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Abstract of the Dissertation

Extension Aspects and New Examples of Positively
Ricecl Curved Manlfolds

by
Paul Mason Ingram, Jr.
Doctor of Pnillosophy

in

Mathematics
State Undiverslty of New York at 3teny Brook

May, 1981

Posltlively éurﬁed compact Riemannlan manifolds with
boundary are studiled from the viewpolnt of extendlng the
metric to a complete metric wlth posltive Riccil curvature.
Sufficient conditions on the boundary are glven for mani-
folds bounded by a closed hypersurface In a sphere and other
simple spaces.

Also; a large new class of compact manlfolds wilth positive
Ricel curvature 1s constructed, in & manner pertinent to the

above extenslon problem.
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INTRODUCTTON

In the global structure theory for complete Riemannian

manifolds with positlive curvature, 1t 1s a baslec guestion

\
whether or not the condition of Ricci curvature Ric = 0 1s |
less restrictive than the conditlon of sectlional curvature
K = 0. More preclsely, does there exist a manifold M that
admlts a complete metric wlth Ric = O, but no complete
metric wilth K = 07 It 1s now generally expected that the
answer 1s yes, but no ekample whatsoever 1s known up to now,
Tor M compact or not. There are varlous reasons why such
examples should be ample, which we wlll not discuss here in
detgil. We Just mentlon that numerocus interestling spaces
even wlth Ric > 0 have been constructed more recently, for
example among Brleskorn varleties (compact case, [H]), and
among certaln fiber bundles (compact and non-compact caées),
whereas there are only comparatively few spaces known with
K = 0., It should also be polnted out.that certaln manifolds
with Ric > O do not admlt K > O, by falrly simple arguments
involving the fundamental group.

Our work was primarlly directed toward the construction
of‘non—compact examples as described above. The only general
result for complete manlfolds with K = O 1s that necessarily

they must be diffeomorphic to vector bundles over compact mani-~

folds. We have been trying to construct complete non-compact




manlfolds with Rlec » C which are topologlcally not vector |
bundles over a compact manifoid and thus do not admit K = 0.
We have obtained an abundance of likely candidates where the

problem 18 reduced to the verification of a purely numerical

condltion that can be easlly satlsfled in some non-trivial .

o cases (which are still bundles, however).

We feel 1t 1s only because of the somewhat complicated
nature of .this conditlion that we have no explicilt eiamples
as yet. In the course of our Ilnvestlgation we have also
found a very large new clasé of compact manlifolds wlth strilct-
ly positive Riccl curvature.

The maln 1ldea in our approach to the construction of com-
plete manifolds wlth Ric > 0 is to modilfy the metric of a com-
pact positively curved manifold M wilth boundary dM in the in-
terlor M near the boundary. This 1s essentlally equlvalent
to the problem of extending M to a complete Rlemannlan manifold
wlth Ric * 0, which is an Interesting question in 1ts own right.
Of coursge the shape of the boundary will play a domlnant role.

. 'l'he analqgods problem for poéibive secllonal curvature has a
golution whenever oM 1s convex [K], but convexity would be a

much too restrictive boundary condiftion in our more subtle

situation. We will give a sufficient condition on aM (at

least in case the Interlor melrlc 1s reasonably simple) under

which the above extension problem has a solution. In parti-




- cular, the mean curvature of the boundary, and more surprilsg-

T mmmmmmﬁmf\

ihgly the Riccl curvature of the boundary in the induced

metric should be positive.




1. Deformations of Rlcci curvature near a boundary

For baslc facts In Riemannlan geometry, we refer to
(CE, [GKM], [KN].

In this chapter, Mn+l 1s a compact connected Rlemannian
manifold with smooth boundary oM and mebtric g. The interior
of M will be denoted by M.

The process referred to above for extending a compact mani-

fold with boundary to a complete manifold with constraints on the

Ricci curvature 1s based on a falrly natural deformation of the
. metric g in M near oM, which‘wgs also used in [K], but turns

out to be more delicate in our situation. The metric g induces
a canonical functlon on M, the me tric distance to the boundary
oM, which we denote by t : M *Zm.. This funetion is smooth in
36, the one-sided tubular neigﬁborhood of oM of radius €, for

€ > 0 gufficiently small. The change of metrlc occurs entirely
in Ke and our attention will be restricted to this tube from |
now on,

The new metric g can be visualized as the metric induced
on the graph of a suitable "warping" function £ : M - R from
the product metric in M X IR, _

This function T satisfies the following conditlions:

(L) £ ec™(mM),

(L4) £ =0 on M\:re s

(111) £ depends only on b,

(lv) f is decreasing with t and £ = o as t = Q.
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in order to make curvature estimates accessible, we use
an alternate description of g in terms of the brthogonal split-

ting of the tangent bundle over Ue induced by &.

Definltion. The vertical distribution U is the'l—dimensional

distribution in ¥ induced by 'Vt = grad t.

The vertical geodesic v, based at x € 3N is the integral

curve of vt starting at x. (Clearly, VvVt has unit length.)

The horizontal dlstribution ¥ 1s the n-dimenslonal dis-

tribution in Ue of hyperplanes tangent to level sets of t.

These level gets (or equidistant sets from the boundary). are




smooth hypersurfaces in Te whilch we will call horizontal

- hyperfaces and denote by I

b

We can now make the formal definition of the new "warped"

metrlc g.
r Ex s, %X € M\He,
g|x = < _
o — —
cf‘(t' (X))glu @glﬁ L x GHGJ
x X
\
where « : - (0,€] » R satisfles the following conditlons:
) o € 02,
) ople) = 1, m(i)(e) =0, 1 = 1,2 (for g to be Cg),

1
2
3) o 1ls decreasing,
I

) Xs p(t)dt diverges, (for completeness of g).

Remark. Taking w2=;L+(f')2 gives the complete metric described

above, in terms of the warping function f.
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A functlon ¢ satlsfying 1) — 4) will ve called admissible.

Having recast the definitlon of g 1n terms of v, ¥, and o,
the Rlcel tensor for g, denoted Ric, can be computed in terms of

the(bfiginéi Ricei tensor Ric, the function ¢ and the second

fundamental tensor St of the horlizontal hypersurfaces H taken

t.’
relative to the unit outward normal T = -Vi to Ht' We will often

write 3 for S, 1If there is no danger of confusion. The orlglnal

v
metric g will be denoted < , >.

- Proposltion 1.1. ILet N he a vgrtical vector field, and ¥,y be

horizontal vector fields. Then: %;J<%?:,M!;
P j

(1) Ric(N,N) = Ric(n,N) + %E HNH2 tr 8,

(2) Ric(N,X) = Ric(N,X),

ﬁ-]‘_qa(x,y) -+ LT_C%-}- (1 }.2,) tr & L ] <8 tX: 7> Tl ‘,
P o

Il

(3) Ric(X,Y)

. - 2 R
_é_(':l_'f—)" Hl) [<H(rl-1)X)Y)T> + QLC}[JX,Y>], ) AR

[

®

We proceed In three steps; first, the derivatlon of the levl-
Clvita connectlion v for g3 second, the derivatlon of the curvature
tensor R; and finally, contractlon of R to Ric.

The superscripts h and v to vector fields refer %o horizontal‘
and vertical components of these flelds.

We willjuse the followlng obvious facts about horilzontal
and vertlcal fields:

(a) If ¥X,Y horizontal, bthen [X,Y] is horizontal, since

H is Involutive. -




(b) If X € ¥, then Xe¢ = O,

(c) X € ¥ implies [X,T] € ¥, because
M " —}— m 1 i = T l
<X, Tl 1> = SXT, T - [T, TS ~ <X,V T>] = 35X = 0.

We first compute the Levi-Civita connection v for g. The

metric g will also be wriltten < , >q

Iemma 1,2: (1) v N = 7 N + (%&)N,

X = Eﬁx is horlzontal,

i v h = (Vv ﬁ
() (7t ) » %Y = VY + (—lgd)(VXY)V
)Y :l;g(”ﬁXY)V. @

i

(5) (v,

Proof of Lemma 1.2: To prove the formulas (1) - (3}, we compute

the horizontal and vertical componentbts of each left hand side
uging the implicit definltion of the Levli-Clvlta connectlon 1n
terms of the metric.

G.

i}

(1) Tt suffices to show v,T = (-['C-;ﬁ)'r, since 1

Vertical component:

2<VTT,T>O = T<T,T>O i
= (")
= 29Ty .
So (VTT)V = <VTT’2> I , since = ig a unit Vértical vector
0 @ ¥

wlth respect to g

= (I®yp
¥

"




Horlzontal component :

2<VTT,X>O = T<T,X>O + T<X,T>O - h<T,T>O

+ QGIT, Ty - <BLT,XD> ) + <X, T,

Q 0

-0 | by (b} and(c). .

h Tep
So (vpl)" = 0, and v,T = (3?)r.

(2) It suffices to compute v, T

Vertical component:

1
<Y Ty = KT, T = 0, - by (b) s

[ IV= :'_'r1v
So (VXE) 0 (VXL) .

~ Horizontal component:

+ YLK, Ty = <L Y >y + < LY, X]>

It

X<T, > + <Y, XD - Y<X, T

b OCY,IK,TI ~ <X, YIS <1, [Y,X ]S

Il

2<$£T,Y>

Il

2T, I, Yo

i

g0 (v.T)P

X (5’T)h and v, T = v T.

X X X

(3) follows from (2)
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. . = ; -7
(&) E\VXY,Z>O = XY, 20 4 YT, XD = 2K, Yoy

+ <2, (X, Y]y = <K YL 210 + <YL [Z,X]5

Ii

XY, 7> + Y<Z,X> = Z<K, ¥>
FCT, K, YT = <X, [Y,21> + <X, [Z2,XD>
= 2<§X¥,z>

= 2<ﬁkY,Z>O .

So (v, Y)" = (VY

n
X )-'

it

(5)  <v, ¥, XY, Mo = <Y, V' T

= XY, 0> - <Y, V0> by (2)

S0 (v,Y

I
S
<]

b
o
Y

Having computed the Levi-Clvita connectlon for g, we next
derive those terms of the curvature tensor R for g needed to

compute Ric. The curvature tensor for ¢ willl be denoted by R .

Lemma, 1.3.

(1) R(X,MN = K(X,N)N +~% /N,T>2-SX,
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(2) R{X,Y)Z = R(X,Y)Z

+ (},2__1)[<“pt(x,y)z,T>T + <8X,Z>SY - <SY,Z>SX).
@

(3) R,0)Y = ROLX)Y + (32X, v> + (35 - 1)<RON,X)Y, )T
o P .

Proof of lemma 1.3:

(1) It suffices to compute R(X,T)L.

R(X,T)T

i

VXVTT - V'PVXT —- V[X,T]L

— = qul - p

= VX(VTT+~C—5 T) - vT(va) - V[x,T]f by 1.2
e YT Toyp , T g

= Ve Vol + X(¢ )T t vy T

- VYT - T ‘ T

= R(X, T -c[—P% S(X).

|
I
[
<1
>q
e
et
| S—)
N
p—
<
—
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The filrst 1line of thls expresslon can be wrltten as:

T T + Ty2)) + (B~ 1) T L(F2)7] + (7, (7,2)"17)
©
- T, T,% (ig—l) (7, [(F,2)"] + [(7, (7y2)"1"]

The second line can be written simllarly by Interchanglng

X and Y,

So R(X,Y)Z =Y. V.72 - V., V, 2 - V

> X Y
= v . AV
- [vy(vxéj V- (V[X,Y]é) }
= R(KY)Z + (L5 =1) (1)
@

To simplify A, rewrlte the expression

T (T2 ] (77,2
= VY = o o\ Vh S = . = VY
= Ly (v2) 7 10+ Ly (V2) 1+ (9 (v 2 = (9,2) )] |
—— .V = ¢ ey 10
= (vxvyz} + [VX(<Vyz,l>L)]

- (EXsz)V - <8Y,Z>SX

Substituting this in A ylelds:

Vo L «8Y,7>8X

A = (VXVYZ)
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- (vaRZ)V + <8X, 7>SY

<]

- Vix,v12)"

]

(X,Y)Z)" + <SX,Z>SY - <5Y,7>5X.

ey

= {]

Sﬁbstitution of this expression for A glves the result.

(3) follows by taking horizontal and vertical compbnents of
(1) and (2).

We can finally compute Rlc using Lemma 1.3,

Proof of Proposition 1.1:

(1) Ric(N,N) = tr{x & R(X,N)Nf

= trﬂ(

X wiwx;NMw4~%?<N;wﬁx)
Sy NC_B s, 4=
= RIC(N,N) o, T Er S
(2) Rie(N,X) = tr(Y b R(Y,N)X)

:\trn(Y > R{Y,N)X + vertical terms) using 1.3(3)

= tr. (Y » R(Y,N)X)

3y

= Ric(N,X).

(3) let {el = m’e2""en+1} be an orthonormal basis of

T.M with respect to g.

n+1
Then Ric(X,Y) = <R(T,X)Y,T> + 2 <R(e
k=2

k}X) Y s ek_>
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= KR(0,X)Y, 1> + SP<EX, V> +-(;ga-l)<R(T,X)Y,T>
o ¢

n+i ' 1

+ k32[<‘ﬁ(e_li,x)if,e_3&> + ('Q';g“ 1)[<Se, , Y><8X, e, >

[

<8X,Y><Se, e, >]]

= FIC(X,Y) + <X, >

@
l %) T r 2 . 1 Q1
@7§—:1){<H(1,X)Y,f> + <STK,Y> - trS<SX,Y>1.
o
This concludes the proof of Proposition 1.1 .
We can how find conditions on oM by means of 1.1 which

guarantee that M has posiltive Rlccl curvature with respect to g,

al teagt "near 1nfinity".

Proposition 1.!4. Suppose OM has positive mean curvature relative

Lo the outward unlt normal fileld, and that the intrinsic Riccel

curvature Ricjof oM is positive. Then there exists a tube 3, of oM

with 3 < Hé, and a function o such that Ric » on Ty

% in U] s and let X be a unlt horlzontal
=6
2

Proof. Take o{t)

i

.

vector at x € 31

§€

We wlll show the exlstence of a number n, 0 <n < %e, wlth
the followlng property:
(*) If x € Sn anda,B €R with a2 +- 52 = 1, then

Ric(ax+8%) >0,
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To this, consider the expresslon in {%) as a quadratic

functlon in g and 8.

Ric(aX+B%) = o°RicX + 2ap Ric(X,%) + BERic(%)

To establlsh (x), 1t 1is enough to show that the dis-

criminant

m, 42
"))

-~ . T , | 1
[hic(x,a) - (hicX)(Hica) < 0 on I for some n € (O,§eJ

But in 31 s letting Ric

denote the ihtrinsiclﬁccicurvamLE of Ht
7€ |

G

 pa o
{Rlc(X,a)] - (RicXJ(Ricm

= -t trd, Ric,X +0(t%) by Proposition 1.1
2 o(tg)
where O{t~) is a continuous function on g, such that lim ——yt < ™,
=€ t=0 . ¢t
2

By hypothesis, trS_ > 0 and Ric > O and (x) follows.

At this polnt we remark that the existence of a metric on M
of s8trictly poslitive Rlccl curvature near infinlty can be obtalned
more dlrectly using only the assumptlon that Rico > 0, by regard -

ing ¥, as the product oM X(0,) with Rlc _ > O. Then Rlec = 0
oM OMXR

in the product metrlc, and by changing the horlzontal component
of thils metric by ¢(t) = t% f'or example, Ric becomes strictly

positive near infinity.

The point of our further discussion ls to construct a
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a metric on M in such a way that M has positive Rilcci curvature

everywhere, a'considerably more difficult problem which we

deal wilth 1n the next chapter.
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2. Global Extensgion of Positlve Ricel Curvature

In this chapter we will assume that the Ricecl curvature
Ric of M 1s strictly positive everywhere Iin M. According to
1.4, 1f the mean curvature trs, of M is positive and the in- |
trinsic Ricel curvature Ric_ of oM 1s posiltive, then the ori- |
ginal metrlc g can be deformed in 36 to a complete metric g

with positive Riccil curvature near infinity. 'The obvious

questlon which arises at this point 1s whether we can ensure
that the Riccl curvature 1s positive throughout all of 36 and
- hence everywhere in M.
This does not seem to be possible (at least using our |
approach)wlthout further restrictioﬁs, both on the boundary
' OM and the metric g. For simplicity of presentation, we will-

assume that g has constant curvature 1, il.e. Mn+l 1s a sub-- ‘

manlifold of the eutclldean sphere Sn+l. This‘assumption reduces
the complexity of the analysis to some extent. The Ricecl tensor
splits along horizontal and vertical dilrections, and the problem
reduces completely to oM, but the final condition on oM 1s still
Fairly compliéated.

The assumption that g has constant posltive curvature is

certalnly not necessary, but In light of the potentlal examples

of Chapter 3, thls assumption does not seem severe, Theorem 2.2 é

holds as well for other "slmple" metrlcs like those of ellipsoids

of Chapter 3, but detailed estimates will be better in explicit

examples. L
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Recall that the horizontal hypersurfaces Ht are the level
sets of the metrlc distance function &t : 36 - IR to the boundary
OM, T = -Vt is the unit outward pointing normal vector field

1s the second fundamental tensor of H, taken

to H and S .

£’ €
with respect to T. '

We begin the anaiyais of the formula fof Ric in 1.1 by
expressling St in terms of SD and Jacobl fieldsralong vertlcal
geodesics. |

Let u € Txaﬁ'and let ¢ : {(~6,6) = OM be any curve wilth
. velocity u at 03 1.e. c(0) = x, ¢(0) = u. At each c(s) € oM
we can shoot;out the vertical geodeslc based at c(s). 'lhis
defines the varilation V of nearby normals in dilrectlon u:

V: (-8,6) x [0,e) = M : (8,0) expa_(—tTC(S)),
M
where exp i1s the exponential maﬁ of the normal bundle of

oM
the boundary .

4 @
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Let X, =7V

. *|(o,t)Ds be the variatlion field of V. Then X
is a Jacobl field with initial values X(0) = u and
' .
X (0) = p VaP e = (VDSV*Dt”at:o
= =T = eeyn ’ Ll o 0 = ~5U .
= (% "Dy pe0 = SValgls,t=0 = 8c(0) .

8

The change of St along a normal geodesle is now glven by

Proposition 2.1. 9.X, = -X'.

6 v
" Proof. S Xp = v T :‘VD ("V*Dt)ls:o

t S

il

— _ oyt
dth(v*DSMS:OT- thXt = -Xi.
gxamElﬂ. Suppose M has constant curvature K = 1, and x € oM,
Let u be a unilt elgenvector of Sx wlth corresponding eigenvalue

», and let U, be the_parallel field along the vertical geodesic

e
v, based at x € oM with U(0) = u.
Then Ut 18 a unit elgenvector of S5
1
) .

Alt) = tan(t + tan”
In fact, we can solve expllcitly for the Jacobl field

b wlth eligenvalue

X of 2.1

X, f (cost;—lsini;)Ut,

50 S(({cos t ~Xsint)U

!

—_ __Xt

) -

= (sin t + \ cos t)Ut .

This implies that q:is an elgenvector of St with elgenvalue
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A(t) = glnt + ) cos t
cog t -k sgln ©

1

i

tan(t+tan” "n).

We now turn to estimating the largest radius e of a .
tubular nelghborhood U; of the boundary oM in which the change
of metrlc takes place. It wlll be .necessary thal e 1s not too
small, Since the exponential map exp _ along the boundary 1is
a diffeomorphism on Ue for any € lessa%han the Injectlvity
radius 1 of exp , 1t suffices to estlmate 1 from below in

' oM oM : oM

terms of boundary data.

in general, 1 may be leas Lhan the minlmal focal radius
' oM :

f 4, of the boundary for global reasons.

However the condltions adopted In the previous chapter allow

us to estimate 1 in terms of boundary data as follows.
oM
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Theorem 2.2. If Ricy, > O and trS__ = 0, then 1 = f

M SH min’

Proof. Otherwise, 1 < f . ., Therefore, ag t increases

= o min |

from C to 1 s the horizontal hypersurfaces Ht are well~

) | |

defined by hypothesis and sweep out a nelghborhood of oM.

At t =1 , exp fallgs to be iInjectlive, so there exlists a
oM oM .

"first intersectlon point" m and X ,X, € oM such that

dist(xl,m) = dist(X,,m) = 1 . 'The hypersurfaces H. approach

oM
each other as t -1 touching at m.
oM
\\\\\3?; /////
\\ . .\'\-.A\ X /’// //ﬂ‘
o e .
\\ --------- ‘*-..q,._.,:]?.._.-.—-—m'-"“—/ //
e - -~
-~ - H
~ -~ - - j_
M ::::szl==:jj" oM
P /,’" b -
- /—-"""""F mwm""‘m s
- e X - ™
2 ""\\M N
“a_ “
\‘\
\"w
Let v ,V : (0,1 ] = M be the vertical geodesics based
1 T2 oM |
at‘xl and Xy It follows by the Gauss Lemma that:

1. The pilecewlse smooth geodesic vy : (0,21 | - M
oM

defined as compositlon of Vo and -v, 1s actually smooth at mj
1 2 '
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2. ¥ 1ls a non-trlvial locally minimilsing geodesle
- perpendicular to 3M in the space of curves in M from dM to

itself, since thls 1s the filrst horizontal level of self-

intersection.
On the other hand, by an "averaging" second varilation -

argument [L], we have:

Temma 2.3, If Ric_ > 0 and tr820, and ¥ : [a,b] » M is a
smooth geodeslc pegpendicular to oM, then there exlsts a
variation of Y in the above space of curves, so that neighbor-
ing curves are strictly shorter than y. Thils completes the

proof of 2.2.

Bgmérk. TF M and OM satisfy the conditlons of 2.2, then

w1(ﬁ,aﬁ) = 0, and ww(éﬁ} - WW(Md Lz surjeclive, cf. [L].

We now conslder the case when Mn+l is a submanlfold of the

euclidean sphere Sn+l, with boundary dM of nonnegative mean

curvature. (It follows then that tr By P 0 foro<t< €.) ''he

main result of this chapter 1s the derivation of a further con-
dition on oM, computable in terms of the second fundamental tensor
S, which guarantees the exlstence In M of a warped metric g of

posiltive Riccl curvature.

Let » . = max  max (<SY, > |Y € TXBM}
xeai || yll=1

ax




be the maximum principal curvature of oM, and let ¢ = tan
" denote the Injectivity radlus of the boundary.

TheoranE.#.Ghmn11> 0, there exlsts a contlnuous real-valued

~ funetion FU(S) defined on self-adjoint operators S on R", with

the followlng property:

If X <y and F (8

max il O) >0

everywhere on oM, then there exlsts an admissible warplng func-
. tlon v :(0,¢] ~ I, such that the metric g defined from ¢ and g
has strictly'positi#e Ricel curvature throughout UE and hence

everywhere in M.

and

Remark , Fu is defined explicltly in terms of Mpax? Mo

the elgenvalues of S. The hypothesis is falrly sharp for y > 1.

Remark.. If M has variable positive sectiqnai curvature K, the

-same qualitative result holds, but F and e will also depend on

the bounds for K. One has to modify some of the above arguments

by using standard comparison technlques for Jacobi flelds in

order {o get estimates for all data involving St' Also, as In

the end of Chapter 1, the "cross terms" for the Rlccl tensor

wlll not necegsarlly vanish, so the discriminant must be estimated.
- As we poilnted out before, expliclt bounds will be better in

specific examples, 8o we wlll only carry out the arguments for

constant curvature,.




24

Proof of Theorem 2.4. At each x E Bﬁ; the second fundamental

tensor SO has an orthonormal basls [Ul""’Un] of elgenvectors
with corresponding elgenvalues Ay Z hp Z...Z My

Let U "’Un be parallel fields along the vertlcal

1°-
geodesic v, based at x with inltlal values Ui(o) = u

Then U, (t)

i1 i(
1s ‘an elgenvector of 8, with elgenvalue Ai(t) = tan(t + tan"lxi).

T

i Un+1} is an orthonormal basis

Furthermore, {U U

. l,---,
wlth respect to g throughout I and are also eligenvectors of
the new Ricci tensor Ric by 1.1 using again the fact that g has

" constant curvature,

The elgenvalue of Riec corresponding to U, is

1
rn $ l@' A, + 0O ? ALA L <31 <n
- -5 SERAN L= E)
2 i j;l J 1
. J#AL
th.c::L = 1 | |
.
&§(n - %-tr‘s) | i =n+ 1,
kw
where we have replaced the term 1 - iﬁ in 1.1 (3) by & = 1 - ig .
® P

In order to deflne an admiséible function ¢ : (0,¢] ”Zm+,
we wlll construct a function ¢ : [0,e] — [0,1] with the followlng
properties:
(1) @ ec®,
2) @ is decreasing,
3) &(t) =21 - % in a nelghborhood of O,

(
(
(L) ® = Oin a nelghborhood of e,
{

_ 1 n
5) Ricy =n - 8 - 58 A + 3 ‘jilAJAi >0
LA

on (O,e] for all 1 s 1 = n,




25

The warping functlion ¢ wlll then be deflned on (0,¢])
as o = (1—¢)"%. The properties (1) - (4) above ensure that
pw ls admissible according to the conditlons in Chapter 1.
Property (5) will imply that the Ricci curvatures Rici in the
metric warped by o are positive for i=1,...,n. The fact that
o will be deéreasing and tr3 1s increasing willl Imply that
Ric 1 1s positive.
So i1t remains to construct a functlon & subject to (1) - (5).
At this polnt we observe that {5) can be replaced by the weaker
(5') cCondition (5) holds for i=1,n.
in fact, the expression (5) can be rewrlitten as:
2

- . .k -
=n ~-% + [¥ trS 2@’] Ai ¢ A

(6) Ric y -

1
'The quadratic formula implies thaﬁ (6) 18 positive if and
only if

(7) p>f\i>q

p = %{trS-—

{

P ]
i
|
i
i
S
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and where the inequalitiles follow from (1) - (4) for ¥.

If (57') ig true, then p > Al and A > q by 7).
But A, 2 A, Z...2 A,» S0 P > A > q for all 1 and (5)
~ls true.

We now come to the construction of & satisfyling (1) - (4)

and {(5'), and perform the construction in four steps.

§E§E“}g We flrst define a prototype 1
8, 0f & by |
-1 tan(t—tanéL%)1:€[o,tan'l l]’
@O(t) = L
0 & E(tamﬁ"i,e],
- m
i

and observe that ¢4 18 a functilon
satlsfylng (2), . and for which the minlmum value of the ex-

pregsion for Rilc in (%) can be estimated from below in terms

of p and xl,...,xn, this yields the functlon I’ of the hypothesis;
| In fact, Rmax <y lmplies by elementary calculus that
A A P ﬁ ,
(8) #oh, = n(h,p) =4 wtan®[ S(tan ™yt tan™ L)) 2= ay > -2,
0 .—:}I = -

and the function h defined by the right hand side of (8) is

continuous in ki.




Therefore, we have

h(kl,u)ki Ay <0,
@OAiAl >
' ] 0 Ay 20,
.n n -1 1
and %, § AN = % h(xl,p)k(ki) on [0, tan aﬂ, where
i=2 1=
( : 0 ki =0
kK(h,) = : .
1 Ay Ay <0

Also, 1if Ay < 0, then by elementary properties of the

. tangent functlon,

d AN = h(li,p)ln.

0 in
d - % n;lA A= nilh(h )A
an g s
0] i:l-i n L] 1 n’

whereas Ay ® 0O implles

nhl.

¢, i MA, = ?,(trs - AN =0
i1=1
aince tr S - An2()and An 2 0 in thils case,.

Together, we have
n-1 n-1

.02 AA 2 S h(On,u)k(r ).
0 1=1 i'n 1o 1 n

We can now estimate Rlc for the prototype @O :

n
(9) Ric, =n -1+ izgh(ll,u)k(xi),




L _yk(n ) nilh(x
= +
“2 n 1ol i:l—l)k(xn)

_ | s
(10) Ric = n -1+ §¢1(1-+

The functions F:, F; defined as the right hand sides of

{9) and (10) are continuous in the i\'s, and thelr minimum
1

I

. + -
11) K min(F ,F
(11) y ( W p}

defines a contlnuous functlon of the elgenvalues of* 5. We
will take this as the deflnltion of the Fu in the hypothesis
of 2.4, and then this hypothesis implles that (5') holds every-

. where on aM for 25

Step 2t In order to construct a
functlon & which also satlsfles (3),

we shift the prototype ¢ . to the right

0
a small amount gu_where 5 » 0 1ls so

small that

&
(12) Amax(§) < M

(13) # (8,.) > 0, everywhere on oM, and

TR
2

. n n
(14) SONA - B h(kl,p)k(ki) > - in [0,86],
1=2 i=2 .
uniformly
n-1 .- : -
(15) 2 A A = 2 hOguk(y) > - ¢ on M,
S 1=l 1=l

and where the number { » 0 lg deflned as

1
(16) ¢ = E'gﬁn[Fu(SO)J> o .
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We now define & on [6,a], where g < tan"l'% + % 18 a
" number specified in step 4.
_ b -
and obgerve that
R1 =z I (S >0
oy = FulBg) -
2 on [6,al, by (13) and Step 1.
Ric = F“(SE )} =0

2
: % satisfiles (1), (2), and (5') on [&,al.
- Htep 3: Define § on [o,g]
as (L) = 1-t° ¢ € [O,%J

and deflne & on (%,6) as

s ome c2 decreasing functlon

which joinsg @|[0,5] and ¢|[5,GJ

) » max ¢', which is clearly
Ll [_6,0]

) > 8(8).

|

smoothly and such that &' = - pu(i+

1o

y >31{8) and &(;

o

possible since 31'{

PG

Now & satisfies (1), (2) and (3).

Furthermore, (5') remains true because on (0,8),

Rle. = n-1 + = h(h ,wk(n) = ¢ by (14)
1 jop L 1

and (5),

> 2 (8 ) by (16)

2 70 ?




n-1

) .
and Ricy = n-1 + p(li=y)k(r ) + iélh(ki,u)k(xn)
H - and (5)"
1o/ |
P EFH(SO) .

Step 4: It remalins only to define
¢ on [g,e] which satisfles (1) - (4)

and (5'). B
-1 1 &
Choose B € (tan™ =+ 2,¢) and . \\\\\\_g
B € St e T 6
Tind A > 1 so large that ' i
. (18) Z Ay Al = -A in [0, 8], uniformly
=g T L
n-1 over oM.
2 AiAn = A,
i:l y
-11

Choose a € (6,tan” E4A~J 8o that

(19) % (a) <‘% .

Finally, define ¢ on [a,e] as some 02 decreasing function

smoothly Jolning @I[O o) and the zero functlon on [g,e] such that |
r

@1. = -—‘_[(1"[‘;2‘):

M
Then & satlsfles (1) -~ (4).

As to (5') on [asel,

Ricl =z n-1 - ﬁ-.A by (18) and (19),
>iF (3, and
2o’ '
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1 1 - £ a
Ric = n-1 + §U(1+“—2—)k()\n) e

l .
> o
2Fu(so)._

This concludes the constructlon of ¢ and the proof of 3.4,

Example. As a very simple 1lllustratlon, we conslder the case

1

when M'T+ 15 a trivial disc bundle with boundary

M = 8P(r) x 8%(s) « 8"H(1), ¥ + 5% =1,  piq =n.

When r = J%%a and 8 = dpiq , then oM is a minimal hyper-

surface in 8™ to which 2.4 applies.,

_ The second fundamental tensor SO 1a
/4 /B
g = =)1d ® (- id .
0 ( p)’L pXp ( q) axq
The condition of 2.4 becomes g > %-+r~[1%—-+ ﬁ , and M

has positive Ricel curvature in this case. In fact the same
ié true for any q = 2 by a cholce of ¢ more suiltable to this
example,

| - Actually, this can be proven more directly by virtue of
the slmple nature of the example. By glving g4 its standard
metric and gPH - inG Dp+1 any complete metric of posltlve
sectlional curvature, then M = Rp+l x 89 has positive Ricei
Curvature In the product metrlic for p = 1, q = 2, If g=1,

P X st admlts only Ric = O and must always be a product,

cf. [CG].




3. A New Class of Manlfolds wlith Posltlve Ricel Curvature

In attempting to apply the results of Chapter 2, we were
motlvated to-look for poslitively Riccl curved hypersurfaces in
& sphere. Any compact hypersurface in a ehclidean sphere 1s
always the intersectlon of the sphere and a level set of a .
function smooth in the ambient eqclidean space, and in this
chapter we exhibit a large class of hypersurfaces arising from
homogeneous functlons in this way. .

'he Riccel curvature of such a hypersurface M. may not be

0
- positlive 1n the metric lnduced from the sphere, but after a
deformation of the sphere into an ellipsold, the Riccl curvature
of' Lhe new hypersurface Ml of interseclion becomes posltive. Ml
18 Che orthogonal inbtersectlon of level sets, a facl whlch makes
the Rlccl curvature more easlly computable,

Furthermore,  a subclasgss of these hypersurfaces alsoc has
positive mean curvature. A compacth connec ted hypersurface
separates the ellipsold into two components. Therefore, one of
_those components satisfies the conditions of 1.4, It seems most
likely that Theorem 2.4 dpplies to many of the above examples,
though at this polnt we have not carrled out the (considerable)
numerlical analysls.

These hypersurfaces aré of interest 1n their own right as

new examples of compact manifolds of positive Ricel curvature,

Our approach was suggested by a consbruction of such examples

among Brleskorn varietles in the complex setting; cf. [H].




However, we work more generally with arbltrary homogeneous polj;.fti
nomials. In fact, our result says in partlicular, that in some
"Stable” sense, any real projective hypersurface admits positive
Riccl curvature. |

We flrst describe our famlly of hypersurfaces in the sphere

and thelr deformation to hypersurfaces in ellipsoids.

Notation: TFor 1=1,2,...,k, let fi(xi) be a homogeneous function

———

ny .
on IR of degree d

= 2, where x, 18 the standard coordinate

i 1

n

- chart for IR %.Set ny+...tn. = n.

Consider the famlily E, of ellipsoids, O s t s 1, defined as

s P Lo wen

Lhe zero set of Gt'

|2 }2 2

' 2 . 2
Gt(le-o-:XKJYJZ) = al(t)lxli +'°'+G‘klxk| + Iy + IZ. - r

where ai(t) =1 + t(%z-—l), and y,z are coordinates forjmp;mq.
The asslgnment t & GEl(O) = Et defines a smooth isctopy
between the standard sphere Eqy = ;n+p+q—l(r) of radlus r and
the ellipsoild El through ellipscids Et'
Now consider the function F defined in terms of the homo-

geneous functlons fl"'"’fk by
. oy ‘ P 2 2
F(X 50 enX ,¥,2) = fl(x1)+...+FK(xk)+]y| -z,

The intersectlon of the zero levels of F and Gt defines a

(possibly singular) hypersurface M, = Mt(fl,...,fkgp,q) in the
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e Qur first observatlon 1s that 1Lf fi sablsfles

a mild restriction, then Mt i1s actually nonsingular for'all g,

ellipsold I

and M, 1s diffeomorphlc to M

0 1°
n

Proposition 3.1: Suppose the origin in IR 1 1s an 1lsolated

critical polnt for fi, 1 =1 = Xk, Then for r sufflciently
smalil, M, 18 & smooth hypersurface in Et’ 0 <t =1, and MO 1s
diffeomorphic to Ml'

"The proof 1s based on the following

d
- Lemma 3.2. Suppose f, has no critical points in 0 < |xi|2 < oy

Then vF and vG, are Lndependent on M, for all t € [0,1],

t

Proof of 3.2, Otherwlse, for some a,b €IR not both zero,

avlk = bvG, at (xl,...,xk,y,z) E.Mt
v =(vfl,...,vfi,2y,~2z)

VGt =(2alxl,...,2akxk,2y,22).
We get k+2 equatlons:

(1) avf, = b2a,x

1 1 %40 L =1 =k,

(2) 2ay = 2by,

(3) 2az = -2bz.

1

Fur thermore, (Xl,...ij,y,Z) € M, Implies

2 2

(b)) (k) (x ) + fy]© = |2]% =0

24 |z|% = r

(5) ay(5) |3, [Pho s obo (6) [, (% + |y




We separate the argument into three cases:

Case 1: y # 03 Case 2: z # 03 Case 3: y =0, z = O.

Case 1: y #0=a =b by {2).
Therefore, z = 0 by (3),
and  fo(xq)+..+6 (% ) = -] ]2 by (4)
' AR/ T e e WKy ) = - Y J ’
< 0 by hypothesis.
- _ L '
- But fi(xi) = diQﬁ&JXi’xi> . since f, homogeneous

of degree di

- L og | x IE by {1);
dap el yoiLb)s
2a 20 .
o ‘ . ~ 1 2, Tk 2
and fl(xl)i...lfk(xk) - —azﬁxl| F ol dk|xk|

= 0, contradlction.

Case 2: We can deal wlith thils case Iin the same manner as

{'or Case 1,

ggggmg: y =0, z =0 Implies
fl(xl)+...+fk(xk) = O by (4)
and al|x1[2+...+uklxk|2 PP by (5).
Again, afi(xi) = 2§v “i‘xi|2’




and this implies that b = 0 by (5).

Therefore'vfi =0 atx, by (1).

This contradicts the hypothesis that fy has no critlcal

2 91 2
polnts in 0 < [xi| < 5-r° for every 1.

We can now prove Propositlon 3.1: |
o let H i RPN x[0,1] = R® be defined by
. H(Xl: ""Xk"\f’z’ t) = (F(XlJ ---Sxk)y;z),v Gt(-xl’ ---:kaYJZ))O

"Mrst observe that (0,0) is a regular value for il, becauss

li can be repregented relatlve to Lhe atandard basls for
v

RYPTA%[0,1] as the 2x(ntprqti) - matrix
vF 20 . 9
)
5 ot Yt

where V is the gradient inimn+p+qx[0,l], and v 18 the gradilent
in_IﬁT+p+qu

It now follows by 3.2 that H,_ has maximal rank on H™(0,0),
so H°1(0,0) is a smooth submanifold of W''PTx[0,1] with boundary
Mo LM

Furthermore, the function 7 ; H”l(0,0) - 1R defined by

L(0,0). 1In fact

w(xl,...,xk,y,z,t) = t 1s nonsingular on H~




vr = (0,0,0,1) and so Vr £ span (VF,VG].

ls diffeomorphlc

We can conclude from this fact that MO

1 .
The reason for working with My 1s that this hypersurface

in the-ellipsoid El ls the orthogonal Intersection of the hyper-

surfaces F"l(O) and G_l(

1 0):

vF = (vf ...,vfk,ey,sz)

l)
o 4
VGl-— (a"‘“le + e -:‘CT'"XKJ 2}[,22;)
1 I
. . k '-
VF, VG 5= 3 L(Vf x>k by |2 - 4 |z|=
17 4oy 94y - TR .

= 4 1{x,y,z) =0 on M, .

Thls observatlon makes it possilble to calculate the Ricci
curvature for M1 huch more easlly via the Gauss equations, which
we now proceed to do.

Let Ric be the Rlcel tensor of M 5 the second fundamental

1
tensor of Ml 1n El, and Kmiﬁ the minimum sectional curvature of
El.
Proposgltion3,3, For v € 1M, of unlt length,

: 1 K
Ric v = (nbpta-3K - EE’TQ— llHFH(iilltrl--lfi]-l~2lp~q| + BHHFH)

Proof, The Gauss equation for MICLﬂ B, 1s
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(6) Ric v =FE v+ trs.<sv,v> - |ev|”

where Ric.

1 is the projectlon of the Riccl tensor Ric of El

to TMl'

We need to compute S at x € M )

Let v € T M, = (dF)7°(0) N (46y);"(0)

he a unit vector.

; gl
v o= Ly
&_V I v

where ¥ is the covariant derivatlve inimp+p+q and 'I' denotes

T

| P

tangentlal proJection onto TM. So, 1f as usual

HFV': vVvF 1s the (self-adJoint) Hessian tensor of I, then

(7} 8v = mi—_ﬂgv
el *
and
<HV, V> = <Hgv,v>
(K23 |
e LY,V
|| vr]|
implies
®) Jsv,vo] = Lo,
| vrll
where the norm
(9) HHFH = max {f(HFV,v>[ v € TXM}_ ;

\lvli=1




is the maximum of the elgenvalues of HF in absolute value. -

Observe that

T S ~R,

.9 H, @ (2-idpxp) @ ("Eidq;x;q‘ and

(10) H, = H
F 1 I

(11) fmg] = max[HHflﬂ,...,HkaH,2]. o | .

From (6), we obtaln

tr§ = i trH)
for]
! 41 vl a6 VG o
—|~ e S W#T—‘ ’ __._--_,H- TN T T
il ! S howl Yo lvall  {lvall
Therefore, using (9), (10),
(12) ltrs| s —=

k ,
(% ferng | +2fp-q| + 2flw ).
) 3 ot

|| v

The p:oposition follows by estimating the terms in (6)
using (8), (11) and (12).

The previous proposition allows us to estimate the Riccl
corvature globally over M., giving the main result of this

chapter.

Theorem 3.4, Given arbitrary homogeneous polynomials fl""’fk

as above and any integer s, then there exists an Integer r = 0

such that the hypersurface Ml = Ml(fl,...,fk;p,q) defined above

has positive Riccl curvature everywhere when p-q = 8, p+q 2 r.




Proof. We will show that the negatlve term 1n the lower bDund
- for Ric of 3.3 can be bounded below, globally over My, by a

number depending only on p-q and fl”"’fk'

0y /%
Let By be the ball In IR of radiusx‘-zf, and let

Hy = SupHHf'H, Ky = sup{trH,. |. Then

Bi i Bi

£y

EUP”HF“ < max{ﬂ_,...;Hk,e}.= H,

1
and '
Il (% Jorn, | +2lp-a| + 2llE))
* r + 2|p-q :
S EE R S ¥
-k
< H( 2 K.+ 2|p-q| + 2H),
4=1 *

where the right hand side depends cnly on the dlfference p-q.

.
Also, 5

flviel

but not on p and q. To see thls, observe that

< C(fl,...,fk)_a constant depending only

on fo,...,L

1 K’

H\zFH2 = E(f]”"’fk) >0 on M N {y=0, 2z=0), (where T depends

only on T T whilch follows from our assumptlons on

e i)

fl,.u.,fk and the ldentity \\\

Kk
HVFHE = .Z vaill2 onrM

1 i [y:O,z:O} .

30 there exists a number ¢ > 0 sp small that

Ivell® = 2T >0 onmy 0 {y]%+ [z]% s ¢} .

1
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Meanwhile, on M; N {|y|2-F]z|2 > €],

lorl® = 5 [lve ) + 81y ] + 422 = ke,
i=1

Altogether, HVFH2 = min[He,%if} = L everywhere on M,,

o X
H
and Ric > (nip+q-3)K, - Eh(iiiKi + 2|p-q|+2H) .

Since the negative term in thils expression is bounded
below on Ml Independently of p+q when p-q = s ig fixed pefore-

hand, the theorem follows.

Collary 3.5.. Given fl,.

sp.T = O such that My = M- (i

"’fk as above, there exlsgt Integers

1,...,fk_;p,q) has positlve mean

curvature and pogitive Ricel curvature for p-g = sq5 and ptq = r.

(The mean curvature is taken relative to the normal direction

of vF.)}
Proof. We can bound the formula for tr S from below by

k
trs = —'—'—'—£2(p ~q) - X |ter | = EHHFH}°
|| vrl 1=1 1

= ﬂ;—ﬂ- 2(p-q) - ( Z K 9&}]

k
By taklng s, to be any integer such that 28, - ( = Ki+2H) > 0,
' ' 1=1

and r to be the Integer specifled in 3.4 corresponding to s = 84>

the corollary follows.




We conclude our discusslon by raising two purely t0p5~_j”””

logical problems:

)

1I)

Analyse completely the topology of the manifolds

Ml(fl,...,fkgp,q) in terms of the numbers p and q,

and the real projectilve varietles defined by fl""’fk'

§+p+qn2 does not bound a disc bundle in

Decide when M

nHpta-1  phig should be the case for most

the sphere §
examples, and 1t would be particularly interesting in

view of the extension problem for positive Rilcei curvature

(ef. also the introduction).
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