mn, is the divisor of r*(m) and that

A=UA;, 1< <.




Definition 3.3 A cycle D on A is a integral combination of the Ai’
i.e., D = EdiAi, 1 j.i.i.ﬁ, with di aﬁ igteger. In the following
cycle will always mean a cycle én Al -There is a natural partial
ordering, denoted by <, between cycles defined by comparing the
coefficients, We shall only be considering cycles D > 0. lLet

gupp D = UAi, di_? 0, denote the support of D. TLet I and K be two
cycles on A where L = EiiAi and K = EkiAi. The Eycle Min(L,K) is
defined by EImin(Qi,ki)Ai where min(Qi,ki) is the minimum of Ri and
ki. For any integer A, AD is defined by_ZAdiAi. D means

supp E

the cycle resiricted to the suppE where E is a cycle on A.

4.

{(x,y,2) : 23 + 3p(x,v)z + 2q(x,y) = 0}

I

‘Proposition 3.4 Let ¥V

be an analytic space with P = (0,0,0) € V and P an irreducible

singular point. Let :G + V be the normalization of V and whl(P),
the only sinéular point of %; Let r: N - V be a resolution by (2.2),
Let A = r"l(P) be the exceptional set. A is commected. Let

A= UAi’ 1 <1 <mn, be its decomposition into irreducible components.
Let X = Zm,A,, 1 <1 <m, be the divisor of the pull-back under

r:N > V of the ideal (x,y) on V. Then X*X = -3. Let Z be the
fundamental cycle on UAi’ 1 <i<n. Assume that Z+Z = -2 or -1.

Let us discuss the structure Z and X in terms of the Ai' There

are two cases, (I) and (II) below.

(1) If Z+Z = -2, then we have the subcases (A), (B) and (C).

1 such that Z-Al = -2 and A1 has coefficient 1

in Z, Let X = Z + D. Then D is the fundamental cycle on a

(A There exists A




connected component of UAi’ i# 1. DD= -1, Let A2 be such

that D'AZ = nl. Then A2 has coefficient 1 in D. So A1 and A2

have coefficients 1 and 2 in X, respectively, X-Al = X'A2 = -1,

There is A, # A, such that Z+A, = Z*A, = -1 and A, and A_ have

2 1 1 2

coefficients 1 in Z. Then X = 2 + D where D is the fundamental
cycle on a'connected component of UAi’ i# 1,2,

Let A3 be such that D'A3 = =1. Then X“AB = -1,

coefficient either 2 or 3 in X,

If A,3 has coefficient 3 in X, then X'Al =‘X'A2 = 0,

and A3 have coefficients 1, 1 and 3 in X, respectively,
If A3 has coefficient 2, then either (X-Al =. ~1 and X°A2 = 0)

or (XﬂAl = 0 and X'A2 = -1}, Al’ A? and A3 have‘coeff1c1ents

1, 1 and 2 in X, respectively.

Consider the case thar A3 has ceoefficient 3 in X. Then Al and

A2 have coefficient 1 in Z - 2D, AB«i supp(Z - 2D). (Z-—ZD)'A1
= (Z-2D)+A, = -3 and (Z-20)" = -6. Supp(Z - 2D) is not
connected. In fact, supp(Z - 2D} is a union of two disjoint

connected components of UAi’ i # 3 where one conponent Cl

contains A1 and the other component C2 contains A2. Also

supp D 1s a unique component of UA,, i # 1,2 which intersects
T |

both Al and A

gt Let Zi and 22 be the fundamental cycles on

. . . 2 .
Cl and C2’ respectively. Then Zl = Zl Al = -3 and

Cénsider the case that A3 has coefficient 2 in X. Then we

may assume without loss of generality that X-Al = -1 and
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X+A, = 0. Then suppD 1s a connected component of UAi’ i# 2

which does not contain A Also there exists a unique

1
component C of UAi’ i # 1,3 which intersects Al and A3 both. }
Then A2 < €. Let Z, be the fundamental cycle on C. Then

Zi = -3 and A2 has coefficient 1 in Z,. Either Z*-A2 = -2

Z*'At = -1,where A2 and At have coefficients 1 in Z, or

Z*-A2 = -3, If Zk'Az = —~2 and z*-At = -1, then let D, be the

fundamental cycle of the connected component of UAi, i#F 1,2
which contains At (and intersects both A

. 1 and AZ)' Then
# ~1.

DJ_OD-

w "

(C) There exists Al such that Z-Al = -1 and Al has coefficient 2

in Z, Then X = Z + D where D is the fundamental cycle on a

connected component of UAi’ i# 1. DeD = ~1, Let A2 be such

that D'A2 = ~1, Then X'AZ = -1 with A2 coefficient 3 in X.

Al has coefficient 2 in 72 - 2D and A2 is not contained in

supp{Z ~ 2D} . (Z--ZD)'A1 = -3 and (Z-—2D)2 = -6, So

supp{Z - 2D) is the connected component of UAi’ i # 2 which

contains Al. Let Z, be the fundamental cycle on supp(Z - 2D).

Then Zi = =2 or -3 and also Z*’Al = 0 or -1. Let X, be the

cycle on supp(Z-—ZD)'such that.X*'Ai'i 0 for all Ai < supp(Z - 2D)

and X, +X, = -3. Then X*°A1 = (. So we have the following

possibilities (C1), (C2), (C3), (C4) and (C5).

(Cl) Let AS # Al be such that X*.As = w3.l Then X*'A2 = 1. AS

‘has coefficient 1 in X and then AS N suppD = ¢, Since

2-2D > X,, let Z~2D = X, + F, Then F* = FeA = -3,




(C2)

(C3)

: 42

F'AZ = 1 and F“AS = 3. So ¥ is.the-fundamental cycle on the

connected component of UAi’ i+# 2,s, which contains A_.

1
Consider the cycle X, - F. (karF)-AQ = -6, AS has coefficient
. 2 .
1in X, ~F and (X, ~F)" = ~6. Thus supp(X, ~ ¥} is the connected

component of UAig i # 1 which contains AS and X, ~F is the
fundamental cycle on its support.

Let A # A be such that X,*A = -2 and X,*A = -1. Then
s t * g * Tt

X,*A, = 1, A and A_ have coefficients 1 in X. So A and A
® 2 5 t . s t
are not contained in suppD . Since Z-2D > X,, let

Z-2D = X, 4 F. Then ¥ = FeA, = -3, Fea

1 =1, F«AS = 2 and

2
F-At = 1. So F is the fundamental cycle on the connected
component of UAi’ i# 2,s,t which contains Al' Let us consider
the cyele X, -F. Then (X*j—F)-Aé = wdy (X*-JF)ﬂAt = -2 and

(X -F)2 = -6 since A .and A_ have coefficient 1 in X, - F.
& [ t s

So there is no fundamental cycle with its self-intersection

number ~1 on any component of supp(X, - F).

- X*'ASZ

Let Asl’ A32 and ASB be distinct with X*°Asl

L . . |
X, AS3 = =-1. So Asl’ AsZ and As3 have coefficient 1 in X and [

are not contained in suppD . Siace Z-2D > X,, let

2 _ =
X,+F, Then F~ = F.Al = ~3, F°A2 =1 and F Asl = )

FvAS2 F*A53 = 1. So suppF is the connected component of

4~ 2D

UAi’ i# 2,s1,82,s3 which contains Al.

X -F. Then (X, -F):a = (X =Ty oA, = (K, - F)A_

Consider the cycle

3772
2 . . .

(X, ~F)" = -6 and Asl’ Asz and AS3 have coefficient 1 in

X, -F. BSo there is no fundamental cycle with its self-

intersection number -1 om any component of supp(X, ~ F).




Let As be such that X*‘AS = -1 with coefficient 3 in X,. Then
So AS has coefficient 3 ia X and then AS is not

contained in suppD, Since AS has coefficient 3 in Z - 2D,

&=2D > X,. Let Z~2D = X,+F. Then F2 = F-Al = -3, F*Az = ]

and F»Ag = 1. S0 suppF is the connecﬁed component of UAi,

i# 2,s which contains Al. Congider the cycle X, - ¥, Then

(X* - ™ °AS = -2, (X* - ) °Al = 3 and AS has coefficient 3 ’in X,
Al is not contained in supp(X*-—F). (X*—F)2-= -6. So
Supp(X_',‘_-"F) is the connected component of UAi, i # 1 which
contains AS < Note that there is no fundamental cycle L with

L2 = ~1 on supp(X*—F)‘

Let: AS # At be such that X*-AS = 'X*'At = ~1 where As and At

have coefficients 2 and 1 in X respectively. Then X*-Az = 1,

So AS and At have coefficients 2 and 1 in X respectively.

AS and At are not contained in suppD . Since AS and At have

coefficients 2 and 1 in Z-2D, Z2-2D > Xp» Let Z-2D = X, +F.
2

Then ¥ = F'Al = =3, F-A2 = 1. So suppF is

the conmnected component of UAi’ i# 2,s,t which contains Al'
Consider the cycle X, -~ F., Then (X, ~F) -AS = (X, - F) .At = -2
and (.‘z‘(z,‘—F)2 = —6 since As and At have coefficient 2 and 1

in X, - F respectively., Moreover X, is the fundamental cycle

on supp(Z~2D) and there is no fundamental cycle L with

L*L = -1 on any connected component of Supp(X*-—F).




If Z*2 = -1, then let Al be such that A1°Z = ~1. Then
X =2+ D where D is a cycle on a connected component of UAi’

i# 1. D'D= -2, Then there exists Az such that D'A2 = ]

and that AZ has coefficient 2 in 1. .X°A2 = -1 and A2 has

coefficient 3 in X, Al n A2 = ¢, Tet ¢ = mln(z!suppl),l)'

Then G*G = -1 and so G is the fundamental cycle on supp D,
Let'Z* be the fundamental cycle on the connected component

of UAi’ i # 2 which contains A Then Z, <2, = -2, Z,*A, =

1 1
and Al has coefficient 1 in Z*. Let Ap be such that G°Ap = -3

N

*

and then AP has coefficient 1 in G. Z%-Ap = ~1 and Al and Ap
have coefficient 1 in Zys Let X, be the cycle on supp 2, such
that‘X*'Ai < 0 for all Ai(: supp 2, and ¥, X, = -3, Then

we have the following two possibilities:

Let At be such that X*-At = ~1 and that At has coefficient

3 in X,. Supp(D~G) is a connected component of UAi’ i#p

which does not contain Al and D~ G is the fundamental cycle

on its support with (D-—G)2 = (D-—G)-A2 -1. Also X, -2,

is the fundamental cycle with (X*--Z*)2 = (X*-—Z

yeh, = -1

® t

on the counected component of UAi, i # 1,p which intersects

both A, and A . A_follows A_, A, follows A and A follows
1 P t 2 L t P

At..

Let X* be such that X*'At = X*-Al = -1 and that Al and At

have coefficients 1 and 2 in X, respectively., Let X, =Z2,+G,.

Then supp &, s a connected ccmponent of UAi’ i # p which

doésrnot contain A1 and A2 both. Gi = G*.At = -1, Also




supp(D - G) is a conmnected component of UAi’ i # p which does

. . ' 2 _
not contain Alrand At. D-6)" = (b-06) A2 = -1, At and Al

follow AP at the same time and Ap follows At and Al’

Also, we can prove the existence of such cases by providin
s j2 yp 2

examples.
i

Proof of Proposition 3.4

(1) Let Z+7 = -2,

1

(A) Let Al be such that Z‘Al = =2 with coefficient 1 in Z. By
the definition of Z, X = 2 + D with D > 0. Since -3 = XX =
ZeZ + 24+D + DD and Z+7 = -2, Z:D <0 and D+D < 0 imply that

ZeD = 0 and DD = -1. 8o A1 ¢ suppD since Z?D = (. For

3+ 1, ZeA, = 0 implies Dedy = (X~ 2) *hy 20, S0 DeAL <0

for Aj-c supp D . Since DD = ~1, let A? be such that D-A2 = -1,
X-A2 = (_Z-I—D)-A2 = ~-]. Since XX < X°2A2 = -2, A2 has : ; ?
coefficient either 3 or 2 in X. But we claim that A2 must

have coefficient 2 in ¥X. If A2 had coefficient 3 in X, then

XX = X°3A2 = -3 and so X-Ai =0 for 41 # 2. Therefore

g = X'Al = (Z-f-D)'A1 = -2 + D'A1 would fmply D'Al = 2. Since

suppD is a compoment of UAi’ i # 1, let G = min(Z 2Dy .

supp D’

Note that A2 has coefficient 2 in Z and 1 in D. Then C < 2D

-and G'A2 _'5_2D-A2 = -2, Since G+G ;<_G-2A2 < ~4 and 4DD = -4,

G*G = -4 and thus G = 2D. Thus 7 > 2D. Consider 7 - 2D.
suppD —

Then supp(Z-2D) is the connected component of UAi’ i#2

containing Al, because (Z-—ZD)Z = -6, (Z-2D)-A, = -6,



(B)
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' '(Z—~2D)'Ai =0, 1i#¢# 1,2, (Z-2D)*h, = 2 and A, & supp(Z - 2D).

Since A1 has coefficlent 1 in Z~ 2D, Z- 2D would be the
fundamental cycle on that component and thus it leads to a
contradiction because (Z-2D)2 must be > -3 by Proposition 3,1
and by (*) below Proposition 3.1. Let'AQ have coefficient 2
in X, Thgn there is Ak with k # 2 such that X*Ak = -] and so
Ak has coefficient 1 in X, If Z-Ak = {, then X = Z + D would

imply D+A = -1 for k # 2. So Zeh, < 0. Therefore A=A

i

Since X-A ~1 and ZeA = -2, D-A1 = 1. 1In fact, D is the

1 1

fundamental cycle on a connected component of UAi, i 4 1.

 Let A, # A, be such that Z*A, = Z+A = -1. Then A, and A

1 2 1 2

have coefficient 1 in Z. By the definition of Z, X = 24D
with D > 0, Then by the same_argument as in the case (4A),
D is the fundamental cycle on a connected component of UAi,

i# 1,2 with DD = -1, Let A3 be such that D'A3 = -1, Then

X'A3 = -1, Since XX < X-ZAS = 2, A3 has coefficient either

3 or 2 in X.

If A3 has coefficient 3 in X, then XX = X*SA3 = ~3 and so

X'Al = X'A2 = 0 implies D-Al = D'A2 = 1. Tlet G = min(Z supp]),zD)'

Then G = 2D, Since A, has coefficient 2 in 2 and also
- 3 supp D

in 2D, G°A, G'G < 624, < -4 and G*G > 4D*D = -4

imply G = 2D, Thus Z supp D > 2D, Consider the cycle Z - 2D,

Note that Al and A2 have coefficient 1 in Z - 2D.

(z-2D)+A) = (2-2D)+A, = -3, A, & supp(Z - 2D) and

(Z-2D)-A3 2.7 So supp(Z ~ 2D) cannot he connected. If net,




(B2)

Z - 2D would be the fundamental cycle on a connected component
of UAi, i# 3 with (Z-—2D)2 = -6 and 1t is impossible by
Proposition 3.1 and (*), Since the intersection matrix for

the Aj is negative definite, supp(Z-2D) is a union of two

disjoint connected components of UAi’ i # 3 where one compoment

Cl contains Al and the other component C, contains AZ' Let

Zl and 22 be the fundamental cycles on Cl and C2 respectively, |

= . = 2—'- = e -0
= Z1 Al = -3 and 72, = 52 A2 3. Moreover,

Then clearly Z2 9

1

suppD 1s the unique component of UA,, i # 1,2 which intersects
i

»

both A] and A?, otherwise supp(¥ - 2D) would be connected.

3

Because X+X < X°2A3 = -2, If,XﬁAi < 0 for some j # 1,2,3

then X = Z + D would imply that D'Aj < 0 for some j # 1,2,3.

If A, has coefficient 2 in X, then X'Aj = -1 for some j # 3

It is impossible. So either (X-A1 = ~1 and X-Az = () or

(X-A] = {} and X=A2 = -1). Thus without loss of genmerality

we may assume that X'Al = =1 and X-A2 = 0, Note that Al and

A2 have coefficient 1 in X and Al and A2 are not contained in

1 0 and D‘Az = 1.

1= ® but suppD N A? # ¢. Therefore suppD is a

Il

suppD., X =2 + D implies D-A
supph 1 A

connected component of UAi’ i # 2 which does not meet Al and

intersects A2. So there is a unique component C of UAi,

i # 1,3 which intersects both A, and AB because D-Al = Q.

A2 < C. Let Z, be the fundamental cycle on C. Since Z, < Z

and A2 has coefficient 1 in Z, A? has coefficient 1 in Z, and

Z+A, = ~1 implies Z,+A, < 0. So we have the following

2

2




possibilities:

(1) Z*-Z* =-1, (4i) Z*wZ* = =2 and (iii) Z,*Z, = -3.
But we claim that Z*°Z* = ~3. HNote that Z*‘Al > 0 and
Z*-A3 > 0. 5

(1) If ZoZ, = -1, then Z*'Az = -1,

i

0 = X-2;

i

Ptk = Zyr(By Ay F 280) = Z,oA) ~ 1+ 2254, > 0.

It is a contradiction. o

(1) Tf 2,02, = -2, then Z+A, = -1 or -2,

If Z,*A, = -2, then 0 = X+Z, = 7_+X = Zyr (B + A

F ALY =
2 * * " 3) -

2
Z*°Al -2+ ZZ*°A3 > 0. It is a contradiction, If Z*°A2 = =1, -
then Z*‘AS = ~1 for some 5 # 2. Consider ¥ - 7 Then
A2 & supp(X - Z*) and X°A2 = (0 dmplies (¥ - Z*)*A = 1, E
|
i
|

Now we elaim that AS < supp(X -~ Z,). Let X = ZmiAi, 1 <4 < o,

Note that (X ~- z*)2 = KeX = 22,0X + 2,02, = =5, (X - Zy)r Ay : ’
7 32 o

Tl oAy and (X-Z)eAy s -1 - ZeAL So (X - 20 = é
— L] -— - = o -_— o -— — . + t

(X -2z,) [Al -+ 2A3 + (mS 1) AS] 1-Z, Al 2 2z, A3 _ |

Gns>e 1) = -5, Since Z*'Al > 0 and Z,tA, > 0, m, - 1> 0.

3

Now A1 and A.3 belong to the different components anAi, i # 2.
Therefore (X-—Z*)‘A2 would be greater than 1 because Al and
A3 have coefficients 1 and 2 in X - Z,, respectively and

AS Clshpp(X-Z*). Thus we would get 1 = (X-—Z*)"A2 > 1,

It is absurd.

(iii) If Z,°2, = =3, then Z*'A2 = -1, -2, or -3. Then consider

the following subcases:
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Z*-A2 = -1, Z*-At = =7} and A2 and At have coefficient both
1 in Z*.
Z*-Az = Z#oAt = ~1 and A2 and At have coefficients 1 gnd 2

in Z, respectively.

2, A, = Ly tA Z*-A22 = «] and Az, A and A22 have

21 21

coefficient 1 in Z,.
: 5

eAt = -1 and A? and At have coefficient 1 in Z*.

BN
b=
1

-3 and A2 has coefficient 1 in Z*.

Since A2 has coefficient 1 in X, At also has coefficient 1 in

X from case (II11) of =zection 2. 0 = KeZ, = Z, X

kS E23

=Ly (A HA FA F2A) = <1-247 AL +27, A, implies

1 1 3

-A = 7o e i= . a 1 D'
Z 1 7oy A3 1 Note that A2 nd At are not in supp
Consider X -~ Z,- Then Al and A3 have coefficients 1 and 2

in X - Z, respectively, Atct supp(X ~2,) and A2 ¢ supp(X~2,).

Observe that (X-Z*)z = b, (X-—Z*)BAl = -1 - Z*vAl = -2,
(=2 A = 2, (X-2 )85 = -1 - 2,4, = -2 and (X-2,) 4,
= 1. AlSOX-Z_kz(Z*!-D)-Z*=Z—Z*+D>D. SinceAB
has coefficient 2 in X = Zps {(X—-Z*) ]2 = -4, Thus

supp D
X-2, = 2D because (X-—Z*).A3 = 2. But (X-Z*)-Az =1

and 2D=A2 = 2, 1t is absurd.

Let Z*-A Z*-At = -1 and A2 and At have coefficients 1

2.

and 2 in Z, respectively, Since A2 has coefficient 1, At

has coefficient 2 in X, too, from case (II) of section 2.

ZerX = Zyr(Ap 4 285 F Ay + 28 =Z A 422 A, - 3.
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Thus L*"Al = Z*°A3 =1, Also A2 % supp D and At % supp D
since A2 i supp(X - 2,5 At & supp(X - Z,) and Z >z,.

2
(X -2,0" = -6, (X - 2 Ay = -1 - ZucAL = -2, (X - 2,) *Ay

= ] - Z*=A3 = =2 and (X ~ Z*)°A2 = (X - Z*)'At = 1. Also
X - Zy = (Z + D) - 2, =7 - Z, D >D. So supp(X - Z*) is
a sunion of two disjoint components, since supp D is a

connected component of UAi’ i # 2 which does not contain Al f

“and contains A3. Since (X - Z},t_)oA3 = -2 and A3 has coefficient

3 — - = e r = &
2 in X Zas (X Z*) supp D 2D, But (X Z*) A2 1 and

2D-A, = 2. Tt is impossible,

(iiic) Let Z*eA2 = Z*eAzl = Z¢"A22 = ~1 where A

F

9 Azl and A22 have !

g : [
coefficient 1 in %

2+ Then A?’ A2l and A22 have coefficient

|
1 in X by case (IT1) of section 2. (X - Z*)Z = -6, ;

0= X'Z* = Z*'X = Z*'(Al + 2A3 -+ A2 + AZl + A22) = P

Zy*hy * 22, 0A0 = 3. Thus 7 A = Z A

3 1 3 =1, Consider i |

X~2,. AZ’ A21 and A22 are not in supp(X = Z*). |
(X~ Z,)A) = (X = Z,) Ay = -2 and (X - Zy) Ay = (X -z A,

= (X - Z*)-A22 = 1. Consider (X - Z*) supp D Since A3 has

coefficient 2 in X ~ % and (X - Z,)*Ay = =2, X - 2, = 2D on

supp D. But (X - Z*)oA2 = D'A2 = 1. It is contradiction.

(iiid) Let Z*-A2 = -7 and Z*'At

=1. Then AZ and At have coefficient

1in2Z,. So A2 and At have the same coefficient 1 in X by

case (ITI) of section 2. 0O = XeZ, = Z,°X = Z*-(AZ-FAt-FAl-P2A3)
. . _ 2 _
T2 Lh A 22, Ay ZA = Z0as = 1 (X-2)° = -6,

¥

(sz*%A1=(X—Z*%A3=-L(X—Z*%A2=2emd(X—Z*%At=l‘




(iidie)

Since A3-has coefficiept 2 in %~Z, and (X—Z*)'A3==»2, X-2, = 2D
on supp D. Let D, be the fundamental cycle of the connected
component of UAi’ i # 1,2 which contains At. Note that

At 4 supp D since At has coefficient 1 in X. Let Z, =D +K,
We claim that D °D, # ~1, Assume the contrary. Since A

and At have coefficient 1 in Z.s At has coefficient 1 in D,
and At ¢ supp K. If D*'At = (, then K=At = =1 and it is
absurd. Thus D}.\_"At = =1 and K-At = 0, Note that A_ has

2
coefficient 1 in K sinre A, < supp Z, and A2 ¢ supp D, . By

2

7= 1 implies D*-Al = 1 and K-Al =0, Also K-Az =

(z, ~ D*)°A2 = -2 - D*'A2 < 0. Moreover, KfAj.j 0 for all

case (II) and (III) of section 2, D,*A, > 0 and D*=AJ > 0,

So Z*-A

j # 3 since K'A3 =1, So A.l < supp K. That is impeossible,

Let ZI_(.:'A2 = -3, Then'A2 has coefficient 1 both in Z* and in

X by case (II1) of section 2. 0= Xz, = Zy*X =

Zgt(Ap + &)+ 2A)) = ZyA) - 34 2Z,0A,. Thus 7 A, =
Z*°A3 = 1. Consider X - Ly {X - Z*)2 = -6, (X - Z*).Al
= (X - Z*)°A3 = -2, (X -~ Z*)°A2 = 3, Since A3 has coefficient

2 in X - Z,» X - Z* = 2D on supp D.

Let A1 be such that Z'Al = =1 with coefficient 2 in Z. By
the definition of %, X = Z + D which D > 0. Since -3 = XX =

Z*Z + 2Z2+D + D<D and 7Z+7

il

=2, Z*D < 0 and D*D < 0 imply that

Z*D = 0 and D*D = -1. So A ¢ supp D since Z*D = 0, For j # 1




D?Aj = (X-wZ)-Aj < 0. Thus D‘Aj < 0 for AjC: supp D. Since

DD = -1, let A2 be such that DﬂA2 = -1, ‘X~A2 = (Z-l-D)'A2 = -],
Since XX < Xe24, = -2, KeAs = -1 for some j. If j # 1,2,

then XvAj = -1 would imply either Z'Aj <0 or D“A.j < 0. It is

a contradiction, If j = 1, then X+X § Xn(2A1.+2A2) = -4 and

2
X. Alsc D=Al = (X-—Z)=Al = 1 because X*A, = 0. Also D is the

it dis impoqsible. So Aj = A_ and thus A2 has coefficient 3 in

1

fundamental cycle on a connected component of UAi’ i# 1. Let

G = Min(2 2D). Since A, has coefficient 2 in Z and 1 in
suppD, 2

D, G = 2D. Consider Z ~ 2D, Then (Zw-ZD)z = ~h, (Z~—2D)'Al==—3

and (Z~~2D)'Ai =0 for i # 1,2. Note rhat A2 ¢ supp(Z - 2D)

il

and (Z-2D)'A2 "2, Thus supp(Z - 2D) ig a counected compouent

of UAi, i # 2 because Al has coefficient 2 4in supp(Z ~ 20) .

Let Z, be the fundamental cycle on supp{Z-2D). If Al has

coefficient 2 in Z*, then Z*'A1 < (Z-—ZD)'Al = =3 and so

Zy oL, < Z*-ZA1 < -6. It is a contradiction. So A1 has

coefficient 1 din Z,+ Let K = Min(2z*,z—2D). Since Al has

coefficient 2 both in 2Z, and in Z~ 2D, KﬁAl _<__(Z-—2D)'Al = -3

and KsK j_K-ZAl = -6, Since K S Z-2D, K = Z~2D. Therefore

we get Z, < Z-2D < 2Z, and ZZ*°A1 2_(2-—2D)'A1 = =3, 5o

2 2
Z*'Al =0 or -1, Since Zi > (Z-—ZD)2 = -6 > 42*, Z* = =2 or -3.
Let X, be the cycle on supp(Z - 2D) such that X*.Al < 0 for all
Ai < supp(Z ~ 2D) and that Xi = -3, If Al has coefficient not

equal to 1 in X,, then let K

Min(X,,Z2-2D). Then

ReAp 2(Z-2D)*A) = -3 and X-K < Ke24, = -6. But KK < XX, =-3




and it is impossible, So AI has coefficient 1 in X,. Now

repeating the same argument for X, as just above for Lys We
get X*'Al = 0 or -1, We claim that X*.Al = 0., If X*'A} = -1
and X, is the fundamental cycle, then Z-2D > X, Let

Z~2D =-X*-?E. Then we would have the following possibilities:

(zw20)% = %2 4 2% .7 + 12
. ® A
-6 = -3+ 0 =~ 3
-6 =-3- 2 .1
Since (Z-ZD)oAl = -3 and’X*~A1 = -1, EmAl = -2 and Al has
coefficient 1 in E. Since X B < X*eAl = -1, X,+E would be ~1,

Then X*"Aj = { for Aj < suppE, j # 1. So E-Aj = (Z-—2D-~X*)eAi

= ~K,*A, = 0 for Aj < suppE, j # 1. Therefore it would be

J

E«E = EeA, = ~2. Thus we get a contradiction. If Xprhy = -1

and X, is not the fundamental cvcle on supp(Z ~ 2D} then note
that Z, «Z, = -2 and by the results of case (I) of this

Proposition we got so far, there exists AS # Al such that
'AS = ~1 and that Ao has coefficient 2 in X,. Let pml

X (E

5)
by case (IT) of

F3

= C2 = Al U AS. Note that ¢ 1is 2~ 1 over E2

section 2. Since Al has coefficient 2 in X, AS would have
coefficient 4 in X by case (II) of section 2. Recall that
ZE = ZziEi is the fundamental cycle where

3,2 ' (n) .
(B) = (-108(p~+q )()Tn) =W t e F., 1 <1< n, be the

-1 .
. 7 — u .
divisor of BxaTn. Let p (FZ) Al A, If E; 1is the curve

appearing at the initial quadratic transformation at Q, then

E2 follows El by a partial ordering induced by the order of




appearance of the Ei in a resolution by (2.2). So E2 has

Eoéfficient 1 in ZE. Therefore by case (IT) of section 2,‘Al

and AS have coefficients 1 and 2 in X regpectively. Thus we

get a contradiction. Hence X*'Al = {J,

following subcases (C1), (C2), (C3), (C4) and (C5).

Now consider the

{(C1) Assﬁme that X*-AS = =3 for s # 1.

¥ Since X* is the fundamental

cycle on supp(Z-2D), Z-2p > X,. Let pﬁl(E?) = AS. Since E2

has coefficient 1 in ZE’ AS has coefficient 1 in X by case (IIT)

of section 2. 0 = XX, =X "X = X*°(AS-%3A2) = -3 + BX*'AZ.

Thus X, A, = 1,
® 2

Since A has coefficient 1 in X and X = Z+D,

A has coefficient 1 in Z and A. ¢ suppD. Let 7Z-2D = X, +F.

Since A has coefficient 1 both in 7 - 2D and in X, A d suppF

and so X 0F =0, (Z-—ZD) =.X3 + 2%, °F + F2 and (Z-—2D)°Al==-3

imply F~ = FoAl = -3 and Al has coefficient 1 in F because Al

has coefficient 2 in Z2-2D and 1 in Xpe F'AS =3 and

F*Az = 1 gince (Z-‘ZD)-A2 = 1 and,X*~A2 =1, So T is the

fundamental cycle with.F2 = ~3 on a connected component of

UAi, i# 2,s. Also X, > F. Consider X, ~F., Then AS has

coefficient 1 and Al ¢ Supp(X*-F), (X*-F)Z = -6,

(X*-F)-AS = -6 and (X*-F)-Al = 3, Since Al d Supp(X*-F),

X, —F is the fundamental cycle-With (_X*--F)2 = -6 on a

component of UAi’ i# 1.

Assume that X*'AS = -2 and X, 'A_ = -1. Then As and At have

Since E2

has coefficient 1 in ZE’ AS and At have coefficient both 1 in

coefficient both 1 in X,. Let p (E2) = A Ua,




X by case (III) of section 2, 0 = XX, = X, X = X*.(A3+At+3A2)

= WP -_ [y a = 34
2-1 3X, Az, Thus X, Az 1, S8ince AS and At have

coefficient 1 in X and X = Z+Dn, As 4 suppD and At ¢ supp D.
Since X, is fundameutal on supp(Z -~ 2D), let Z- 2D = X, +F.

Note that A, ¢ supp P and A.t ¢ suppF.. So X, *F = 0.

-6 = (Z-—2D)2 = Xi + EX*'F + F2 = -3 + F2 implies F2 -3.

F-Al = ~3 and Al has coefficient 1 in F since Al has coefficient

2 in Z-2D and 1 in b F°AS =2, F*A =1 and F=A2 L.

t
because (Z - 2D) = X, +F, (Z-—ZD)-A2 = 2 and X*.AZ =1, So ¥

is the fundamental cycle with F2 = ~3 on the conmected component
of UAi, i # 2,s,t which contains Al' Since ¥ is fundamental,

X, > F. Consider X, -¥, Then Xy ~F)oa_ = -4, (X, = B) oA =-2
and (X*-F)2 = —-6, Since Al has coefficient 1 in both X, and

F, Al lym supp(X*-uF) and (X*-F)'Al =3, Since AS and At have
coefficient both 1 in X*-;F, there is no fundamental cyele

with its self-intersection number -1 on any component of

supp (¥, - F).

A and

Assume that X*-AS 15 Aoy

= X4 X»'AS3 = -1 where AS

1 s2 *

< -1, _ .
AS3 are distinct. Let p (EZ) = Asl U AS2 U ASB' Since E2
has coefficient 1 in Z_, A s A and A have coefficient 1 in
. E’ Tsl® g2 83

X. 0= XX, = X,+X = Ree(A g + A, +4_ + 34,) = -3 + 3K, A,

# s2 s3

Thus X*-A2 = 1. Note that Asl’ AsZ and As3 are not contained

in suppD, for X = 74D, Since,X* is fundamental on supp(Z - 2D),

o1’ Dgp and

Z-2D > X*. Let Z-2D = X*4-F. Observe that A

. .. 2
A53 are not in suppF. So X °F = (Z~-2D)" =




Xf + 2X, -F + F2 = -3 + Fz. F2 = F‘A1 = =3, Al has coefficient
1 in F since A_l has coefficient 2 in Z-2D and 1 in.,X*.

Prhgg = FeAy = FeA o= 1. Fea, = 1 because (7-2D)a, = 1
and X*"A2 = 1. Therefore F is the fundamental cycle with

F2 = -3 on the connected component of UAi’ i# 2,sl,82,83

which coﬁtains Al' Since X, > I, consider the cyele X, - F.
Then Asl’ AS2 and AsB have coefficient 1 in X, = F and

Ay & supp(X, -F). (X, ~F) gy T (K =FyeA = (X - F) A =2
and (X%“F)'Al = 3, (X*-F)z = ~6. Bo there is no fundamental
cycle with its self-intersection number -1 on any conponent

of supp(_X*.— F)-. o

Let AS be such that X*oAS = -1 with coefficient 3 in X, Let

pul(Ez) = AS. Since E2 has ceoefficient 1 in Z_, A‘3 has

Er
coefficient 3 in X by case (I) of section 2. O = Y

=

= X*-(BAS + 3A2) = -3 + 3X, A XA, = 1. Since AS has

2° 2
coefficient 3 in X, X = Z4+D and AS < supp(Z - 2D}, As has

coefficient 3 in Z and As d suppD. Thus As has coefficient

3in Z~2D, S0 Z-2D > X*. Let Z - 2D X, +F., Note that

A & supp¥. X, F = (Z-2)% = x* + 2X, +F + -

-3 + FZ. F2 = = 1 has coefficient 1 in F. F'AS=1.

F-Az_ = 1 because (Z——ZD)-A2 = 2 and .X*-A2 = 1, Therefore

F is the fundamental cycle with F2 = «3 on the connected

component '¢f Ua,, 1 # 2,8 which contains A Since X, > F,

1
consider the cycle X, ~F. Then AS has coefficient 3 in X, ~F,

Al ¢ supp(X, - F), (X, - F} *A = ~2 and (X*—F)'Al = 3., Since




2
(X, -F)" = -6, supp(X*-F) is a connected component of UAi’

i# 1. We claim that there is no fundamental cycle with its
self-intersection number -1 on supp(X, ~F). If there would be
the fundawmental cycle L with L°L = -1 on supp(X, - F), then let

Le=F =1L+ M, Then we would have the‘following table:

- (_X*"F)?‘ = 12 4 onew 4 P
-6 =-14+ 0 +5
-6 =-1- 2 =3
-6 =l - 4 -7

If L-AS = =1, then As has coefficient 1 in L and 2 in M. Note
that M“AS = -1. But L*M = L'2AS = <7 and M2.= M°2AS = =2,

It is impossible, TIf L'At = -1 for At # AS, then M'AS = -2,
Moreover, AS would havg coefficlent either 1 or 2 in M. If

AS would have coefficient 1 in M; then_M°M_i M'AS = —2 because
M‘Ai > 0 for all i # s. According to the above table, M2==~l
and L°*M = -2, Thus At has coefficient 2 in M. But

MZ = M'(AS + 2At) =-2+2=0., It is absurd. If AS has

coefficient 2 in M, MeM > M°2AS = -4, M2 = =3 or -1 according

to the above table. If M2 = -1, then LM

It

-2 and so At has
coefficient 2 in M, ButM2 = M-(ZAs + 2At) = -4 4+ 2 = -2,

It is absurd. If M% = -3, then L M = -1 and A, has coefficient
1l in M. Now we claim that M > L. Note that AS has coefficient
2in M and 1 in L. Let K = Min(L,M). Since At has coefficient
1 in both L and M, Ko'At' S Lea = -1. Also KeA < Lea < 0.

Since M'Aj < 0 for Aj < suppM, j # t, KeA, <0 for Ai < supp L.

‘




i
o2

So K = L, Consider the cycle M- L, Then AS has coefficient

1 in M-1, (M-—L)'AS = -2, At 4 Supp(M-—L) and (M--L)‘At = i.
(M-—L)°Al = 1 since CX*-E)'Al =3, X, ~F = M+L and M > L.

So M-~ L 1is the fundamental cycle with (M}~L)2 = -2 on the
connected component of UAi, i # 1,t which contains As‘ So
M~-L < Lf; Next consider 2L, -M, Then At has coefficient 1,

A.S ¢ supp(2L-M), (ZL-—M)-At = -3 and (2L~"M)=As = 2,
(2L-—M)-A1 = 0 and so supp(2L-M¥) N Al = ¢. Note that (2L-~M)2
= (_2L-—M)"At = -3. Therefore 21-M is the fundamental cycle on
a connected component of UAi, i # s. Observe that |
supp(2L - M) i suppD = ¢ since-sufp(2L-—M) N A1 = ¢,

Let pnl(El) = A, p*'l(Ez) = A_ and phl(ES) = A Note that
(.‘ZL--M)2 = (2L-M)=At==+3. Since AS follows Az,At:follewsfxgand

E is an exceptional set of the first kind, after a finite

sultable number of collapse L1, Corollary 5.8, p. 86}, then

we may assume the following diagram:

By Py

where EB-E3 = =1 and E2°E2 = El-hl = -2, Since ZE 1s independent

of such collapse, E3 has coefficient 1 in 2 So At has

e
coefficient 1 in X by case (III) of section 2. But
0 = Xe(2L=-M) = (2L -M) X = (2L-M) (A _+34) = -3+6 = 3.

Thus we get a contradiction.

1 A 3 L) = L4 T e A
Let AS # . be such that X, AS X, At 1 wvhere AS and .

have coefficients 2 and 1 in X, respectively., Let




-1 ~ . e .
o (E2) = AS U At' Since E2 has coefficient 1 in ZE. As has

coefficient 2 in X and Aty 1 in X. 0 = XX,

H]
o

X*‘(QAS + At + 3A2) = =2 = 1 4 3% +A Thus X, *A, = 1. Since

2° 2

AS, At < supp(Z - 2D), AS and At have coefficients 2 and 1 in Z,
Ag ¢ suppD and At & suppD. So AS and AL have coefficient

2 and 1 in Z-2D respectively. Z-2D > Xy. Let Z2-2D = X _+F,

Note that A, ¢ supp ¥ and A, ¢ supp¥. So X, °F = 0.

-6 = (Z-—2D)2 = Xi + 2X,°F + F2 = =3 + F2 implies F2 = 3,
F*A, = -3, A, has coefficient 1 in F. FeA = Fsp = 1.
1 1 s t

FeA, = ] because (Z-2D)~A2 = 2 and X8, = 1. So F is the

fundamental cycle with Fz = -3 oﬁ a connected component of

UAi, i¢ 2,s,t. X, > F. Consider X, -F, ThenrAS and A_ have
coefficients 2 and 1 in X, -F, A1.¢ supp(X*—~F), (X*-—F)-AS =
(X*-h'F).At = -2, (X*-F)'Al = 3 and (X*-—F)2 = -6, First we

claim that X, is the fundamental cycle on supp(Z - 2D). Assume

the contrary. Let us recall that Z, is the fundamental cycle

on supp X, = supp(Z-2D). Then Zi = -2 and Z*.Al = 0 or -1.

If Z*.Al = 0, then we would have the following three possibilities:

i Z,*A = 7,"A = -1 for A # A , A A, and A # A
1) *p R g p ’ a p Py q 1
ii Z.tA = -2
(i) A,
(iii) 2,*A = -1 where A has coefficient 2 in Zgs

p P .

Recall that 27, > Z2-2D, Let 22, = Z~2D+E. Then we would
have the following tahle:

2

* (.z-—?.D)2 + 2(Z - D) E + B

47
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-8 = -6 4+ 0 - 2,




Case (i): Since Z,*A = Z «A = -1, then E*A = F
e T g P

A

= ....2’

Since Al has coefficient 2 both in 2Z, and Z - 2D, Al ¢3suppIL

So Ez_i Epr + Equ = ~4. Contradiction.

Case (ii): Since Z*-Ap = =2, then E*Ap = =4, Since

A ¢ supp E, Ez_i E-Ap = ~4, Contradiction.

Case (‘i%): Since Z*aAP = -1 and Ap has coefficient 2 in Z,s

by the arguments in the beginning of case (C), AS should have

coefficient 3 in.X*. Contradiction to the assumption of X, .

Now, if Z,*A; = -1, then zg-At = =1 and A_ has coefficient 1
in Z, because Z*vz* = -2, Al has coefficient 1 in s

X.*A =X *A = -1 and A and A have coefficients 2 and 1 4in
* ot ® 5 s t

X, respectively and so by case (B2) of (I) of this proposition.

Let 2Z, = Z - 2D + E as before. Then in this case, E*'E = EVAt

= -2 and E"A1 = 1 since Z <A

that A ¢ supp E.  If we put X, =7, +G,, then -3 =

2 2 2 . 2
ly + 2L,4G, + Gys Z,°G, <0 and G, < 0 imply G, = -1 and
G*'As = ~-1. Since X*.Al = 0 and Z*-A1 = -1, G*'Al =

1.

1= -1 and (Z-—ZD)*Al = -3, Hote

Note

that A1 ¢ supp G, and As has coefficient 1 in G,» Therefore

E 1s the fundamental cycle of the component of UAi, i # 1 which

contains At and G, is the fundamental cycle of the component

of UAi, i # 1 which contains As' So by negative definiteness

of the intersection matrix for the Ai’ supp(X, - F) =

suppE U suppG,. Let Z' =B + G, + F + D. Note that

Al < suppF. Since suppF N suppE # ¢, suppF N supp G, # 9

and supp ¥ N suppD # ¢, supp 2z’ = supp Z . ShmeAr

A

S

A
t
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and A2 have coefficient 1 in 7',

I

fa b - . = — =
2lh) = (E+ G +F4+D)vA =141 -34+1=0

futd
5
u

g T CE+G +F+D)h, =1-1=0

LI = P f .,7 = — =
Z'sA = (E+ G, + F + D) A 1+1=0 and
t L] = i, N i = = =
z At (& + G* + F + D)-At =2+ 1 = -1,
Thus Z‘.Aj <0 for all j and 2'2 = -1 > 22 = ~2. Since Z is

fundamental, it is impossible. Next, we claim that there is
no fundamental cycle with its sclf-intersection number -1 on
any component of supp(X, -F). Recall that AS and At have
coefficients 2 and 1 in X - F, A1_¢ supp(X, - 1), (X*-—F)-AS
= (= PAL = =2, (X -T)eA =3 and (X, -P)2 = 6. 1f
supp(X*-F) is not connected, then by negative definiteness
of the intersection matrix for the Ai, supp(X*-—F) is two
disjoint union of connected components of UAi, i# 1. One
component Cl contains AS and the ofher component C2 contains
At' But the self-intersection number of the fundamental cycle
on Cé is -2 since At has coefficient 1 in X, ~F. Therefore
it suffices to show that there is no fundamental cycle L with
LeL=-1 on C,. If it exists, let (X, - F) c, = 1L -+ M, Then
we would have the following table: 7

-4 = I -1 |, 1 -1 4+ oram 4 2

1
-4 =-~14+ 0 -3
-4 -1- 2 -1

If TeA = -1 for A_ # A, then L+A = 0 and M+A = -2. Since
P . P s 8 8

=

Aq has coefficient 2 in X, - T, AS has coefficient 1 in both L
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and M, Since M'AS = -2 and M'Ap =1, M2 > M’AS = =2, M2 = -1

and Ap has cogfficient 1 in M by the above table. So suppL =
supp M. L'Al = M-A1 = 1 since (X*--F)'Al = 3 and supp(X, - F) |
=C VUC,. LetX=Min(L,M), Since Ap has coefficient 1 in

both L and M and A, 1 in both T and M, KeA = LA = -1 and

KA E.M'As = -2, 5o K2 f_K-Ap + K?As = ~3, This would be a

contradiction. TIf LoAS = -1, then M*AS = -1, Since AS has

coefficient 1 in both L and M, L. = M. Let Z' = L+ (X,-F) c +F+D,

2
Then Al, AS, At and A2 have coefficient 1 in Z°', respectively,

AREH L'A_ = 0, zVen = -1 and z'+h, = 0. Since 5 |

supPZ’ = suppZ and Z'eZ' = -1 > 7y = -2, it is a contradic-

tion., If supp(X*-F) is connected and there exists such L, then
let £, ~-F = L+M., Note that At has coefficient 1 in X, —F and

A ¢ suppM. If L;'At = 0, then M'At = ~2, Tt is absurd.

If L-At = «1, then M°At = -1, 8till it is impossible.

(IT) Let Z.7

)

~1. Then there exists A; such that 7+A, = -1. By

the definition of Z, X = Z 4+ D with D >0, Since -3 = X+¥ =

Z*Z -+ 2Z+D + DD, Z+Z = -1, Z+D 5_0 and DD < O, ZsD

-2, So Al ¢ suppD since Z+D = 0., For i# 1,

(X-~Z)-Aj < 0, Thus D-Aj < 0 for A.j < suppD. Since D«D

we have the following possibilities:

(a) There exists A2 such that D'A2 = -2,

(k) There exist A2 % A3 such that D-A2 = D-AB -1.

{¢) There existSAé such that D-A2 = -1 and A2 has coefficient

2 in D,




If (a) is true, then X'Az = (Z+D)-A2 = -2. Since X*X < X'2A2

= -4, this is a contradiction. TIf (b) is true, then X-Az =

- = ] - {w £ A [} = e . < g d
(Z4D)eh) = -1 and XeA, = (Z+D)+A, = ~1. But X X < %(28,+24,)

= -4, It is impossible. Now consider the case (c). X-Az =

(Z-%D)-A2 = -1, Since AZ has coefficient 2 in D, X > 34 So |

5"
XeX < Xe3h, = -3. A, has coefficient 3 in X and XeA; = 0 for
j# 2. D+A; = 1. Let us consider the eycle D in more detaii,

SuppD 1is a connected component of Ua,, 1 # 1. Let Z = Al + ZFi

where the suppFi are connected components of UAi’ i# 1,

.

Then SUPPIE_ = suppD for some i. z’suppD-D = -1 begauae i

= 7= = A+ F ° = v R, - = -+ D, ]
0 Z=D { 1 ZFi) D Al D Z - D 1 7 suppD
Now we claim that Al n A2 = ¢, TIf Al Iy AZ # ¢, then

| + A [} = 1 i ERU 3 = . :.—__l
(Z|suppD ) A, = 0 would imply Z!suppn A, A A,
since D*A, = 1, But 2 suppD.D-i LlsuppD'ZAZ = ~2A,A, = -2.
This leads to a contradiction for 7 = -1, Let

suppb
G = Min(Z D). Since A, has coefficient 1 in Z and 2 in
suppD 2

By G <D. 8o GG = -1, G 1is the fundamental cycle on supp D,

To prove 2Z > D, let K = Mln(22’5uppD,D). Since A2 has

coefficient 2 in both 27 and D, K*Az f_DnA2 = ~1

KK < KoZAz = =2, K =D because K < D. Congider 27 - D.

(_ZZ--D)-A1 = -3, (2Z-—.D)-A2 =1, Al has coefficient 2 in 27 -]

and A2 ¢ supp(2Z-D), Since (22-—D)2 = -6, supp(2Z~D) is the

connected component of UAi, i # 2 which contains A Let Z,

1°
be the fundamental cycle on supp(2Z - ). -2, < 2Z-D, Then

Al has coefficient 1 in Z*,otherwise the fact that Al has




coeffig_ierit 2 in both Z, and 27 ~D

ihlply 4, > 22-D, Since

GG = -1, let Ap be such that G'AP = -1, We claim that |
. 2 2 2 ;
Z*.Ap =-1. LetD=¢+ ¥, ~2 = D" = G + 2G*F + F s G*F <0

and F2 < 0 imply F?' = -1, If G‘Az = =1, then D = ¢ + F would

imply F‘A2 = 0 and also F'Ai = (D—(}')"A:,L = ( for all

Ai — suppD. This is a contradiction. S0 G*A = -1 for
AP # A2 and G'A2 = 0, F'A2 = -1, Since GF
and F Ap = (D~G)‘Ap :71-, Since D‘Al = G‘Al =

it

.
¢, Ap ¢ supp F ‘
|

1, Al fY suppF

= ¢. Therefore ¥ is the fundamental cyele with F2 = F'A2 = -1 ‘ |

on a connected component of UAi, i#p. Let 7 = ZziAi.

0 =2°G = G*(A tzAY=1-2 . Soz =1, Let 7' = 77}
1 PP P P
=2Z-(D~G) =272+ G -D. Then Al and Ap have coefficient 1

. 1 T PRI - AR o = _1,
in Z' and A2¢ suppZ'. Z A1 {(Z+G~D) Al -1

Z"Ap = (Z+G-—D)'Ap = ~1 and Z"'A2 = (Z+G-—D)'A2 = 1, Note

2z
that suppZ' = supp(2Z-D). 27'*z' = (Z+C-D)" = -2, 8o 7'
is the fundamental cycle on supp(2Z-D). So Z, = Z' and

Z*“Ap = -1, Let X, be the cycle on supp Z, such that X, X, =-3

1 4

and X*'Ai < 0 for all Ai < suppZ,. Since ZytA, = Z_,‘AP = -1
with Al # AP and Zi = -2, by case (B) of (I} of this proposition,

we have the following three cases:

(A) X*'At = -1 where At has coefficient 3 in X*.

(B) X,*A

1= -1 and X*'At = -1 with Al # At where A

1 and At

have coefficients 1 and 2 in X, respectively,

{C) X*"Ap = ~1 and .X*'At = -1 with Ap # At’ Ap # Al and

AL F A ﬁhere AP and A_ have coefficients 1 and 2 in .

respectively.




(4)

(B)

Consider the case that At.X*

= ;l and that At has coefficient

3 in X,. It is trivial by case (B1) of (I1).

- L . = . = .
Let Al 7 At be such that X, Al X, At i, A1 and Ap have

coefficient 1 in X, and At has coefficient 2 in X,+ Then

By Since Al has coefficient 1 4n X, At has coefficient

2 in X. () o= X'X* = X*'X = X*‘(Al -+ QAt + 3A2) = "‘3 + BX*-AZ'

-

X4, = 1,

2 Let X, = Z, * G*. Since Al’ Ap and At have

coefficients 1, 1 and 2 in X, respectively and Al, A.P and At

have the same coefficient 1 in Zps G,"A = -1, G,*A = 1,

) 3 w T G p
GetA; = 0, Ap ¢ supp Gy and A, N supp G, = ¢, Ge'dy = 0
& n = — o = 3 . = . = .
1pd A2 supp G, = ¢ because (22 - D) Ay =X, Az Zy A2 1
Since G, = ~1 and Z,°G, = 0, G, is the fundamental cycle on

the connected component of UAi’ i # p which does not Intersect

v

A1 and A2 both and contains At' Now we claim that At < supp D
Note that 22*_z 272 - D because Al has coefficient 2 in both

2Z - D and 22,, (22 - D)2 = -6 and (22*)2 = -8, If

At ¢ supp D, then X = 72 4+ D implies that At has coefficienf

2 in Z since At has coefficient 2 in X, Sa At has coefficient

4 in 27 - D. Since 27, 2 274 ~ D, A_ has coefficient > 4 in
2Z,. Thus At has coefficient > 2 in 4,. In fact At has

coefficient 1 in Zy o ‘Thereforé.At © supp D. Let 27, =
22 -D+E, -8 = Azi = 2z - 0)? + 22z - D)-E + E° and
(2Z - D)2 = -6 imply that (2Z -~ D)+E = 0 and E2 = =2 by
(22 - D) ' '

*E < 0 and negative definiteness of the intersection

matrix for the Aj' Since Al, Ap and At have the same




coefficient 2 in 2Z, and have coefficients 2, 1 and 1 in
2Z - D respectively, Ap and At have the same coefficient 1

in E, A1 ¢ supp E, E°Ap = -2, E'Al = E-A2 = 1, 8o E 4s the

fundamental cycle on the comnected component of UAi, i+ 1,2

which contains Ap and At' Therefore E > G,. (E - G*)'Al =

(£ ~ G*)-A2 =1, (E - G*)'Ap = =3, At g supp(E - G*) and

(E - G*)vAt = 1 because At has coefficient 1 in both E and

G,+ Since (E - G*)z = E2 - 2E°G* + Gi = -3 and (E - G*).Ap =

-3, E - G, 1is the fundamental cycle on a commected component

of UAj, i+# 1,2 and t. Observe that At and Al follow Ap at

the same time and Ap follows At and A, at the same time. It

1

is clear that D -~ G is the fundamental cycle on a connected

component of UAi’ i # p which does not contain Al and At with
®-o=- (- 6)+A, = -1.

(Cy. Let A # A be such thar X, *A =X *A = -1 and A and A have
p I " p F T p t

coefficients 1 and 2 in X, respectively. Note that A, # Al

and X*’Al = 0, Recall that AP has coefficient 1 {n both Z and

It

D. So Ap has coefficient 2 in X. Let p_l(El) A2' Let

D-l(Ez) = Ap U At. Then by case (II) of section 2, At has

coefficient 4 in X, Note that EZ has coefficient 1 in

ZE because E2 follows El. Again by case (I1) of section 2,

Ap and At have coefficients 1 and 2, respectively. It is

impossible.
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Examples of Proposition 3.4

(I) 27 =

(A)  2+7 = ZeA = 2

<
I
—
N
+
Lo
b
™
-}~
[
<

Let

B El E4 EB E5 E'2
7 g e 3
. ' (5)
= n - _E_ T
(3) J_SE1 + 20&2 + 4OE3 + 6OE4 F GQES W
where W(S)

meets E4 in five points

1

e

202 = =2, ZeAy = Zeh, = -1

3 = -1 and A3 has coefficient 3 in X

Let V = {z3 + 2(x2 + y6)(x6 + yz) = 0}

B 2"[-—108(};2 + y6)2-(x6 + y2)2 = 0}
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(B) = 8E, -+ 12E2 + ]_6E3 + 18E

7 4 i D
1 4 + 1855 liﬂﬁ + 16E7 + 18E8

+ 18E_ -+ ch)
9
where W(g) meets Eq, ES’ E8 and E9 in one point with multiplicity

2, respective,y.

1 1 1 1 1 1 1
7 = . .




(82) Xea

(i1id) 2z,-A

t
Let V

(B)

where W

1 1

\
1 /

X'A3 = -1 and Al andrA3 have coefficients 1 and 2 in X

respectively.,

-2 ~3 -2 -1 -3

: ()
9El + 18E + 24}33 + 45}4 + 72L5 + W

(5)

meets E5 in three points,

-3
4::1
heh A
/////A

o

1
1
1

.

—
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~
[,
o
I

—r
]

Let V ?‘{23 + 3x32 + 2y9 = 0}

E

B = {—108(}(9 + y18) = 0}

_ ] (2)
(B) = 9El - 18E2 + W

where W(z) meets E2 in nine points.
1
ZE =
3
Ar T2

where A2 is of genus 3.

where AQ is of genus 3,

= -1 and Al has coefficient 2 in 7

~1 and A2 has coefficient 3 in Z.

-{XB + 2(x6 + y3)(x6_+ ya) = 0}

=108 + 592 :® + vH2 < 03
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= 1 J 7 n (3)
(B) 14El + 24E2 + 42E3 + W
where W(J) meets E2 in three points with each point multiplicity
2 and E3 in two points with each point-multiplicity 2.
P i
_ 1 2 1 j
ZE - - o L} .
|
Ay AL A |
Az . = where A, and A are of genus 1. |
-1 -3 -6 1 S

{C2) X, X, = -3, X*.As = =2 and X*'At = -1,
Let V = {23 + 3x4yz + 2(y5 + xlOy2 + xll) = 0}
B = {---lOSExlzy3 + (_y5' + xmyz + Xll)zl =0} |

(B) = lOE1 + 18E2 + 30E3 + 50E4-+ 69E5 + 12OE6 + ZOE7 + 39E8
+ 60E9 + W(g) where W(g) meets E6 and E9 in one point
respectively,

A
. L L) t -
A 1}2 z}l . - =2 ~6
’ -1 ~6 -1 A

-2
/////fg_—_—:l
-1




(€3)

x= el 91 S~

S S T TP
S8 1 4

B e U

3 1 2
PR ~

. S P ~3 3
e \6—%% ._,_,,{f //

XA, S XKyAgy T XA = -1

Let V = {z° + 3y42 + 2t - 0}

B = {-108(y% + %) = ¢}

I S
) -3 -1 -
(3)
= + 4
(B) 8E, + 12E, + 24, + W
where W(B) meets E3 in four points.
= L 2 . 1
ZE - b _ .
s1
A2 A/_z
Az T * ASZ where A, is of genus 1
-1 -3 -3 1 g .
A

iz




1
L3
2 2
Z: . l—~—-«_-'l
.\\\.1
1 !l
X, = L
%
\\\\\.1
A1
F o= . where A, is of genus 1.
1
-3
X*°AS = -1 and AS has coefficient 3 in X,

Let X, be not a fundamental cycle on supp(Z - 2D),

Let V = {23 + 2(X8 + yS) = 0}
B = {-108(x° + y)Z = 0}
3T o R

E

;1 8

K

....3 6

E

(8) = lGEl + 16E2 + 30E3 + 48E4 + 80E5 + 82E6 + 84E7 + 162E

(8)

where W

neets E7 in one point with multiplicity 2.

8

+

4(®
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, 1 9 2 2
. = . - :

6

9

3

_ S S

‘ 4

6

2

~

(1i) Let X, be the fundamental cycle on supp(Z - 2D).

Let V = {23 -+ 2(x104~y22) = 0}

B = {~108(x10+y22)2 = 0} I

*14 -

-1 |

: |

S S T B PR LTI T T R |
I s -3

= X h - 3
(B) ZOF1 -+ 4OE2 + 44E3 + 88E4 + 1 2E5 + 176E6

+ 132E + + ;
132 9 + 396Elo 260E11 300E12 + 480El

+ 220E7 + 6OE8

3 + 222E14

meets Eiarand E

) (15) (15) ,
+ 222h15 + W where W 15 in one

point with each point multiplicity 2, respectively,




X*.As y = -1 and AS and At have coefficients 2 and 1

in X, respectively. Recall that.X* is the fundamental cycle

on supp(Z - 2D),

Let V {23 + 3y52 + 2x4

B = {-108(y" +x0) =




= + “+ v »
(B) SEl lSE2 24133 4 éOE

+ 120E9 + 96El

. 5 - - 4
-t 56E5 + 72E, + 88E7 -+ lO;E8

4 6

+ 192E11 + W(ll) where W(ll) meets E

0 9

in one point,

X-A2 = -1 and A2 has coefficient 3 in X,
X*'At = =1 and At has coefficient 2 in X*.

Let V = {23 + Z(X7 + yzl) = 0}

B = {—108(x7 + y21)2 = (0}
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- N - (4)
(B) 14}3:1 + 28E2 ! 42h3 + 42134 + W

where w(é) teets E4 in seven points with each point multiplicity 2,
1 2 1 1
ZE = . - L]
A A A
2 P t A1
Az Y 3 1 3 where Al is of genus 6,
3 2. 3 1
X = . .
1 1 2 1 |
7 = . o .
1 3 1
X:‘,{ = A et i e 8
P
1 2 1

(B) X*'A1 =_A*'At = -1 and Al and At have coefficients 1 and 2

in X, respectively,

{ 3 5 5

Let V= {27 + 3y7z + 2x~ = 0}.
B = {-108(y7° + x'%) = 0}

B OBy B

B: 3T L)

- 3)
(B) = 108, + 158, + 30E, + W

(3) R i . !
W meets E, in five points. . |

where 3




1.2 1

Z.E : e ) .
A
1
AZ Ap -2
Az I At where AP is of genus 2,
-1
1
3. 2
X = [ R
\ p

1
1 1
Z = a----w—----_»/ ‘
\\\\\Nl 1
1
1
X, = where A is of genus 2,
A 2 ?
P
1
1
Z, =
1

Corollary 3.5 Suppose that the hypotheses of Proposition 3.4 are
satisfied. Consider the following subcases as we discussed in

Proposition 3.4. We will follow notations and numberings of

Prbposition 3.4.

(1) Let Z+Z2 = =2

(A) Al and A2 appear first in a resolution process by (2.2).
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(8)

(B1) A3 appears first in that resolution. Al follows A3

and A2 follows'A3.

(B2) Either (i) A

1 and A3 first appear in that resolution

and A2 follows Al and A3'at the same time

oot (4i) A] and A3 first appear in that resolution

and A? and At follow A3 and Al at the same time.
(C) _A? appears first in that vresolution.

(C1) A follows A2 and Al follows AS
{(C2) AS and At follow A2 at the same time and

A1 follows AS and At at the same time."

(C3) Acl, ASZ and As3 follow AZ at the same time and

o

A follows A
1 s

(C4) AS follows A2 and A

1» AS2 and As3 at the same time,
1 follows As'
(C5) AS and At follows A2 at the same time and

Al follows AS and At at the same time,

(II) Let Z+Z = -1. A2 appear first in that resolution.

- ] A .
(A) At fo;lows A2 and then Al follows At and Ap follows ‘
(B) A1 and At follow A2 at the same time and

AP follows Al and At at the same time,

Now consider the minimal resolution r : N » V. Thus to

let us consider the

. " _
describe r (m) for irreducible triple points,

‘case that r*(m) is not principal, If r*(m) is not principal, let

= ZmiAi, where m, is the order to which functions gor, g € m,




generically vanish on Ai' Let LA N

* ' e
rl(m) is principal. Let ry = rom. Then on Nl, letting 7" denote

1 -+ V be a resolution on which

the pull-back,

* *
X>7m7Y>n2= Z1

where X is the divisor of the pull-back rz(m) of the maximal ideal

at P € V., Since Z+7 = -2 or -1, consider the following cases:

L
-

(1) 1ir Zl‘zl = ~2, then Y = Zl' Then Y 1s the fundamental
cycle Z on' N, If Ai-Z = 0 on N, then as in the proof of [L5,
Proposition 5.1, p. 323] a»generic function govxr, g € m,
generates r*(m) in a neighborhood of Ai. So r*(m) ié locally

principal near Ai for‘Aivz = 0. Since Z°Z = -2, consider the

subcases helow:

(1) There exists a Al with Z) = 1 such that Al-Z = -2 where

Z = ZziAi' On Al,(?(—z)/ﬁ(«z-Al) is the sheaf of germs of a

section of a line bundle Ll of chern class ~A1'Z'= 2.

Let g € m be generic, so that g o r vanishes to order_mi =z,
on each of the Ai' Then as a section of Ll’ goyr has either
one double zero at some poilnt s EVAl or two éistinct simple
zZeros at 81 and s, in Al. First of all, observe the following
facts: Suppose that thefe exists a resolution Ty :Nl-+ v

on which ri(m) is principal. Let X be its divisor. Then by (%)
below Proposition 3.1, X+X = -3, 8o we may assume that

ry :Nl =+ V is a resolution by (2.2), without loss of generality.

Then by the explicit computation of such a resolution in




(a)

section 2 and by case (A) of (I) in Proposition 3.4, we sece

that any connected component.of UAi’ i # 1 of supp X which does
not contain A2 is a exceptional set of the first Irind, and so

can be collapsed down, become to the empty graph and moreover,
does not produce any singularity of Al for the minimal resolution
except passibly a singularity of Al resulted from blowing down
the component containing A2, because we assumed that r*(m) is

not principal. So we get for the minimal resolution that

suppZ = Al’ Al-Al = -2 and Al is a rational curve. By following
the notations of casé (A) of (I) in Proposition 3.4, observe

that X = 2 + D, ﬁ-Al =1, A2 < suppD, suppD is the connected
component with DD = -1, X-Al = XfAZ = -1 and Al\and A2 have
coefficients 1 and 2 in X, respectively., Therefore for the
minimal resolution we claim that supp Z = Al is nonsingular,

Lf not, that singulérity could be resulted from blowing down
the connected component of UAi’ i# 1 which does contain A lbut

2
we would get D'Al > 2. Thus we proved that supp2 = A

is

1

nonsingular and AlfAl = -2, So we might have two subcases

below.

Assume that gor have one double Zero at s € Al, as a section
% ' _

of Ll, Since r (m) is assumed not to be principal, all such

gor bave double zeros at the same point s, Now s is a regular

point. Let 7m':N' > N be the blow-up of N at s. Let

Ay = (Hj)_l(s) and let r' = row'., Then still all such gor',




(b)

(11)

g € m have common simple zeros at Al n AU' So (r')h(m) is not

principal. But observe that AO = AZ’ following the notation of

*
case (A) of (I) in Proposition 3.4 and so {(r") (m) would be

principal, Thus we get a conftradiction,

Assume that gor has two simple zeros at 84 and S, in Al

respectively with 54 # S,+ 1f all such gor have two simple

Zeros at the same points 81 and &, then XX would be < =4,

It is a contradiction, Since rx(m) is assumed not to be principal
we may assume that all such gor have one and only one common
simple-zeros at the same point Sl”* Moreover, since Z-.Z = -2,

81 is a regular point of A. Let T :Nl - N be the blow-up of

N at Sq- Let AG = Wnl(s) and let T, = Tom,

Then ri(m) o @(HW*Z - AO) and (ﬂ*Z + AO)'(W*Z + AO) = =3,

Thus ri(m) =(§(—ﬂ*2 - AO) and ri(m) is principal. Moreover,

in this case we will prove later in Theorem 4.7 that V has a

2
normalization isomorphic to the variety {27 + 3z + 2y = 0}.

That has a rational double point at (0,0,0).

There exist Al # A2 such that A +Z = A <7 = -1, 0On A

1 2 1’

(?(—Z)A?(-Z-—Al) is the sheaf of germs of a section of a line

bundle Ll of chern class —Al'Z = 1. On A2, @(mZ)/@(-Z-AZ) is

the sheaf of germs of a section of a line bundle L2 of chern

class -A +Z = 1, Let g € m be generic, so that gor vanishes

2

to order mi

Hi

zi-on.each of the Ai' Then, as a section of Ll’

gor has a simple zero at some point & € A., and also, as a

l!

section of L2, gor has a simple zero at some point 32 € Az.




(a)

(al)

(a2)

(b)

But either A. N A, = P or A

1 N AZ #

1

Assume that-Al n A2 = ¢, Since r“(m) is assumed not to bé”

principal, we claim that either all such go r have simple zeros

at the same point Sl € A1 or ail such gor have simple zeros at

the game point s? € A2, not both. Tf all such gor have simplé f

zeros ats the same point 1 £ Al and also have simple zeros at

the same point 8y € A2’ then X*X would be < -4, It would be

a contradiction,

Let us assume that allaich”gor have simple zeros at the same
point = € A]. Since Z+Z2 = -2, S is a regular point.

- - 1 - - . = —1
Let m "N, > N be the blow-up of N at s+ Let AO i .(Sl)
and let rl = roT, Then r{(m) C:@CMW"Z-~AG) and

% A * ~ . # % A J %
{(m 2+ 0)°(ﬂ A-FAO) = -3, Thus rl(m) = (W 7 - G) an rl(m)

is principal.

Let us assume that all such gor have simple zeros at the same

point 8, € A2. Since Z*Z = -2, s, is a regular point. Let

T :Nl -+ N be the blow-up of ¥ at 8y Let AO = Wnl(sz) and let

* * 7 Fid
r, = roy. Then rl(m)‘: G~ Z*-AO) and (W Z-FAO)H(W Z-FAO)
% E *
= -3, Thus rl(no = (G (- Z-—AO) and rl(m) is principal.

ada
.

Agsume that A1 n A2 # &. Sigce r (m) is assumed not to be
principal, we claiﬁ that either (b1) all such gor have simple
zeros at the same podint s, € Al - A2 or (b2) all such gor have
simple zeros at the same point 5, € A2 - Al or (b3) all such

gor have simple zeros at the same point s = Al 3] AZ' In the




(IT)

So we may assume that all such gor have

same point s = Al n A2' Since Z+*Z = -2,

of Al and‘Az because of case (B1) of (I) of Proposition 3.4.:;

Let :Nl * N be the blow-up at s, Let AO = ﬁwl(s) and let

. % op o Fo % o
r, rofm. Then rl(m) < &0 2 AO) and (1 Z-FAO) {m Z+ AO)
% % %
Thus rl(m) = (-1 Z-AO) and r;(m) is principal.

There is A with z, = 2 such that A..Z = -1 where 7 = sz A,
1 1 1 idi

On Al,'@(—Z)ﬁﬁ(—Z-Al) is the sheaf of germs of a section of a

line bundle Ll.of chern class »Ale = 1. Let g € m be generic,

so that gor vanishes to order m, =z, on each of the Aj. Then

as a section of Ll’ gor has a simple zero at some point s € Ai'

& ) .
Since r (m) is assumed not to be principal, all such g or have

simple zeros at the same point s. Moreover, since Z*Z = -2,

8 is a regular point of A. Let 7 :Nl + N be the blow-~up of N

- % *
at s. Let AO =7 l(s) and let r, =rom. Then r{(m)CI@(uﬂ Z——AO)

-k * & *
and (M 7 + AO)-(ﬂ Z + AO) = -3, Thus rl(m) =O(-7 7 - AO) and

%
r{(m) is principal.

kS %
7 = -~ =3 = Ye¥ < Y - < " =
If Zl 4y 1, then -3 X X_" m Y=mY __Zl Zl 1. So
% %
mYer Y =-2or -1, Since Z-Z = -1, then let Al be such that
A1°Z = -1,

% * :
Assume that m Yem Y = -2, Since Y > Z, let Y = Z + G. Then

o2 = ¥eY = 2% 4 27.G 4+ 62, G*Z < 0 and G < 0 imply ¢t -1

and G*Z = 0. Since G+Z = Q, Al ¢ suppG and G-Al = 1, For



(i)

A, ©supp G, G A, = (Y - Z)sA. < O, Since G2 = -1, let A
i i i P

such that GﬂAP = ~3, Then Y-Ap = ~1 and Y.Y f_Y°2Ap = =2
imply that Ap has coefficient 2 in Y. So Y replaces Z with

the previous arguments as in case (1ii) of (I).

% * 3
Agsume that 7w Yen' Y = -1, Then m ¥ = Z] and also Y is the

fundamental cycle Z on N. Since Ai°Z = 0 for i # 1, then as

in the proof of [LS, Proposition 5.1, p. 323], a generic

&
function gor, g € m, generates r {m} in a neipghborhood of Ai'

So rﬂ(m) is locally principal near Ai for Aivz = 0. On Al’

(9(—Z)Aﬁ(~ZH—A1) is the sheaf of germs of a section of a line

bundle Ll of chern class mAl-Z = 1. Let g € m be generic, so

that gor vanishes to order m, = z; on each of the A_.L where

Z = ZziAi‘ Then as a section of Ll’ gor has a simple zero at

S
some point 4 € Al' Since r (m) is assumed not to be principal,

all such gor have simple zeros at the game point 4 € Al'

Since Y+Y = 2.7 = -1, sl‘is a regular point of A. Let

n' :N'" + N be the blow-up at = Let A = (w')_l(sl) and

at sy. 0
- C %
let ' = ror'. Then (r') (m) c@(—w’z-AO) and

ala wle
" ~

(n'’z + AO)-(n'“z tA) =20 Let z' =q''z + Ay Then

Z'+A, = 0 for Aj # AO. Z'-AO = -1 and AO has coefficient 2 in

Z'. Therefore, as in the proof of the previous case (i),

let ™" : N" + N' be the blow-up at 8, € AO. Let Aé = (W")hl(s

* %
and let r" = r'oq", Then (r") (m) =O(-""z" - Aé) and

9)

* .
(r") (m) is principal.



If we summarize the previcus results, we have the following

L

Proposition 3.6 Let r:N -~ V be the minimal resolution of a two-

dimensional irreducible triple point P. Let m be the maximal ideal
at P, Tet Z be the fundamental cycle on N and let us assume that
ZeZ = -1 or -2, If rh(m) is principal, then the divisor X of r (m)

satisfies X > 7, 1If r“(m)‘is not principal, cousider the following

cases.:

(D) Suppose that Z<Z = =2 on N. Then there exist the-following
three subcases,
(1) There exists Al with zy = 1 such that A.1 ¢+ Z = -2 where
YA EziAi. Then(ﬁth)/r*(m) is thé structure sheaf for an
embedded point s € Al“ 8 is a regular point, Blowing up N at
s makes rj(m) principal where 7 :Nl > N is the hlow-up of N
at s and r1 =row, Moreqver, V has a normalizatdion

0}, which will be

isomorphic to the variety'{z3 + 3xz + 2y2
proved in Theorem 4.7,

.There exist Al # A2 such that Z.-A1 = ZvA2 = .1, Then_@(nz)/r“(m)

is the structure sheaf for an embedded point & where g = A] 1} AO,

8 € Al-Az or s € AZ-—Al. 8 1s a regular point of Al U AZ'
Blowing up N at s makes r;(m) principal where {Nl + N is the
blow-up of N at s and ry = rom,

There exists Al with 21'= 2 such that A]'Z = -1 where Z = ZZiAi.

%

Then (9(-Z) /r (m) is the structure sheaf for an embedded point
g %

8 & Al. s is a regular point, Blowing up N at s makes rl(m)

prineipal where 7 :Nl » N is the blow-up of N at s and =T oT.

1




(i

(I1)

+

g

Suppose that Z+Z = -1 on N, Let ¥ = ZmiAi, where m, is the

order to which functions gor, g € m, generically vanish on Ai,

Then there exist the following two subcases,

Let YeY =-2, Then there is Ap such that YeA = -1, mP = 2.

@(wY)/rN(m) is the structure sheaf for an embedded point

s & Ap“ § 15 a regular point of A, Blowing up N at s makes

5]

rl(m) principal where g :Nl + N dis the blow-up of N at g and

r, = ror.
i

Let YoY¥ = -1, 1.e., Y = 7,

Then there is A1 such that

ZeA1 = -1, @(~Z)/r*(m) is the structure sheaf for an embedded
point s € Al. § 1s a regular point. Let T ;Nl + N be the
blow-up of N at s, TLet T, =romw. Let AO = ﬂhl(s) and

Z, = H*Z + AO. Then r;(m} c:Cszl) and ZlaZl = -2, Again
@(—Zl)/ri(m) is the structure sheaf for an embedded point

£ € AO. t is a regular point of supp Z

3 Blowing up Nl at
t makes r;(m) principal where myo N2 -+ Nl is the blow-up of
Nl at t and I, = rlcaﬂl = r<)wc)ﬁl.

Examples of Proposition 3.6

(1

Let ZeA = -2

1
Let V = {23 + 3x32 + 2y2x3 = 0}.

B ='{—108x6(x3 + y4)




- " . (5)
(B) = 98, + 16k, + 26E, + 36F, + 42E, + W
(5)

where W meets E4 in one point and meets E2 in one point

with multiplicity 6.

&y
Its resolution is "Z\\\\\* blowing-downs
b L ‘/\-
A%////;3 -1 -3 1
A
A A A
1 _‘2 blowing-dawns, ,1
-3 -1 ! -
l .
X = yr————y .
A
1 AZ
A
Z = * 1
-2

Note that V is not normal at (0,0,0) and the normalization of

V is given by Vl ='{23 + 3x= + 2y2 = G} which has a rational
double point singularity at (0,0,0).
Let Z*A, = Z+4, = =1

Let V =~{33 + 3X32 + 2y1 = 0} (an example of Proposition 3.4)

It
-~
!
l,_l
<o
o
PN
"
\O
+

B




Note that s € A2 - UAi’ i %72 and Al n A2 = ¢

(b) lLet Vl =:{z3 + BXBZ + Zyg = 0} (an example of Proposition 2.4)

B o= {-108( + y'%) = o}
A1

—2\A2 '

A . where A2 is of genus 3,
3 =3

-1
1

X = A

blowing down

%l AQ where A2 is of genus 3,

-2 -

i
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Note that s € A2 - Al and Al N A2 £ ¢

Let Vz = {23 + 2y(x/ + y14) = 0}
3 = {~108y2(x7 + y14)2 = 0}
E3 El E2
o T L
Cew _ (%)
(B) = 16F, + 30E,, 4 18E, + W
where w(j)

meets E2 in seven points with each point multiplicity

2 and meets E3 in . one point with nuttiplicity 2,

Al . .A3 AZ )
IS where A2 is of genus 6.
1 3001 - ;

X e blowing do“m>
AL A
:Emmﬂ—:z where A2 is of genus 6.
1 1

ZE e L]

Note that s = Al n A2 and Al N A2 # ¢._-

(iii) Let Z‘Al = -1 where Al has coefficient 2 in 7.
4

Let V = {z° + 3y4z + 2%

= 0} (én example of Proposition 3.4)

{-108(y12 + %8 = 0}

B

where Al is of genus 1,



X = blowing-down;
1
Ay -2 .
© v where A, ig of genus 1,
-2 -2 1
-2
. 1
2/
Z = Lﬁ___.._al
\El
(II) 7Z+z2 = Z'Al = 1
(1) Let Y*Y = ~2 and Y'Ap = ~1 where Ap has coefficient 2 inp Ap‘
Let V = {23 + 3y/z + 2% = 0}
B = {-108(y*% + %' = o}
ILl EB E2
B e - ol
(B) = 14E, + 21E, + 42E. + y'3)
i 2 3
where W(B) meets E3 in seven points,
Al
A A -2
1 e here A i 3
Its resolution is . +Z where A s of genus 3.
-1 -3 D
\._1
ng—d .AZ Ap Al
blowing owq% “i“-——:g——“F:é where Ap is of genus 3.
3 2 1
X - e A &

“u
9z
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A A

B ing—d P 1
”ji&gﬁngiﬂﬁl_? _ T where Ap is of genus 3,

Fe

~3 3 -1

(B) = 8E, + 16
(8)

2 + ZZLE3 + 32E4 + 4OE5 + 48E

(8)
g * 24E, + T2E, +

where W meets E6:h1four points with each point multiplicity 2,

Its resolution is:

where A3

blowing~downs

N g 3 1is of genus 3.

‘blowing-downs . — where A3 is of genus 3.
7




Note that the above examples (i) and (dii) of (IT) have the
same topological minimal resolutions but they have different
equisingular types, i.e., the multiplicity U are different

[M& 01, Example (i) has 1_1 = 114 and example (ii) has

o= 138.




§4  From Resolution to Normal Triple Point with the Condition (4.1)

Given V'of Lemma 1.12, ler v = {(x,y,2) : £ = 23 + 3p(x,v)z
+ 2q(x,y) = 0} be a normal two~dimensional analytic épace with
P = (0,0,0) its only singularity. Let us recall that T : M ¢2 and

.

{B) = w(n) + ZeiEi, 1< i<mn, is a divisor of ~108(p3 + qz).in (2.2},

Note that —108(p3 + qz) is the z-discriminant of the above f,

Throughout the rest of this paper, we can now consider our main

concern, But in order to avoid complicated and difficult situations,

we are going to impose the conditian (4.1) which is described below:

(4.1): If p(x,y) £ 0Q in V, then we assume that —108(p3 + qz) is a
product of distinct prime factors Up to a unit near Q = (0,0) and

o(B) = Min[o(pB),o(qz)] along Ei’ 1<4i<n,

If p(x,y) Z 0, then q(x,y) in V must be square free near Q. Observe

that all examples given for Propesitions 3.4 and 3.6 satisfy (4.1).

Moreover, by Lemma 2.6 and (2.2) we can S§top a resolution process by

(2.2) 1if the branch loéus satisfies (i) and (ii) in (2.2). Note that
(4.1) is preserved under additional blow-ups provided we do not blow up
again at a point where an irreducibie curve of the proeper transform of
B and an exceptional curve intersect transversely. Here is an exanple
e , . S 3 & 6, 9 9, _
which fails to satisfy (4.1). Let V = {27 -3x z+2(x +x +v7) = 0}.

. ‘ 3 2 9 9 6
Note that V is normal at P because ~108(p~ +q") = -108(x +y )e(2x
+ x -Fyg) is a product of distinct prime factors near (0,0). But observe

that o(B) = 15 > o(p>)

I

o(qz) = 12 along El where E, 1is the curve

appearing at the initial hlow-up at (0,0). Now given riN -+ V,‘the




minimal gocd resolution of a normal two-dimensional triple point

singularity P, when can we get a resolution by (2.2)? Let r:N > v

be a resolution by (2.2). Tet T and [' denote topological embeddings

of ;nl(P) and r_l(P) respectively. The examples of (II) of Proposition
3.6 show that topologically different P can yield the same I' for

the minimal resolution. If I 1s found, then what can be said about

the topological type of the singularity Q of the plane curve which

is the discriminant locus determined by P independently of choice of
coordinates? Then we need the following propositions,
Lemma 4.1 Tet V = {(x,y,2) |z3 + 3p(x,y)z + 2q(x,y) = 0} be a

two-dimensional analytic space with P = (0,0,0) its only singularity,

Suppose that we have completed t of the n-steps needed for a
resolution process by (2.2), Let'V(t) be locally defined by

{ft = 33 + 3vkpt(u,V)Z + ZVth(u,v) = 0} where_v ! pt gnd v * qt.

Let Et = {v = 0}, ¥Note that the z~discriminant of ft =

-108(v3hp§ + v2uq§) = «lOSVebt(u,V) where v X bt(u,v) and bt(u,v)

is holomorphic in u and v. Recall that o(p3) = 3A, o(qz) = 21 angd

o(B) = e along Et' If ft is reducible in ¢<u,v>[z}, the polynomial

ring in z with coefficients holomorphic in ¢<u,v>, then ft can be

_ 2 ‘
written ft = (z - rl) (27 + ¥z + rz)uwhere ry and r, are hqlomorphlc

near (u,v) = (0,0). Let o(r) = k be an integer such that vk lr and

vk+1'[ r where r is holomorphic near (u,v) = (0,0). Note that
Jp = 3VAP = —r2 + r2 2q = ZVUq = —r_r, and the z—discriminént
VB Tt T, 17 7%

L 3A 3, 2u2. .2 2 2
of ft is -1038[v Py + v qt] = (Zrl + r2) (rl érz). Then compare
2

2 . 2,
o(2rl + r2) and o(rl - 4r2) in terms of ogrl; and o(rz).




(L

()

(3)

(i)

(11}

(iii)

(iv)

o(ri

. 2 . 2
<
If o(rl) o(rz) along Et’ then o(?_rl

and O(p3) <_o(q2) with o(p3).E 0 (mod 2),

+ rz) - 4r2)

+ rz) = o(r2 ~ 47

2 2
If o(rl) > o(rz) along Et, then o(2r 1 2)

1
and o(p3) < o(qz).

1f o(ri) = o(rz) along Et’ then 0(p3)‘5_0(q2) with

o(a®) Z 0 (moa 3).
If 0(p>) > o(q?), then o(2r§ +r) = o(ri - 4r,).

If o(B) = O(p3) = o(qz),then o(2r§ + rz)

]

2
o(rl - 4r2).

If o(B) = odd > o(p3) = o(qz), then o(ri -~ Arz) > Z*Q(Ii)
. 2
= o(rz) = O(Zrl + rz).
If o(B) = even > o(pB) = o(qz), then
ther (ol , Cotr ) = afoe?
either o(rl - 4r2) > 2 o(rl) = 0(12) = 0(21l - r2)
' 2 2
2 i L] = = — 4
or 0(,_1:1 + rz) > 2 o(rl) o(rz) o(rl 4{2), not both.

) 2 . 2 - 2
Since q(rl) < o(rz), trivially o(2rl + rz) = o(rl 4r2)

= o(-z + r)) = o(p) = 2e0(r)). But 0(q) = o(x,) + o(r,)

> 3:0(rl). Thus o(qz) > 6-o(rl) = o(pB).

It is trivial that (2r2 ; r ) = (-2‘— 4r. ) = o{- 2 + 1)
v o(2r] 7 o(x] ) = r, +r,

= o(p) = o(rz). But o(q) = o(rl) + o(rz) >~%-o(r2). Thus

o(qz) > 3-o(r2) = o(p3).

Since o(pj = 0(~ri + r?) and o(ri) = o(rz), then o(p)_i 2-o(r1)

= o(r)). S0 0(p”) > 6+0(r)) = 3e0(r,) = o(qD).

If o(p”) > o(q?) = 6=0(r), then o(B) = o(p> + q2) = o(q2)

97
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4

6r0(r)) = 2+0(2x] + 1,) + o(x? - 4)) > hro(r)) + 2eo(r)

H

2 _ _ 2 a
6'o(rl). So o(2r1 +~r2) = 2oo(rl) = o(rl 4r2).

(ii) IfF o(B) = o(p3) o(qz), then by the same argument as case

(), 00267 + £)) = o(r} - 4r).

Now 1if o(B) > o(p3) = o(qz) then either o(B) = even or

o(B) = odd. We know that either O(Zri + r2) > 2-o(rl) = o(rz) or

o(ri - 4r2) > 2-o(r1) = o(rz), but not both, otherwise of(p) =
2 02 2 ) , I
-1 - = 2170 -+ - — 4 ° = i
o( ¥y F r2) of 1+t (rl ;rz)} > 2 o(rl) o(rz) implies

o(p3) > o(qz). If o(B) = odd, then o(B) = 2-0(2r§ + r2) + o(ri - 4r2)

2 2 '
* 4 — = -/ . = I
implies o(rl 4r2) odd. So o(rl +r2) > 2 o(?l) o(rz). _
- - — -2 —_ 2 = .

Therefore, if o(B) = odd, 0(11 4r2) > o(2r1 + r2) 2 o(rl)

"—'=l O(}fz)n . |

Proposition 4.2 Tet V satisfy (4.1). Suppose that we have

cémpleted t of the n-steps for a resolution by (2.2). Let V(t) be J

defined by {ft = 23 + 3v1

uapt(u,v)z + ZVUqut(u,v) = 0} near i
(u,v,z) = (0,0,0) where v / Pes ¥ { q.» u f p, and u ! q.. Let

E, = {v = 0} be an exceptional curve which appears in V(t). Assume

that o(B) = 3} < 2j along Et or o(B) = 2y < 3X along E, and that Et

.intersects irreducible curves of the proper transform of B which
vanish at (u,v) = (0,0). Then ft ié irreducible in ¢<u,v>[z}. 1}
Observe that irréducibility in ¢<u,v>>[z] is the same as irreducibility o ji
in ¢<u,v,z> (see [G&R, Lemma 3, p. 711). Therefore (0,0,0) is an

irreducible singular point-of V(t).




‘Proof First we assume that o(B) = 3X < 2u along Etu Toe prove

this, let us divide it into the following three cases:

(1) 3o = 28 which may be equal to zero
(1) 30 < 28

(i1i) 2B < 3n

(i) Suppose: that ft is reducihle in ¢<u,v>[z}. We write ft as
f. =(z -1 )°(z2 + vz + ) = z3 + ("rz +r.})ez - r.r
t 1 i 2 1 2 172

where r] and rz are holomorphic near (0,0). Then in terms of

this expression, the z-discriminant of ft is

2 2 2 3h 30, 3 2u-3)\ 2
L " l - e -
(21:l + rz) (r1 rrz) 108v™ " en ipt + v qt]. By
2 Ao 2 A Gy 3, 2u-3) 2
Lemma 4.1, Zr1 + r, = vu'h and ry i, = v pt—fv qt]k
where h and k are units near (0,0) because pz + Vsz3Aqi is

a product of distinct prime Ffactors up te a unit near (0,0),

A o 2 1,2 2
So 3v'u pt(u,v) = -1y + £, = - 3[(Zrl b r2) + (rl 4r2)]
= - %{vkuah + v)\uoc(p3 + Vzu_gqu)kj
t [
= w-% v1°uu[h + (pg + v2”f3kqﬁ)kj. Then we would get
_ i .3 2u~3A 2.,
p, = -3+ (v q.)k] and p,(0,0) # 0. By

3 2u-3)

assumption Py + v qi vanishes at (0,0) and so pt(0,0) = 0,

It is absurd.

(ii) Let 3w < 28. Suppose that ft is reducible in ¢<u,v>[z].
ft can be written as

_ 2 3 _ 2 _
ft = (z -~ rl) (=7 + r,z + rz) =z  + ( ry + r2)z r,r,

where £y and r, are holomorphic near (0,0). Then the
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9
z—discriminant of ft is (2ri_+ rz)“°(r

1
0 N
= ~108v3kou3a[pg + yH BAuZB 3aq2]. By Lemma 4.1,

t
2u-3X ?B ~3q 2

- Arz)

2?4 p = vl and 12 - 4r2 = vhuaf PtV

it 1 4, Jk

- 2
where h and k are units near (G,0) because pg + v2u 3)\uZB BQqE

is a product of distinct prime factors up to a unit near

Ao 2 1 2 2
EI = - —— = e e - "!‘,Ir..
(6,0 So 3v'u pt(u,v) ry + £, 3 [(2r14 rz) -+ (rl 12)]

LT e
[thuh + u (p + y°H 3Au26 3Qq§}k]

v2uf3ku28‘3aq§)k]. Then we would get _ I

W= whd

vxu&[h + (pi +

29— 3A ?B 3o 2

_ “_%[h + (pg . q.)k] and then p,€0,0) # 0.

L]
d
I

2u 3A ZB 3a. , ﬂ

But by assumption p3 + v qt vanishes at (0,0).

Thus pt(O,D) = 0. It is impossible,

Let 28 < 3a.  If 28 £ G (mod 3), then it is trivial by

Corollary 2.5, So we may assume that 28 =0 (mod 3),

Suppose that ft is reducible in ¢<u,v>[z]. ft can be written ﬁ
= 2 . - V " -
as ft = (z - rl) (2”7 + r,z + rz) where ry and ¥, are holomorphic

near (0,0). Then the z-discriminant of ft is

2 2, 2 3%, 2B, 30-28 3 2u-3) 2
(2r1 + r2) -(r1 - 4r2) = -108v U—g{U BPt + v H qt]'

Since 28 =0 (mod 3, let 8 =338'. Then by Lemma 4.1,

2 ! 2 A 2B' . 3g-68' 3 2u-3\ 2
2rl + r, = v B h and r ry 4;2 =vu 8 [u B pt-Fv H qt]k

where h and k are units near (0,0). So

Ao _ .2 1 2 2 _
3viu pt(u,v) = -r] + r, = 3[(2rl + rz) + (rl Arz)]

A i

A28 (66 o2 4 2 i

h + v'a qt)k]

+ vzufBAqi)k].




-5 —6R 1T -3
Thus 3+0* 07, o Lpp (3068 o3 4 2 2y o
t 3 £ t

= ¥
This is a contradiction because u® 2 Py vanishes at (0,0)

but the right side of this equatlion does not vanish at (0,0,

Next, if o(B) = 211 < 3A along Et’ similarly we can prove it.

Coroliary 4.3 Let V and V(t) be defined as in Proposition 4,2,

Recall that _: AR € A normalization of V{8, Je¢

B, = 1{v = 0} ang E, = {u = 0} be exceptional curves which appear in
V(t). Assume that o(E) = odd = 3A < Zﬁ along Et and o(B) = odd =
3o < 28 along E_. Suppose that Et n ES # ¢ and the proper transform

of B does not vanish at (u,v) = (0,0), Then V(t) is reducible near

(0,0,0). So N(t) has a double point singularity at a point of

-1 )
P, (0,0,05.
Proof Recall that the z~discriminant of the local defining

equation ft for V(t) is ~108v31-u3ueh where h is a unit near (0,0)

since 3\ < 24 and 3g < 28. Resolve V(t) over (0,0) by a fesolution
brocess by (2.2). Since 3\ and 300 are odd, after Jjust one blowing~
up at (u,v) = (6,0), the new exceptional curve E is not part of the

branch locus of p. The corresponding weighted dual graph for a

)

resolution by (2.2) of V(t) near (u,V) (0,0) is Al U AZ where

_l .. .
p (E) = Al U AZ’ Al.Al,_ ~2 and Az-AZ = -1. Note that A1 U A2 is
disconnected. Thus we proved that V(t) is reducible near (0,0,0)

and that N(F) has a double point singularity at a point of wgl(0,0,0).
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Examples of Corollary 4.3

Let V =‘{23 + 3x(x + 2y)2z + 2(X9 + yg) = 0},
“Then B = {~108[x"(x + 29)% + (27 + y9)2] = 0},
Note that V has a normal triple point singularity at (¢,0.0). Then

after 7-steps, we may assume that

_ ar — . (7D
(B) = 9El + 12E2 + lSE3 + 18E4 + IJLS x 18E6 E 36E7 + W and

W(7) meets F, and E_ in three ‘oints respectively. Since p(7) are
4 7 P P

2-1 over El and ES and El N E5 # &, we have the situation mentioned

in Corollary 4.3,

" Proposition 4.4 Let v satisfy the condition (4.1), Suppose that

we have completed t of the n-steps needed for a resolution by (2.2),
Let V(t) be defined by {ft = 23 + 3vApt(u,v)z + EGth(u,v) = 0}
near {(u,v,z) =:(0,0,0) where v { P, and v [ 4, Let Et = {v =0}
be an exceptional curve which appears first in V(t). Assume that
o(B) = 3) =2ﬁ along E . _Note that the z-discriminant of £, is |

3 3 3 2

e T qi) where b = bh(u,v) = p’ + 4,- Suppose

b = -108v A (p .

~108v
that irreducible curves of the proper transform of B just after
t-steps vanish at a point in Et’ say (0,0}, or b(0,0) = 0. Then
either pt(0,0) 0 # qt(0,0) ar pt(0,0) = qt(0,0) = 0. If pt(0,0)

# 0 # qt(0,0), then only one irreduqible curve of the proper transform

vanishes at that point and so meets Et with normal crossing. In

this case after the n-steps, p-l(Et) is connected. If pt(0,0) =




9, U),O) = 0 then (0,0,0) is an irreducible triple point of V(t).

Whenever b(uO,O)_= 0 for some , implies pt(uo,O) = qt(0,0) =0,

then pnl(Et) has globally three components. In other words, if

there exists at least one irreducible curve of the proper transform

of B which intersects only Et transversely,-then p“l(Et) is connected

otherwise p—l(Et) is composed of globally three components,

3 2
(pt +q.

Suppose that the proper transform vanishes at some point (0,0).

Proof Recall that the z-~discriminant of ft is «108v3A

).

Then clearly either pt(0,0) # Q # qt(0,0) or pf(0,0) = qt(0,0) = 0,
If pt(0,0) ¥ 0 # qt(0,0), then there exists only one irreducible
curve of the proper transform such that it meetsEt with normal
crossing at that point otherwise ir would contradict to (4.1). If
pt(0,0) = qt(0,0) =0, thEn gimilar arguments as in the proof of

Proposition 4.2 show that V(t) is irredovcible above (0,0). Now

suppose that there is no such s at which pt and qt vanish. Then

after n-steps there exists Fi’ 1 <1<k and Gj’ 1 <3 < 2 such that

o(B) = 3, < 2p

= < o
1 5 along Fi and o(B) Zij:-Baj along Gj where the

Fi and the Gj are irreducible components of E = UEi’ 1 <1 <n which
intersects Et, by (4.1). Then we claim that o(B) = 0(p3) = o(qz)

~along any component of E which intersects Et' Also we may assume’

without changing the number of compoﬁents of p_l(Et) that if necessary,

then by successive blow-ups there are no additional components of

(p3) or (qz) at any point in Et' let m = —Et'Et after n-steps. .

k 2
Then since (B)‘Et =0, 3Am = 2um = ¥ 3\ + ¥ ZBj. But note that

1

k A
3Am = & 3A, 4+ § 3&j and 2um = 2Sj because
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2 .
)-Et = (q )'Et = 0. Therefore; the ahove three equations show
s ) _1
hat = 3d,, 1 <1< = < 1 <k, E
tha 2Bj &J, 3 < & and 3ki 2ui, 1< <k Thus p ¢ t)
has three components. So it is enough to consider the case that
there is an irreducible curve of the proper transform which meets

only Et with normal crossings. Recall that pt :V(t) -+ M(t),
(t) (t)

+ V' 7, the normalization of V(t) arxd pt = pt()wt' Let
3 . CL (D
{gt =z + 3pt(u,v)z + th(U,V) = 0} and let pp i L

w, :N

t
L8 (t)

> M
: . ' _ (t) (t)

be defined by pt(u,v,z) = (u,v). Clearly L and V have the

same normalization N(t) since the fact that Dt and p£ are proper

implies that the induced map mé L(t} -+ V(t)

(t)

ig proper, and biholo-
morphic over V - {v = 0} and wé is finite. Observe that the
number of components of the regular set of (Qt)_l(Et) and that of
compoenents of the regular set of L(t)(u,O,z) = {gt(u,O,z) =

23 + 3pt(u,0)z + th(u,O) =0} in L(t) are same since the singular
set of L(t) is finite over Et' Alseo p_l(Et) is connected 1f and cinly
if the regular set of (pt)"l(Et) is connected. TIf L(t)(u,O,z} is
nonsingular everywhere, then pwl(Et) must be connected since Et can
be blown down to an irreducible singular point of V(i) for some i < t
by Propositions 4.2 and 4.3. Suppose that L(t)(u,O,z) is singular
at some point. To prove the connectedness of D_l(Et) assume the
contrary. Then the regular set of L(t)(u,O,z) would be disconnected.
Note that pt(g,O) and qt(u,O) are polynomials in u recalling that
vkpt(u,o) + vuqt(u,O) are the leading terms of pi(uv,v) and‘qi(uv,v)

for some i < t when we write pi(uv,v) and qi(uv,v) in terms of power

series in v whose coefficients are polynomials in u, respectively.
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So the Jocal defining equation gt(u;O,z) for L(t)(u,O,z) would he
reducible in ¢[u,z} where ¢[u,z] is the polynomial ring in z and u
over ¢. Let (uO,O) € Et and let o(—) be the order of zero of —

at (uO,O). If o(pi(u,o)) = o(qi(u,O)) >0 at (uO,O) then we must

il

have o(p;(u,0) + ¢*(u,0)) o(pF(1,0)) = 0(a?(u,0) at (45,0)

1l
jon]

otherwise it would contradicts to (4.1) as follows. Take Uy

We write P, = pt(u,vj mniqt}=qt(u,v) in V(t) as

uﬁsh -+ va

= u6sk + va

1

q

LS ST o T

where h and k are polynomials in u and units near u =20, and A and B
are holomorphic near v = 0 and v k A and v f B and s is a positive

integer. TLet 21 and my be total orders of VRA and v'B at (0,0),

respectively, TIf 65 < Rt and 6s < m, then it leads to a contradiction

to (4.1) by just one blowing up at (u,v) = (0,0), 1If either 6s_i 21
or 6s > m then by succesgsive blowing ups at (u,v) = (0,0) similarly
we can find a contradiétion to (4.1). Since gt(u,O,z) is reducible
in t[u,z], it may be written as (z - rl)-(22 + I,z + r2) where r,
and r, are polynomials in u., Note that the z—discriminant of
g (u,0,2) is —108[p3(u o + q2(u 01 = (2r2 + r )2’(r2 - 4r)

| £ tr? 71 2 1 2°°
Since E .meets at most two exceptional curves in V(t), either the
degree of pl(u 0) or the degree of ql(u 0) as polynomials in u are
the same as the degree of pl(u,O) + ql(u,O). 50 we may assume without
loss of generality that the degree of pI(u 0) and the degree of

pl(u 0) + ql(u 0) are same. But by Lemma (4.1) and (4.1)

[

L




o

N 1
P a(u ul)

2]:2 . ‘ (- )O'm
1 cer fu-u

blu-u) L " )
U=y v (u-—um) (u-sl e {u-s

2 .
rl-“ 4r2 k)

where a, b and the §; are constant

and al,.,.,am,m and k are integers

and each u-s, = 0 is an irreducible curve of the proper transform

of B Which-inpersects only Et with normal crossing. Since

2 .1 2 2 - :
3pt = - + r, 3[(Zrl b rz) + (ll 4r2)] then the degree of

P, = pt(u,O) is oy + ...+ a4 k. But the degree of pt(u,O) + qt(u,U)

is the degree of (2r§ R r2)2-(ri - 4y

i - + - i *
2), that dis 3&1 A 3am + ik

Therefore 3(0&l + ...+ o + k) would be equal to 3&1 L 3am + k.

‘Hence we would get k = 0., Tt contradicts to the assumption that

k> 0. : |

By Proposition 4.2 and Pro osition 4.4, we can compute a
y P P 3 P

resolution ¥ : N » V directly., Let us recall that E = UEi’ 1

A
[N
| A
z

Then we summarize it below:

. 3 2 -1 .

(1) If o(B) = o(p”) = o{q") along Ei’ then @ (Ei) has just one
component or three components depending on whether some
irreducibie curves of the proper transform of B intersect E
oT not respectively,

. 3 2 , 3

(ii) If o(B) = o(p”) < o(q®) along Ei’ then either o(p~) % 0
(mod 2) or not. If 0(p3) F 0 (mod 2), then p*l(Ei) consists
of just two components. .If o(pB)E 0 (mod 2), then p_l(Ei)
consists of two or three components depending on whether
part of the branch locus of p intersects Ei OTr not,

Let o(B) = o(qz)'< o(p3) along E,. If o(qz) £ 0 (mod 3), then ‘{




- ., -1
0 l(Ei) is just one component. If not, p (Ei) has one
component or three compenents depending on whethexr part of

the branch locus of p intersects Ei or not,

Corollary 4.5

(1) Let Pl and P2 be the singularities at (0,0,0) of

v, = {(x,y,2) | 2+ 2q,(x,y) = 0} and V, = {(x,y,2) | 23

+ 2q2(x,y) = 0} respectively., Let Vl and V2 be the normal

analytic spaces., If 94 and a4, define equisingular plane

curve singularities at (0,0), then P. and P2 have homeo-

1

merphic resolutions by (2.2).

(2) Let Pl and P2 be the singnlarities at g0,0,0) of

‘ 3 . \
Vl = {(XsYsz) | z- + 3Pl(-X>Y)Z' + qu(-xa}’} = 0} and
VZ = {{x,y,2) |23 + 3p2(x;y)z + Zqz(x,y) = 0}, respectively
with pi(x,y) £0, i =1,2. Let Vl and V2 satisfy the
3 2 3

condition (4.1), 1If py + q and 28 + qg define equisingular
plane curve singularities at (0,0), then Pl and Pz have

homeomorphic resolutions by (2.2),

I

Proof By section 2, Proposition 4.2 and Proposition 4.4.

Corollary 4.6 Let V of Lemma 1.12 satisfy (4.1). Let r:N o V

be a resolution by (2.2), Suppose that we have completed t of the

n;steps needed for such a resolution. Recall that B(t) is the

branch locus for p(t):.N(t) -+ M(t) and V(t) in (2.2)., Then V(t) is.

irreducible at any singular point of B(t) except possibly for the

points Ei n Ej where P is two to one over Ei and Ej and no other




component of B(t) pPasses through Ei'ﬂ Eﬁ.

Proof By Propositions 4.2, 4.3 and 4,4,

. t . .

Observe that if V( )'has an irreducible singular point P
) ) (£) . : -1 )
and r: N+~ Vv 1s a resolution by (2.2) near P then r (P ig
connected and,X*X = -3 where ¥ is a divisor of rw(m) and m iz the
maximal ideal of P,

! Let V satisfy the condition (4.1). Now let us apply the

results from Proposition 4,2 to Corollary 4.5 to Proposition 3.4,

We use the same notations in Proposition 3.4,

(4.2) Case (A) of (I) 4in Proposition 3.4,
Let E1 be the curve appearing at the inirial quadratic

transformation at Q. Let phl(El) = Allj A Note that E?

o
is the branch locus of Pover which p is two to one. Recall
that p': N' > M' and B' is the branch locus for p'. Then

B' has only one singular point in E;+ If not, then by

Propositions 4.2 and 4.4 D-Ai >-2. Recall that D'Al =
X + Z)*A1 = 1 and it is impossible. Therefore there is only
one component of UAi’ i# 1,2. 1In fact this component

intersects both Al and Az.

(4.3) Case (B2) of (I) in Proposition 3.4,
We may assume without loss of generality that X-A1 = -1,
X-A2 = 0 and X-A3 = -1 where Al and A3 have coefficients 1
and 2 in X respectively. Then note that D'A2 = 1 and D-Al =0,

Let El be the curve appearing at the initial quadratic




(4.4)

transformation at Q. Let p_l(El) = A1 U AB' Note that El ié' |

the branch locus of p over which P is two to one, Recall that
B' is the branch locus for p' : N' > M', Then B* has only one
singular point in El. Lf not, then by Propositions 4,2 and
4.4 there would be another component of UAi’ i# 1,3 which
meets Al and A3 both., But note that D°Al = 0. So it ig
impossible, Next, let E2 be the next exceptional curve which

results from blowing up at that point in E Recall that B(Z)

1
is the branch locus for p(z): N(ZJ > M(Z). Note that by (B2)
of (I} of Proposition 3.4 E2 is not part of the branch locus

for p. If B(z) is singular at El i Ez, then D'Al.i 1 by

Propositions 4.2 and 4.4, Since D-A1 = 0, it is absurd., Thus

we provéd that B(Z} is nonsingular at El N EZ' After n-steps,
El'El.= —-2. Therefore by (II) of section 2 Al-Al = —2 and
A3-A3 = ~1., Let us recall thart Z, is the fundamental cycle on

a component of UAi’ i#1,3. Note that there is only one compo--
nent of UAi’ i# 1,3 and supp Z, intersects Al and A3 both, If
Zy°2, = =3 and 7 'Az = -3, then Al fl AZ # ¢ and A2 n AB # ¢
since E, follows E, and B, 0 E, + ¢, If Zy*Z, = =3, Z*-Az =

-2 and Z*'At = -1, then AN A # ¢ and Ay N A, # ¢ since E,
follows E, and E, N E2 # 9.

Caser(B) of (II) in Proposition 3.4,

Note that Al and At follows A2 at the same time and Ap follows
Al and At. Let El be the curve appearing at the initial

quadratic transformation at -Q. Then D"l(El) = A2. Let E2

._1 ._l .
= i = N
and E3 be such that p (E2) Al U At and 0 (E3) Ap




Recall that Z, is the fundamental cycle on the connected

component of UAi, i # 2 which contains A

I Ap and At. Note
that Z*‘Al = Z*.Ap = -1, Z,"7, = -2 and that X, is the cycle
on supp Z, .such that X*~Al =,X*8At = =1 and that Al and At have

coefficients 1 and 2 in ¥, respectively. So after A2 appears,

we get the same situation on suppZ, as in (4.3), Therefore
PP 2,

= . . = -~ 4
A 2, At At 1, Al N Ap # ¢ and At n A.p * 9. Moreover,

e A
1 1
there is no connected component of UAi’ i # 1,t which does not

contain Ap.

Theorem 4.7 Let V =”{(x,y,z) lzB + 3p{x,y)Yz + 2q(x,v) = 0} be a
normal two-dimensional amalytic space with P = (0,0,0) its only
singularity. Let V satisfy {4.1), Let riN >V be a resolutipn by
(2.2), Let r:N + V be the minimal good resolution. Then N is
obtained from N by at most S5-time quadratic transformations at each
Sj’ l’i i< in A = ;_l(P). Each Ai - UAk’ k # i contains at.most

two s, .
J

Proof Let 7 :N - N satisfy r = rom. Proposition 3.1 and (#) tell
what happens in each step of a resolution by (2.2} in terms of a
resolution r' 1 H' -+ V with (r')*(m) locally principal satisfying

X'+X' = -3 where X' is the divisor of (r')*(m). Start with r' = ;.
Let Z be the fundamental cycle on N. Then Lemma 3.2, Corrolaries 4.3 and
4.6 show that it is enough to consider the case that r*(m) is not
principal and the case mentioned in Corollary 4.3, Z+Z = -1 or -2,

We use the results and notations of Proposition 3.4.
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(1) Let Z+2 = -2,

{A) There exists Al such that ZeA} = -2 and Al has-coefficient 1

"
in Z. If r (w) is not prineipal, by (4,2) note that 7 = Al

and A «A. = -2, TIn case of Corollary 4.3, X = Al +_A2 where

3 = L i 3 . = ~2 g . = -7, i
upp X Al A2 is not connected, Al Al 2 and A2 AZ 1 L

If this is not the case from Corollary 4.3, then by Proposition |
3.6 there is an embedded point s € A1 which is blown up to a

new exceptional curve A2. Al N A2 # ¢. By Proposition 3.4,

El is part of the branch locus of p where p_l(El) = Al 3] A2'

8o to separate Al and AZ, we need an additional blow-up at

AN A2 as the following.

1
b S S T
-3 -1 -4 -1 -2

After Al and A2 appear first in a resolution process by (2.2),

the fundamental cycle Z, of the connected component of
Al U A2 5 A3, i# 1,2 is A3 with AB-A3 = -1, Again by

Proposition 3.4 and Proposition 3.6 we need two time blow-ups

at s € A, - UAij i# 1,2, Then it becomes

3
S S
~4 -2 -2
2%
ia




Let X, be the cycle on UAi,'i # 1,2 such that X X, = -3 and
X*-Aj_i O for j # 1,2, Then we kunow rhat X*~A5 = 1 and A5
has coefficient 3 in X+ HNext, after A5 appears in the second
step of a resolution process by (2.2), the fundamental cycle
Z,, of the connected compenent A3 U A4 1s just A3 + A4 with

by tdy = D<A,k Ly*h, = -2, So by Proposition 3.4 and

3 4

Proposition 3.6 there is an emhedded point s, in either Aq n A4

or Aﬁ-—A . But E, is part of the branch locus. s, must be

4 3 1
A3 N Aq' Therefore blowing up at A3 N A4 we have the following
graph:
Al .AB AZ
-4 3 -7
A
=1 6
St
=3
A
_]_ 5

Thus after A. follows A. in the third step, A, and A, follows

6 5 3 4
A6 respectively. Let EZ’ E3, E,{+ and ES be such that pwl(Ez)
= A, p_l(E3) = A, p—l(E4) = A, and p“l(ES) = A,. Note that

2 3» and E, 5

part of the branch locus. Since A3 and A4 are of genus 0,

p is 2-1 over El’ 1-1 over E, and E and E_ are not

the resolution of corresponding branch locus B is:

=

o




(®)

(B1;

(B2)

, (3 (5)
3 ¥ 12B, + 128, + W'/ and W

meets E4 in one - point, B will be found to be equisingular to

Note that B = 3El + 4E2 + 8E

x3"+y4 near (0,0). Therefore V might be a {23 + 3xy + 2y2 = 0},
Note that in this case we did not use the condition (4.1).

Thus in the above case we need five time quadratic transformations
at s € Al from N in order to get N.

There exist Al # A2 such that Z«A1 = ZeA_ = =1,

. ,
1f v (m) is not principal, then by Proposition 3.6 blowing up

N at g = A, N AZ’ A3 = ﬂ_l(s) is a new exceptional curve; A3

appears in the first step of a resolution process by (2.2)

where w : N » ﬁ is the blow-up at s. Then Al follows A3 and

AQ follows Ag. 50 there is no subsequent embedded point that

can appear in A3. Also there is no embedded point in Al - UAi’

i# 1 and A ~ UAi, i# 2.

2
By Proposition 3.4 and (4.3) we may assume without loss of

+

generality that there is no connected component of UAi’ i#12

%
which does not contain A2. If r (m) is not principal, then

by Proposition 3.6, let us blow up Nat s € A2 - UAi, i# 2,

Note that Al'A, = =2, Let A3 = ﬂml(s) where T ; N = ﬁ is the

blow-up at s, Then Al and A3_appear in the first step of a

resolution process by (2.2). No subsequent embedded point can

. . -1 . '
appear in A3, Observe that El with p (El) A1 u A3 is part

of the branch locus of p and Al'Al = 2A3-A3 = -2, There is no

embedded point in Al' ~Let Zg be the fundamental cycle on the

1

connected component UAi’ i# 1,3, Then 2,*Z, = -3 and either
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©)

(€1)

(€2)

(C3)

(Z},\,-A2 = ~2, Z*oAt = 1) or'Z*nA2 = =3 by following notations
in Proposition 3.4, Tf Z*-A2 = =2 and Z*oAt = =1, then it 1is
clear that there is no more embedded point in A2 - UAi, i#2

and there is no embedded point in,At - UAj, i# e, At and A2

follow A1 and A3. It Z*=A2 = ~3, then there is no more

embedded point in A2 - UAi’ i# 2, A, follows Al and A3 at

the same time,

There exists A} such that Z'A1 = -2 and A1 has coefficient 2
%
in Z, If r (m) is not principal, then by Proposition 3.6

blowing up at g ¢ Al - UAi, i# 1, let A2 = ﬂnl(s) where

mT:N > ﬁ is the blow-up of ﬁ at s, Then A2 appears in' the first
step of a resolution pProcess by (2.2). No subsequent embedded
point can appear in AZ.' Let us recall that X, 1s the cycie on
supp(Z - 2D) such that X*'Ai.i 0 for all Ai < supp X, and

X%, = ~3. Then we have the following subcases. X*QAI = (,

TLet A # A be such that X, *A = -3, Then A follows A,
s 1 % s =] 2

There 1is no embedded'point in Aq w‘UAi, 1# s. Also there is

no more embedded point inp Al = A, 14 1 by case (C1) of (1)

in Proposition 3.4.
Let A # A_be such that XA = =2 and X, A = -1. Then A
5 t * g * ¢ 3

and At follow A There is no embedded point in AS ~ VA, i # 5

2" i
and in At - UAid i# ¢, Also, there is no more embedded point

in Al —lJAi, i # 1 by case (C2) of (I) in Proposition 3,4.

Let A A and A _ be distinct with X, *A . = X _.A
] 83 % Dot

1* “g2 s * “g2

= A
X* s3
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(C4)

(C5)

(11)

(1)

= ~1, Then Asl’ AS2 andrAS3 follow AZ’ There is no embedded

. . 1 — s L . -
point in Asl JAi, i sl, As2 UAi’ i# 82 and ASB UAi’

i # 83. Also, there is no more embedded point in Al,— UA,,
1

i # 1 by case (C3) of (I) of Proposition 3.4,

Let As be such that X*.As = -1 with coefficient 3 in X,. Then

- AS follows A2¢ If X, is the fundamental cycle on supp(Z ~ 2D)

then there is no embedded point in AS - UAi, i # s. Also there
is no more embedded point in Al - UAi’ 1 # 1 by case (C4) of
(I} in Proposition 3.4, 1If X, is mot fundamental, then let us
recall Z,, the fundamental cycle_on supp X, . Note that

Zp 2y = =2, Alrhas coefficient 1 in Z, and Z*vAl =0 or -1.

- UAi’ i# 1. By

Of course, there is no embedded point in AS

the case (I) in Proposition 3.4 there is no more embedded

point in Al - UAi, i #1,

Let A_# A be such that X,*A = X *A = -1 and A and A have
= t = 5 oot s t

coefficients 2 and 1 in X, respectively. By case (C5) of (D)

in Proposition 3.4, X, is the fundamental cycle on supp(Z - 2D),

AS and At follows AZ' There is no embedded point in AS - UAi’

i # s and At - UAi’ i # t. By case (C5) of (1) in Proposition
3.4, there is no more embedded point in A, - UAi, i# 1.

Let Z+Z = -1. Let Y = ZmiAi where o, is the order to which
functions gor, g € m, generically vanish on Ai' Then Y*Y = -2

or YY = -1,
Let Y.¥= -2, Let Ap be such that Y«Ap = -] with coefficient 2

in Y by Proposition 3.4. By Proposition 3.6, there is an




embedded point s in Ap - UAi’ i# p. Let w:N +'§ be the
bloﬁ—up at s and AZ = n"l(s). Then A2 appears in the first
step of a resolution process by (2.2). There is no subsequent
embedded point in AZ' Let us recall that Z, 1s the fundamental
cycle on supp(2Z - D) by Proposition 3.4, (II)}. Then Zyth, = =2

“and Z, A, = Z*-Ap = -1, By FProposition 3.4 and Proposition

3.6, we have two subcases,

‘Case (A) of (II) of.PropoSition 3.4 Then either Al N Ap # ¢

or Ai n Ap £.¢. If A1 n Ap # ¢, then blowing up at Al n Ap

by Proposition 3.6, At appears in the next step where

-1
1 n Ap and 7 (Al N AP) = A,

™ :Nl + N is the blow-up at A
There is no subsequent embedded point.in At - UAj, i # t.
Also Al follows At and Ap follows At. Therefore there is no
embedded point i? Al - UAi, i# 1 and Ap - UAi, i#p. If
Al n AP = ¢, then there must be only one component of UAi’

i # 2 which intersects both A. and AP by case (B1) of (I) in

1

Proposition 3.4. That component contains At which is not a

nongingular rational curve with At-At = -1, 1In this case,

also there does not exist such an embedded point as in case of

Case (B) of (IT) of Proposition 3.4: By (4.4), note that

1-A = -2, At-At = -1 and At is a nonsingular rationél curve,
' -1

S0 after blowing up at 8y € Ap - UAi, i#p, let At =7y (sl)

A

where my :Nl + N is the blow-up of N at 8q - Then Al and'At

follow AZ' So there is no subsequent embedded point in At

1ie




(11)

1
Also A1 f Ap # ¢ and At N Ap # 0. Thus we showed that there

and there is no embedded point in A . 'Ap follows A1 and At.

is only two distinct embedded points in Ap - UAi, i# p.
Let Y+Y = -1, That i8.72 = Y. Let Al be such that Z-A] = =1.
By Proposition 3.6, there is an embedded point s in Al - UAi,

i# 1, Let m:N > N be the blow-up at s and Ap = W"l(s).

*
Startc with Z1 + Ap on N where 21 =7 (Z). Then we have the

same situation as the case {i), because (Zlvap)v(Zl-FAp) = -2,
(Z,+A )eA = -1 and A has coefficient 2 in Z_.+A . Therefore
1 7p p P 1 %

we need three time quadratic transformations at s € Al - UAi

in order to get a resolution by (2.2). Moreover, there ig

no more embedded point in A, ~ VA, 4 # 1.,

1

Theorem 4.8 Let v : N+ V be a resclution by (2.2) of a normal

two dimensional triple point singularity P,

(1)

(2)

Let V = {(x,y,2) | z3 + 2q(%,y) = 0} with ? = (0,0,0) € V.

Then there is an algorithm to determine the equisingular type

- of the plane curve singularity (0,0) of {(x,y)|q(x,y) = 0}

from I', the topological type of the embedding of A = r“l(P)

in N.

Let V = {(x,y,z) Iz3 + 3p(x,¥)z + 29(x,y) = 0} with P = (0,0,0)

€ V. Let V satisfy (4.1). Then there is an algorithm to

determine the equisingular type of the plane curve singularity
3 2

(O,O) of {(X,Y) [‘108(13 (XSY) + g (X,y))= O} from I'y the

1
topological type of the embedding of 4 = r “(P) in N.




Proof We shall describe the algorithm, It will suffice to

identify r“(m) for P and for all subsequent singularities in V(l) for

some 1 which appear in a resolution process by (2.2). These subsequent

singularities are either (a) irreducible triple point singularities

of V(t), for some t < n or (b) singularities each of which is mapped
by pt, gome t < n, to an intersection of only two exceptional curves
which are two to one branch locus of 0 by Corollary 4.6, Suppose

that we have completed t of the n-steps needed for a resolution by

(z.2). N(t) is the obtained normal space and let us recall that
(), (6 L)

Dt = pt owt HE > M expresses as a three~fold branched
covering of the manifold M(t). M(t) ig obtained from ¢2 by a sequence

of quadratic transformations. Choose subscripts for the Cj of cases

(1), (I1) and tIII) of section 2 so that Ci first appear in N(i).
Then the singularities of case {a) in V(t) have resolutions by (2.2)
ﬁith exceptional sets given by connegted components of UA,, Aj ¢1UCi,
1 <1< t, or each of the singularities of case (b) in V(t) has a
resclution by (2.2) with exceptional sets given by the umion of two
disjoint irreducible curves, say, Ak’ Ay of UAj. Aj & UCi, 1=1i<t¢
with Ak'Ak = -2 and AR.AE = -1 by Coroliary 4.3, So, it is enough

to consider the case (a). Let A' be such a comnected component

ey , ()

for a singularity P in N . Then the initial step in that

(t)

corresponds to a quadratic transformation in

(t)

resolution of P

M(t)

at a center Q- 7, If Ci N A" # ¢, then Q(t) € p(t)(ci) and

conversely, This determines the topology of M(t+l) together with

t+1) {(e41)

the case (b)., The new exceptional curve in M( e+l

is denoted E




(t+1)

We omit the super-script for Et+l and its proper transforms when

no ambiguity in notation arises., So after n~steps, we know the

(n)

nature of the exceptional set E = UEj, 1 <4 <n, in M . We also

keep track, as follows, of which Ej is part of the branch locus B(n)

(n)

of p . Namely, after t steps, let X = EmjAj,be the divisor near
(t)

A" of the pull~back of the maximal ideal of P . XX = -3, If

there exists an Ak with Ak'X = =1 and m = 3, then we are in case

+
(I) of section 2. Blowing up at Q( £) (£+1)

and normalizing V induced

+
by this blowing-up gives an E over which pt . is one to one. 1f

-+l
T 14 ¥ = v A_ =3
there exist Ak # AR with Ak X A -1, AL A EA and ™ 1,
m, = 2, then we are in case (II) of section 2. Blowing at Q(t)
.. (t+1) . . . :
and normalizing V induced by this blowing up gives an Et+l

. -1
over which p is a two-fold branch cover., In other cases, we are

in case (IIT) of section 2. Et+l is mot part of the branch locus.

If there is an Ak such that Ak!X = -3, then Ct+l = Ak' If there

are Ak’ A2 and Am such that Ak-X = AQ-X = Am-X = «1, then Ct+l =
U i e =

Ak AR U Am. if there exist Ak and AQ such that X Ay 1 and

X-Ag = =2 then C Ak U A and A = 2Ak Ak The topological

types of the Ci and how they intersect are known from I' and the

ahove paragraphs, A Ci ahove an Ei which is not part of B(n) is a

three~fold branch cover of Ei with some known branch points at the

B, in p () { (n)

. The other branch points come from W s, & proper

(n)

transform on M of B = {93(x,y) + qz(x,y) = 0}, Then I determines

(n)

"~ how W » which is nonsingular, meets E with normal crossings. This

determlnes the equisingular type of the plane curve singularity of




B at (0,0), as desired.

¢

Thus there remains to find X, the divisor of r (m) on M. If

Z, the fundamental ecycle, satisfies 7.7 = -3, then 7 = X by Lemma

3.2. TFor 2+2 = =2 or -1, then X satisfies the hypotheses of

Proposition 3.4, We will follow the same notation of Proposition

3.4, -
(I) 1If Z+2 = -2, then there are three cases below:
(A) 1If there is A1 such that Z+A. = -2, then there is only one

1
component C of UAi’ 1 # 1by (4.2), which contains A2. It is

trivial to find X.

. = - = — L ] —u?
Let Al and A2 be such that g Al ZeA 1. 1If Al Al # -2

and AZ'A2 # ~2, then there is only one component ( of UAi,

i # 1,2 which intersects both A] and A, by case (B} of (I} in

Proposition 3.4 and (4.3). So to find X is obvious, This is

the case (B1) of (I) in Proposition 3.4. Now without loss of

generality we may assume that Al.Al = 2A3°A3 = -2 with X’Al =

X*A3 = -1, Then by case (B2) of (I) in Proposition 3.4 and

(4.3), A, N Ay # ¢ and A, N Ay = ¢ for all j, § #2,3. So it

is trivial., This is just the case (B2) of (I) of Proposition

3.4,

(C) If there exists Al such that Z“Al = -1 and Al has coefficient

2 in Z, then by Propositions 3.4, 3.5, 3.6 and (4.4) we must

find the correct component C of UAi, i # 1 which contains Az.

Consider the following inductively defined sets Sk of

subscripts of the Ai: S0 = ® . With Sk defined, consider
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all fundamental cycles Zk+1‘for connected components of UA,,
4.

i€ Sk' For each Zk+1 such that zk+l'zk+l = -1, there is a

unique such that «Z, .o o= ~1L, Tet T Le the set of
+1 +1 Tkt k+1
subscripts for such Ak+1' Let bk+l = Sk U Tk+l' For

sufficiently large k, Sk = Sk+l' Call this largest set 8. E

Then by Froposition 3,1, 3.4, 3.3, 4.6 and by (4.4) $ has I

4k + 3 elements for some integer k. For each compenent o) oot
UAi, i # 1 with its fundamental cycle Zj satisfying zd.27) = -1,
we may form the corresponding set s9. But for each ¢) with

A2 & CJ, $3 has 44 elements for some integer g by case {(IT)

of Proposition 3.4 and Corollary 3.5 and (4.4) because ARV
= -1, Therefore the correct component ¢ is that component

whose SJ has 4m+3 elements for some Integer m.

(IT) 1If Z+Z = -1, then there is A1 such that Z-Al = -1. By
Proposition 3.4, 3.5, 3.6 and (4.4) we may find the correct
component C of UAi, i # 1 which con?ains AZ as follows. i
Consider the following inductively defined sets Sk of
subscripts of the A .SO = {1}. With 8, defined, conmsider

all fundamental cycles Zk+l for connected components of UAi’

i€ Sk' For each Zk+l such that Zk+1°ZK+l = -], there is a

unique Ak+1 such that Ak+1-zk+1 = -1. Let Tk+l be the set of
subscripts for such Ak+l I_,et:'Sk_+_l = Sk U Tk+1' For . i
sufficiently large k, S, = S.4q+ Call this largest set S.

Then by Proposition 3.1, 3.4, 3.5, 4.6 and by (4.4), S has 4k

elements for some integer k. For each component ¢’ of UAi, i




i # 1 with its fundamental cycle 7 satisfying zd.7] = -1, we

may form the corresponding set Sj. But forleach Cj with

A2 & Cj, Sj has 4% elements for some integer { by case (II)
of Proposition 3.4 and Corollary 3.5 and (4.4) because Zj°Zj
= 1,

Therefore the correct componrent C is that component

whose §7' has dm+ 3 elements for some integer m.

(1)

Corollary 4.9 1

Proof

Let Pl and P2 be the singularities at (0,0,0) of =

v, = {Gy,2) P a4 2q,(x,y) = 0} and v, = {(x,y,2): 2 4
2q2(x,y) = (0,0j} respectively, Let Vl and V2 be the normal
analytic spacés. Then Pl and P2 have homeomorphic resolutions
by (2.2) if and only if 4y and 4, have equisingular plane
curve.singularities at (0,0).

Let Pl and P2 be the singularities at (6,0,0) of

il

0} and

o !
Vi = {Gy,2) 127 + 3pl(x,y)z * 2q, (x,y)

V2 = {(x,v,2) :23 + 3p2(x,y)z + 2q2(x,y) = (0}, respectively

with pi(X,Y) 20,1 =1,2, Let V., and V

1 2

1 and P2 have homeomorphic resolutions by (2.2) if and

satisfy (4.1).
Then P

oﬁly if Py + qi and pg + qg have equisingular plane curve

singularities at (0,0),

By Corollary 4.5 and Theorem 4.8.




Corollary 4.10 Tet f be the topological type of the exceptional

set for the minimal resolution of a normal two~-dimensional singularity,
Then there are only a finite number of equisingular types for plane
curve singularities such that the corresponding two~dimensional

triple point with condition (4.1) has a minimal resolution of the

topological type of T.
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