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i) If there exists a point p in M with ip/dp >1-(C),
then 'lTl(M) is trivial or 22;

ii) If wl(M)z'Zz, and there exists a point p in M such
that iM/dP >1-¢(C), then M" has the homotopy type of’RPn;

1ii) If for some p in M, iM/dp.Sl—a(C), and the exponential
map from p is of maximal rank on a closed ball of radius dP
about 0 in TMP, then the universal cover of M is homeomorphic
to Sn, and 1r1(M)=2.7.2. Moreover, for n<4, MT is homeomorphic
to RP".  Also » it can be shown that the cut locus of p is a
stratified set which has strata of smooth sﬁbmanifolds of
various dimensions, for all n. In this case, iM is bounded from
below in terms of curvature. For a smaller e(C), the cut locus
becomes a smooth submanifold of codimension 1.

There are example; showing that the curvature condition of
i) can not be removed.

The ¢(C)'s above are different in each case, and their

scale is approximately between 1/10 and 1/20.
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INTRODUCTION

In this paper, we will give some constraints on the topology
of compact, connected Riemannian manifolds whose injectivity é
radii and diameters are close to each other, in terms of the
sectional curvature. For the notation and definitions, we refer to

Chapter I.

The case of the spherical cut locus of a point P in M and
also the stronger case of the equality of diameter and injectivity
radius of M, i.e. ip=dp'and iMsz’ have been studied by various
authors.

F.W. Warner ﬁwg has shown that if there exists a point p
in a compact and simply connected Riemannian manifold M for

which each point of the spherical conjugate locus ép in TMP

is regular, then that has the same multiplicity as conjugate
points which is >1, and M is homeomorphic to a sphere or has

the integral cohomology ring of one of compact irreducible

symmetric spaces of rank 1. ‘
Nakagawa and Shiohama [NS—l] , [NS-Z] , have studied the
spherical cut locus for the cases of ﬁwil and O<k§§M;K=1, and

obtained that M should be either lRPn or 8" in sone sense, or

have a cohomology ring with one generator. For precise




statements, see Chapter I,

It was observed by Omori [O] that if the metric of M is
real analytic and if N is a real analytic submanifold whose
cutlocus N' has constant distance from N, then N' is a real
analytic submanifold of M, and M has a decomposition
MzDNL#DN" where DN and DN' are normal disc bundles of N, N',
respectively.

In Besse [Bs], it is claimed that a point peM, where M is
c”, has a spherical cut: locus if and only if M is a pointed
Blaschke manifold at p. There is an extensive theory for Blaschke
manifolds (see [?s]). Especially, the Bott-Samelson Theorem gives
topological information about M, similar to the Nakagawa-Shichama
results (see Chapter 7 of [Bs]).

Berger [&q has shown that if M is S" or RP™ and a Blaschke

iM=dM, then M is actually isometric to 8" or RP™.

manifold, i.e.
The Blaschke Conjecture states that any Blaschke manifold is
isometric to one of s”,uuﬂﬂ EPH,RHJE or EaPZ, with their
canonical metrics, up to a constant factor,

The theorems above show that the condition ipzdp for some
point p in a compact Riemannian manifold is a very rigid

restriction. Then, a natural question to ask is 'What happens

if we allow some Flexibility in this condition?" This cannot be

done arbitrarily, since the example 2 of Chapter II, Section 5,




shows that for any given =g, any compact Riemannian manifold

has a new metric on it so that iP and dp are egg-close. Hence,
other conditions, such as on curvature, may be needed. Also, the
theorems above do not take this case into consideration and do not
seem to generalize easily in this direction, because the nature
of the proofs depends very much on the rigidity, with the
exception of the Samelson map (see Chapter II, Section 3).

One importént result in a similar direction is due to
Weinstein [Wa], [Bs]:If M can be written as DL&E, where D is
the n-dimensional closed ball, E is a ¢’ closed k-disc bundle
over a (ﬁ—k}—dimensional compact c” manifold, with boundary 3E
diffeomorphic to Snﬁl, and a:3D+3E an attaching diffeomorphism;
then there exists a new Riemannian metric on M such that the
center of D has a spherical cut locus. On the other hand, given
a manifold with ip close to'dp; it appears that to show that some
neighborhood of Cp has the structure of a smooth disc bundle
over some smooth submanifold is very difficult or perhaps
impossible.

A problem which makes this situation i,, close to dM

M

interesting and also illustrates its complexity explicitly is

the following: To find quantitative topological restrictions

M;A+a, for some e>0.

Grove and Shiohamaﬁ%ﬂ have shown that if dM>n/2 then M is

on even dimensional manifolds with 1<K




homeomorphic to s". Gromoll and Grove IGG] extended this result:
If dM=w/2, then M is homeomorphic to Sn, or isometric to a
symmetric space of rank 1. By Klingenberg's Lemma, we have

-1/2 /2

. The case of n(4+e)_1 < dy< /2 is recently

;TT (4"'5) _<__ i.\4=

iM
resolved by Berger [B—S]: "There exists a real number 6<1/4 such
that any simply connected, even dimensional compact Riemannian
manifold M with 0<dg K, <1, is necessarily homeomorpﬁic to s"

or diffeomorphic to a symmetric space of rank 1.'"

The primary goal of this paper is to construct some universal
constants such that if ip or iy is close to dP or dM in terms of
these constants, then there will be constraints on the topology
of the manifold. These universal constants depend only on the
lower bound of the sectional curvature, and in some cases also
on the dimension of M. Although different in each case, their
general scale is not too small by comparison.

In Chapter I, we list the basic definitions, notations, and
theorems that we will use.

Chapter II contains the proofs of the main theorems,
corollaries, and examples. An elementary description of the
universal cover is given in Section 1. In Section 2, we present

and prove Theorem I, which gives the restriction on the fundamental

group if ip is close to dp’ in terms of a universal comnstant which

depends on the lower bound of the sectional curvature. Section 3




deals with Theorem 2, which classifies the non-simply connected
case, The case of the conjugate locus QP being bounded away from
the cut locus CP of a point p of M is investigated in Section 4.
We show that M cannot be simﬁly connected in this case, and give
some stratification structure to the cut locus, and conditions
which make C_ a codimension 1 submanifold, so that we can apply
Weinstein's result. Finally, we present some examples,
counterexamples, and immediate consequences of the main theorems
in Section 5.

The Theorems 1-5B generalize some of the results of
Shichama and Nakagawa, especially in the ﬁon-simply connected
case.

Although Berger[B-S] has resolved the problem of
almdst-l/4—pinched manifolds; the problem of finding more
topological restrictions on the simply connected manifolds whose
injectivity radius is close to the diameter in terms of the

lower bound of the sectional curvature or any other geometric

quantities, still needs to be investigated.




CHAPTER I

NOTATION AND PRELIMINARIES

In this chapter, the basic definitions, notations, and
the theorems which will be used in Chapter II are given.

For the basic notions of manifolds and Riemannian
_Geometry, we refer to Cheeger and Ebin Eﬁﬂ, Gromoll,

Klingenberg, and Meyer [GKM], and Kobayashi and Nomizu [KN].

In this text, M always denotes a compact, smooth,
connected, n-dimensional Riemannian manifeld without boundary.
™, UM, TMP, and UMp_denote the tangent bundle of M, the unit
sphere bundle of the tangent bundile, the tangent space at p,
and the unit vectors in TMp,with respect to the Riemannian
metric < , >p, respectively.

For any smooth map f: M1+M2, where Mi are smooth manifolds,
for i=1,2, £, denotes the differential (Jacobian) of f, i.e.
the induced map f*:TM1+TM2'

Unless it is specified, all coordinate systems around any
point of M are normal, and all geodesics are parametrized by

their arclength; that is, the velocity vectors are unit vectors.

If y(t) is said to be any geodesic from p to q, then it is

assumed that y:[O,fL]—>M such that v (0)=p, y(2)=q, and the length




of v, which is denoted by &(y) is to be . If Y 1is also said

to be minimal, then d{p,q)=%, where d(p,q) denotes the distance
between p and q. Y'(t) denotes the velocity vector of Yy at
v(t). Similarly, if r=Y(tr) and tr is unique, then yv'(r) also

denotes T'(tr).

Let VysVg be non-zero vectors in TMp for some peM. The

angle ﬁxvl,vz) between v, and v, is always measured to be between

1
0 and T, and it is given by cos(iﬁvl,vz)]'ﬂvll'"vzn=<v1,v2>P. f
dM:MXM+[0,W) is the distance function. The diameter of M
which is the maximum value of the function dM(.,.J will also be
denoted by dM or d(M). If there is no chance of ambiguity, M
will be suppressed in dM[.,.) and d(p,q) will be written instead

of dy(p,q), for p,qeM.

DEFINITION 1. For any subset X of M, the closure, the interior,

and the boundary of X will be denoted by X, int(X), and 3X,

respectively. Let expp:TMp+M be the exponential map. For any

peM and VEUMP, the cut value in the direction QE'E-CP(V} is to

be Max{rer| >0, d(p,expp(lv)};k} and the fundamental region

Ap to bel{vsTMpl d(p,expp(v))=ﬂvﬂ}. The tangential cut locus of

, O, is defined to be ?A_ and the cut 1 of p, C_,be exp. C._.
P, C,» is define > e cut locus of p, C, PoCp

One can show that cp(v) depends on p and v continuously,

and cp(v)>0 is finite for all VEUMP, since M is compact. Hence,

- 8Ap£(cp(v}*v| VEUMb}’ and it is homeomorphic to Sn-l. See [GKM]. . |




DEFINITION 2. Let peM be given. The injectivity radius at p is

defined to be Min{cp(v)| VEUMP}.and is denotéd by ip
dp=Max{cp(V)f VEUMP} is in fact the distance to the furthest
point from p. Let iy and dy be Min{ipl peM} and Max{dpl peM}

bl

respectively. iM and dM are called the injectivity radius of M

and the diameter of M.

This definition of the diameter is equivalent to the
previous definition. If there is more than one metric on M,
thenlip(M,g], dp(M,g), d{M,g) and i(M,g) will be used to
indicate dependence on some metric g on M,

DEFINITION 3. For any metric space X, B.(x,,X) and Er(xO,XJ

for some x,eX,denote the halls {xeX] dy (x,xy)<r} and
{xeX| dx(x,xo);y}, respectively.

Let M be the universal cover of M and p:ﬁ+M be the
natufal projeétion map. Since p is a ldcal homeomorphism, it
induces a smooth Riemannian manifold structure on M by pulling
back. the strucutre on M locally. With this natural structure
on M, p becomes a local isometry and*fb'eﬁ,*fb'eTMp,,*f%dR,
p(expp,{tv'))=expp(P,)(tp*(v')). ¥n this paper, whenever the
universal cover M of M is used, this natural Riemannian structure

will always be considered.

DEFINITION 4. Let peM. The first tangential conjugate locus ép

g£ P is defined to be:




(expp)*(tv):T(TMp)tV+ T is maximal rank for

M

VETMp 0<t<l and not maximal rank for t=1,

The first conjugate locus Qp of p is defined to be expp(Qp).
Let KM denote the sectional curvature of the Riemannian
connection on M, which is torsion free,

DEFINITION 5. For any CeR, Mé denotes the simply connected two-

dimensional, complete Riemannian manifold of constant sectional
curvature C, i.e. a space form which is unique up to isometry.
For example, see [CE]

The theorem below was first proved by V.A. Toponogov [T-l],
[T—Z]. For other proofs and a complete treatment of the subject,
see [CE,pg. 43], [@KM, peg. 184]. The following form of the theorem
and definitions appear in [CE,pg. 43]. All indices below are
taken modulo 3.

DEFINITION 6. A geodesic triangle in the Riemannian manifold M

is a set of three geodesic segments parametrized by arclength

(Yy:¥5sv5) of lengths 2,,2,,%, such that yi(ﬁiJWiﬂ(Q) and

|
Ri*0501285 400 Set =4y

141 Ry41)571,,(0)), the angle between

S | 1
Yi+l(zi+1) and yi+2(0}, Oigiéj.

THEOREM (Topeonecgov). Let M be a complete manifold with KMi C.

a) Let {Yi,yz,ys) determine a geodesic triangle in M.

1/2

Suppose YisYz 8Te minimal and if C>0, suppose &( Yz)éy-c—

Then in Mg,

there exists a geodesic triangle (;i,;é,;é} such that
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ﬂfyi)=%f?i) and aiigl,asggs. Except in the case C0 and
1/2

QCyi)=ﬂ‘C— for some i, the triangle in Mé is uniquely determined.
b) Let Y1:Yy be geodesic segments in Mrsuch that y1(21)=y2{0)
and<¢[—yi(ll),yé(0))=u. We call such a configuration a hinge L
and denote it by CYl’Yz’u%' Let'yl be miniﬁal, and if C-0,
Q,(Yz);n-c—l/z. Let y_1,¥2 ﬁMé be such that «?1(5?,1)=~?2(0),
20y )=2y )=y and  (~y1 (2 ),v5(0))=a.Then dy(y; (0),v,(2,))<
42 Oy (027, (25)).
Toponogov's Theorem guarantees the existence of the
triangles in Mé, as long as the lengths of the sides satisfy
the triangle inequalities. In this text, unless otherwise
specified, the geodesic triangles in M have sides given by
minimal geodesics, so the triangle inequalities are automatically
satisfied. Also, all comparisons are done with Mg for C<0.
Hence, the triangles are uniquely determined up to congruences
of Mé. At the same time, the angles a; are known, If the side

lengths Qi are known, .by the laws of cosine, ESHE,pg. 195]:

. 2 2 2 -
if C=0: gi_gi+1+zi+2_2£i+l‘2i+2'Cosai’

if C<0:

cosh(K-zi)=cosh(K-£i+l)-cosh(K-Qi+2)—51nh(K-£i+1)51nh(m-£i+2)cosai,

where =(-C) /2,




THEOREM (Rauch{R]). Let MI’MZ be Riemannian manifolds of the .
same dimension, YI:[b’2]+M1’Y2:[O’2]+M2 be normal geodesics,
YI’YZ be Jacobi fields along Y1:Y5 with Y1(0)=Y2(0)=O and

Y] gm<Y5 10> |50 and firs (Off =[jr3 (0)]]- Let v, have no

conjugate points on (0,2). If the sectional curvature of M1

along Yq is smaller than or equal to the sectional curvature of

M2 along Yosl.e. Kleci’t)iﬁMz(cz’t) for any two-plane Ui,t

in T(M. ,
( l)vi(t)
to be true for the two-planes generated by Yi{t) and Ti(t),i=l,2)

( in fact, it is sufficient to have the inequality

for all tef0,5]. Then Iy, (O]}, ()]l In fact, for >0,

Sy W2 P 0.

PROOF. See [GKM,pg.181],[CE,ps.28].

LEMMA (Berger([B-2]). Let M be a complete Riemannian manifold.

Let p,qeM be such that'dM(p,q)=dp. For any vector VETMq, there
exists a minimal geodesic y from q to p such that 4’(Y‘(O),v)gr/2.
PROOF. See [GKM,pg. 257]or [CE,pg. 106].

DEFINITION 7. A subset S of a Riemannian manifold M is called

strongly convex if for any ql,qzeg; there exists a unique minimal

geodesic qu’qz from 94 to q such that Yq
0)=q, ,

ay,q, 0=, d4;59

1’12 1 112 172

THEOREM (Whitehead [Wh]). If r<(1/2)-Min(w-K »iyds then

YL CRLICIRLPY Rt

Y 0,402 9g))=ay and vy o ((0,d(ay,0))) &s.

Br(p,M) is strongly convex, where K=Max(KM]. {If K<0, consider =

11
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instead of ﬂ/Kl/z.)

PROOF. See [CE,pg. 103].

LEMMA A. Let p,aeM be such that d{p,q)=ip. Then either there is a
minimal geodesic from p to g along which p is conjugate to ¢, or
there are precisely two miﬁimal geodesics Y1Ys from p to q such
that yi{q}=-yé[q). .

PROOF. See [CE,pg. 95].

. . . . 1/2
LEMMA (Klingenberg). If K1;FM§KO>O’ then 1miM1n(“/K1/ s 872}, vwhere

% is the length of the shortest smooth closed geodesic in M, If M |

1/2 ‘
/K - |

is also an even dimensional, oriented manifold,then 1

PROOF. See {GkM,pg.227], [CE,pg.96,98].

DEFINITION 8. Let peM. p is said to have a spherical cut locus if

p p
DEFINITION 9. Let peM and qup. The link from p to q is defined to

I
i =d_. ‘ i
|

be A(p,q)={veUMq| exp, (d(p,a) V) =p}.

DEFINITION 10. A compact Riemannian manifold M is called a 1

pointed Blaschke manifold at p, for some peM, if ancp, Alp,q) is
the intersection of UMq with a subspace of TMq. M is called a

Blaschke manifold if it is a pointed Blaschke manifold at p, for

all peM,
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THEOREM (Nakagawa-Shiohama'ﬁ%%d]j. Let M be a compaét, connected

Riemannian manifold with KM;I such that there exists peM with
4=1 =d . Then
P P |
i) eem/2; |
ii) if ¢=n/2, then M is isometric to RPn with constant |
sectional curvature 1; . |
iit) if w/2<%<w, then M has the same cohomology groups as ‘

that of[RPn and ﬁnis homeomorphic to s™, Hence, if M is simply

connected, then 2>7. o

iv) if ¢ ,then C 10 =¢ and hence, M has the same }
) 3 Gy R Qpthen E AT
cohomology groups as that of RPn, and M is homeomorphic to s™.

THEOREM (Nakagawa-Shiohama [NS—Z]). Let M be an n-dimensional,

connected, compact C”- manifold. Assume that there exists peM

such that d(p,q)=¢ for all qup, where £=w-(Max(KM))—l/2. Then

every geodesic segment starting from p with length 2% is a geodesic

loop at p, and we have, for any point qup, the multiplicity of p

and q as a conjugate pair is constant A, where Aa=0,1,3,7,n-1.

Moreover,

i) If ﬁl(M)+O, then M has the same cohomology groups asithat

of RPn, and M" is homeomorphic to Sn, where A=0 holds.

*
ii) If wl(M)=O, then the integral cohomology ring H (M,Z} is
a truncated polynomial ring generated by one element (in HA+1(M,Z)).

In particular, if A=n-1,then M is isometric to a sphere of constant ; |

sectional curvature Max{KM).




CHAPTER 11

SECTION 1. A DESCRIPTION OF THE UNIVERSAL COVER ﬁ.

The following description is elementary, and it gives a
proper perspective of the universal cover, which is used in the
proofs of Theorems 1 and 2.

Let M be any non-simply connected, compact Riemannian manifold,

M be its Riemannian universal cover, and p:MsM be the natural
Riemannian projection map which is a local isometry. There is a
natural one-to—onelcorrespondence between ﬁl(M} and the deck
transformations of M. For [y;Jem, 0D, let yizﬁ+ﬁ also represent
the corresponding deck transformation.

Let U=M~Cp, for some peM. It is known that U is homeomorphic
to an open ball and is dense in M. ([CE], [GxM].

Fix peM and pdgﬁ such that‘p{p0)=p, and set pi=yi(po), for
[Yi]gnl(M). Since U is contractible, there exists a unique open
connected set U, in M such that p;el; and QIUi:Ui+U is a homeomorphism.
Thus, we have Ufnt=¢: if [Yi]%[yj] in (M), and M=

U..
bri3smy M)"i
To see that, if U&nt*¢’ then we would obtain a continuous curve

from p, - to pj in Uﬁ)Uj, whose image under p lies in U, and hence,
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a curve representing a non-trivial element of wl(M)
would be lying in a contractible set, which is a contradiction.

Second part follows from p[ﬁb)=M.

For Ui,Uj such that Uint+¢, let a5 be any point Uint

and ei,aj be minimal geodesic segments such that ei(0)=pi,
ei(d(pi’qij))zqij’ 'ej (O}=qij and ej (d(qij’ PJ)):p]' Define
6. (t) . ,
i ? if O<t<d(p.,q..
MOR 1 O (B 5)
ej (t-d(Pi,qij}), if d(Pi’qij_)<t;d(pi’qij]+d{qij’Pj)'
. -1
Obv1ously, Yjj Tepresents [yj]-[yi] emy (M). For any
[yi‘]sﬂl(M), consider any minimal geodesic vy from P to P; -
0 0

The set I={[yj]awl(M)| ﬁsnlmeJ+¢} is a finite set, because all
such ﬁﬁ‘s lie in ZdM neighborhood of vy whose length is finite,
and all 65 have the same volume. Im(y) is a connected set, so
we can find a sequence no,nl,...,nk, with [Ynk;EI’ such that
n,=0, n =i, and U_aU. +4,for ¢=1,...,k-1. If v is

0 K Tg" Mosl , Mefps1
constructed as above, then clearly the union of these curves
Y »2=1,...,k-1; is a continuous curve from p, to p, and

n n 0 1

27+l g
hence, its image under p represents in ]EﬁI(M}. Let

0

9:0({Yijl ﬁinﬁ&+¢} }.2 is a set of loops at p, and it generates
ﬁl(M).O is a set that contains some curves which are the union of

two minimal geodesic segments: the first one is from p to a point

in Cp and the second is from the end point of the first,back to p

along possibly another minimal geodesic.
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It follows that A={[yj]sv1(M)| ﬁ}nﬁb+¢} is a set of
generators for nl[M).
expp int (A )J»U is a homeomorphism, where A c-TM . [cE], [GKM]
Let p, be the induced map on the tangent spaces. Since p is a local
isometry, the following diagram-is commutative:
expp0
(04 (p)) T (int(A)) > U,

~

=10« p

exp

v

int (A U

int( p) |

Since Ap is compact, exppo((p*(po))_l(Ap)} is compact. Int(Ap)
. . . -1, _ . .
is dense in AP, S0 exppo((p*(po]) (lnt(Ap)))— UO is dense in

exppo((p*(pﬁj)_l(Ap)). Therefore,ﬁb:exppo((p*(po))_l(ApJ). Since

expp is a homeomorphism on (b*(po))"l(int(Ap)), it takes interior
0
points to interior points. Hence,

- -1
3U0=U0_U0§ exppo((p* (po)] EBAP)J .
-1
= = A U =& .
EXPp(BAp} Cp and Can $, so exppg((p*(po)J (8 p))n 0=

Therefbre, expy, [(p*(po))_l(aAp))sauo, and hence,
0

exp_ {(p, (p ))_l(aA })=3U,. It is known that for a compact
Py 0 p 0
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Riemannian manifold Mn, aAp is homeomorphic to Sn_l. Hence,
aUO is an image of a connected set under a continuous map

exppo(p*(po))—l.We have now proved that:
0
LEMMA 1. BUO is connected.

. -1
We have p(BUi)-—CP, for all i. 'V.C{E:BUiuexppi((p*(pi)) (aAp)),
that is, there is a anAp such that qzexpp ((p*(pi))‘l(V)) and
i

expp. (t- ((p*(pi))_l.(v))) is a minimal geodesic from p; to q.

i
80, i<d(a,p;)se, (v/lv<d,,.
REMARK. If any statement is true for p, or Ui’ for some i, then
the analogue is true for all i, by using an appropriate deck
transformation which is an isometry of M.

Some facts about Ui that we will use in the following without

referring: For Ui,Uj disjoint, for any point q in ﬁinﬁ;, every

a

neighborhood of q intersects with Ui and Uj" S0 ﬁinﬁj _c_an.

Obviously, an=Ui-Ui and an=Ui—1nt(Ui). Since Ui is open, we

have U, €int(U,); therefore, dU, € 3U.. U, is dense in U., so U,
i i i it i i i

is dense in int(ﬁi). U,AU;=¢ implies that (int(a‘i))nuj=¢.

Moreover, (1nt(Ui))n(1nt[Uj})=¢. Finally, Uint=ann‘an=anﬂ8Uj,

and hence, U.AU.esU. .
i 7] 1




SECTION 2. THE FUNDAMENTAL GROUP.

The main result of this section is:

THEOREM 1. Given CeR, there exists a universal constant sI(C]
depending only on C, such that: For any compact Riemannian manifold
Mn, n>2; if

i) d2.K, >C, and

i) M'KM=i , an

ii) there exists a point p in M, such that ip/dp >1—51(C);

then ﬁl(M)=l or 22.
For the proof of Theorem 1, we need some preliminary lemmas.

LEMMA 2. For C<0. Let twq geodesic triangles in Mg be given with
sides of 1engths-A1,Bl,C1 and AZ’BZ’CZ’ respectively. Let ai,Bi,
Yi be the angles between the sides of length Bi,Ci; Ai,Ci; and
Ai’Bi’ respectively, for i=1,2.

a) If A1=A2, C1=C2 and Bl<B2’ then Bl<82'

by If A1>A2, C1=C2, BI=BZ and 81>F/2, then B_ <R

1727

PROOF. Case for C<0: By multiplying the metric with (—C)l/z, we

can reduce the problem to the case C=-1. The cosine theorem for
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the hyperbolic space [GKM,pg.lQS] states that:

{(cosh A}.(cosh C)}— cosh B,

€0 % T Simh A)- (5inh C) (1)

a) is obvious from (1}.

b) Let B(=B,=B,, C;=C,=C

te [0, 1] . Define

2 and A(t)=t-A2+(1-t)-A1, for

(cosh A(t))+ (cosh CO)—[cosh Bo)
(sinh A(t))+ (sinh CO) - :

£(t) =

f is a:smooth function, because Al, A2’CO are all positive.

A straightforward calculationsshows that:

{sinh CO)-((cosh A{t))+ (cosh BO)—(cosh COJ)

fr{t)=A"(t). 5
((sinh A(t))* (sinh CO))

On the other hand:
(cosh A{t})- (cosh BO)—(cosh CO) >(cosh A(0))}+{cosh BO)—(cosh CO)
| =(cos y;)- (sinh A))- (sinh B))
> 0,
because Bl>"/2 and by Gauss-Bonnet Theorem the sum of the
internal angles of a geodesic triangle in M2

C

and hence, y1<w/2. Therefore, £'(t) has the same sign of

is z<m,for C<0,

A' (t)=A,-A<0.

1
., COS 82=f[1)<f(0)=cos Bl.
n.o 82 >81'

2

2
Case for C=0: It follows from cosp =(A2+C -B")/2AC by a similar

argument. Lemma 2 QED.
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LEMMA 3. Let XpoKoseeesXy be distinct unit vectors in RN, with

the standard inner product, such that §(Xi,xj)>arccos(-l/n),

for Xi*xj' Then k<n+1.

PROOF. q(xi,ijax‘ccos(-l/n)@ <xi,xj><-l/n. |

kK k
v

k
2
0< z Xy =<Z Xy X x.>= Z . <xi,xj>

i=1 Yi=1 j=1 4 i=1 j=1

-

((k-1) (-1/n)+1).

I e B

k

= ) [[ ¥ <x.,x.>]+1) <
=1 j=1 * J i
j$i

1

= 0<1-(k-1)/n, and hence, k<n+l. Lemma 3 QED.

First, we prove Theorem 1 by using Lemma 4, second, we

give some facts and prove Lemma 5 and finally, we prove Lemma 4

by using Lemma 5.

PROOF (Theorem 1). el(C) is constructed as follows: Given CeR.

Case for Cg0. Let xe[0,1). Consider the following two geodesic

tiiangles in Mé. The first one has sides of length 1+x,1+x, and 2.

Let Bl(x) be the angle between the sides of length I+x. The

second one has sides of length 1+x, 1+3x, and 2. Let SZ{X) be
the angle between the sides of length 1+x and 1+3x. See Figures 1

and 2, Bl{x) and BZ(X] are strictly decreasing continuous functions

of x, whenever each is >m/2; by the Laws of Cosine and by applying
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Lemma 2Zb.fwice,by changing one side at a time. 62(1)=0 and if
Bz(x)<n/2, then 262(xj+81(x)<n+61(x)<2ﬁ.51(0)=82(0)=w. Therefore,
there exists a unique xO(C) such that Bl(xo(C))+282(x0(C))=2ﬂ.

If 82(x);y/2 and x+0, by Lemma 2b we will obtain that
Bl(x)>82(x) and hence, BI(XO(C))>2W/3.

Let qps9y and qz be points in Mé with
d(ql,qzj=d(ql,q3)=d(q2,q3)=1 and Yy be the minimal geodesic from
q, to 9z, Y be defined after passing through qz. Let 4y be
y1(1+2x0), and YosYz be the minimal geodesic segments from d, and
qz to ;5 respectively, If q1=iﬁ—yi(q4),yé(q4}), then define
ai(C)=Min(x0, Bil(ﬂ—al)) and sl(C)=l-(l+ei(C))-1. Also set

a(C)=Bl(si{C})=Max(n—u1,Bl(x0)). See Figure 3.

Case for C>0. Set el(C)zsl(O).

Lemma 6 shows that xO(C)<1/lO, for all CeR.

Let M" and paMn be as in the hypothesis. Multiply the metric
with l/ip and normalize it so that with this new metric the
hypothesis becomes:

i) SW; Min{C,0},

ii) 1=ipégp<1+si(C).

For i), if Min(KM);p, then KM;Min(KM)=i;-Min(KM);ﬂ§-Min(KM);§.
If Min(K )>0, then K20. ip/dp=1/dp>1—ei(C)=(1+ei(C))dl.

REMARK 1. The way we choose el(C), for C>0, enables us to deal

with the change of the lower bound of the curvature for a positively
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By (x3
1+x l1+x
2
. 2 . 2
Figure 1. In MC‘ Figure 2. In MC'

Figure 4, In M, Figure 5. In Mg. i
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curved manifold when we normalize the metric. So, for any

positively curved manifold, we will take C to be 0. In fact,

it is obvious from the proof that the hypothesis i) can be
replaced by i;.kMip. If this is done, then gl(C} can be made
bigger for Cs0.

Let U=M—Cp, and construct Ui in M as in Section 1. Fix Pq
and UO' Recall that there is a one-to-one correspondence between
pi=Yi(p0) and {Yi]Eﬂl(M). i€ ﬁb=§, then “1(MJ=1 and there is
nothing to prove. If MLﬁb, then pick any q eﬁ—ﬁb and let
£:[0,1)+M be any continuous path from q to Py- f exists, since
M is path-connected. As in Section 1, {[yj]ewl(M)] ﬁénf(1)%¢}

is a finite set, where I=[0,1}; and hence, both fhl(ﬁb) and

f_l[H!f%] are closed. Therefore, there exists q' in

jF0

U n(lJU.); because I=f_1(ﬁ“)0f_1{ U.) and each is non-empty. |
0" 5o 0 Lo 3

Choose any of Uj with anUO%¢ and Uj+UO; call it u,. n

If Uf]ﬁb:ﬂ, then ﬂlfM}= 22, and there’'is nothing more to prove. ? !
Suppose i&uﬁb%ﬁ. Let qu-(ﬁ&Uﬁi) be any element. By a :
similar proof as above, it can be shown that there exists

q'e (U VT )al( U.). If q'eU , then there exists U. such that L
10 . j : 0 2 |
j¥0,1 . z

U.AU +¢ rell. -0 h i
U2¥UO, U2¥U1, and UZnUO¥¢ In the case of q sUl s, there is
aU. with U, #UO, u,
1o 1o Jo

two other U, intersecting with U
1

#Ul and ﬁgr\ﬁi¥¢. So there are at least -
0 :

1’ G

namely U and Uj . By taking
0




an appropriate deck transformation (i.e.'yilj, there are at

least two other Ui intersecting with UO. In either case, U

exists with UZ%UI, U2+U0, U20U0+¢and previously we had U1+UO’

ﬁinﬁb+¢. If this is the case, define

F:3U> R by Flq)=dg(q,U,).

LEMMA 4, With the hypothesis of Theorem 1, and if F is as above,
then,a) There does not exist qe3y such that F(q)=3x,(C);

b) For any quOnUZSBUG, F(q)> 1/2 - xO(C).

Now we can prove Theorem 1, by using Lemma 4:

F is defined by restricting the distance function to B'UO,

so it is continuous. By Lemma 1, 8U0 is connected. Therefore,

F(BUO) is a connected subset of . For any qeﬁonﬁlsauo,

F(q)=0, obviously. By Lemma 4, for any qu_Orl 5s Fla)>1/2 =% (€)
and there does not exist any q such that F(q}=3x0 (C). This is
a contradiction, since O<:—{O {C}<1/10 and ﬁznﬁo and -U_lnﬁo are

non-empty. Therefore, such U2 as above does not exist.

Consequently, &:UOUHI or 1\71=U" that is m (M)= 22 or 1. Theorem 1 QED.

O,

To prove Lemma 4, we need the following facts and Lemma 5.
CLAIM 1. If pi+pj, then dy(p;»p;5)22.

To see this, consider any minimat geodesic from p; to pj.

24
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Its image under p is a geodesic loop at p in M. So its
length is bigger than 2ip=2. See Klingenberg's Lemma. [CE]}, [GKm].
CLAIM 2. Let U,, U; be such that UU;=¢ and Hinﬁj+¢, and
r be in L_finﬁj; 88, be minimal geodesics from p, and p; to T,
respectively. Then 4(8{(r),65(r))>sl[ei}>2n/3.
To prove that: Let & be any minimal geodesic from P; to
Pj' Consider a geodesic triangle with sides of length R(Bi),
z(ej), and 2(8) in Mé and P be the angle between the sides of ;
length z(ei} and Q(Gj). See Figures 4 and 5. We have:

1
f
léj(ej)égp<l+el

lé}(ei)épp<1+e'

2<2(0).
Consider a geodesic triangle with sides of length l+e?,
l+ei, and 2 in Mé, that is a triangle with X=Ei in Figure 1.
Obviously, the angle between the sides of length l+€i is
Bl(ei). To compare 4P and Bl[ei), apply Lemma 2 to the triangles
above with sides of length z(ei),z(ej),z(e) and 1+€i’ l+gt, 2
in Mg, successively three times by changing one side length at
a time. It follows that 4P>Bl(ei)>2w/3. Now apply Toponogov's

Theorem to the geodesic triangle in M with vertices P;sPs,T

j’
and sides given by the minimal geodesics ei,ej and 6, and

obtain that {{ei (r) ,85 (r))> 4P. Consequently,

(6] (r) ,83! (r))>8,(e])>2n/5.
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k
Suppose the contrary. Let TgU&ﬂﬁf\ﬁk be any element,

CLAIM 3. If Ui':Uj,Uk are distinct, then Einﬁjnﬁ =4

and ei,ej,ek be.any minimal geodesics from r to pi’pj’pk’

respectively. By Claim 2, 4(@{(r),95(r)),{(ei(r),eﬁ(r)),

4He§(r),eﬁ(r)); all are >Bl(gi);;n/3=arccos(—1/2). This

contradicts Lemma 3,

REMARK 2. Bﬁb is not necessarily connected. If it is connected,

then Claim 3 would be eﬁough to prove Theorem 1, without Lemma 4.
Let qgﬁuﬁi, for some i, and g be any minima} geodesic

from 3 to gq. Define tr=: Max{ t] t>0, Bft)gﬁi }. Also set

rze{tr).

CLAIM 4. tr=cp(p*(e'(pi))), that is, exppi(t-e'(Pi)J=e{t) as

a radial geodesic, it reaches sUi at r; it does not stay in

3U; after r, and leaves Ui, does not intersect Gi again before

it reaches q. Equivalently, {r}=(1m(8))naﬁ£=(Im(B))ﬂan-

To prove this: Since trzMax{tI 0<t, e(t)eﬁ; }, we have

rsaﬁigan e:':pP (p;l(aAp)). Therefore, there exists v in
i .

p;l(BAp) such that r=expp V. expp(t°p*(v/nvﬂ)) is a minimal
i
geodesic from p to its image points, for t<fvl|, so its 1ift

expp (eev/livh) to M has the same property, from p; - On the other
i

hand, 6 is a minimal geodesic from P to q, so it is the only

minimal geodesic from p; to amy point (¥a) on 0. qfr, therefore,

V/“Vﬂ=8'(pi). But, expp(t-p*[v/Hvﬂ)) lies in U, for




t<“V“=Cp(p*(V/"V“)), S0 expp (tev/llvll)) 1ies in U; for
i
t<Cp(p*(G'(pi))) and r=expp_v =0 (lvil) . Finally,
i
"Vﬂ=tr=cp(p*(e'{pi))). This proves Claim 4,

let qgﬁ-ﬁg be any element, and g be any minimal geodesic

from P; to q, also g be defined after passing through q. Let

T be the unique element in aﬂin{e(t)[ Oéﬁéﬁ(Pi’q} }. By

Claim 3, there is a unique jO’ with Uj +Ui, such that raﬁgﬁﬁl
o -

70
LEMMA 5. a) {o(t +t) | O<teMin(2x A {q,T))Y&int (U, 3,
2 T = 0°"M iq
b) If dl\”d(q,r)>2x0,then
fo(t+t)] 2x <t<Min(1/2, dﬁ(q,r))}g_[}jo

PROOF (Lemma 5).

a) Suppose the contrary:

{e{tr+t)] 0<t§=Min(2x0,d[:4[q,rJ)}Qint [ﬁjo). Then, there exists
to with O<tO;Min(2x0,dﬁ(q,r)), such that B(tr+t0)eaﬁso. So,
there exists jl with Ujl+Uj0’ such that e(tr+tO)Eﬁﬁor\U51
{r}=aﬁ;n{e(t)| Qiggﬁ(pi,q)}, we have Uj 0,81 be

Since,

1+Ui. Let ©

and pj > respectively.
1

. See Figure 6.

minimal geodesics from e(tr+t0) to pj

: 0
Let 82 be any minimal geodesic from p; to pj

Consider the geodesic triangle in M with vertices pi,pj, and

B(tr+t0), and the sides. given by the minimal geodesics:

27
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& from p; to e(tr+tOJ,
8y from e{tr+t0) to pjo,
0, from p; to pjO
Now, consider a geodesic triangle in Mg with sides of length
tr+t0’ g(so) and 2(82); such a triangle exists, since triangle
inequalities are satisfied. Figure 7. Let R be the angle between
the sides of length tr+t0 and Q,(eo)T Therefore, Toponogov's

Theorem is applicable to these triangles and

X0 (¢, ve),05 (002 R,

I<e(8y)<l+x, (6t +ty) eanOJ
l;tr+t0<l+3x0, (TSBUi)
zig(ez). (Claim 1)

Similar to the proof of Claim 2, consider a geodesic triangle
in Mg with sides of length l+x0, 1+3x0, and 2, that is a triangle |
in Figure 2, for x=x0. The angle between the sides of length
1+x, and l+3xO is 82(x0}. To compare R and BZ(XO), we apply
Lemma 2 to these triangles with side lengths 2(90),2(92), tr+t0
and 1+x0, 2,_1+3x0 in Mg, successively three times by changing
only one side length at a time. Recall that 82(x0)>ﬂ/2, to apply
Lemma 2. It follows that R>32(x0J. Consequently,

- L _at 1
'éx 9'(tr+t0),eé(0J)>B2(x0). Slmllarly,ét[fi (tr+to),el(0))>52(xo).

By Claim 2, 4(96(0),ei(O)):»gl(gi);Bl(xo), since |

8(t_+t.)elU. NT. . Therefore, we have: b
(I‘ O)E Jon J1 .
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2

Figure 6. In M. Figure 7. In M. ;

Figure 8.
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(-0 (£, 401,00 (0))+4(-8" (t,+t0),01 (0)+4(6 1 (0) 6] (0))
> 232(x0)+51(x0)=2w.
Obviously, -e'(tr+to),86(0),ei(0) are distinct, since Ujo,

Uj s Ui are distinct. For any distinct three vectors in
1

ﬁn, they lie in some 3-dimensional subspace;and in Rs, the

sum of all of the angles between any two of three vectors is

Z2w. This is a contradiction. Therefore, for all t with

O<t§Min(2xO,d(q,r));B(tr+t)eint(55 ) holds.
0

b) Given any tOeR such that 2x0<t0§Min(l/2,dﬁ(r,q)).

- Let 8.,6, be any minimal geodesics from 8(t, +t. ) to p, and
3274 0 r Jg

from r to pj s Tespectively, 12;(84)<1+ei and

0
é;oai(OJ,-e'(tr)}>51(ei)=a, by Claim 2. See Figure 8.

Let A1:9559559,5Y75Y5 and Yz be as in the construction
of sl(C), in Mé. Figures 3 and 9. Since the triangle with

vertices d195> and s is an equilateral triangle in M2, C<0,

by Toponogov's Theorem: {K-yi(qz),yé(qg))iy/S. By Toponogov's

Theorem and the Law of Cosines in the flat case:

2 2 2
dlay,q,)" 2d(a;,9,) "+d(q;,45) ~2d(q5,9,)"d(qy,9,)<v5(q,),v{ (q4,)>
;i2x0}2+1—4x0cos(2w/3)
2 2
=1+2x0+4xO >(1+x .

Let dg be a point on y, between q; and q, with d(g,,95)=2(9,).

0

qc exists by the continuity of the distance function and




d(ql,q3)=l;}(94)<1+e£;1+x0§ﬂ(q1,q4). 9c is unique, because,
for C<0, every metric ball is strongly convex in Mg. Let

Y4 be the minimal geodesic from qz to qq - If q5=yl(t1}, then
set q6=y1(t1—t0). 2x0<t0§Min(l/2, d&(q,r)) and 1§;I§}+2x0
imply that l/gitl-t0<l. Consider any geodesic triangle in Mé
with sides of length to,z(es), and 2(64); and let Q be the angle
between the sides of length tO and £[84). Figure 10, Such a
triangle exists, since those lengths satisfy triangle inequalities.
Also consider the geodesic triangle in Mg with vertices 91-45,9¢
given as above. Figure 11.

For C<0, every metric ball is strongly convex in Mé, S0
d(ql,q6)<l. Now suppose that 2{631;1. Consider the geodesic
triangles in Mg mentioned above. Since twq of their side
lengths are the same, and the third ones are 2(83) and
d(ql,qé} and E(BSJ;;>d{ql,q6), by Lemma 2 we conclude that

Q>4(-v§ (ag) ) (a)) .
By Toponogov's Theorem appliedto the geodesic triangle in

M with vertices r,pj , and G(t0+tr) with sides given by the
0

minimal geodesics 8,83 and 84, we will obtain that:

Q ;{(e'(tr),e&(on. By Claim 2: <)'(e;1(0),-6'(tr))>a. Combining
all of the above, we obtain that dIYi(qs),Y&(q53)>u. On the other
hand, §I~yi(q4},yé{q4J}=aliy-a, because a=Max(ﬁ—al, Bl(xo)).

TheI'Efore: <X(-Yi (q4J Jé(%))’“{(\ri (qs} :Y;& (qs) )>m.

31
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Figure 11. In Mé




By Gauss-Bonnet Theorem, this can not happen for a geodesic
triangle in Mé, for C non-positive. Hence, 2[93)<1; and
by the minimality of 6z, we conclude that

d(pjo,e(tr+t0))=2(63)<1=1p. tO was fixed, but arbitrary, so

{6(t +t)] 2x,<t<Min(1/2, d>{(r,q))}€U. . Lemma & QED,
T 0 = M g

PROOF (Lemma 4).

0 Let

a)} Suppose there exists qeaUO such that d&(q,ﬁi)=3x
6 be any minimal geodesic from Py to q. Let T be the unique

element in Im(e)naﬁi. d(q,r)iﬁxo. Suppose d{q,r)>4x., then

O)

d(pfq)=d(q,r)+d(r,p1)>1+4x0. ﬂfi'saul, d(r',pl)<1+x0; S0

d(q,r')>1+4x0—(l+x0)=3x0 and this is a contradiction. Hence,

SXGéﬁ(q,r)iﬂxo<l/2. By Lemma 5b, qujO,for some Ig- qeaUO, 50
every neighborhood of q intersects with U Uj (]U0+¢.
0

0
U_-U BU00U0=¢ and

Therefore, Uj =UO. UO i1s open, so BUO— 0 Yp>

o

quj =UO and quUO. This is a contradiction.
0 .

b) Let qaﬁénﬁb be any element, and § be a minimal geodesic

from P; to.q; and r be the unique element in aﬁinlm(e). r%q,
by Claim 3. Let re aﬁi , for some iy- By Lemma S,
0

e(tr+t)aint[ﬁi ) for O<t<Min(l/2, dﬁ(r,q)). Suppose that
0

qeint{U, ), then:
o




34

QEUZQUO = q€U2
> aelnine(; )
=)U2nint(ﬁi0)+¢ (Since int(Ui) is open)
¢
= Uznﬂio+¢

> UaniO+¢ (Since U, is open) ?

=U.=U, . 9

* o

Similarly, UO=Ui . But, U2+UO, which gives a contradiction. }
0 ;

Therefore, q&int(ﬁi ). Finally, dy(r,q)>1/2. 6 is a minimal |
0 !

geodesic: , |

4 (@, py)=dy(a,x)+dy (x,p;)21/2 +1= 3/2.
Since ﬂi is compact, there exists a qosaﬁi such that
dﬁ(q,qo)=d&(q,ﬁi).Hence,
dﬁ(q,qo);ﬁﬁ(q,pl)—dQ(pl,qo);§/2 -dpgﬁ/z -(l+g))>1/2 -Xq-

Lemma 4 QED. This concludes the proof of Theorem 1.

REMARK 3.a) In Lemma 5: 1/2 can be replaced by any & with :
1/223<1; b) We do not need the minimality of § between r and q
to apply Toponogov's Theorem in Lemma 5b. All we need is the P
triangle inequality to be satisfied; so Min(1/2, dﬁ(r,q)) can

be replaced by any § as above.

We will need the following fact in the proof of Theorem 2: ' :i .




PROPOSITION B. If the hypothesis of Theorem 1 is satisfied

and Uint+¢, then‘Vﬁean, dﬁ(q,Ui)éjxo.

PROOF. It follows from the proof of Lemma 4, Theorem 1 by the
commectedness of an and taking 2x0+6 instead of 3x0 in Lemma 4a,
for any §>0, Also, Lemma 4a does not use the existence of U2,
it only depends on the ekistence of UO and Ul’ $0 it is applicable
to this case; since the contradiction of the proof of Theorem 1

comes from the existence of U2 only,
LEMMA 6. If C1§F2’ then xO(Cl);;O(Cz). x0[0)<1/10.

PROOF. Let Bi(x,C} denote Bi[x) in M2, i=1,2, in the construction
of El(c) of Theorem 1, By Toponogov's Theorem:
Bi(x,Cz)iﬁi[x,Clj, for i= 1,2; and hence, XO(CZ)QJO(CIJ.

Fix C=0. An clementary calculation shows that:
81(1/10, 0)=arccos (-79/121) and 82(1/10, 0)=arccos(-5/13): hence,
sin(Bl(l/IO, O)+282(1/10, 0)}<0. Since Bi<ﬁ, we have
282[1/10, O)+81(1/10, 0)<3m, Consequently,

282(1/10, O}+Bl{1/10, 0)<2m. Therefore,:x0(0)<1/10.

REMARK 4. a) Example 2 of Section 5 shows that 1im el(C)=O.

C+—m

b) For C=0; if we solve the system of equations:
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cos 8= 1- 2/(1+x)2,

cos 82=(5x—1)/(3x+1),

2B, +B=2m;
then we will obtain that xO(O) is a solution of
L6x*+16x%-7x2-10x+120. Tt is obvious that the derivative of
this polynomial is negative for 0<x<1/10. So, there is only one ?
root in [0,1/10]. An approximate solution is X (0)=0.095,

Since n—a1(0)<81(x0(0]), we have ei(0)= xO(O); and el(O)r0.087.




SECTION 3. THE NON-SIMPLY CONNECTED CASE.

Theorem 1 of Section 2 shows that a compact Riemannian
manifold M" with ip close to dp (for some peM); in terms of the
lower bound of the sectional curvature, has fundamental group
22 or trivial. In this section, more restrictions on the
topology of these manifolds with the fundamental group 22

will be obtained by imposing a slightly stronger hyvpothesis,

THEOREM 2. Given CeR, there exists a universal constant:ez(C),
only depending on C, such that: For any compact Riemannian
manifold M", n>2, if

D dlek, sc,

ii) There exists a point p in M such that iM/dp >1—52(C),and

iii} Trl(M)2 22;
then, a) M is oriented if and only if n is odd,

b) H 0f, Z)20" ®P™, Z), the isomorphism is naturally
induced by a map from ®RP" to M, Moreover, M" has the homotopy

type of RP",

PROOF. We construct €2(C) as follows: Given CelR.

Case for C<0. Let xeﬂ), 1/4). Consider the following two

geodesic triangles in Mé

. The first one has sides of length




1, 1, 1-4x, and the second one has sides of length 1, 1, 2-4x.
Figures 12 and 13. Let sg{x) and 34(x) be the angles between the
sides of length 1 in the first and second triangles, respectively.
BB(XJ and Bd(x) are strictly decreasing continuous functions of
X. By a similar argument as in Theorem 1, using Lemma 2,
63(0)+B4(0)>B4(0)=ﬂ, and 83(1/4)+B4[1/4)=B4(1/4)<w. Therefore,
tﬁere exists xle(O, 1/4) such that BS(XI(C))+B4(XI(C))=W. Let
X,(C)= Min(xl(C), xO(C)), where xO(C) is as in Theorem 1. Let
4q-4, and qz be points of Mg with d(ql,q2)=d(q1,q3)=d(q2,q3)=l,
Yy be the minimal geodesic from q, to 9z and Y1 be defined
beyond dz, as in the construction of al{C) of Theorem 1.

Set q&=yl(1+2x2(C)), and let Yy be the minimal geodesic from

94 to qy. If oy=§(-y](aj),v}(a})), then define

gé(C)=Min(x2(C), Bil(“"az))’ and EZ(C)=1—(1+Eé(C)J_l. Figure 14,

Case for C>0. Set EZ(C)=52{O).

Let M and peMn be as in the hypothesis. We normalize the
metric by multiplying by l/iM. With the new metric, the hypothesis
becomes:

. . . 22 2.

i) If Mln(KM);O, then KM_E__lVIln(KM)—lM Mln(KM)f-__dM Mln{KM);C.

If KM>O, then KM;p, obviously. In short, KM;Min(C,O).

ii} 1M/dp >1~52(C), or equivalently, 1M=1 and

L=fyed <1+e)(C),

iii)»ﬂl(M)= 22. Recall Remark 1 of Section 2.
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Let U=M—CP, and construct UO and Ul in M as in Section 1.

We have PiEUi’ p(pi)=p, for i=1,2, UOnU1=¢ and UOUU1=M.

To prove Theorem 2, we need Lemmas 7 and 8.

LEMMA 7. For any WSUMP, dM(exppw, expp—w)<1=iM; if the

hypothesis of Theorem 2 holds true.

PROOF of Lemma 7. Given any VEUﬁp . let q(v)=exppv‘ and
0 0 i

r{v)=ex C vilev), d: v),r{v))<c v}i}-1<d -i ,
(v} PPO( p(p*( })v) w(av),r( )sz(p*( 1) 2 -iy
and obviously by the hypothesis: dp—ip<eé(C);}2(C). Since
d<lrel (Cglex,, eé(C)=Min{x2(C),’Bil(ﬁ-az)), x, (C)sx, (€)
and o, is constructed in a similar way to oy Xy can be replaced

by Xy in the proof of Lemmas 4a and 5bh and therefore in

Proposition B, with the hypothesis of Theorem 2. So,

R — . -1 -
dM(r(v),Ullégxz(C), since r(v)aexppo({p*(po)) (BAp))—BUO.

U1 is compact, so there exists s(v)eaﬁi such that
& (s (), (V) =ds (r (v), ). | |

s(v)eaﬁisgau =exp  {((p,(p )}_I(BA )} hence, there exists
1 Py 1 P

v'eUﬁ such that s(v)=exp_ (c (o (v'))*v'}.Obviously v! L
P, p; P

depends only on v.

dg,i(eXPP\é, expp\lf'J;db}(eXPpg,r(V) J+dg (x(v),s(v)) *dy (s (v) ,ex%}f ")

<x2+2x2+x2=4x2(C).
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B (x) |

1 84(X) ;

1 ) |

I-4x 2odx i

. 2 . 2 ‘
Figure 12. In MC' Figure 13. In MZ. !

94

1 1 :

2 !

4 (q(v),T(cxp v'))

4z g 1 1
ﬁ

Figure 14. In Mé, where q2=yl(0), Figure 16, In Mé. %
0

q3=yl(1), and q&=71(1+2x2(C)). ﬁ
‘\
exp (tv')=q (t) -
p1 ‘I' }

exp v'=o{l |

ppy'=a (1)

|

U, |
T(o(t))
T(o (1)) T (s(v)) ~ T

Figure 15. In M.
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Let T be the non-trivial deck transformation on M, 1i.e.

p(T(m))=p(m), T(m)#$m, Tz(m)=m, for all mgM. Recall that T is

an isometry, since p is a local isometry as a covering map.

d&(m,T(m));;iM=2 for all msﬁ. Proof of this fact is the same as

Claim 1 of Theorem 1. (Klingenberg's Lemma) Therefore: f

dylatv) :Tfexpp\lf' )}z d,t,l(epr\lf’ ,T(exppxlf "))-dz (g (v) oxpyv) |

> 2-4x,(C)22-4x, (C) .

Let 0(t)=expp(tv'). Consider the geodesic triangles in M with il
1

vertices pO, q{v}), and T(exppv‘) and sides are given by the ﬁ
1 0

minimal geodesics expp(tv],Qiqil; T(expp(tv'))=T(o(t)),Qgtgl; W

g 1 o e

|

and any minimal geodesic from q(v) to T(o(l))=T(expp(v')). ’
1

i

|

Figure 15. We have: : ¢
dyla),pyl=1,

-~ =Te . =™ = I‘|

G (PgT(E (1))=d5 (T(p) .0 (1))=dy (p,,0 (1))=1,

dy (A (), T (0 (1)))>2-4x (C).

2 ;

Take any geodesic triangle in MC with side lengths 1, 1, and i3
d&{q{v),T(ﬁ(l)}). Figure 16. Let P be the angle between the sides |

of length 1. By Toponogov's Theorem, qu,T*(V')};P, since i

T(U(t))=T(expp(tv‘)}=expp(t-T*(v'}). On the other hand, by
1 0

Lemma 2, P>§4(xl(C)); since d&[q(v),T&j(l)))>2~4x1(C) and

Figures 13 and 16.




Therefore, &(v,T, (V'))>B (X C)).
g(-v,T, {(v'))<r-g (xl) =8z (x ). Consider the geodesic hinge

in M with vertices expp v, Py and T(exppv ), with minimal

0 1
ﬁeodeéics exp_-tv from Py to exp -v and T(exp_tv')from P
Py Py P 0
to T(ekppv'). Also consider the geodesic triangle with side

1
lengths 1, 1, and 1—4xl(C) in M2, Figure 12. Apply Toponogov's

Theorem and Lemma 2, in a similar fashion as above to obtain

. d”(ekp -V, T(ekp v'))<l-4x.(C), by taking.a hinge in M2 of
- M Py Py 1 C

two minimal geodesics of length 1,beginning from the same
point with an angle between them g(-v,T, (v')),

Let weUMp be any element. There exists a unique VEUMP
0
such that o, (v)}=w. Choose v' as above depending on v and

hence, on w. Slnce;ifhl,ngM, dﬁ{ml’mz}iﬁM(p(ml)’p[mz})’
p°T=p, p is a local isometry and p commutes with exp by

the diagram in Section 1; we have:

dM(exp w, exp ~w)< d (exp w,p(T[exp v J))+dw(p(exp v ), exp w)

<dy (exp ((p*(PO)J Y, T(exp_v )J+d (exp v',exp ({p*{PO)) )
P1 Py
-dM(expp v T(exp v ))+d (EXPPY , exppg)

<1-4x1(C)+4x2CC};1=iM.

Therefore, dM[exppw, expp—w)<1 and this does not depend on the
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choice of v'. w was arbitrary, so it is true for all weUM

Lemma 7 QED.

From the proof above, we also conclude that:

LEMMA 7B.4fVeUMP0, dﬁ(T(epraV)'eXPpV)<1=lM§}&'

0

PROQF.

= (T(exp -v ek v)zds (T (exp -v),ex v')+d~ (exp v',ex V)
dy (T ( ppo), ppo):M(( ppo) ppl 4y ppl Py

0
=de(exp -v,T(exp v'))+d~ (ex V',exp v)<l
Iyt ( P ( Py ))+d ( Py P

from the proof of Lemma 7.QED.

LEMMA 8. There exists a continuous function f£:RPToM such
that f: fnl[Br{p,M))+Br(p,M} is a diffeomorphism, for some
>0, and f(Br,{a,RPn)FBr,(p,M) for all r'<r and for some

adRPn; if the hypothesis of Theorem 2 holds true.

PROOF. Given any waUMp, there exists a unigque minimal
eodesic 9 from exp w to exp_-w, since

£ W Pp Pp

dM(exppw,expp—w)<1M. 2(eW)=dM(exppw,expp—w)=2(e_w). Fix

a point aeRPn(l) and § be an isometry of TRPE onto TM;.
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n —
B /2(O,TRPa}—-m—;—biw/Z(O,TMp)
exXp, h
RPn F ——%Mn where
expy if fyh<i; ‘
— ) [:

=y if 2. L

i -z g dds 1€ Tdigr/ |

“‘

By symmetry,lew{t)=8_w(2(8w)—t) and hence, |
I R

ew(z(ew)/2)=e_w(z(ew)/2). If W) W,eTRP, with w/2='wﬂ|="w2“;

then (expawl=expaw2 if and only if Wr=thb ).Let weTRPE such

that Jlwl|=n/2.

h (b (w)) =6 (L2 Ls

v )/l (Y &y o) /fw oo
o ) My N A Oy 6y Aty g/ D= G ).

Since €Xpy 1s one-to-one on the interior of §%/2(O,TRP2);by |

il
above, there exists a unique well-defined function f:RP™>M ;

which makes the diagram above commutative. i
CLAIM: f is continuous.
Continuity of f on expa(Bl(O,ﬂRPZ)) is obvious, because :
it is defined by diffeomorphisms on the interior. |
Let tns[O,lj, nelN, such that tn+t0 as ne; and wneUM ,

nelN, such that WptWp as mre. Consider the sequence ?

qn=ew(tn-2(ew)). By compactness of M, this sequence has a
n n

convergent “subsequence. Take any convergent subsequence qy [

3 A

k i¥
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let q, 9. By the continuity of the expomential map and
k

the distance function and dM(an,exppwnkJ=tn -Q(BW ), we

k nk

obtain that exppwnk+exppw0, dM(an,exppwnk)+dM(q,exppwo} and

tn-ﬂ(ewn)+to-£(ewo). Therefore, dM(q,exppw0]=tO-£(ewo). By

the same argument: dM(q,expp-wO)=(1-to)-Q(SWOJ. There is

exactly one point qeM with  these properties, otherwise

0 of length

wogexpp-wo); and this is not the case. So,

we would obtain two curves from exppw0 to expp-w

P

2[8w0)=dM(exp

q=8w0(t0-2(ew0}). an was any convergent subsequence of 4y

by compactness of M, we have ewn(tn-z(ewﬂ))+ew

(t.on(e ).
o 9 W,

Any convergence sequence in RPn—expa(Bl(O,ﬂRPZ)) can be

written of the form expawn(1+tn(ﬂ-2)) where wn,tn as above,

for n large. ew(O]=exppw and ew(t-z(ew))=e_w((1-t)-&(ew)),

for O<t<l. Now the continuity of f follows easily. i

Although f is continuous, it may not be smooth. But, I;L i

it is smooth everywhere except on expa(aBi(O,ﬂRng). See above.

g(ew)<1 and dM[p,exppw)=dM(p,expp—w)=1, so g never :{U

passes through p. Let reR be such that

1>Min ( Min dM(p,ew(t))]=2T>O.
_WEUMP Q;qig(ew) &
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Therefore, fﬁl(Br(p,M))=Br(a,RPn) and on this set f is

defined by non-singular one-to-one exponential maps, so

it is a diffeomorphism onto B.(p,M). The second part of the

conclusion is obvious from the construction of f. Lemma 8 QED.
We complete the proof of Theorem 2 as follows: |

By Lemma 7B; *Tvsuﬁp s dMCeXP v, T(exp. -v))<l=i, <i~. o
0

PO PO M="M ;ﬂ

Let év be the unique minimal geodesic from exp v to
0 i
T(exp -v). p(é } is a geodesic from plexp_ vi=exp (p,(v)) g
PO v PO P 'y

to p(T(expp-v))=expp(—p*(vjj, whose length is <1=iM.

Tﬁerefore p(év)=ep*(V). Define

exp  tv if 0<t<1,
PO -

w®={e (-1 200y i
-2

T(expp (-v{mr-t))) if m-l<ten.
0

Clearly, Yv(t) is a continuous curve from Py to Py Hence, it

represents the non-trivial element of nl(MJ. On the other hand,

expp(tp*(v)} if tef0,1]),
-1
£(exp, (t( " (p, (vV)))))= 0 oy (D20 0 ) ) i te(1 o), |
. % m-2
expp(-p*(v))(w—t) if te(m-1,r]. !?

Clearly, f(exp, (¢Gh™" (0, (v)))))=p (v, ().
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Recall that expatv=expa(t—ﬂ)v for all VEURPE, for the above
equatity. Hence, f*:wlﬂRPn)+nl(M) is an isomorphism. By

‘H (B n, w n
Lemma 8§, f*.Hn(Br/z(a,RP ], Br/zfa,mp )-a) -

H (B, (.00, B/, (:M-p) is an
isomorphism;and consequetitly,
f*:HnGRPn,RPn-a)+ Hn(M,M—p) is an. isomorphism by excision. In
other owrds, f has local degree 1, with Z-coefficients.
Mor RrP" may not be Z-orientable, but if we use 22
coefficients:
Z,=H ®P", RP™-a; 22)—-,;?HH(M,M-p; z,)% z,

i

¥

Z,<H ®P", Zz)—_.f;—-bHﬁ(M, z,)=z,
By commutativity, f induces an isomorphism of HnGRPn, ZZ)
onto Hn(M, ZzJ, and hence, it induces isomorphisms on HO,
HO, u" levels with 22 coefficients, by the duality of HO and
Hy,and Poincarg duality.

Hence, £*:H"(M, ZZ)+ H" ®P™, 22)522 is an isomorphism.
We follow [SA] and [B—l,pg.135-141] in the following, to obtain
the cohomology ring of M. Although the results of Samelson are
obtained under different hypotheses, he uses only the existence

of a continuous function from RP” to M of local degree i1,

and the rest of his arguments do not use any other assumption,

Those proofs are purely algebraic topological, so they are
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applicable to our case. i
CLAIM: £%:H* (M, Z)» H* @®P®, Z,) is an isomorphism,
To prove this, given any ecH* (M, Zz),e+0, there exists
e'eH* (M, 22) sgch that eUe'¥[M] where [M] is the generator of
Hn(M, 22), by Poincar€ duality and the duality of Hy and HX
with field coefficients. £*(eve')=f (WE* (e =f* ([M])=[RP™) 4o,
thus f* is injective. Hence, H*(M,}Zz) is isomorphic to a subring
of H*GRPH, 22) which is a truncated polynomial algebra with
one generator in H!(RpPY, Zy)- wy (M= Z = 1, Z,)=n" (u, z,).
This completes the argument for the claim.
By [SA], Proposition C: M" is oriented if and only if n is
odd,
Whenever n is odd, both M™ anid RpM are Z-orientable, and
£, has local and globhal degree t1 with Z-coefficients. The proof
above does not work, since we do not have field coefficients? but
£*:H* (M, Z)» H* RP", Z) is still injective, see [Bw],pg. 8,
Theorem I.2.5.
By [SA], Theorems D,E: £%:H*(M, Z)» H* mP",2) i% .an isomorphism,
for n odd or even.
By a similar argument as in Samelson's proof, a stronger
conclusion can be obtained as follows: There exists a unique

function %: s™m which makes the following diagram commutative:




» M
Jp
M

Let ateS™ such that p'(a')=a, and wEUS?,. Define C(w) to be

((p*(pg))—lowop;J(w). In fact, a straightforward calculation
on ! = =
shows that (fop J(expa,twj f(expatp;(wj) p(yg{w)(t)), for 0stzm,

Therefore, %(exPa'tw)=Y;(w)(t) which is also equal to:

exp _ tg(w) if 0<t<1,
po . -
2 (e }
Z(w) .
C(W)((t 1) =2 } if 1<‘t_<__?T—1,
T(,exppE'n-t)- -z W) 1f n-leter; for all tefosq).

Hence, f (B (pO,M)) =B {a' S } and f B (a',s )+B (p M) is a
diffeomorphism, £ has local degree *1 on this open set, that
gives f*.H (S sh.a )w——é H (M M-pOJ M and S are both oriented,
so f tH s", Z)——)H M, 2}. By [Bw},pg.8,Theorem I.2.5;
f*:H*(M)+H*(S ) is injective and hence, an isomorphism. By
Whitehead's Theorem, £ induces isomorphisms for ali homotopy
groups, so M is a homotopy sphere. By (EM},pg.43, M has the

homotopy type of'RPn, since the 22 action on M which yields

M as a quotient is a smooth action. Theorem 2 QED.
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An elementary calculation for C=0 shows that:

xl(O)=(3—7l/2)/8;‘so x2(0)=x1(0) and a2(0)>a1(0). Hence,

Bil(w—az[O))>Bil(w-ul(O)). Finally, e}(0)=x,(0) and

1/2

e, (0)=(13-477/%) /5720, 04,




SECTION 4. A SPECTAL CASE: CONJUGATE LOCUS BOUNDED AWAY FROM

THE CUT LOCUS.

In this section, the case in which the first conjugate
locus of a particular point is bounded away from the cut locus
of the same point will be investigated. The main results are
Theorems 3, 4, and SB. Before proviﬁg these theorems, some

preliminary results are needed,

LEMMA 9 ([GKM),pg 198). Let M be a complete Riemannian manifold,

. pEM and expp:BR(O,TMp)+M be of maximal rank. Given v,weBR(O,TMPJ

such that viw, and exppv=exppw=:rsM. For tog[O,l] fixed, let

qzexpptov, cO:[O,1]+M be the geodesic given by co(t)zexppttov,

from p to q, and c1:[0,1}¢M be the broken geodesic given by

exp_ (2tw) if 0<tcl/2,

c, (t)= P -
1 ;

expp((l—(2t—l)(l—t0)vj if 1/2<§il.

For any homotopy H:[0,1]x [0,1]+M between cq @nd ¢, fixing the

end points, i.e. H(O,t)=c0(t) and H(l,t):cl(t), for all te[O,l],

and H(s,0)=p, H(s,1)=q, for all se[O,I], then there exists

508[0,1] so that £ (c )+ (H(s,,t))>2R.

PROOF. See [GKM],pg.198-199.




LEMMA 10. For all CeR, for all oe (0,1), there exists e=e (0,C)>0
such that: for any compact Riemannian manifold M™ with
KM'iéiC’ and if there exists a point peM with

i) iM/dp> l-¢fa,C) and

ii) expp:ga (O,TMPJ+M is of maximal rank;
p

then, for any qup and for any two distinct minimal geodesics

Y{sY, from p to q, we have ALy (@ sy (4))>a.

PROOF. e(a,C) will be constructed as follows: Given CeR and
ae{0,7}. Case for C<0: Let xe[O,m). Consider a geodesic triangle
in Mé with sides of length 1, x+ 1/2, and x+ 1/2. Figure 17.
Let Bs(x) be the angle between the sides of length x+ 1/2.

By Lemma 2, ss(x) is a strictly decreasing function of x, for

all xe[0,#), In fact, 1lim B: (x)=0. Obviously B5(0)=n. Define
X0

e'(2,0)=8; (o) in M?, and e@,0)=1-(1+e " (0,C)) " L. For cs0-
defifie ¢ (q,C):=¢ (a,0).

Similar to the proofs of Theorems 1 and 2, multiply the
metric with l/iM, and with the new metric, the hypothesis becones
KMiyin(C,Oj, 1=iM;ﬁp;1+a'(u,C); the other conditions remain
unchanged. Now let Yy and'y2be as in the hypothesis, and
£O=dM(p,q). Define f:[O,RO]+R by f(s)=dM(yl(s),Y2(s)). f is

continuous;and f(s)>0, for 55(0,20).

Suppose that £(s)<iy=1, for all 55[0,20]. For any fixed
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ss[O,lO], let eS(t) be the unique minimal geodesic from Yl(s}
to yz(s). See Figure 18. Bs(t} depends on s continuously, i.e.

1im es(t)=e (t). Proof of this fact is similar to the
58 30

continuity of the function f of Lemma 8. In short, we can say
that the minimal geodesics es(t) from Yl(s) to-yzfs) have a
convergent subsequence and any convergent subsequence

converges to a minimal geodesic from yl(so) to Yz(so), but there

is only one such minimal geodesic, namely 85 (t). So
0]
I1im es(t)=es (t). By definition, dp;ﬁ

s+so 0

f(5)=d(vl(5)n;2(5))_<__ d(Yl(SJ,p)+d(Y2(s},p‘)=25. If s>0, then

0"

f(s)<3s, Similarly,f(s);ﬁ[yl(s),q}+d(72(s),q)=2(£0—5). Let

v=yi(0}-£0, w=yé(0)-£0, t0=1/2 and co(t)=expp(tv/2)=y1(Eot/Z},

exp_2tw if 0<t<l/2,

= P -

¢, (t)
expp(3/2 -t)v if 1/2<t<]. Obviously, exppw=exppv=q.

Set 1=[0,1] and define a homotopy G:IxI-M as follows:

¥, (3ts,) if 0<t<1/3,
Gls,t)= ¢ 0, ((2-3t)-£(2,5)) if 1/3<t<2/3,
0
Y1{8,((3/2 —3s)t+3s-1)) if 2/3<t<l.

Continuity of G follows from the continuity of Yy and Yoo and the

continuous dependence of Os{t) on s. See Figures 19 and 20, Clearly,

y2(520)=8520(f(£05)) and GSQO(D)=Y1(SQU)'
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p if 0<t<2/3,
G0,t)= 1 (38/2 -1)0)  if 2/3ctc1. [ =Sy (1)) and
72(3t20) if 0<t<1/3,
G{l,t)= ¢ q if 1/3<t<2/3, =cl(hl(tJ), where
vy ((-3t/2 +2)£0) if 2/3<t<1.
0 if 0<t<2/3,
ho(t)= " and
3t-2 if 2/3<t<l,
3t/2 if 0<t<1/3,
hl {(t)=<& 1/2 if 1/3<t<2/3,
3t/2 -1/2 if Z/Q;Q;I.Trivially, hD and h1 are continuous.
Define H:IxI+M by:
c0(35t+(1—35)h0(t)) if 0<s<1/3,
H(s,t)=4{ G(3s-1,t) if 1/3<s<2/3,

cl((35—2)t+(3—35)h1(t)) if 2/3<s<1.
H is clearly continuous by the above. H(s,0)=p, H(s,l)=exppv/2=
y1(20/2), for all sel; and H(O,t)=c0{t), H(l,t)=cl(t), for all tel.

exp :E& (O,TMP)+M is of full rank, therefore there exists 8>0 such

P
that expp:Bd +8[O,TM?)+M is still of maximal rank, because being
P

Y

singular is a closed condition. Hence, Lemma 9 is applicable and

there exists s,e[0,1] such that Q(H(so,tjj+£(c0};;(dp+a}.




x+(1/2

Figure 17.1In Mg.

15 (1) vy (t)

p

Figure 18. In M

Be (x)

x+(1/2)

Figure 19.
For fixed O<s,21/2,

Graph of G(sl,t} in M,

.

Figure 20,
For fixed
1/2;5;1‘;1 » Graph

G(sl,tj in M,

of
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If'QéﬁO;l/S , then E{H(So,t))=£(c0(t)). If 2/3;50;1, then
z(H(so,t))=2(c1(t)). 22(c0)=20<2(dp+6j.

2(c0)+£(cl)=220§2dp<2(dp+d). Therefore, 505[1/3, 2/3]. Set

sl=350—1. For any 515[0,1], G(sl,t) is a union of broken geodesics

with parametizations different from arc length: from p to

yz(slno) along Yo from yz(slzo) to yl(slzo) along eﬂesl with

opposite direction, and from yl(sllo) to 71(20/2) along Y1 with
the same direction or opposite direction depending on whether
s;e[0, 1/2] or s;e{1/2 ,1). See Figures 19 and 20. Since Y10Y oo
and es are minimal geodesics between those points:
2(G(Sl,tJ)=d(P,Y2(Slio))+d(Y2(5120),Yl(SIROJ)+d(Y1(8120),YI(RO/ZJJ
=5120+f(5120}+l51 —1/2[28.
If Q;sbil/Z,then 2(G(sl,t)J+£(cojé§lzo+f(sllo)+(1/2 —51320+20/2
;}+20< 2(dp+6).
It I/Zislé},then 2(G(sl,t)}+2(co);§120+f(5120)+(51— 1/2}20+£O/2
égslzo+0+2(20—zosl)
=24 < 2(dp+6),
since f(s);ﬁ(zo—s}. H(so,t)=G(sl,t), and previously we had
obtained that Q(H(so,t))+2(c0);2(dp+6) by using Lemma 9. This is
a contradiction, Therefore, such H does not exist, Consequently,
there exists tOe[O,Qo] such that f(t0)=1=iM.
By the triangle inequality, 1/2§;O§}0 -1/2 . Now consider

the geodesic triangle in M determined by:




Yl(t) for t0§;<20 from ylﬁto) to q,

vo(t), for tost<h from v, (t,) to q,

O’
eto (t), .f:o_f Ostef(ty)=1, from v, (t,) to Y,(ty). Figure 21,
o totg— 1/'2;&1)_. 1/2< 1+ (0,C)~ 1/2= 1/2 + €' (a,C}. Now
consider a geodesic triangle in Mg with side lengths 1, zo—to,
and 20 0 By Toponogov's Theorem and the construction of B {(x),

and Lemma?2,we obtaln that §Cy1(q),y2(q))kﬁ (2 - 1/2y >

Bc(e'(a,C))=a. Lemma 10 QED.

Straightforward calculations show that:
e(a,O)=(l—sin(a/ZJ)/(l+sin(a/2)), and if C<0, then
e(a,C)=~1+{ln((eK—1+(e2K+1—2eKcosa)l/zj/Zsin(a/2)J/K), where

= (- C)l/Z

THEOREM 3. For any given CeR, there exists EE(C) such that:

for any compact Riemannian manifold Mn, n>2, if

. 2
1) dye Ky 2C,
ii) there exists a p01nt P in M such that i /d >1—83(Cj,and

iii} for the same point p, exp Bd {0, ™ )+M is of maximal
P

rank; then ﬁ 1s homeomorphic to s® and nl(M)= 22.

If n<d4, then M is homeomorphic to RP™

For the proof of Theorenm 3, we need the following:




THEOREM (Sugahara,[Su]). For any compact Riemannian manifold Mn,

if there exists a point peM such that the first conjugate locus
of p is disjoint from the cut locus of p and the number of

minimal geodesics from P to any point on its cut locus is 2, then

ﬂlfM)= 22 and & is homeomorphic to S%.

THEOREM (Livesay,[LY). If T:S:S--)S3 is any fixed point free -

continuous involution, i.e. T2x=x, Tx#x for all XESS; then there
exists a homeomorphism h:SS-a-S3 such that (hTh'l)(x}=Ax, where

A is the antipodal map.

PROOF. (Theorem 3) Take ES(C}=€(2ﬂ/3, C). dﬁ'KM >C implies that
iﬁ-KM;Min(C,OJ. By Lemma 10, for any qup, if Yi:Y, are any two
minimal geodesics from p to g, then qui(QJ:Yé(qJ)>2n/3=
arccos(-1/2). There are at most two geodesics from p to q by
Lemma 3., Since d 1s not conjugate to p aleng any minimal geodesic,
there are at least 2 such geodesics. (For example,see [CE,pg.QS])
Therefore, the hypothesis of Sugahara's Theorem B is satisfied.
Hence, ﬁ is homeomorphic to s and wl(M)= ZZ. |

If M7 is as above, define w:BAp+aAp by ¢ (v)=w if and only if
exppv=exppw and viw, Obviously, ¢2=identity, and BAP is homeomorphic

to s, [ce], [cxm].

Define é:ﬁi(O’TMp)+Ap by é(u)=u°cp(u/HUH), if ut0; and
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£(0)=0. § is a homeomorphism. Let g=é,UM . The map
. P

g lo¢og:UMp+UMp is a continuous fixed point free involution,

If n=4, by Livesay's Theorem, there exists h:UMb+UMp such that
(heF epogeh™) (x)=x, that is v((geh™)) ()= (gon-,) (-x), for all
xeUM . Now define E:Ei(O,TMp)+§i(O,TMP) by h(0)=0 and if ko,
ﬂ(u)="u"-h(u/”u"]. Also define the foilowing two equivalence
relations: For x,yeﬁi(ﬂ, TMp); Xx=y if and only if X=-¥; and
x,yeUMP. For U,VQAP; u=v if and only if u,veaAp and u=y (v).

The following diagram commutes:

B, {0,TM ) - A —
177 >~ 3]
oh
g °Xp,,
. exp
B (0,TM )/% ey A /= P
1 PrT= " p
geh

1 are well defined and one-to-one, since

EEﬁ;‘and goh”
exppw=expp¢(wJ and w((goh"l)(x))=(g0h_1)(—x). They-are coniinuous
since expp and éoﬂ—l are continuous. Hence, they are homeomorphisms.
_B-I(O,TMP)/g is obviously homeomorphic to Rp%.

If n=3, Livesay's Theoren directly implies that any free
continuous action of Z, on 5% gives a quotient homeomorphic to RPS.

If n=2, a similar proof to n=4 case can be given by an elementary

version of Livesay's Theorem on Sl. Theorem 3 QED.

NOTATION. o =arccos (-1/mj.
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THEOREM 4. For any compact Riemannian manifold M, n>2, if
. 2
i) dM-KM >C, and
ii) there exists a point p in M such that

i /d >1- 5(04,C) and exp Bd {0,T™ )+M is of maximal rank; then
P

Cp=VluVZUV3, where Vi are disjoint smooth submanifolds of
codimension i, open in their dimensions. If n=2, then V3=¢.

If 04 is replaced by G5, then V3=¢. If 9y is replaced by o,, then

2’
V3 2—¢ and hence, Cp 1s a smooth submanifold of dimension n-1,
and by  the theorem of Weinstein below, there exists a new

Riemannian metric on M such that M becomes a non-simply connected,

pointed Blaschke manifold.

THEOREM (Weinstein, {Wal, [Bs). ) If M can be written as DU E, where

D is the n-dimensional closed ball, E a ¢~ closed disc bundle
over a (n-k)-dimensional compact C manifold, with boundary 3E
diffeomorphic to S™7 % and a:3D>3E an attaching diffeomorphism;

then there exists a new Riemannian metric on M,such that M becomes

a Blaschke manifold at p which is the center of D.

PROOF (Theorem 4). We define Np:Cp+ Z, by for any qgcp, N _(q)
to be the number of distinct minimal geodesics from P to q. Since

exp l (0,7 ) is maximal rank, for § sufficiently small
prd, p

expple +6(0’TMp) is still maximal rank. Therefore, for all qup,
P
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q is not comnjugate to p along any minimal geodesic, and there
are finitely many minimal geodesics from p to q, this number
is  »2. [CE,pg.93),[Su). Take vi=N£1(;+i). Clearly, cp=§;ﬁvi,
vinvj=¢, if i#5.

Let ngp be any fixed element, and ASERERIN Y be the all of
the distinet minimal geodesics from p togq, i.e. Np(q)=k.
{Cy{(q),yﬁ(q))>c4=arccos(-1/4), if ifj; by Lemma 10: and 2<k<d,
by Lémma 3. Therefore, Vi=¢ » 1f i>5. Obviously, by the above, if
Oy is replaced by Oz OT 0,, then furthermore, V3=¢ or VZ:V3=¢,
Trespectively.

Set ¢=d(p,q). expp[Bd +¢ 15 a local diffeomorphism, so there
P

exist US_TMP, UqSM both open sets, such that 0OcU, quq, péUq,

o o . . .
U;=2-v1(0)+U; -all U, are disjoint and expp[Ui_Ui+Uq is a

diffeomorphism for all i, l<i<k. Let fiz(eprIUi)-l:Uq+Ui and
define Hy, (q)=(xel| Nfi(x)”=lkj(x)"}. "fi(x)":Uq+R,is a smooth
function of x, since £, (x) is smooth and pqu implies that 0¢Ui,
for i=1,...,k. (grad "fi(x)ﬂj(q)=yi(q) by Gauss Lemma and the way
expy is defined. [CE], [ckm]. (grad("fi{x)ﬂ—"fj(x)")}[q)=
Y{(Q)"Yj(q}+0, if i$j, i.e. the function “fi(x)"—“fj(x)" is
regular at ¢. Therefore, there exists an open set U('l‘c‘Uq such that

"fi[x)"—"fj(x}"is regular on Ué. Hij(q)nué=

{XeUé’]lfi(xﬂl—ﬂfj(x)n="fi(q)ﬂ-“fj(q)"=0} is locally a smooth
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submanifold of M of dimension n-1, it contains ¢ and is open
in its dimension, by Implicit Punction Theorem. Furthermore,

yi(q)~y5(q) is orthogonal to T(Hij(quq which is a hyperplane.

We will prove the following Lemma later; it is needed to

complete the proof of Theorem 4.

LEMMA 11. Let w.e ", i=1,...,k<4, such that twit=1, Wy >0,
for 1+J. Then wl-wk,...,wk_l—wk are linearly independent.

Now we continue with the proof of Theorem 4, If we set

wi=yi{q), then Yi(q)-yﬂ(q)'s, i=1,...,k-1, form a linearly

independent set, and hence, the set of H,

lk(q}'s is transversal

at q. Therefore, there exists Ua, an open neighborhood of q

such that UHEQU& and H[q)=UH/\§i§Hik(q) is an n-k+1 dimensional

submanifold of M locally, open in its dimension, containing q,
Obviously, if n=2, then k<3.
CLAIM. There exists an open neighborhood Ua' of q such that
UHTEU’H and U"'AaH =" 'a Y EC
q €YY q NH(9) q Mi-186,

First we prove the existence of U'ci‘ with Ua'nH(QJEUHth—l‘

Suppose that there does not exist any such U'"') i.e. there exist
Pp q

qneH(q)nUH, nefN such that q,>q and qnévk—l’ qu(q)nd_l. q, are in

H(ql& ]}iiHik (q) ={erq[ "fi Ol =) fk Goll, i3, Hence, "fi (qnjﬂ="fk (qn) ﬂ s

1=
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for i=1,...,k-1. Define en’i(t)=expp(t- fi(qn)/nfi(qn)"),

Q;Eifi(qn), geodesics from p to G- 8, 3 have the same length

>

and all are distinct, for a fixed n. If “fk(qn)"=d(p,qn) and
there is no other geodesic different from o, i‘s from p to 4>
then qnst_l. If;qﬁévk—l’ then there exists a minimal geodesic

wn(t) from p to 9 which is distinct from all en i's, i=1,...,k.

*

Since 9,4 wn(t) has a convergent subsequence Y, converging to
m

a minimal geodesic from D to g, i,e. Y5 {t) for some lé}oék. In
0

5 (t) and wn (t) are distinct geodesics from p to

this case 3
n
m’ 0 m

q, @and both converge to Y3 (t), as geodesics. exp_|B

0,T™
m 0 P dp+6( p)

is of maximal rank, so we conclude that:

¥ (0)+dpaqy )£, (); f, (q )+f; (@) in ™, and
m m 0 0 0

wﬂm(O)-d(p,qnm)+in(qnm), since wnm(t) and 8, 5 {t) are distinct

m’™0
geodesics from p to qnm. exppwﬁ(O)-d(p,qnjzwn(d(p,qn))=qn=

£, . Thi tradicts the fact that e U, is a
expp lo(qn) 1s contradicts the fac a xppl i S

diffeomorphism. Therefore, such ¢n(t) do not exist, So,in fact,

anVk—l’ for all n large, and we conclude that there exists Ua'
3 1 Tt

open, with qu'ﬂH(q}QUq nd_l.

Second, we need to show the existence of an open set Ua’

Withlﬂ;nd_lﬁlﬂrnH(q)- Suppose that it does not exist, i.e.
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there exist qng{Vk_l-H(qJ)nUa, nelN, and q,*q- qnsvk_l, so there

are k distinct minimal geodesics en,i from p to 9 By Lemma 10:
‘95,1(0)’ Bﬂ,j(03><_ 1/4, for ifj. Therefore, the limit set of
these geodesics contains at least k distinct minima] geodesics from
P to q. They have to be IEERRREY O For sufficiently large n, by
rearranging i indices for fixed n's, and by taking convergent

subsequences, we have en i(t)+yi(t), 4S5 M>e,as curves.
3

m
6;1 ,1(03""'\’:{(0))9;1 ,i(o)'d(p:qn )“"Yl'(o)'d(P:C{)=fi(({)- For
m’ o m
sufficiently large nm, eﬁ i(O)-d(p,qn )eUi and hence,
m’ m
d(p,q_)=[le' . (0)+d(p,q MI=NE. (q M. se, It (q M=Me. q .
n B, n R n i i I ’

for all I<i<j<k, and for sufficiently large m, q_ eH(q). This is
A n q
m

4 contradiction. Finally, the claim holds to be true, by the
existence of U'"', -an open set with U"'nH(q)=U'"""nv .
q P q MI@Q=UE'nv
For the argument above, q was fixed, but arbitrarily. For any
LA ] 1t o 1
quk_l, H(q)an Sévk_l and H(q)nuq 15 an open piece of an
n-k+1 dimensional smooth submanifold of M. This shows that Vk—l
is an n-k+1 dimensional smooth submanifold of M, which is open in
its dimension. If qui, i.e. there exist qnavi, neN, q,*q as

e, then there are exactly i+l distinct minimal geodesics from p

to 9, and they have a 1imit set of at least i+1 minimal geodesics

from p to q, as above, all are distinct. But, there may be other
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minimal geodesics from P to q, that implies that qgvi+m,

for some m>0. Therefore, Vi—-Vié U

Vj' By a theorem of
j>i

Sugahara, [Su], V1 is an open and dense subset of Cp‘

8V1=V1—V1=CP—V1=V2UV3. We only have 8V2§;V3, since V2UV3 is

not necessarily connected, V2 is not necessarily dense in VéUVS.

If oy is replaced by Tos then by Lemmas 3 and 10, we have
CP=V1, which is an n-1 dimensional compact smooth submanifold of
M.V, is locally defined by HQAUY =(xeUy " | "fltx)"="f2(xﬂ[},

a level set of 3 regular smooth function locally and Nfl(x)” is

a smooth function on Ua'. Therefore, "fl(x)"=d(p,x) is a smooth

function on Cp=V1. Hence, cp(v):UMP+R is smooth; and for any §',
. . - . T . .
L8>0, Vﬁ, {expptvl VEUMP, Oé;épp(v) §'} is diffeomorphic to

1

D" and 5D =g~ is diffeomorphic to avﬁ,. Since expp is of maximal

rank on Bd ,g" and Cp 15 smooth submanifold, (expptv)'[tch(v)

depends on exppcp(v)-v smoothly, for vsUM?. Hence, M—Va, is
diffeomorphic to a smooth 1-disc bundle over Vl. So, Weinstein's

Theorem is applicable. Theorem 4 QED,

PROOF (Lemma 11). Obviously, wi+wj if ifj.

Case for k=2: Obvious, since wl-wz%O.

Case for k=3: Suppose that there exists cdR such that

wlmw3=c(w2~w3). <w1+w2,w3>=<w1,w3>+<w2,w3> <0. So, w1+w2%0,

and hence, WpsWo> >-1,




2 _ 2
c"wz-w3" —<w1-w3,w2-w3>—ﬂw3" ~<w2,w3>—<wl,w3>+<w1,w2>
:;1+<w1,w2> >0,
Thus, ¢>0. By the Symmetry, we may assume that O<e<l, If c=1,
then WSy, which is not the case. If O<c<l, then
2 2 2 2 2 .
1> {1-¢) =[k1-c)w3" ="w1-cw2" =1+c"-2cew ,w,> >I+c“>1. This
gives a contradiction.Hence Wy-Wq, oWy which are both nen-zero,

are linearly independent.

Case for k=4: First of all, we observe that there do not exist four

distinct non-zero vectors in RZ such that all angles between any
two are >n/2. Hence, if <wi,wj> <0 for 1<i<j<4, then
dlm(span(wl,wz,WS,w4));ﬁ. Let W=span(wl—w4,w2—w4,w3-w4). By the
case for k=3, dimW>2. Suppose that dimW=2. If w4eW, then obviousiy,
Wl’WZ’WS’W4EW' This is not the case, so w4éw. Let Wl be the three
dimensional subspace spanned by W and Wy Since w4¢w, there exists
a unique vector wer such that |jwlll, wiW and W4, W>=c>0,
<w,wi—cw>=<w,wi-w4+w4—cw>=<w,wi-w4>+<w,w4>—<w,cw>=0+c—c=0, for
i=1,2,3,4. Hence, wi-cwel, for all i. Obviously, W.-cw are all
distinct.<w.—cw,w.—cw>=<w.,w.>—c<w,w.>—c<w,w.>+c2<w,w>

i J 1] 1 J

2 2 .

_<wi,wj>-c<w,wi-w4+w4>-c<w,wj>+c —<wi,wj>—c . Since
ﬂwi-cw"2=1—c2, and W.-cW are distinct; we have 0O<c<]. So, w,-cw

are all non-zero. If i%j, then <wi—cw,wj-cw>=<wi,wj>—c2<0.

Therefore, we obtain four non-zero vectors in W which is two

dimensional, such that al] angles between any two are >n/2.
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This gives a contradiction. Consequently, dimW=3, This proves

the case for k=4 and hence, Lemma 11,

REMARK, Lemma 11 nay be extended for n+l>k>4, if one could
prove that there do not exist Wys.«o,W, unit vectors in Rk_z
with <wi,wj> <-1/k, for itj. If this is done, then we can let

V4,...,Vk be non-empty submanifolds and replace a4 by oy in

Theorem 4.

THEOREM 5. For any compact Riemannian manifold Mn, n>2, if

. 2

i) dM-KM >C, and

11) there exists a point peM such that iM/dp >1—g(on,,C),
where n'=Min(n,4);

Then, dp;ﬁ/(ZK 1/2), where K =Max(KM), and hence, X »0.

PROOF. Let geM be such that d(p,q)=dp and suppose that

dp<ﬂ/(2K1/2). We will use the notation and construction in

Theorem 4. By Rauch Comparison, expp]ﬁa (O,TMP) is of maximal
p

rank. Hence, by Lemmas 3 and 10, there are at most n' geodesics
from p to q. quk for some k<n'=Min(n,4). dim(Vk);p—n’+l=

Max(l,n~31;1. Vk is at least a one dimensional submanifold of

M, lying in CP. There exists a smooth curve 6(t) defined for

te(-e,e), for e small enough, such that e(t)eVd\Ua', 8 (0)=q.




G(t)eH(q)nU"" If f are constructed as in Theorem 4, then
JV?eH(q)nU"'—anu"'c=cp, we have d(p,r)= "f (r)" H(q) was obtained
by the 1ntersect10n of the smooth hypersurfaces which are the
Tevel sets of the functlons ,f (xﬂl "f (x)u locally. Since f (x)
are smooth functlons and ]f (x)ﬂ ﬂf (x)nare Tegular on H(q)nU”'

f {(x) restrlcted to H(q)nUa', which is a smooth submanifold and

a4 Subset of Cpé-iS Sti11 a smooth function. Consequently,
d(p,ﬂ(t))>0; is'é’bmooth function of t. See the last part of the
proof of Theorem-i;'ﬁet y.(t), i=1,..., k+1, be all of the distinct
minimal geode31cs from p to q. Define F (—e,e)x[0,1]+M by

E, (s t)= exppt f. (e(s)) Since Y; are minimal geodesics and expp

is regular at fitq)g Fi is one-to-one, for smail e and t>0. Let
S;=F..(3/3s) and T =F ;#(3/3t), where F, i+ T((~e,e)x [0, 113>, Let

2. (s) IOHT (s,t)f dt= =d(p,6 (s)), for se(-e,e). Let S and Ti also
denote S (0,t) and T (0,t), respectively. By the first variation
formula: d/ds(zi(s))[szo=

(1/zi£0})(<si,Ti>]g-jé<si(o,tJ,VgiTi(o,t)>dt)=(1/zi(03)c<si,Ti>q)=o,

since d(p,8(s)) is a smooth function of s, Ti are tangent vectors
of a geodesic and q is at the maximal distance. By a similap argument,
dz/dsz(g.{s))[ 20. By the second variation formula, [CE] pg.20,

d /ds (4. (s})ls 0" (<V’ S.,T >+J7 S, ie Si>)]q, since the variation
l

is through geodesics, i.e. _Si is a Jacobi field along Y; and




<Si,Ti>[q-<S JT. >[ =0. Let X be {7 51 ()0 ()], _o- Vs S 1) (Q)=x,

for all i, since S.(q)=9'(0) and F, (s 1)=0(s) for se(~e,g).

X%O then by Berger's Lemma, Chapter 1, there exists Ti such that
0

<X,Ti (gq)> 2 0. If X=0, then such Ti ekists obviously. Therefore,
0

0
< S. . T. > >0 and hence, <@, s, |
Sio o i 'a = Tio LM

S, >]q:=p.

Vo 8 L8 =T (s, "2)[q <0, and . is a Jacobi field,
lO o 70 0 0 0

If k>0, then let Sn{K‘l/z) be the standard sphere of constant
furvature K. In fact, we will show that K>0, below. Let PgeS

ST (K 1/2 ) be any point, y be any geodesic from Py and E(t) be any
parallel unit vector field along ¥(t), so (sin t-KI/Z)E(t) is a
Jacobi field along Y (t). Now apply Rauch Comparison Theorem 1,

Chapter 1, to Si along Y5 in M and c(sin t-Kl/sz{t) along ¥ (t)
0 0

in S, where c="Si(O)ﬂ/Kl/2. For t>0, we will get

0< d/at(ls; 1%/ (c*sin? t-x12)y ang
0

d/dt (!Isi0n2) | =(1/d,0))- Ty ds; 1910 <.
0

Hence, 2(K1/2)(sin t-Kl/z)(cos t-K1/2)[ _ 20, and therefore
t"d (PJQ) -

d(p.q) ;y/(ZKlfz). If K were non-positive, then we would replace

K above by l/m2 and by the same proof, we would obtain that

d(p,q)>mm/2, for any melN™ d(p,q) is finite, so K>0. We had:

assumed that dp<ﬂ/f2K1/2), in the beginning and then obtained that
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dp;y/{ZKl/z), which is a contradiction. So we should have

/2) in the beginning. Theorem 5 QED.

1
d >m/ (2K
pZ (
THEOREM 5B. Theorem 5 still holds, if 9 is replaced by oy
Theorem 5B follows from Lemma 12, below, which was known to
J.Cheeger and D. Gromoll. In fact, Theorems 5 and 5B were

known to Jeff Cheeger.

LEMMA 12 (Cheeger-Gromoll). For any compact Riemannian manifold

Mn, if dp<w/(2K1/2) for some peM, where KzMax(KM), and dp=d{p,q),
for some qup; then there are at least n+l distinct minimal

geodesics from p to q. (For K<0, we again mean o instead of K~1/2')

PROOF (Theorem 5B). By replacing O by Oy and supposing that
2

dp<w/(2K1/ ), we would obtain that there are at most n geodesics
from p to q by Lemmas 3 and 10. This contradicts Lemma 12, Hence,

a2/ (2xt/?y

PROOF (Lemma 12). Let YyoeeeYy be all distinct minimal geodesics

from q to p. Suppose k<n. There exists vOeTMq such that

<V0,Y£[O)> <0, for all i=1,2,...,k. For the existence of Vo'

Yito)""’Yﬁ_l(o) span at most an n-1 dimensional subspace of TMq.
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The orthogonal complement of this subspace is at least one ‘!

dimensional, and contains at least two vectors in opposite i
directions, one of which makes an angle >m/2 with Y3 (0). Let T
|

- 1/2 = .
e(t)—equ(vot], for t>0. dp<ﬂ/(2K ), so expp[de(O,TMP) is |
non-singular. Construct fi around q as in Theorem 4. If

<Vosv§(0)> <0, then obviouslyﬂfi(e(t)ﬂlis strictly jncreasing
at t=0., If <V0’Y{(0)>=0’ thenﬂfi(s(t))ﬂis still strictly
increasing. To observe that, consider the pull back metric of

M on TMp by expp]de+6(0,TMP) which is a local diffeomorphism.

With this new metric, the metric ball of radius dp in ™™

is strictly convex by Whitehead's Lemma, and hence,ﬂfi(e(t))"is
strictly increasing at t=0. For large nefN, let qn=equv0/n and
en be any minimal geodesic from p to A 94 therefore en

has a convergent subsequence en (t}+60(t), as mr, and hence,
: m

87 is a minimal geodesic from p to q.-e{):yi » for some i, with

0 0
lé}oék. For large melN, vm(t}=expptfio(qnm) is not minimal, since
mm)=ufio (qnm)lHlin(qJ|[=d(p,qud(p,qnm)- So, we have:

£ G 1E (@, 01 (0)-2(0 )+F, (@), £, (q_ )46! (0)-a(s ),
l0 nm 1o T ) 1o o T nm Ty
and exppfio(qn )= exppeﬁm(O)-z(en )= q, *q. This is a

m 13 m

contradiction, since expp is a local diffeomorphism around

fi (q). Consequently, k>n+l. Lemma 12 QED.
0




SECTION 5. SOME EXAMPLES AND IMMEDIATE COROLLARIES,
ot dobef ML

2 with their standard metrics

", RP™, €P?, mp®, gap
(normalized with diameter equal to m except for RP", and
qRPn =1/2) have equal diameter and injectivity radius, so they

are obvious examples for Theorem 1] and RP? is for a1l Theorems

1-5B,

EXAMPLE 1. Let M be either of the above examples and g(t) be

a C2, l-parameter family of Riemannian metrics on M such that
2{(0) is the standard metric. Since the diameter and injectivity
radius depend on the metrics continuously [E],.and g{0) has
positive sectional curvature, there exists a neighborhood (-6,8)
of 0 such that for every te(-6,6), ip(g(t))/dp(g(t)) >l—£1(0).

Those are non-trivial examples for Theorem 1.

EXAMPLE 2. Let M be any compact Riemannian manifold with metric
gg» PeM and €G>Olbe given. There exists a Riemannian metric g1
on M such that ip(gl)/dp(gl) >l-eo.

We construct g, as follows. Let r be small enough so that
expp}Br[O,TMP) is a diffeomorphism from Br(O,TMpJ onto Br(p,M).

There exists a smooth function P:M-[0,1] such that supp(w)SEBr(p,M}
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and y|

=1. Let d denote the diameter of M,g ). ;
Pr1- ey/2) M) 0 |

Define g1=(1+ Zdw/sor)go. Then, we have
1P(gl);jl- eo/zjr-(Zd/eor] and dp;Zdr/eor +d. Therefore,

(874, (802 (2-20)/ (2+e)>1-¢ .

REMARKS. 1} Example 2 shows that the curvature condition of

Theorem 1 can not be removed. It may be possible that it can

be weakened or replaced by using other geometric quantities.

2) Lim sl(C)=0. We observe this as follows: el(C) is
-

decreasing, if C is decreasing, by Toponogov's Theorem and the

construction of el(C). If 1im el(C) were equal to eo>0, then
G0

example 2 would give a counterexample to Theorem 1. Hence,

lim el(C)=0. In fact, if one could give a stronger theorem with
Co-w

better el(C), then still inf el(C)zo holds.
C

3) In example 2, possibly the sectional curvature of
84 is large, both positively and negatively on the set
BZd/EO(p,M;gl)-B(l_ 30/2)2d/€o (p,M;gl). In fact, Theorem 1 implies
that the sectional curvature should become smaller than CO,

.where el(CO)=eO, if OrdGT(WI(M)Jiﬁ-
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EXAMPLE 3. Consider the lattice L= Ze1+ Zez in.m2 given by

e ~(1 0) and e —(1/2 31/ /2], 2=1R2/L is a flat hexagonal

torus. Let p:R +R /L be the natural projection map. A fundamental
domain can be chosen as a hexagonal region H with vertices:

v1=e1/3 + 32/3, v2=—e1/3 + 2e2/3, V3=-2e1/3 + e2/3,

v4=~e1/3 - e2/3=—v1, Vg=-V,, and Vg=-Vz and the sides to be
the line segments Jjoining v, to Viype Mod 6. See Figure 22.

. . 2 2
In fact, if we consider R° to be T(T )(0,0) and p be eXp(O,O)’
then A(O’0)=H and the tangential cut locus Cp(O,O) of p(0,0) is

_— _ .-1/2 . _.1/2 . .

aH. Hence, ip2= 1/2, dT2- 3 and lT/dT“ 3 /2, since iy and
dT are independent from the choice of the points in this

example,

Example 3 shows that €{0})'s of Theorems 1,2, and 3 can not
be made better than 1-(31/2/2}, even with another method.

In T° of Example 3, iet p,qo,qleT2 be such that p=p (0,0),
4y=e (v)=p (v5)=p(v.) and U= (vd=p (v )=p (v,). d(p,q;)=d(p,qy)=
dp 3 1/ P=p(8H) is the union of three distinct minimal
geodesics from qy to qq - In fact, there are exactly three distinct
minimal geodesics from P to dq and ql,each. With the notation of
Theoren 4; Vs, {qo,ql} and V 1=p (3H) - {qo,ql} Although i /d 31/2/2
<2 61/ -4=1- 5(03,0), T perfectly describes an example of Cp for
the situation of Theorem 4 for V2+¢; but still it is not an

example for Theorem 4.




1

Figure 22. In {RZ.
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Some immediate corollaries of Theorems 1-5B.

For any CeR, there is 3 universal constant e (C) such that
for any compact Riemannian manifold M™ with K QKMQKO and diameter

d, the following corollaries hold, (e(C) can be made better, if

different ones are used in each case, sometimes depending on

the dimension, as in the Theorens, Otherwise, we consider the

smallest of all of them, which is positive):

. 2
COROLLARY 1, If 1M/dM >1l-g(d KG],then wlfM)=l or Zé.

COROLLARY 2. If iM/dM

>l—e(d2KO) and M is not simply connected,
then M" has the homotopy type of Rp%.

Corollaries 1 and 2 follow from Theorems 1 and 2, with

the fact that lMé}pégp;gM and hence, 1p/dp ;}M/dM.

. 2
COROLLARY 3. If Klép’ then 1p;§p{1—e{d Ko)) and hence,

flat manifold,i <0.914.d .
* = p

for any

This follows from Theorem 1 and the fact that any compact

Riemannian manifold whose sectional curvature is non-positive,

has infinite fundamental group, since its universal cover is

diffeomorphic to R,
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1/2 . 2
COROLLARY 4, If Kl>0 and dp; w/(ZK1 ), then 1Méﬁp(1-e(d KOJJ.

This follows from Theorems 4 and 5.

1/2 . 2
COROLLARY 5. If d<r/K; " and Lypd, (1-e(d°K,)), then

. 1/2

i) dp;y/(le )

ii) M is homeomorphic to Sn,
iii) vl(MJ= 22. )
Hence, M™has the homotopy type ofﬂuﬂa and if n<4, it is

homeomorphic to ®p". Cp is a n-1 dimensional submanifold
which has the homotopy type of'RPn_l. Thus, if we have a

simply connected compact Riemannian manifold with

. 2 1/2

1M/dP >1-e(d KO), then dpiﬂ/Klr .

This follows from Theorems 3,4, and 5.

COROLLARY 6. Let g(t) be a C2 one parameter family of Riemannian
metrics on.mPn, te(-6,8) such that g{0) is the standard metric
on RP" of constant curvature 1. Then there exists 61>O such
that, for all te(—sl,al), cut locus of any point of RP% with

the metric g(t) is an n-1 dimensional subﬁanifold.

For the proof of this, see Example 1 and Theorem 4.

REMARK. Obviously, the cases of ip=dp and iM=dM are included in

Theorems 1-SB and above Corollaries, whenever it is appropriate.
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