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Abstract of the Dis;ertation
The Dirac Operator on Spaces with

Conical Singularities
by

Arthur‘Weichung Chou

Doctor of Philosophy
in

Mathematics
State University cf New York at Stony Brook

1982 -

The Dirac operétor on compact_épaces with conical
singularities is studied via the separation of variables
formula and the functional calculus of the Dirac
Laplacian on the cone. We prove a Bochner type
vanishing theoremfwhich gives topological, obstructions
to the existence oﬁ‘non—negative scalar curvéture
k > 0 in the singular case. We aléo obtain an index
formula relating the index of the Dirac operator to the
ﬁ-genus and Eta-invariant similar to that of Atiyah-
Patodi-Singer. |

In an appendix, we study manifolds with boundary
with non-negative scalar curvature ¢ > 0, and obtain

several new results on constructing complete metrics

with « » 0 on them.
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0. INTRODUCTION

In recent years, analytic tools (e.g. the elliptic
operator theory) have become increasingly important
in studying the topology of compact smooth manifolds.
‘This trend can be traced back at least to the Hodge
theorem which states that the space of harmonic i-forms
on a compact manifold M is isomorphic to the real
cphomology group Hi (M,iR} {see [K]). Other examples
are Bochner's method and the Atiyah-Singer index theorem,

Bochner's method is to obtain a locallformula
expressing a geometric (elliptic) operator as the sum
of a "rough Laplacian," which is noh—negatife on closed
manifolds.and a curvature term. Thus if the curvature
term is positive, ihe kernel of this operator vanishes.
Results of this type are called "vanishing theorem.'
In the case of the Laplacian A on i1-forms over closed
manifolds, the local formula says A = V?°V + R where
v is the (induced) connection and R is a curvature
piece {(see [R},[LM]). Thus R > 0 implies Kernel (A) =
{0}, i.e., Hi(M;R) vanishes. TFor the Dirac operator D

on spinors, we have the Lichnerowicz-Bochner formula

(0.1) D% = ¥ oy + X,




where v is the connection on the bundle of spinors and
¥ 1s the scalar curvature. Againlfor closed manifolds,
k > 0 yieldé Kernel (Dz) = {0}, i.e., there are no
harmonic spinors (see [Li] [LM]).

The Atiyah-Singer index theorem ([As] [ABP})
tells us that, on a closed manifold, the index of an
elliptic operator L, i.e., dim(Xernel of L) - dim(Cokernel
of L}, can be expressed as a linear combination of
Pontrjagin numbers, which are topological invariants.
For the case of the Dirac operator D on an even
dimensional closed spin manifoid M, Lichnerowicz

([Li]) obtained from the index theorem that
(0.2) Index(D) = ﬁ(M); the K~genus of M.

Combined with theIVanishing theorem (0.1), it shows

that ¢« > 0 implies K(M) = 0. This provides us with a
topological obstrucﬁion to the existence of a metric

on M with ¢ > 0. (G}omov and Lawson have greatly
extended the scope of this method by considéring spinors
with coefficients in suitable bundlés, and they also

developed'a parallel theory for the Dirac operator on

complete manifolds (see [GL1] [GL3]).)

An extension of this kind of theory to singular

"~ spaces for the Laplacian A was developed by Jeff Cheeger




in [C1][C2][C3] (see also [CT]ICGMj). 1In this thesis,
we shall establish the corresponding theory for the
Dirac operator by use of his ideas. Let us now recall
some definitions and basic ideas from [C1][CZ][C3].

Let N" be a closed riemannian manifold of dimension
m with metric g. By the cone C(N) on N, we mean the
space (0.00) x N equipped with the metric dr & dr + rzg

where v ¢ (0,x). Set

4p]

~

=z

—
il

{(r,x)eC(N), O<r<u} and

2
—~
=z
—
i

{{(r,x)eC(N), O<r<u}.

mt]

(0.3}, Definition. X is called a space with conical

Xm+1

singularitiés if there exists Pj € , i=1,2,...,k

o)

such that'Xm+1\

U {P.} is a smooth riemannian manifold
j=1

and each Pj has agneighborhood Uj such that Uj%{Pi}

is isometric to CO,Uj(N?) for someiUj and N?.

Without loss of generality, we assume that k = 1

1 J

and u. > 1. We write X where .

J
N = 9M and the union is along the boundary. Of course,

m m+
CO,l(N Y u M

Xm+1

is not a manifold in general. For the purpose of
this paper, we also assume that Xm+1{P} is a spin

manifold and N™ has the induced spin structure (see

1

- - . - 1 +
section 1 for definiticns). Notice that C(ST) = R™

Ll




where S? is the standard sphere of radius one. This

is the Buclidean space in polar coordinates.

By definition, analysis on a space with conical
singularities X means analysis on the smooth part
X~{P} of X. Since this manifold is incomplete, the
situation is quite different from that of a compact or
complete manifold. For example, the elliptic operators
(¢.g. the Laplacian and the Dirac operator} are no
longer essentially self-adjoint. Thus we have to choose
particular self-adjoint extension, Sece [cl][C2Z] for
the case of the Laplacian.

Because the local analysié on M 1is wellﬂunderstood,
we first restrict our attention to the cone part,
Co,l(N). To do analysis on the cone, we observe that
by using the separation of variables technique, we can
reduce the local analysis on the cone to the global
analysis on fhe cross section N. 1In fact, if we rvestrict
a function_g(r,k) on C(N) to {r}xN} then by the standard
theory of the eigenfunction expansion of the elliptic

operator L on compact manifolds, we can write

(0.4) glr,x) = 1g;{r)¢;(x);

{¢i} are the eigenfunctions of Lr = Ll{r}xN which can

be identified with those of L = Li{l}xN by (parallel)




translation along the radial gecodesic R x {x}. The
convergence of (0.4) is in the L2 sensé; moreover, if
g is smooth, then a standard argument shows that the
convergence is uniform on each compact subset away
from the singularity at p. Note that in the case of

(s = R

, this is nothing but the usual Fourier
series expansion,

On functions of the type g(r)¢(x), the action of I
will give us singular Sturm-liouville ordinary differ-
eptial equations (see (2.6)), and hence we can solve
for the eigenfunctions of L explicitly on the cone.

As we will see, there are limit circle cases [see-[St])
of singular Sturm-Liouville equations corresponding

to the small eigenvalues of i on {1} x N. This is the
reason why L failsito be self-adjoint without any
condition on the behavior of the function near the
singularity r = 0.

In section 2, ﬁe derive the separation of variables
formula, write down the eigenspinors for the Dirac
operator D on the cone, and construct counterexamples
to the self-adjointness of D. Then, in section 3,
we obtain the critérion for the self-adjointness of D

from an a priori estimate. The main result is the

following {compare [C2]). Let DO denote the Dirac




Support on X = ¢ (ij U M, and D denote the Dirac
p 0,1

operator on {1} x N = N, Then we have

Theorem (3.2). The Dirac operator DO is ¢ssentially

self- dajOJnt if and only if there 1s no eigenvalue

1

My of D such that [u | < .

'{¢]¢EL nee and Dpe L2 }s and D denote its 1, closure,
It follows that

. — = N Tl L 1
(0.5) D0 = D and DODO = D"D if ]uj] > 7
Let us write Ap = ﬁb EO and Ay = D*.D, which

D
correspond to the generallzed Dirichlet ang Newmann

condition reéspectively. Both Ap and Ay are self-adjoint
éxtensions of Ag = (DD)Z. We should mention that eyep
if DG is €ssentially se]f- adjoint, Ag may still not

be €5sentially self- dajoint because of the limit circle

phenomenon (see [St][Cl]).

In section 4, we show that if C0 l(N) has non-

hegative scalarp curvature, then the condition I“jl > %

is autcmatically satisfied. This, together with (0.1),




gives us the vanishing theorem for spaces with conical

singularities.

m+1

Theorem (4.2). If X = CO l(Nm) U M has scalar

curvature k > 0 and ¢ > 0 somewhere, then

Kernel(D) = {0}.

This vanishing theorem haé possible generalization
to PL-manifolds or Pseudomanifolds. They are spaces
which can be built up inductively by spaces‘with conical
singularities (see [C2][{C3]). .This theorem can also
be construed as giving necessary conditions for a
maﬁifold with boundary to admit a metric with scalar
curvature k > 0 for which the metric near the boundary
is conical. In sgction 5, we combine this theorem with
our index formulas to obtain topological conclusions.

A general discussion of manifolds with boundafy
is given in the appendix to section 4. By use of
certain deformation techniques, we obtain the following
theorems. Let M be a manifold with boundary N, Let
k denote the scalar curvature of M, and K. denote the

scalar curvature of the hypersurface at distance r to

the boundary,




Theorem [A.Z]. Suppose that
(i) ¢ >0

(ii) K% > 0 forv r e [0,e]

(iii) Hr > 0 forv r e {0,e]
where H. 1s the mean curvature w.r.t the exterior normal.
Then in this neighborhood [p,c] x N the metric can be
deformed to a complete metric, which ends with the
prodﬁct metric R x N near infinity, with non-negative
scalar curvature.

This is similar to Theorem 5.7 in [CL1].

Theorem [A.12]. Suppose that dim N = m > 2 and

(i) the tubular neighborhood of N in M is

16m
m+1

(iij kKp > 0 (>0) on {r} x N, r € [0,1].

normalized to be qf width 1 and k > on it.

Then the metric can be deformed to a complete
metric, which ends with the product metric R x N

near infinity, with scalar curvature ' > 0 (>0).

The discussion of the appendix shows that our
vanishing theorem could also be obtained from the work

of Gromov and Lawson [GL3] except for the case where

K = 0 on a conical neighborhood of the boundary. This




case 1s not covered by their method.

The next step is to study in&ex formulas. We
follow the séme procedure as in [C1]][C3], which is
based on the functional calculus of the Laplacian on
the cone and the heat equation method of deriving
the index formula (see [ABP]). Let us briefly recall
the ideas in [C3] as follows:

i. Using the technique of separation of variables,
i.e. the eigenfunction expansion (0.4), and the Hankel
transform, we can obtain a spectral representation of
the Laplacian A on the cone C(N) such that the action of
A is ca}ried into multiplication of AZ; moreover,
according to the Hankel inversion formula {(5.5), the
following formal representation for the kernal f£(aA)
on C(N) x C(N) =‘g(r1,x1,r2,x2}} holds.

{

(0.6) £(A) = (r,7,)% = {iz)J (Ar,)J . (A7T,)Ad]A
1 2:, j(JO \)J , 1 \)j 2 )

q)j'(xl) ®¢J (XZ)

o0

— .
where ¢ = :?E’ ¢j*s are the eigenfunctions of A (the

Laplacian on N} with eigenvalue F and Jv is the

toud o

Bessel function of order “j = ch+uj.
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Thus we can regard (0.5) as the sum of series consisting
of a family of functions of A on N parametrized. by
(rl,rzj, in the distribution sense. Notice that in the

case of_C(ST) - ptl

s the Hankel transform is nothing
but the Fourier transform in polar coordinates and (0.5)
is just the representation of the kernel £f(A) via the

Fourier inversion formula.

2. Making use of the classical integral formulas
of Bessel functions, we can explicitly integrate (0.5)
out for certain functions'f; e.g., the heat kernel

s

f(a) = e '8 and the Zeta function £(A) = r(s)a’

(sce (5.9)(5.11)).

These explicit expressions, together with the
property of conformal homogeneity of the cone, enable
us to compute the ;symptotic expansion of the trace of
the heat kernel on the cone in terms of functions of
A on N". J

3. It fcllows from Duhamel's principle (see [C]
[C3]) that a parametrix for the heat kernel on : %
X = CO,l(N) U M can be gotten by gluing together the |
heat kernel on M with the one on Co’i(Nm). Then, | : 7:

from the behavior of the heat kernel near the singularity

r = 0, we can conclude that the heat kernel on X is
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of trace class. This gives that the Green's operator
is compact and hence Frodholm theéry can be applied
to obtain thé standard global results as in the non-
singular case; e;g., the existence of a complete
orthonormal basis of L2 consisting of eigenfunctions

(-forms) of A with discrete eigenvalues Oiloikl,...,+W.

4. In order to compute the index of the geometric
operator on X, we apply the heat equation method which
says that the iﬂdex is equal to the constant term in
the asymptotic expansion éfhthe”trace of a certain
modified heat kernel on X™1, As can be easily secn
from the previous discussion, this constant term must
consist of two separate terms; one is from the manifold
M, and the other from the singular part CO’ICN). The
first contributioniis the integral of the same charac-
teristic form over M as in the non-singular case, by
Patodi-Gilkey theorem (see [ABP]}.. The second
contribution from the singularity can be shéwn to be
an Eta-invariant of the manifold N (see [APS]).

In section 5, we carry out the above program for

the Dirac operator, and the index formula that we

obtain is the following. Suppose that Xm+1\{p} is an

even dimensional spin manifold. Let D, and D denote




the Dirac operators as in (0.5). Let‘ﬁg and D"
be the operators restricted to the {+)-spinors corres-

ponding to the {+)-spin representation. Then

Theorem (5.23).

t

(1) Index (D) j Alp) + no-h oy din(E )

X 0<uj <5 J

(2) Index(D")

f A(p) + Di%lih + I dim(E )

X —/2<pj<0 3

where A is the Hirzebruch A-polynomial of Pontrjagin
forms {P.}, n(s) = I (sign w.) ju. ] ”®
1 £ J J

.70
UJ?

the Eta function,

h = dim Kernel(D), and Eu is the eigenspace of D with
: j
eigenvalue Uj'

In case that D is self-adjoint, ey Ju:] > %,
we have Index(ﬁg) = Index (D7) = J A(p) + E%Ql.
X
Combined with the vanishing theorem (4.3), this

gives

'Theofqg (5.24), Suppose that the scalar curvature

k of X = Cg 1(N)UM satisfies k > 0 and k¢ > 0 somewhere.
H

Then

[




Index(D') = ¢ = J R(p) + nL0)

Although our index formula is essentially the
same as that of Atiyah-Patodi-Singer [APS], we would
like to emphasize that it is the natural index formula
for spaces with conical singularities. Moreover, it
_gilves a topological obstruction to the existence of the
metrics with k > 0 on these spaces.

We conclude our thesis by noting that all the
results we have obtained for spinors immediatély
~generalize to spinors with coefficients in a bundle E,
i.e., to sections of the twisted bundle of spiﬁors
S(Xj ® E, if the connection of E is flat in a neigh-
borhood of the singularity. The following vanishing
theorem is an easy consequence. Set Roﬁyége) =

1 E .
ﬁjzk(ejeko)(g)Rejeke as in (1.11) and (1.12).

/

- Theorem (5.28). Suppose that on X = C0 l(N)UM2k

K > 4|p30” and k > 4][5b” somewhere. Then

f Ch(E)-A = 0
X

where dh(E) is the reduced Chern character, Ch(E) =

Ch(E) = Chl(Ej + Chz(E) LI




We can alsc define the notion of enlargeability as

in {GLZ] and obtain a similar result for singulaf

spaces.

- Theorem (5.30). Suppose that in X = Cy 1(N)UMZk,
M is of dimension 2k and the interior of M is enlargeable.

Then there exists no metric, which is conical near the

singularity at the cone tip, with scalar curvature

such that « > 0 and k¥ > 0 on the interior of M.

L4




1. PRELlMINARIES

In this section, weo shaly briefly recall some basic

facts about SPin manifoids and the Dirac Operator., The

1 references are [ABS]{GLI}[GLS][LM}[M].

An Crientabie manifold x 1s called a

genera

if its Second Stiefel—Whitney class

Pgg (X) be the Bundle of orien
n

tangent frames. Let Spinn-denote the spip group, which
18 the universail 2-fold coveriﬁg of SOI1 for n >3 A

_i
spin Structure on X is @ principle Spinn—bundle ‘

PSpinn(X) together with a Spinn-equivariant map

E:PSpinn(X) - PSOH(X) which Commutes with the Projection

Maps onto X. The condition W5 (X)

0 is €quivalent to - R

the existence of a spin Structure. Ip fact, using Cech

covering map:

(1.1) aPSpinn(X)'

¥ Spin_xU - Psen x| = S0 x U, 1
g

U




where U is a small neighborhood, is exactly
Wy (X) e HA(X,Z). |

Let Cln denote the.Cliffordlalgebra of R™ with its
standard inner product. In this thesis, we will only
consider the complexified Clifford algebra 1, = ¢l ﬁ}RE.

The (complex) Spin representation of the Spin group

Spinn is, by definition, the restriction of the algebra
representation p of Eln to Spinn < Eln. The Spin group
Spinn has only one irreducible répresentation if n is
odd, and two irreducible representations A~ if n is
even. These two irreducible representations AT of
SpinZk comes from the irreducible representation

A of Ele;

k
}: the group of endomorphisms on

o~
-5

(1.2)  a:Cly E?d(mz
i

When restricted to Spin,,, A breaks into two irreducible
ones A“ correspondiﬁg to the (+)-eigenspace of multipli-

cation by the Volume form w = ikelez,...,eZk, where

'{el,...,é2k} is. the orthonormal basis of RZk.
Suppose now that X is a spin manifold of dimension
1. and PSDinn(X) > PSOH(X) 1s a spin structure on X.

Then from the spin representation p of Spinn, we have

the associated (complex) vector bundle

16

&3

3%
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(1.3) S(X) =

PSpinn(X) x pV

where V is the representation space of p. This is

called the bundle of (complex) spinors. If n = 2k

is even, then (1.3) breaks into two Pleces:

fi

(1.4) S(X) = Pgoin (X) x v
n

+
Pspinn(X) X,V @Pspinn(x) X,V

ST(X) @ sT(X)

The sections :of S(X), r(s), are called spinors, and
the sections of S+(S_) are called (+)-spinors ((-)-spinors).

Let us denote the associate principle S0-bundie of 5(X) .

by PS(X)' Then a local section e ='{el,...,en} of
PSOH(X) can be lifted up to PSpinn(x) via (1.1) and
then imbedded into PS(X) as a local section ¢ ='{¢1,...,¢N}.

~This section ¢ is a local orthonormal basis -of the

bundle S(X) and will be called the spinor basis. f

Let C1(X) denote the associated bundle of Clifford

algebras. This is the bundle over X whose fiber at éf

each‘point X is the (complex) Cliffdrd algebra of the

tangent space TX(X) with its given metric. This

bundle carries a natural unitary connection v, induced




from the principle SOn—bundle, and characterized by
the fact that v acts as derivation on the algebra of

sections: T (C1{X)), i.e.,
Via-8) = (va):g + o-(VB)

for all g, € T(C1(X)), where "." is the Clifford
multiplication.
We can easily see that S(X) is a bundle of modules

over C1(X), i.e., there is a module multiplication

(1.5) "eT(C1) x T(S) » r(S) defined by

(a-9)(x) = o (a(x))(¢(x))

fof aii o € T(€1) ;and all ¢ € I'(S), where ¢(x) € Vx
and p(a(x)) € End(Vx)‘(see (1.4)).

Lifting the Riemannian connection on PSG (X) to
n
Pspinn(x) via the Lie algebra isomorphism: (Spinnh?(son)*
determines an associated connection V- on S(X), whose
action on the spinor basis ¢ = {¢1,...,¢N} can be
~described as follows. Let e ='{e1,...,en} be a local

section of PSO {X) and VT be the Riemannian connection
n

on the tangent bundle T(X). Suppose that'{mij} are

o]




n
the 1-form defined by Vie, = £ w,.e. for i = 1,2,....n.
O N A
Then
S 21 -
{(1.8) Vi, = 7'.Z.wijeiej g for ¢ = 1,2,...,N,

where "," is the module multiplication in {(1.5}.
It can also be shown that V° acts as derivation

w.r.t. the module multiplicatidn, i.e.,
(1.7) Vi(a-9) = (Va)eg + a-(V54)
for all o € T(C1) and all ¢ € I'{S). From now on, we

will drop the superscripts and simply use V to denote

various connections if no ambiguity occurs.

Thé'Dirac'ope}ator D:Cw(S) - Cm(S) is defined by
n
(1.8) Dp = 3

where'{e1,...,en} is a local orthonormal basis on X

and ¢ € C7(S). This is an invariantly defined first
order elliptic differential operator with symbol

S | < _
GE(D) = g+, for £ € T (X). Notice that in case of an

even dimensional manifold, D:Cw(Si) + Cw(Si) and we

shall denote D gt by n*.




Under the normal coordinate, we have

2, N ] )
D ¢ - -Zoei.ej.ve-,e.d) WheI‘O vv”w - Vvvw Vv w,
i,] i3 v
2 . 2y 2 ®
and the symbol of D“ is og(D )= - |g]]” for £ € T (X).
Define
2 - _ o |
(1.9) -v%=—,_z Ve o & for ¢ € C7(8). :
=1 %50

Then the following relation'holds poinwisely (cf.

[LMJ[Li]).

(1.10) Theorem (Lichnerowicz-Bochner-WeitzenbBck formula]

D% = 7o + kewg

where k is the scalar curvature of X.

We can extend above notions to more general classes
of bundles. Suppose that E is any hermitian vector
bundle over X with a unitary connection VE. Consider
the bundle S(X) & E with the canonical tensor product

connection V. This is again a bundle of modules over

X satisfying (1.7). We can still define the {generalized)

2
Dirac operator D and -v“ by using this new connection

V as in (1.8) and (1.9). Thus the corresponding formula

to (1.10) is
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2 _ g2 .1 .
(1.11) R
where
(1.12) Ry (480) = 5 2 e @ REei,ej ()

for all ¢ € S(X) and all o € T(E), and RE denotes the
curvature tensor of the connection'VE.
If X is a closed manifold, then D is self-adjoint

and —VZ = 7'V is self-dajoint and non-negative. Thus

b4

{(1.11) gives (see [GL1])

(1.13) Theorem. If ¢ > 4HR0|], where || [| is the operator

norm, then Xernel (D) = {0}.




2. THE SEPARATION OF VARIABLES FORMULA AND

EIGENSPINORS OF THE DIRAC OPERATOR

ON THE CONE

In this section, we are going to derive the
separation of Variabies formula for the Dirac opérator
D and.DZ on cones. We will also write down the
eigenspinors of D and D2 explicitly, and discuss the
domains of closed extensions of then. : :

Recall that a cone on N, C(N), is a space
(0,») x N with the metric of dr @ dr + rzé where g is
the metric on N. We assume that leis a closed manifold
of dimension m, and C(N) is a $pin manifold. Let N
be endowed with thg induced spin structure from c(Ny,

i.e., the principle Spin -bundle P (N) on N is the

Splnm

reduction of P {C{N)) via the inclusion maps on

Sp:inm+l
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Letrg% denote the unit tangent vector to the
radial geodesic {0,x) x {x} for some x € N. Then the

2

a7 to the

inclusion maps in (1.1) are just "adding
(oriented) orthonormal frames (gl,...,;m) oi N to form
the (oriented) orthonormal frames (g%,él,...,ém) on
C(NJ." This also defines the orientations on C(N).

By taking the induced spin representation of Spinm from
Spinm+1, the bundle of spinors SCN) over N can be
canonically imbedded into the bundle of spinors $(C(N))
over C{N). Let us denote everything intrinsic to N by

a tilda """ and the parallel translation along the radial
~geodesics by a bar "-". Thus we can imbed a section

¢-of S(N) into S(C(N})} and then extend it to § on C(N)},

with the property that Vo F =0 .

T

We now derive the separation of variables formula
for a more general kind of metric on (0,») x N:

g = dr ©dr + hz(r)é for some h > 0.

(2.2)'Lemma. Let'{éj,i=1,2,...,m} be a leccal orthoncrmal

basis on N. Then {§%,Ei=§5,i=1,2,...,m} is a local

orthonormal basis on C(N), and




1,-
<VE J’Ek> - E<vé‘ ’ek>g

E., a o h' o= LY
<inLj’§¥ Bl 6ij where h arh’
5 -\ _ h' _
<in"§ff’bj> I ‘Sij v and <, > are the
' connection and
80N inner product of g.
(g 570557 = O &

Proof: This follows in a straightforward fashion
from the following formula for the riemannian connection

V (see [CE]): T L L

2{v.y,z2) = Ky,z¥ + yix,z> - z24x,yd
+ {[x,y],22> - ([x,zly > - <J,zl,x) Q.E.D.

Assume that‘{oi} is a local spinor basis (see
section 1) of S(N). Because S(N)} is induced from
S(C(N)),'{Ei} is a local spinor basis of $(C(N)), and

we have

¢ = 0, V (g% - ¢) = 0 for v spinor ¢ on N,

2,3 Lemma 1) V 5 3
Jr - EES

where "-" is the module multiplication.

42'

~ 1
r B 95 YR Vs

1
2) V.95 T 7 W 37
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Proof;
Paralle] translation and (1,7,

2) We assume that By = g%. Then by {1.6)

o ,
- 1 o —
%5 T 7 Koy “xp(ByEE o5
k,2=0
m _ m B
; § on(El)EoEQGJ.+h' E kz(El)EkEﬂgj
=1 k=1
k<y
=Lht s Ly om - -
CZH 37 Bjog o+ g 12 Vxs {“i)EkL!LDJ
k<g
=1 h' 3 - 1=
2 hoor Bioy o+ g 5%
since wkgféi) = 5k£(513 for k,g>1 by Lemma (2.2), where
Wr,p and &

ko are the Connection 1-forms
C(N) and {51} on N respectively,
By using (1.7),

w.r.t‘{Ei} on
and Ei - 0 = 8

3) follows similarly.

Q.E.D,




a6

(2.4) Proposition
~——pPP31tion

p=Lh 5 g
"E.® * 7 ar Byt + ¢ [P

N3 1

R - _ 1 hnt . 1 3 S
B Gy d s 2 kg R 57 V5 9,

for any Spinor ¢ o N™

Proof. Write ¢ = Eaioi

where'&&} is
of S(N)} anq arply (2.3).

4 spinor basisg
Q.E.D.

The Separatiop of Variableg formulag for the Dirac

Owing:

Operator p and p? are the fojj

-« Then
Dy = ("*? %} f);l ¢ + % £ Dg
- (g7 %L Su - }J-;- g 58; D,
R RS TC U G+ @ e
F e 2 5 * {5 £ 57,
h h
*legtmy g FAH @ el 5

+

Ry

w,

L
- gég}Dw + fggg}g?




~

. . I
where D is the Dirac operator on N .

Proof: This is just a straightforward computation,

0 = £(1§ + g() i
3 m
Do ==V, 6+ TE -V ¢

or _a:: j=1 * E;

3 — 5 — m : - d
Tor WO W ¢ LE 0T, Pt LD
=0T - g @ AT B 4 DAL pig

L 8(x) B3 % mh'

» B % - TR gn
0@ s R 1L T H0 g

'@ 3 emin - Eemd b

3 mo

D(DO) = %, (DO) + I B, - v (DO)
t 1 3 ' ~ 1 ‘:“‘
RACORN ARG TR AR . 77 £ By + g £y
33
LR 1 _ ' 9 ~ 1 " -~
- [Q’%’%ﬁ%) g+-’§-%—-g']w+z—2g§m-ﬁg%m
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e L.mh o 1R 1093 %
in(D) =y DG B *‘mﬂej]
s L T 1ETE
+ (E-f} ww*ar E; Do + ¢V, (D) ]

1

'+ 5% )[ZharE 5 g
-Gk EDUHI-——-% (D) 1

Multiplying out and collecting terms, we obtain

the desired formula. Q.E.D.

Now we specialize to the metric h{r) = r.' In
order to treat spinors of the type f(r)d + g(r)g%ﬁ,

suffices to consider spinors of the type f(r)(ﬁiﬁ%ﬁ), since

8

£7 ¢ gy = 55+ 28) ¥ £(F - 2B + £+ 2

%(5 ) ;;E
Let ¢ be an cigenspinor of D on N™ with eigenvalue y,
i.e., D¢ = pd, and 8 = £{r) (¢ + 5%5) be an eigenspinor

of D% with eigenvalue A2 # 0. Then (2.5) becomes

(L@_¥BT@-¥'wum&ﬂ%§ﬂ@+%@

1!

NCE(F + 39, hence




2 .
2 2 -om)
(2.7) O R O S [TE -@1—‘“}- ];%}f =0,

and the solutions are f{r) = YCJ+v+(Ar), where

c = "E%; , vo= nglll » and J is the Bessel function of

order v. (see [In]).

If 8 = £(r) (9 - g%E) is an eigenspinor of eigenvalue
A2 # 0, then

(2.8) D% )

UnZ—ZHD 1
B

(e

Azf(E'— g%@), hence

(2.9)  4p e Bpow 2 o2

2
- - A 1y -, |
o T a

and 'the solutions are f(r) = rCJ+v_(lr), where
c =';E%l , Vo= i@%;%l » and J, is as before.

-

Thus we have the following four types of eigenspinors

with eigenvaluelxz # 0 of DZ:

(2.10) r°I, O (F + 29

(2.11) rCJ_v+(Ar)($ + g%@j where ¢ = >
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(2.12) xR0 - ) and ot o= L20E1]

(2.13) 2% 00 G -

The corresponding harmonic spinors, i.e., Az = 0, are .

the following:

(2.14)
(2.15)
(2.16)
23

Henceforth we shall call (2.10) (2.12) (2.14)

(2.16) positive solutions, and (2.11) (2.13) (2.15)

(2.17) negative solutions. It vI is an integer, we have
to introduce logarithmic negative solutions. This can
happen only when o=+ % and v? = 0, and the negative

solutions should be, in stead of (2.11) (2.13),

(2.11)" rCYD(Ar)(a +

(2.13)" Y, (A1) (3 -

where YO is the Bessel function of the second kind

order Q.
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Notice that YO(AI) ~ %log%; as r -» 0 (see [Lel).

Similarly (2.15) and (2.17) should be replaced by

(2.15)"  r"log v (3 + 23) |
.
(z.17' 1Cleg r (7 - 2 N

in this case, (2.14)-(2.17) can also be written in the

following way:

1

(2.18) (2.14) (a) 27T +

) v 7

B e B e

m_ +1
(2.15)(a) v 2 W' (5

_m+ —
(b) v Z7H(g +

e N L

(c) r%log r(§

(2.16)(a)_r“%+”+1($

ool

o
(b) 727 W(F -

B

t

{2.17) (a)
(b)

i

1
Z
1
Zz
1
2

(c)




>

F

| TR ATt
Set vy T TH—s and vy T _%__

Then the eigenspinors of D2 can be classified as

follows:
. c+y -
.19 @ G- 2 W, 0nG - A
- 27l L g,
@ G- 2 (D 15, 060G - 5

" _m_ _ ‘ 5 —
=1 2 H(y - 370)

@' wFlog @ - & an v 0n) 5 - =)
Do G e 2y I11) % PRy
(3 r (¢ + 55¢) ( _) T vZ(AT3(¢ *ose)

(IV) rCJ_vZ(ArJ(E + §%$J

(IV)' =Y, () (7 + 29

| From (2.5}, we have

(2.20) DI + 29))

D{f(p -




Apply this to (2.19), we get

(2.21) D1y - 2v; (3)
D(2) = 0, D(2)' = (3)
D{(3) = 0
D(4) = 2v,(2), D(4)' = -(2)

Hence (2)(3) are the only types of spinors in the

kernel of D. Also, using the identity (see [Le])

J;(z) - %J (z) = ;Jv+l(z) and

]

J;(z) + %Jv(z) JQ_l(z){ we have

It
]

(2.22) D(I) = A(ITI) D(II1) = A(I)

-A(11)

n

D(II)

A (1V) D(IV)
Thus we have the following two types of eigenspinors
of D with eigenvalue ) # 0: / L
. C ol __a_— C. — __a_"-
(1) + (I1): r Jvlixr)(¢ sTP) * T Jvz(kr)(¢ * 57)
S an: S 7 - 27y 4 oS 7+ 23
(I) - (IV): r J_vl(kr)(¢ )t J_vz(xr)(¢ *toage) - f

Next we are going to determine those egigenspinors

of D? which are square-integrable when restricted to the

finite cone Cy 1(N). Let the domain of D be

L




2 2

(2.23) dom(D) = {¢|¢ is Cw, ¢ € L7, and ﬁ¢ € L on

the finite cone C {(N) 1.
0,1

Since r?(§ + §%$) € LZ(CO 1(N)) e a > ;%LE , it follows

from (2.21) that in (2.19), we have

(2.24):(2.19) (1), (I) € dom(D) e 1 » -

VN

(2), (II) € dom(D) e= y <

(2)'(I1)' ¢ dom(D)
(3), (I11) € dom(Dj = u > _%
(4),(IV) € dom(D) == u < %

(4)' (V)" ¢ dom(v) |

(2.25) Propesition In the four types of eigenspinors of

DZ:

(2.10)-(2;13) and (2.14)-(2.17), the positive solutions
are always in the domain of D. The negative solutions,
corresponding to the small eigenvalues 1 of D such that

] < %, are also in the domain of D.

- Proof: We need only examine (2.18) using (2.19)(2.14).
(2.15)(b) € dom(D) «= -2 < u < 4

7
(2.17) (a) € dom(D) == -+ < u < F . Q.E.D.
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We shall see that the negative solutions in the
domain cf D are exactly the spinors which prevent D
from being Self~adjoint.

Define Dy to be the Dirac operator restricted to

. . + .
the spinors with compact support on X" 1

- m
= CO,I(N ) UM,
Let D, and D denote the closures of these operators

on X. Using the idea of Friedrichs mollifier (see
[C2][Fr][Gal)}, one can show that

* _
(2.26) DO = D, where '"&" denote the adjoint.

o - - _%
Therefore D = D is equivalent to D < D , l.e.,

(2.27) {Ta,p> =<a,Dp> for all a,p € dom(D).

To show that this is not in general true, we first

establish the following formula.

(2.28) Proposition (Integration by Parts Formula)

Let Y™ be a compact spin manifold with boundary
3Y, and < , > denote the inner product on the space of

Lzlspinors. Suppose that « and 8 are smooth spinors.

Then




(P> = <adpd - Canepd
Y

where / ’>k 1s the pointwise inner product on the fiber .

at x, and N is the unit outer normal at the boundary.

Proof: <Dg,gd = f <Da,8>& . ‘ 5
Y - 3

<Da,8>x

]
0
Pas

o)

5 Veia’8>x where {e;}is the ortho- %
normal basis of the
tangent bundle,

m
= El <“Vei0¢:ei'8>_x

(e;<-a,e;-8), - <-a,vei(ei-m>x)

m m :
) iilei<"°"ei',5>x ' 151<°"(Veiei)'8>x + L, 08Dy

]

-(div V), ¢ Ca,p),

where V is the vector field cn Y defined by

(V,w) = a,W.8> for v vector field W,

and div Vv

h
™=

(Vg V,e;} is the divergence of V.
1 i

1




Hence {Da,8” = La,dBy - J div Vv
v

Lo, DBy - j (V,N)
Y

{a,Dp> —J {o,N-BgY>. Q.E.D.
3Y

It follows that on X = C0 1(N) U M,
. H
<ﬁa;B>:<u;5B>

if « or B has compact support. In order to show that
D is self-adjoint, we have to ﬁrove that this is true
for all o, € dom(D), i.e., the stoke's theorem holds
for D. Unfortunately this is not the case in general
because of the negative solutions in the domain of D.

The following example illustratesthis situation.

(2.29) Example. Let X = CO 1(Nm) U M. Choose two
Lxample ) \
negative solutions from (2.18), say,
_ m
(2.15)(b) 6, = r—7+u(* s 2w
' 1 ? Br?

m_, |
(217 () 0, =1 % @ - 5

p—

on C (N) with R u < l. We can extend them to X by
0,1 2 Z

37




multiplying a cut-off function f:f(r) = 1 if r < 1-€

cand £(r) = 0 if v > 1 for some small number €. Then

61,0, € dom(D). Let X = CE,I[N) U M, then

(2.30) <D91,82> = J <Dal,ez>x = 1im j <Del,92>X
€0
X X
c
= 1imU <81,D92> + J <81,N-éz>)
€0 X 3%
€ €
= (81,D62> + 1im J (81,N-82> by (2.27).
, €0 Yoy
' - €
(2.31) 1113[ <61,N-ez> = lim f <91=("§a?3'92>
£ 58X €20 {E}XN

€ } |
= - linm 2151 2 ™. e™av
# 0, where dV is the volume element
con {Llxy".
Thus {D64,0, # {8,068, on X.
We can conclude that, in general, D D and the

two self-adjoint extensions of (DO)Z:AD = D.D, and

_ -4 .
ANf= D D are not the same.




(2.32) Remark. Since*(ﬁoa,5>=‘<a;ﬁﬁ> for all aEﬁdom(ﬁoj
and g € dom(D), it can be easily shown that the negative

sclutions are not in the domain of ﬁO by use .of the same

argument as in the previous example.




5. THE SELF-ADJOINTNESS OF THE DIRAC OPERATOR

In view of (2.29) and (2.32), it is natural to
conjecture that D (or ﬁo) is self-adjoint provided that

-

s

there is no eigenvalue Hs of D on N" such that ]ujl <

»

In fact, if we take for granted that the eigenvalues of
DD on X are discrete and the usual Fredholm theory holds
for §*§ on X, which will be established in section 5,
then it is easy to see that if iujl > %, then

{Da,B” = {u,DB> holds for all eigenspinors a, g of

5*5, and hence for all o, € dom(D). Thefefore the
conjecture is proved.

In spite of this, we prefer to éhow directly that
the boundary term (2.31) goes to zero as the boundary
approaches the cone tip and hence (2.27) holds, if
Iuj[ i~%n To this end we first obtain the following
pointwise a priori estimate (comparé [C2]). The idea is
to construct D—1 via the separation of variables formula,
and then use Schwarz inequality.

Con

(3.1) Proposition. Suppose that o = £(g + 5253

+ g(¢ - g%E) = o +a € dom(D) (see (2.23)), where ¢ is

an eigenspinor of D on N with eigenvalue u. Let us

40
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denote the L®-norm on Co 1 () by "I[ ||" and the L% norn
-on N by ]]]&.7 Assume that 1. Then
1 _Hﬁu -2us1 % -W+u
+ 2 1 + 1-v . Z
it 2 Jaty A2
it
£ <
m,1 m1
- , - _ri-
Kllo* 11 2) 2 %+ Yioa™| frog ¢ 22
1
1f .
L H Z

where K is a constant depending only on m. Moreover,

if u 5.-%, then Do’ # 0, and

5] < Lo’ ¢ Y
Similarly,
[ m L om
- -2—--11 p2utl .
o] 2 2«llm [
le@| < 1 if u# g

% m 1

Kllo [l (20) 2 2 + 2Da" |} frog rf%+ 2 2

if u -%
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If p > %, then Do # 0, and

lg() [ < D™ || T ¢ 4T .

Proof: Notice that, according to (2.19)(2.24),

o= g uo> —%, and Do~ = 0 = u < %, since o € dom(D).

The fact that o € dom(D) gives

1
J (2404 Mdr < and, by (2.20),
0 SRR |
1 .
[ wh?s s @+ whie <o
0

To obtain estimates for £, we first observe that

I m
. ._T-u "u
=t 5 = 2% e+ @-pdy, and hence
m a m m
“u LY , o
rz f = - J sz [£' + (%~¢D§]ds + az f(a),

for any a € [%31].

By the Schwarz inequality with the measure r"dr

i 1 1
uf(r)l < U s‘m“”smds)/’ﬂ(f [f'+(%-u}-§_]zsmds);é
T T '

o 5

I




~H

+a’ ()]

m

7 U Ly lutl ]

= a’ gy + LT GliDa* ), if -2u +1 # o
-2u+l
m m
7 7

and  [r° £(r)] < a® [£(a)] + |log P50 ) if 2pe1= 0,

Using the fact that 3 a ¢ [%,l] and a constant K depending
1
only on m such that [£(a)]| < K( ]szrmdr, we obtain the
<0
desired inequality,

Similarly the inequality for g follows.

> -l . . : |
Note that { o (L' + (%—- p)f]dr ' a
. 'O
T n{_u In_u n1_u
= f g%(rz f)dr w'rz f(r) - 1im rz f(r). Since §
o r>0 'L
1 _ |
[ ]f[zrmdr < w, we can find r; » 0 such that -
o} ’ ) ’ :4
2 1 . 1
| £ (ri)r? = o(?f), i.e., ]f(ri)| = 0(_“ﬁ¢T . (see [C2]1.) o
1 S P
, T, -
i 2

Therefore, if y < %, then the above limit exists and the

integral converges. Moreover,

o m

|

m
-u -1 -
1im r2 flr) = lim r? f(ri) = 1im r7 O/r 2 )- 0

i \"i
0 ri+0 ‘ ri+0
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provided that yu < -%.

Hence we obtain that if u j_-%,

n_ T m_
7 7
1% E()| - ]f 2 )|

0 )

Tom_

=4 57 e e G sy
Q
t 1 r 1
- - 73 "%
Q 0

r_2u+1 %1 + .
- (—m) ZIPa |} e,

-%+

IS RN

|A

.

HoY

Similarly, we have

/T - H)pe |

e b

BELC IR fu> 3 Q.E.D.

1

(3.2) Theorem. Suppose that ) Gl C0 1(Nm) U Mis a
3

compact svace with a conical singularity. Let D, D

m+1

denote the Dirac operators on , NI respectively, and

dom D ='{¢|¢€Can2,D¢eL2}. Then D is self-adjoint if and




only if there is no eigenvalue of D whose absolute

@

ol

value is strictly less than

Proof. TéfShow that D is self-adjoint, it suffices
to show that the?Bbundary term in (2.30)(2.31) goes to

zero. We neéd 6ﬁ1y to check this for spinors of the

form £(¢ -+ §%$j f?g($'- §%$) where ¢ 1s an ecigenspinor

of D with eigeﬁ?élue w, and {l¢fly = 1. Let

25

I

. @
—

+

[ain3

01 = 816+ 5D+ @

_:_. L — ) § _ S -

92 ~.f2F¢jf §?¢) + g2(® - §?¢) = 92 + 92
7

Assume that el,eéxeﬁadm(D) and |u] For the boundary

term (el,é?? 0> = 2(faey - F18,)1™ (see (2.31)),
{r3xNT EERRRTA
we have two cases:
L %?+%
. : 1 i ;. . '
(i) u < - 7. Then lfl(r)]i Cr_m_Fl (since pn < —%—a D(a+)%0)
S Z 2
gy (r)] < cr
| l :_]_ m,1
|£,(r)] < cr 2 ?f(since o< —%.¢ D(e+)#0)w~
: m, 1 ' ‘
|g,(r)] < cr LA
_m_Pl
T | : 772
(ii) u » 5 Then |fl(r)ii cr
- m,l
|g; ()| < cr £ 2 (since > % = D(6;)#0)




ol
[£,(r)] < er £ 2
_m+l
]gz(r)]'i cr z2 (since u > % = D(eé]%@)

—_ ' , m
This shows anyhow lflgz—fzgljr + 0 as r > 0. Q.E.D.

(3.3) Remark. (1) This theoren says that Dy 1is

¢ssentially self-adjoint (see RS} if and only if

ij] > % for all eigenvalue uj.of D on N™,
(2) If the condition Iuj] > % is not satisfied, we

can still obtain self-adjoint extensions of‘D0 by

imposing conditions on the domain of D, which corresponds

to the boundary conditions in case of a manifold with

boundary. Notice that in our case the boundary is

crashed to a point: the siﬁgularity at the cone tip.

We therefore call the conditions, which are imposed on

the domain of D to make it self-dajoint, the ideal

boundary conditions (see [Ga][C1][C2]). For exampie,

suppose that E = | ® Eu where Eu is the eigenspace
wil<h T
J J—

J

= . + - 5 -
of D with eigenvalue My Let BIE = I fi(r)(¢i + §?¢i)
+f£($i - g%Ei), where ¢;'s are the eigenspinors of D
with eigenvalues My such that |u§| < %, denote the

projection of g to the part consisting of eigenspinors

in E only. Define Dy to be D restricted to the space:




m

(3.4) '{éfGELZ, and 6] satisfies |fi| = ofr 7)}.

E

Then the pfoof'of the previous theorem (3.2) tells us

that the boundary term also goes to zero under this

E] i

ideal boundafy condition (3.4), i.e., ﬁb < Dbo
&

- = % - _
b, « D, implies Dy =D, =D . It follows that

=1
!

b = Db on the space (3.4).
It is natural to ask for geometric conditions on
N™ which guarantees that [uj| > %. In fact, if the

~

~ m . . . .
scalar curvature k of N is positive and ko = min «,
then, using a slight modification of the Lichnerowicz-
Bochner-WeitzenbUck formula (1.10), we can show the

fellowing.
. 1 /m .

(3.5) Lemma. -Iuj[ 3'7 k_ wherem = dim N > 2.
~Proeof, See {Li] and [F].

Let « denote the scalar curvature of C(N). It

follows from‘the straightforward computation (see [AJS)

in the appendix to section 4) that ¥ = J?[K—m(m-l)].
T

-~

Therefore, if ¥ > 0, then k > m(m 1). It follows

from (3.5) that |n| z‘%m , and hence




= Cy ;O™ U Mand m > 2. Then

D is selfmédjoiﬁt if the scalar curvature of CO,l(ijf"

is non-negative.




*ﬁg_”4- VANISHING THEOREMS

We shall prove vanishing theorems for singular spaces
analogous to the one proved by Lichnerowicz in [Li] for
smooth manlfolds._ Let us begin with some general facts

for arbltrarmianifblds.

(4.1) " Lemma. Let Y be an arbitrary spin manifold.
Assume that the scalar curvature k of Y satisfies

kx > -k for sone p051t1ve constant k. Then we have
N T 2 -
oo} % > |fvel|? + zf cllellZ for a1l ¢ € dom(i,)
where V is the connééfion, || || denotes the global

L%-norm on Y, and | the pointwise norm at x.

I

- Proof. Integratingithe Lichnerowicz formula (1.10)

D% = -v%p + e

for smooth ¢ with compact support over Y, we immediately

see that




e = fooll? + & [ eifoli?

Hvell - %fk”eu for all 6 € dom(D

| v

o) -

Now let ¢ é’&éﬁ(ﬁﬁj. By definition we can find

B, € dom(DO)2$ﬁ¢h"fhat 6; - 0 and Dei + D8 as i » o

2 1 2

= lvesll® + 3f cllogll2
Ty i v, . 1

“gklloglls it we define Jlgllp = [IDo]] + Cke1) o]

in the L° Seﬁéé;ffSince [[De |

3 |lve, || |

and [[olfy = ||vell + ll¢ll, then clearly || |, > || ||,
Therefore 6; is é:daﬁchy sequence in the norm || ”V

and hence convéréééafo.é' for some g'. But ]]-va_ll It

so0 we must have 6‘ %”8,_1.6., V6. + ¥6 in the Lz-norm
| |- Thus o
2 2. 2 1 2
Dol = Lim [1pe; 117 = 1an({lve,1? + 3 «lfo,(12)

I->o0 100

Y

AR 2 . 1 2
(1am ltvog 1) + 1in 3] cpjo, 2
l—H?__ . 19 Y

2 1. 2
ooll® + & Lim [ «jjo; 2.
Y

i

An application of Fatou's lemma yields

odf 2 fivell® + 3 [ cpoy? . Q.E.D.
: Y
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(4.2)'Theore@. Let Y be an arbitrary spin manifold with

scalar curvature k. Assume that k > g and kK > (

somewhere. Then

Kernel(ﬁo) = {0}

Proof. 1Let g ¢ kernel(ﬁb). Then (4.1) gives

19017 = ivel? + 3 o

Y

Since ¢ > 0 on an open subset U, we have 9 =0 on U

and V8 = 0 on Y. This implies 9 20 onY. Q.E.D.

Now let Xl Cq 1(Nm) U M. Then k > 0 guarantees

that D is self-adjoint and ﬁo =D by (3.6). Thus we have

{(4.3) Theoren. Suppose that on x"+l (m>2) « > 0 and

o .
K > 0 somewhere. Then Kernel(D D) = Kernel(D) = {0},

i.e., there exists no square integrable harmonic spinors

on X,

(4.4Y) Remark. (1) This theorem can also be proved

dlrectly by showing that <'V 8 e) > 0 for all 6 in the

ke1ne1 of D under the condition that g > 0.




(2) The above theorem can be construed as giving

necessary conditions for a manifold with boundary to
admit a metric with non-negative scalar curvature for
which the metric near the boundary is conical, i.e.,
like the exterior of a cone. In the_appendi§ to this
section we will give a generai discussion of manifolds
with boundary. |

(4.2) and (4.3) can be casily generalized to the
generalized Dirac operator on the "twisted" bundile of
spinors S (X @)E, i.e., on spinors with coefficients in
the bundle E (see section 1), if ‘the connection on E is
flat in 2 neighborhood of the singulérity at the cone
tip {P}. For this situation we only need to replace
@ spinor by n-tuple of spinors (n=dim E)} in our Previous
calculation and everything else stays the same. Under

these assumptions we thus have

(4.5) Theoren. Suppose that on X' (m>2), « > 4”30“
then D is self-adjoint and Ker(D) = {0} for the |

~generalized Dirac operator D.

" Proof, Slnce E is flat near the cone tip, we can

deduce from {1.12) that Rg > -k for some positive k.

Therefore the same arguments as in the proofs of (4 1)

(4.2) give us the dﬂslrpd result,




Appendix to Section 4. Deformations of the Metric near

a8 Boundary and Positive Scalar Curvature.

§ Introduction

:

On a manifold with boundary, a differential operator,
which is self-adjoint on a closed manifold, is no longer
self-adjoint without a suitable boundary condition. 1In
certain situations, we don't even know how to choose
boundary conditions which make the problem meaningful,
One way of avoiding this'difficulty is to trivialize
the Geometry near the boundary and treat the space as
part of an ambient space formed by attaching a cylinder
{(or a cone) to the boundary. We then study the operator
on the ambient space in which no boundary is present.
This is a basic point in the proof of the geometric
index theorem for manifolds with boundary (see [APS]).

In this éppendix we will studyltwo types of defor-
mation of the metric near the boundary and their
influence on the scalar curvature. We then obtain
sufficient conditions under which the scalar curvature
remains positive after the deformation. It follows
ffbm (A.8) that if the cylinder N x R has scalar

Curvature x > 0, then we can deforn the metric slowly

o a cone and keep the scalar curvature positive.
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Conversely, if the cone has K > 0, then using the
bendlng technique of Gromov and Lawson (see helow and
[GL2]), we can open up the cone tip to form a cylinder
and maintain positive scalar curvature. Therefore,
under this circumstance, attaching a cone to the boundary
is equivalent to attaching a cylinder. But our vanishing
theorem, when construed as for manifolds with boundary,
emphasizes the case that « = 0 on the conical neighbor-
hood of the boundary, for which no such deformation

can be applied, | e -

§2. The Bending Technique.

Let Mm+1 be a manifoid with boundary N®. we can
find an €- neighborhood of N that is diffeomorphic to
[o, e] x N = NE' Let r denote the geodesir distance to
the boundary and g(r,x) be the metric on the hypersurface
{r} x N at distance r to the bouﬂdary It is easy to

see that the metrlc on this tubular neighborhood can ;

be written as dr ® dr + g(r,x).

The first method of deformation is an adaption of A
the "bending technique" due to Gromov and Lawson [GL2] i
for the connected sum of two manifolds. Let us define

a hypersurface M' in M x R with the product metric by




MU= {(y,0)](y,t) € M xR and (v ll,e) € ry
where |ly|| denotes the geodesic distance
from y to the boundary N, i.e. Nyl = r,

and ' is the curve in the (r,t) plane as

described below.

I' starts from the

r-Axis and finishes

with a horizontal line

\
o~

to the t-Axis at r = a.

Notice that only the part N€ is bent. The induced

metric on M' from M X R extends the metric on M’\NE

smoothly and ends with the product metric on ({a)xN)xR.

To study the change of the curvature under this bending,

we begin with the following observations. (See [GL2])

(i} In NE’ let g% denote the tangent vector to the

geodesic i0,€] x {x} = 4. Let N be the unit normal to

M'" and V be the connection on M X R. Define the principle

curvatures to be the eigenvalues of the operator S(X) = ﬁgN.

55
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Then'YQ = LxR) n M' is a pPrinciple curve oﬁ M', i.e.,
the tangent vector T to Y is a principle directiopn of
the second fundamental forp S, and the associated
principle curvature at a point corresponding to
(r,t) e ¢ is exactly -k, where k is the curvature of
I' at that point.

(ii) Let ¢ be the angle betweén N and the t-dirvection

and'{el,.,.,em} be the orthonormal basis of principle

vectors for the operator S(X) = %cg%-on the hypersurface
{r} x N with principle curvatures Ai’ i=1,2,...,m.
Then'{el,...,em} are the principle vectors for § on M!

with principle curvatures X, = A;sin 8, since

. 3 3
N = sin 85? + cosreg? and

- T - 3 3
= Vei(S]_n ea—r + COos SBTJ

X 3 .
sing Veig? = (l151n8)ei.

- . m - e ' -
(ii1) Let Kij’ Kij’ and Kij denote the sectional

curvature of M, M x R, and M’ respectiveiy, corresponding
' 3 . 9

to the plane eiAej. Set eg = T = cose(g?) + 51n9(5f).

By the Gauss curvature equation,

K j = Kij + ;\iAj Where )\.O = —k

and 15 = AjSinB for j
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since M x R has the preduct metric, one seces that

— 2
Koj = KiL,j cos6
ar
Kij = KIJ for i,j > 1.
T by ;
Hence Koj KEL cos”o kAjSLnB
o1 °4
o= Kys + AassinZe for 4,5 > 1
ij ij 177 R

It follows that the scalar curvature k' of M' is given by

m m 5
k' = 3 K!'. = =% (K:. + A;A.sin“e)
=0 * 5= 4 T
1#] _ itj
n 2 m
+ 2 3 Ké Cos"9-2k ¢ Ajsine
1=l 55, i=1
m
. Jd 9 .2
= Kk-2 Ric(Z,-2) + ¢ A:Assin®e
3T’5T ?:j=1 i%37
i#j
+ 2 Ric(ii-jL)cosze - Zklg A.sing
or’a3r j=1 3
: m
. Jd 9 . 2 . 2
= g - 2 RlC(gF,g?)Sln 0 + z.=1AiAj31n 0. <

[

J
j




where « and Ric denote the scalar and Ricci Curvatures

'of M respectively.

L.et us denote the scalar curvature of the hypersurface

i

{r} x N in M by Kr+ Using the formula that Ko

3 5. m
K - 2 Ric(sF,%?) + E_H Aikj, we deduce
1,3i=1
i7]j
|
%:
.2 . 2 i
I e i
(A.1) K Ko+ (Kr K ZAiAj)51n 0 + Zkikj51n 9 “
|
- Zk(ZAj)sine : _ !

= KCOSZB + Krsinze = 2k(TxS)sine

where TrS is the trace of g,

It follows that

(A.2) Theoren, Let M™*l be a manifold Nm: Suppose that

(1) « >0
(ii) Trs 0, i.e., the trace of the second

fundamental fornm points inward.

(111) Ky 2.0 for r € [0,¢€].

Then in this tubular neighborhood [0,e] x N the -

metric can be deformed to a complete metric, which

ends with the product metric N X R near infinity, with




Scalar curvature k' > 0. Morcover, if k > @, TrS < 0,

and Ky > 0, then ' > 0,

§3. The Deformation Technique.

Let g = drz + g(r,x) be the metric near the boundary
N". We shall consider the deformation of the type
¢2(r}ar2 + fz(r)g(r,x). From now on we assume that
dimN = m > 2,

First let g = drz + fz(r)g(r,x) and V denote its
Cpnneqtiqn. Let V denote the connection of the original
metric g, g = (,)0, and g =< ,”7, Now if {g%,gi} is an

orthonormal basis of g, then {g%,ei=ei/ } is an
£

orthonormal basis of g. A straightforward computation

gives

Sl g o 1 7
(2.3) Lemma. (1) vye5 = § 7,85 = ge5 + 7 0y
3T 3 or
N L Z 9N 3
(2) veiej DAL AR SRR I ieJ’3T> ar
* Ve,
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- ‘ _ .3
where S(ei) = veiﬁ? .
1 . 8
e.or T %y * V. ar

Set A(%.) =<*v“§i%5€i>o. ~Then ACe;) =(5()),8,

= <§Iei),ei>, and we have

(A.4) Lemma () e Ve 5003 ) -(%)_2 - ?[J?L(Eim(%j)}

" (;12_ ‘—1)A(Ei)A(Ej). +<Vei€ejej,ei>
(B (% Ve 2jrer) = -1){<§(ei);ej>32

; (Vejveiej ey )

P e,051%525 0 7 Te, 019501 )

Combining these three formulas, we deduce

(A.5) Proposition. The sectional curvatures of

dre

g = drz + fz(r)g(r,x) for the plane sections e e,

given by
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Klejnes) = -3 % - (&4 A AEDT + (17 ~DAEAE)

1 - N
- (Ez“ ‘1) <£‘)(Ol),ej> 1 ;:_—2* K(ei/\ej]

) ] . 0 _
(A.6) &gﬁgﬁ. (1)<VeiViL§?,ei>,w 0
ar
2
3 - (£7) -
(2)<V_§_Ve.8r’ei>" — + - A(E.
oT
5 o= 9
+<v_§_veiﬁ’ei>
T

These three formulas give us

(A.7) Proposition. The sectional curvatures of

g = d.r2 + f%(r)g(r,x) corresponding to the plane
ot d .
sections ©iAxy are given by

fTT

Klesad) = - 20 - 28l Ay 4 k(3. A2
i%ar f T i’ i%ar

Choose'{gi} to be an orthonormal set of principle

vectors with principle curvatures_i&, i.e.

3
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H

2. and

B e a = = _
o(ei) = Vs 5 = A.e.. Then A(ei) i

ar i1

<g{ei)}ej} =0 for i # j, Therefore we have

. . _I'.2 P R - | 1
K(ti/\ej) = (“IT“) (‘f‘“) D\i"”\j) + (;2“ l)li)\j + ;2 K(eif\ej)
Klejae) = 22 - 2% ¢ ) wh = 9

It follows that for i > 1

* m
Ric(ei) = Ric(ei,ei) = I K{eiAej)
j#i
- eendH? o s n(EIT,
" (%7 -1)X; (Tr5-X, )
+-(l-%?)K(§%Aei) + %? Ric (%)
RicGL) = -m(fYy - 28y drs o RTe(2)
9T fﬁ_ f ar’

From this and the fact that E} = kg - 2R1c[§%) +

), we deduce that

(A.8) Proposition. Suppose that g = dr27+rg(r,x) and

g = dr? + fz(r)g(r,x) have scalar curvatures k and g

Tespectively. Then




K o= —m[m—l)(él)z - mez- (2m+2j£i TrS

o "1 — _
- + (w—*— -1 ) K K
f2 T

it

where TrS is the trace of § g%, and k. is the scalar
}

v
curvature of the hypersurface {r} x N at distance r to

the beundary.

Similar computations give us the following formulus

for the deformation ¢2(r)dr2 + g(r,x) (see also.[ing]).

(A.9) Proposition. Let gl = ¢2(r)dr2 + glr,x) and K

and Ric' denote the sectional and Ricci curvature of g',

Suppose that {E&} is an orthonormal set of principle

vectors of § = Vg% with principle curvatures Xi’
9 _ 1 3 |
and 35 - § 5T Then
Rlc'(jL 1_ RlC(jL) + O 11y
2 oT b
¢
Ric'(8.) = Ric(s.) + [%g + (1-2,)TrS)7,
+ (A s [R(e nd) + T2
¢2 i%ar -7

RIE(s;) + ;LS X+ (1-17) [ﬁ—itr(;i) - FIE(E,)]

where RlCr is the Ricci curvature of the hypersurface

{r} x N at distance r to the boundary.
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(A.10Y Proposition. Suppose that g = dr?

= + g(r,x) and
g' = % (r)ar?

+ g(r,x) has scalar curvatures Kk and «!

respectively} Then
- 1 - 1 o —
- TrS + = ¥ + (1-=)K
3 2 2" r
¢ ¢ ¢

where Er is the scalar curvature of {r} x N.

Combine (A.8) and (A 10),

formula for

we have the following
the scalar curvature K' of gt = ¢2(r)dr2

+ fz(r)g(r,x) in terms of K, E} and TrS of § = dr? + g(r,x).

(A.11) k' = :&%’Q(g_ﬂ - 2n £ L+ om o £
0 ¢ ¢
N Try% - —7—«(2:;*2) i
* (1_ - l_)E + 1_ ©

(A.12) Theoren. Let M be a manifold with boundary N™

and m = dimN > Z. Suppose that the tubular neighborhood

of N is normalized to be of width 1,

i.e., [0,1] x N.

m+1 O [0,1] x N, and Ky.>_ 0, then

If « >0, k >‘16m/

the metric can be deformed to a complete metric, which

ends with the product metric N x R near infinity,

with

scalar curvature «! > 0.
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l1om

(A.lS)rRemQEE. (1) For m > 3, since m(m+1] v
the condition "¥ > 16m,, can be replaced by ”E'i the

m+1

N
scalar curvature of the standard sphere S 1 of the same
dimension."

(2) «' > 0 provided that ¥ > 0 and

Proof of the theorem. 1In (A.11), set ¢ = ',

. . : L . —
Then 22' - (2m£2) éh = 0, i.e., the term involving Tr§

¢ ¢

vanishes. Now we want to find a positive smooth function

f such that (1) f(r) = 0 for r > 1.

[l
%]

T * m+1
2) lim f{r) = « and j p = f £ diverges,
r-+0 1 1

Cem(mel) FTL 2 £ 1 o' £' 1 —
(3) wﬂﬁﬂi_;(w_ Ckme— S+ 2t T T > 0,
¢2 i f ¢2 ¢3 £ o-

. I + 2+3 (f‘ 2 2 (f” Y» 0 f 0 < <1
i.e., EZEIE (ic+(m m) YHJ m ?m) > or r < 1.

li
o

—_— T

Let k = the minimum of kK on [0,1] x N and gm

Then it suffices to find a function g satisfying
(a) g(xr) = 0 for r > 1

(b) 1lim g(r) = -=
. ()

(t) k + [m2+m)g2—2mg' > 0.
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The condition (b) will guarantee us 1 function f
increases rapidly when v tends to zero and hence
satisfies (2).

Let g = -% + (c>0), Then

k + (m2+m)g2 - 2mg! = l7{r2(k+c2(m2+m)) - 2(m2+m)cr
T

+ (m2+m)c2—2mc}

1

= 7 h(r).
T
h(0) = m®m)c? - zmc 5 0 iff ¢ o _2 and
- - = m+l .
h(1l) = k - 2mc > 0 iff k > 2mc.

| 2. 2.
The discriminant of h(r) < 0 iff k » 25 (%wm) _

= m+ijc-Z2 T %g-

k, = 26m is the sméllesf humber if we choose ¢ = _4_
0 m+1 m+1°
This function g = -% + c(c=$§T) satisfies (a) (b) (),

except that it is not smooth at T

%g%, then we can smooth the corner -

1.

|

If we assume k »

out without affecting the inequality (c).

+ r a
? | e |
1 Thus f = ¢ 1 = CT-Cp-c |

— \r ) :

> a |

/- | (¢=frr) |

is the function we are

tzg(w seeking for.




It is easy to see that the trace of § =-V§% in

this new metric is negative near infinity; therefore,

using theorem (A.2)}, we can acain deform the metric
& 3 &

near infinity to the product metric on N x R. Q.E.D.




5. THE INDEX THEOREMS

In this section, we will set up the framework of
the heat equation method and derive the index formulus
for the Dirac operator. We shall omit the proofs of most
of the standard facts here because they are just trivial
modification of the proofs given in [C3][CT]. These
papers are our main references for this section,

Let x®+l

Co’l(Nm) UM be a space with conical
singularity. We first éssume that the Dirac operator
D on X is self-adjoint, i.e., the eigenvalues of 5,
the Dirac operator on N, are greater than or equal to
% . Let A= ﬁ*ﬁ = ﬁ;ﬁ be the Dirac Laplacian. The
following facts can be proved by exactly the same.
arguments as in [C3]. ‘

(1) The heat kernel of the Dirac Laplacian

E(u,v,t) = ¢ ™ on X is of trace class, i.e,,

(5.1) ) J E(v,v,t) < =
X

This implies that the Green's operator is

compact; therefore, the Fredholm theory can be applied

to show that the eigenvalues of A on X are discrete and




HY

that the Lz—completeness of the elgenspinors of A holds,
(2) Let El and L, denote the heat kernel on C(N)

and M respectively., Then for all N,

N

(5.2) If E(u,u,t) - f El(u,u,t) < KNtl,

0,10 Co,1 00

and hence

[ Bovv,e - | RIS I [ M CRors gy yor
X : CO I(N) M

Thus the study of the trace of the heaf kernel,

trE(t), is reduced to studying'f E,(u,u,t) where
B Co 1M .

E1 is the heat kernel of the Dirac Laplacian on the

cone C(N). Using the conformal homogeneity of C(N)Y,

one can again reduce the explicit calculation of the

coefficients of the'asymptotic expansion of J rEl(u,u,t)
Co,1 (N

to the calculation of the pointwise coefficients of

trEl(tJ at v = 1 and to the calculation of certain

global spectral invariant P(N) of N, which is the

contribution from the singularity at the cone tip {P}.

(3) Let the pointwise asymptotic expansion of
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el ]

El((r,x),(r,x),t) be Zaj/z(r,x)t 2z where (r,x) = u

is the (polar) coordinate on the cone C(N). Define

aj/z(l) = jNaj/z(l,x), and uk(t) = fN[trEl(l,x,t)

¥ _
aj/z(l,x)t }. Let p.f.J aj/z(v,t) denote

the finite part of the (divergent) integral

J Ejﬂz(v’t) = éig_J ﬁg/z(v,t) where Eﬁ/z(v,t) are the
X L :

€
ccefficients of the pointwise aSymptotic expansion of
E(v,v,tj on X, and XE = X\CO E(N). (See [C3]), i.e.,
- b
(

. ! -
fMaj/z(y) + GV jNaj/z(l,x), if j#m=+1,

. X J aj/z(y), if j=m+1

\

Then we have

e g
(5.3) trE(t) = J E(v,v,t) ~ z (p.f.J 53/2ﬁ z
. X j=0 X

1
- 78n,1(1)log t+ y(N),
Z
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o 1
-where 3§ (N) = 5'{f t_ltrEl(l,x)df + f t-luk(t)dt
' 0N 0

—

+ a., (1) R
me1 /2770 mel g }
0 7

[

]
]

It can be seen that this contribution 20 (N) is
formally the constant term in the Laurent éxpansion at
s = 0 of P(SJC(Q) at r = 1 if the relation between the
heat kernel and the zeta functibn holds, i.e.,

®
(5.4) risyecs) = [ e domthgy

0
as in the compact case. Indeed, this felation will
follow from the explicit calculation of the functional
calculus of the (Dirac) Laplacian A on the cone c(N)
(see [C3]). |

We now outline the theory_of the functional calculus
of the Laplacian on cones. For details, see [C3] and
[CT]. Recall that if g is a smooth function with

cohpact support in (0,w), its Hankel transform is

defined by




o0

Hv(g)(A) = J Jv(lr)g(r]rdr ﬁhere Jv is the
: 0 :

Bessel function of order v and v » -1,

The Hankel inversion formula (see [EMOT] p. 73 and [W})

says that

(5.5) glr) = Hv[Hv(g)][r) for v » -1.

Moreover we have the Plancherel formula (see [Sn])

co o

f [g(r)[zrdr = f ]Hv(g)(iJIZAdA.
0 0

Thus H can be ¢xtended to an isometry from

L ((0,=),rdr) to L ((0, m) Adx) : Define

. ) ]
Ag='g""%’g'+[plu- (]114 )]lzg’

T

the ordinary differential operator in (2.6). In view of

(2.6) - (2.9), we have

(5.6) B, ("% ¢) = 2% (v )




where ¢ = “»— and Vi T m—5=— . Set Sj = ;%(¢33§F . ¢j)
where D¢j = uj¢j and “¢jllN = 1. Then the map F defined
by

(5.7 6 = ¢

£2(r)ST + £5(1)S] » 3[A%H (r “ffy st
j J J J J i \)'f' J J
i
+ A H (r"“£23(\)s]]
v J J
j

provides an isometry of L2 spinors on the {r,x) cone onto

L2 spinors on the (i,y) cone such that

E(Ap) = AZF(B) for all ¢ ¢ dom{A)

t.€., 4 spectral representation of A while A is carried
into multiplication by Az. Notice that without the

assumption that ]uj] > %, we must include some H . i
-V

(RS

in (5.6)(5.7), corresponding to each self-adjoint
extension of (Do)z. We will discuss this later.
Combining this spectral representation with the

Hankel inversion formula, we find that, at least formally,

the following relation holds for suitable f.




L0 L O0g) 85 ()@ 85 (xy)
j j

V.

+J _(dry)J _(lrz)S;(xl)Qngbwj]-
V. :
' J J

Notice ™ = R the Hankel

transtform- urier transform in polar

coordinatés the representation of the

nv}réion formula.
-befinterpreted as a
ense. It defines
erator D on N,
-bbservation

.culus of B on N
~to [C3] and [CT]

nd the details of

cefficients

need to consider the



EXamplé;l. (The Heat Kernel e-tA, ice., £(0) = e"tk)

Using Weber's second exponential integral (IW]

P- 395), we have

el

2
-tA C -2t + +
(5.9) e = (rlrz) ;j e LI*(Arl)J +(Ar2)8j@g€%
3’ g vj K -
; J
+J A (s
vf( rlij?( rZ)SJCD J]AdA
J J
-(I‘ +r0) 2
= (r;r))° Z?I——e- 1 )s ®s;
UJ
T:T

172, - i o
\Jj -~ J

where Iv is the modified Bessel function of order v,
The elliptic es stimates, together with the
asymptotic expansion of Iv’ show that (5.9) converge

uniformly on compact subsets of RT x C(N) x c(N).

- Example 2. (the zeta function r(sya >, i.e., £(2)

r(syx’?®

J .
This‘is‘given by the Weber-Schafheitlin integral
(W] p. 401).
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(5.10) T(SJJ A“Zsz(ArI}Jv(ArZ}Adi
0
Yy —v+2[s—1)r(v_s*1)

- Lz F(l—s+v,s+1,v+l,ri/T§J

if Ty o< oTy, and v > s-1 > . % ,

where F is the Hypergeometric function.

We are primarily interested in the trace of the

corresponding kernel at ry =1y, = 1. 1In this case {(5.10)

1 T(v-s+1)
2V T{v+s)

is reduced to T(s-%} (see [Le] p. 243),

and the kernel is given by

(5.11) T(s)z(s) = r(s)a S
r1=r2=1
N P(v?~s+l) - T(vi-5+1)
plls2e) [ SI @S+ _[_J“._37®S37].

j 2vm P(vj+s) J J- P(v5+s) J

It follows from a careful examination of {5.9)
and (5.11) that a similar relation to (5.4) holds, and

we can compute the coefficients of the asymptotic

expansion ¢f the heat kernel in terms of the residues of




the zeta function F(s)z(s) at simple poles;‘see [C3]

Tor the precise statements and the proofs. Thus the
contribution to the constant term from the singularity
V(N) is indeed the constant term of the Laurent expansion

of I'(s)z(s) at s = 0, i.e.,

1 a
(5.12) Pp(N) = 7 ds [sT(s)z(s)]
s=0,
To compute this term out explicitly, we need the
following lemma from [C3]. Let_Bﬂ denote the g-th

-1 By
Bernoulli number and CR = (-1) T -

| - -2 > -2
(5.13) Lemma (1) l%ﬁ—i% ~ Y 5(1+§+s Gy 9

I'{v+s g=1

+ 0(52) as v + «

T(v-s+1) 1-2s > -24
() rvesy =~ v (Lrs 2 Cpv ™)

+ 0(52) as v -+ o

Now we are ready to compute the index of DY on the
even dimensional space X"'1 - Co 1™ U M. Assume
) 2

that m+1 = 2k. Recall that the oundle of spinors S on

X splits into S° ® S™ where S and S are the two




irreducible bundles corresponding to the two irreducible
spin-representations of Spin(2k). Since N™ has- the

induced spin structure, SIN splits into two non-

- isomorphic modules TV and T~ over CL(2k-1) corresponding
to the (+) and (-) eigenspace of multiplication by the
volume fprm Wol_1 = ikeleZ""’eZk—l on N™ respectively,

where i = /TT'and'{ej} is an orthonormal basis on N.

Note that T' and T~ are isomorphic irreducible bundles

of spinors coming from the two isomorphic spin repre-
sentations of Spin(2k-1). Let us choose T to be the
irreducible bundle of spinors on Nm, i.e., Tt = S(N) in
the notation of section 2. Then the embedding of
S(N) into S(C(N)) is given by the inclusion
+ R - ot 3 +
TCS‘N—T @T andSlN—T @a—fT- To
fix the orientation, we define the volume form on
.k 3 L
C(N) to be Wok & 1 3¥€1€2s::-5€5K_ 1+ Then it is easy
to check that if'{¢i} is a local spinor basis of
_ ot el = .3 = B S e
S(N) =T » then {E(¢l+ﬁ ¢i)} and {E(q)l{-B—f Sbl)}
are the local orthonormal bases of S* and S~ on the
cone CO 1(N) respectively.
, ’ ,
Let D¥,AT denote D,s restricted to S*. Then the

heat ¢quation method of computing the index (see

[APS]) gives
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il

(5.14) Index(D") = dim Ker(D") - dim Ker (T )

3 -

= tr(e—tA ) tr(e;tA )
— + -
B T

= the constant term Ay in the
asymptotic expansion of

tr(m2k«ewtﬂ)

where Wy is the volume form on sz and "-" is the
module multiplication to the first variable of the heat

kernel e tA E(u,v,t).

According to (5.3}, one easily sees that Ay
consists of two terms. The first term is the integral

of the same local contribution from the interior as in

~the smooth case. - By a theorem of Gilkey [ABP], this

is the integral of the R~polynomia1 of Pontrjagin |

forms Pi over M:f ﬁ(P), which is equal to J R(P}
M X

since Rl : = 0 (see [C3]).
CO,l(N) ;

We now compute the second contribution y (N).

Prom (5.11)(5.12), it follows that

(5.15) P (N) =‘% f g% [s(r(s)w,-z(s))]
N |

s=0
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I‘(\)F s+1)
2 TS5+
where P(s)w7k~c(s) = I [(s-%) i S. & S.
“ i Tyt J 1
T(v.-s+1) }
- - S: ® S:]
F(vj+s) J J
PSSy
where v; = J

2

Using (5.13) and the assumption that [uji > %, we obtain

J ] 14 . . I .
(5.16) P (N) = _?E S"[}_.(\Jj +s L C v, )

s=0 p=1 % J

_1-25 e _-28-2s+1]
- Z(vj *s % C,v. )}

-2
s.{ & [(u 12) +SZC (u 1) st*l]
s={ TIPS 2= 1

= 29-2s+1
jE 4'32(:9’(3-14')25]
3 2=1

-2 28-2s5+]1
LI (G0 L zcm—e) 28-2s+1,
<L g=1 %
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-25-2%

An application of the binomial expansion gives

~-(1-28)u78S 4 g
k=1

i-2s

(5.17:} (u-l/a) - (u+1/2le25

ak(SJSU

where ay (s) is a polynomial in s.

Therefore y(N) = 3 9| {2 [s(1-25)u725)
' ®ls=0 H.>k o J
J_E
, -25
- I [s(1-2s)n.“"7}
Hi<-% J
J-—..,
-7 4 ERCICHE 209) ) where

nes) = % (sign wg)lug] .
v #0
J
This is because n(s) is holomorphic for Re(s) » - %;
see [APS] and [C3].
Thus we can summarize what we have obtained as

follows.

(5.18) Theorem. Let XZk = CO 1(N) U M be a space with
a conical singularity. Assume that [uj] i % where
'{uﬁ} are the eigenvalues of D op N; i.e., T is

self-adjoint. Then

Index(D") = fxﬁ(p) + B%OJ




where A is the Hirzebruch A-polynomial of Pontrjagin

forms p ='{Pi}.

Although this index formula is equivalent to the
one obtained by Atiyah; Patodi, and Singer [APS)
for manifolds with boundary, we wish to emphasize that
(5.18) is the natural index formula for g class of
compact singular spaces which are in themselves
interesting geometric objects (compare [Cl][CSj)

We now treat the general case without assuming
[Pj] > ? Note that we already"had three closed
extensions of Dy DO’ p» and D, where ﬁb is the self-
adjoint extension under the ideal boundary condition
(3.4). Before computing the indices of these

operators, we first examine the domains of T D

0o’

<
DbDb’ and D D

(5.19) (1) The doméin of DODO = AD contains all the
positive solutions (2.10) (2. 11)(2.14) (2. 16) since
(D a,¢> = <a, D¢) for all % € dom(D) and all positive
solutions a; moreover, no negative solution is in the
dom(ﬁo) or the dom(AD) by (2.32).

(2) For D.

= 4, it follows fropm (2.19)(2.22)
b0 = 4y .
that the negative solution r 27T + Corresponding
' v

j




S+l :

to 0 <« ”j < % and r J o corresponding to -z < u: < 0

. Z ]
vV J ,
el

T

are in the dom(Ab), but the pozitive solutions r J .
Y
~m+1

for 0 < . < % and v 2 J i
1 Uj

j < 0 are not.

(3) For DD = ay, it also follows from (2.19)(2.22)

-m+1 ~mt+1

2 2

J o, and r J _ for

Y5 | Vj

that the negative solutions

]uj{ < % are in the dom(AN), but the positive solutions

-m+1 -m+]

2 Z

r J , and t J _ for l“jl < % are not.

-+
\)j ‘Jj

For the functional calculus of the operators

Aps Ay, and Ay, We must include or exclude J.
s

54

—

in (5.7) - (5.11) according to (5.19). Applying heat
equation method to compute the indices as in (5.14),

we have

(5.20) Index(ﬁg) = tr(e V) - tr(e

Il
c+
=

~
o
—

1
ot
]

—
Lo

(5.21)  Index(D;)




B ~thy -tap
(5.22) Index(D') = tr(e ) - tr(e ).

Simple calculations similar to {5.15) - (5.17)
with appropriate iv? for |u.| < % give us the following

theoremn,

(5.23) Theorenm.

I

(1) Index(D}) = [ Ap) + 0L0)-h

X

- };‘ .
. dim(E. )
O<y <l .
HJ 3 . UJ
where h = dim Ker (D), and Eu is the eigenspaca
of D with eigenvalue TR

(2) Index(ﬁg) = f ECP) + n(0)
| X

(3) Index(D) = [ Rgp) + 1O)+h

X '%<ﬁj<0 j

Proof. () y(N) = -4 | o
S
s=0
T'{v.-s5+1 Ty .- .
x ( 578 ) ) r{-v; s+1}_+ F(UJ s+il
- [ . o =11
J vaj+5) |uJ|<%P(‘vj+S) lujlz%r(uj+s)




+ -
) I'{v,-s+1) F(—v.—s+])
:‘%'gg TR0 I R — S e
s=0 IUJ ,<1/2F(\«‘j"'5) IUJI<1/? I'(—\)j“f'S)
,i_ - -
I'(v;-s5+1) I'(v,;-s+1)
[z —d -3 —— ]}
lyj lf_l/z T(\)j+5) fujlf_l’a FFVj'FS)
=nl0sh o i )
O<Uj<1/2 yj
N 1
2y = - 24 .
|s=0
| T(vi-s+1) r(vi-s+1) T(-v:-s+1)
e e R . i DG
: R
,“j ]_.3%_ r(vj+s) -1/2<uj<0 F(vj+s) 0<uj<1/2 P_(-vj+s)
I'(v.-s+1 T(v:-s+1 F(-v.-s+1
L, OG-t ) T (-v]-5+1)

Iujfg% P(v;+5)

=-%n(0)

0<pj<% P(v5+s)

—%<uj<0 T(-v;+5)




- 1 d
(3) p(N) = - » — 5
2 ds 5=0
PU}THS**IJ T('“\JT-S-!-]_]
{ Z i .-+ Z :1
g2k T{vg+s) lujl<s T (-v]+s)
T(vg-s+1) I(v;-s+1)
- j Ly 3 :
. lujwz% T(vj+sj lﬂj|<% P(v5+s)
_ n{0)Y+h W . o t
B L dim(E ). Q.E.D. |
T -L<p <0 g | |
J _ |
Note that : - : !
Index(D") - Index(Dy) ~
= I dim(E. ) |
lUjld(e | Hj |

is also a trivial consequence of (2.21) and the above

(5.19)(1).

Combining (4.3) with (5.18), we thus have |

(5.24) Theorem. Suppose that « > 0 and k > 0 somewhere.

Then f




Index(D") = 0 = j ﬁ(p} + n(0)
x 2

(5.25) Remark. If we consider spinors with coefficients

in a bundle Ek which is (locally) flat in a neighborhood

of the singularity at the cone tip, then from [AS]{ABP],

it is easy to see that the index formula becomes

wffFy o n(0) .o . 2
Tndex (T) JX ChB)-a + M0 ag gy ) 5 1

where Ch(E) is the Chern character of E; Ch(E) = k + Chl(E)
+ Ch AGIEENE

Notice that here both n(0) and’ {u 1

belong to the Dlrac operator D on SleOTS with coeffi-

cients in the bundle E N |

We now consider the relative index of generalized

‘Dirac operators on spinor with coefficients in a

hermitian bundle Ek, which is trivial and flat in a

k
£ x Co,u(N)

nelghborhood of {p}; i.e. Ekl )
CO,u(N“

and the curvature RE satisfies RE = 0.

lcd’u(N)

Let D1 and D, denote the (generalized) Dirac

operator on sections of the Bundles S(X) ® E and S(X) @ Ck

respectively. Define the relative index of D; and D

(see [GL3]) to be

2




5.26) Ind(D7,D%) = Index(D,) - Index (D).
172 1 ‘ 2

Similarly,

" —_ - N b _ e
Ind(Dl,O’DZ,O) = lndcx(Dljo)_ Index(Dz,O)

Then it follows from (5.23) and (5.25) that

+ o - ~
l,O,DZ,O) =J CI](E]'A,
X

(5.27) Ind(ﬁi,ﬁ;) = Ind(D

where Ch(E) = Chy (E) + Ch,(B) #.--= Ch(E)-k, the roduced
Chern character.

The notion of relative index was first exploited
by Gromov and Lawson in [GL3] for complete manifolds
with uniformly positive curvature condition.at infinity.
Our notion (5.26j i1s called the analytical relative
index in-[GLS] and (5.27) actually shows that the analytical
rel. index is equal to the topological rel. index
(see [GL3]) by way of the (absolute) index formulas
(5.23) in our case. Notice that we haven't assumed
any positive curvature condition near the cone tip vyet,

Now, in view of (4.5), we can deduce the following
result from (5.27). Let o € r(S(X)) and ¢ € I'(E).

1

E
Put' Ry(o®e) = 3 'Ek[ejekG) ® Rg

{e) as in (1.1
i, k

-

J

and (1.12).




T
MZ&

1

(5.28) Theorem. Suppose that on X = Cy (U
T 3

K i.4]]Q)” and k > 4|| By || somewhere.

Then
f Ch(E)-A = 0
X

This serves as a topological obstruction to the

existence of such a metric, Notice that éh(E)
| | Co,1 M)
3

1!
<

-

since RE[ 5 0.
CO,u(N)

We can also define the notion of enlargeability

and obtain similar results to those in IGL2}.

(5.29)'Q§§inition. A riemannian n-manifold X" (possibly

incomplete) is said to be enlargeable if for v € > 0,

there exists a finite spin covering manifold X + X

and €-contracting map ﬁ -+ Sn, which is constant outside
a compact subset and is of non—zero.degree.

Here the assﬁmption on the finiteness of the
covering is essential for preserving-the type of

singularities after passing to the covering space. One

easily sees that the same untwisting trick of Gromov
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and Lawson [GL2] can be applied to prove the following

theoremnm.

(5.30} Theorem. Suppose that in X = Cy 1(N) U MZk,
2

M is even dimensional and the interior of M is enlargeable.

Then there exists no metric, which is conical near the
singularity at the cone tip, with scalar curvature

¥ such that « > 0 and k > 0 on the interior of M.

[Proof] We proceed exactly as in the proof of
Theorem 3.1 in [GL2]. Assume that k satisfies K >0 ' :
and « > 0 and Y, the interior of M. Since Y is

enlargeable, for any € > 0 there exist a finite spin |

o

cover Y - Y and an €-contracting map of non-zero degree

i:Y > g2k which is constant outside a compact subset

Zc Y. Choose a complex Vector bundle EO over S 2k

such that Cp (Bg) # 0 where Ck is the top dlmen51ona1

Chern class. Let X denote the space formed by attaching

~

cones to Y along it boundary. Notice that the metric

~

near the boundary of Y can be smoofhly extended tb an
attached cone bécause % is a finite cover of Y and has
the induced metric from Y. Then the map £ can be
extended to i by sending the attached cones to the same

* it
constant point. Let f Ey = E be the pull back of E, o
: ' . \




by I with the induced connection. If € is small enough,

then k > 4”30]] on Z and hence k > 4{lr 41} on the whole

~

X. It follows from (5.28) that

o
1l

P 1 o
X N

3

1 .
ICEARR deg({f) JSZk Lk(EO) 7 0

This is a contradiction. Q.E.D.
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