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The thesis establishes & quesil-isometry property which %
muast hold for a Rlemannlan manifold, if 1t 1s 1o appear as
a minimal leaf 1In a compact follated manifold. %
Flrst we prove a generalizatlon to follatlons of a result i
originally stated and proved by Blrkhoff about flows, Thla 1s
our Theorem 1; 1t states a leaf 1s minimal 1£ff it is recurrent,
The deflnltlon of recurrent leaf 1s a stralghtforward general- !
izatlion of the classlcal notlon of a recurrent orblt in a flow, !
Theorem 1, together with some facts about the normal
bundle to the follatlion, 1s used to show Theorem 2, which 3 ]
states that a minimal leaf 1is "quasi-homogeneous". This i
last term ls deflned in the thesis,
Finally, examples are glven of leaves which appear i1in é

foliations of all pairs (p,q) of dimension and codimension

with p > 1, g9 > 1, such that the leaves 1in questlon appear in I

these follatlons as non-minimal leaves, but they are not

guas l-homogeneous.
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A folilated manifold.is locally modelled on an affine

space decomposed into parallel affine subspaces.

Definition. A p-dimensional class Cr foliation % of an

m-manifold M is a decompositlon of M into connected sets Le

in such a way that each point of M has a neighborhood U and

1 2 m)

a dlstinguished chart x = (x 2 X s.e...X :Umuw—hRm, whete the

components of LenU are given by equations

+1
xP = constant, ,.., 1" = constant.

Such a foliation 1s denoted % = {£«}. The codlmension of F

18 the difference q = mép. The connected sets Lg are called

leaves.

It follows from the definition that the leaves are
p-dimensional manifolds {possibly non-properly) embedded in
M. This thesis deals only with foliations of compact M.

If we choose a Riemannian metric £ on Mm, then each leaf Ly

as an embedded p-manifold will inherit a metric which we

will denote dg, or simply d if the reference to the leaf is clear,
Congider now a diffeomorphism H:M~—aM!, The foliation F

on M will in a natural way induce another foliation ?’on M!

whose leaves Lo' are the H-images of the leaves Lg of F.

Since M ls compact, it follows there will be =lobal bounds

on the factor by which Hy, can shrink or stretch a tansent

vector of M:

k< [HI /19 ¢ K
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Such global bounds (k,K) on shrinking or stretching of
tangent vectors for a diffeomorphism are usuvually called

dllaetion constants. Since the diffeomorphism between Le

and Leg' 1s Just a restriction of H, the same dilation
constants (k,K) serve for HIL :Lg~—==pLg'. A diffeomorphism
between manifolds with global bounds on dilation is called

a guasi-isometry._ The above remarks show that, if Le is

a leaf of a follation & of a compact M, then it has a
well-deflned quasi-isometry type, lndependent of the metric
£ chosen on M.

If one considers the question, "What do leaves of a
follated compact manifold look like?" one might put the
question more precisely: [D. Sullivan: Proc ICM 18741

Question 1., Which quasli-isometry types [Lp] of p-dimensional

Riemannian manifold admit realizations as leaves in some
foliatlion of some compact M (depending on [LP])?
This gquestion can be approached necatively by defining various
notions of regularity and showing that "irregular" quasi-
lsometry types of p-manifolds cannot occur as leaves of
foliated compact manifolds.‘

A manifold which appears ag a leaf of Such a foliation must

of course be complete in its metric. In addition to this, i
there is a regularity that a manifold must have 1if it appears ‘ i
' %
as a leaf in some compact follated M, We can define a Riemannian

p-manifold to be "plaque-like", provided it admits a cover

by geodesslcally convex neizhborhoods, L =.E{D%) and there are




diffeomorphisms fa: Dpuuu—bNa from the standard disc in RP

with its Euclidlian metric onto each Na with thelr metrics

Inherited from L, and these diffeomorphisms fa all share

a common pair (k,K) of dilation constants, in the sense that

ke WEXvL /W ¢ K for veTD",

If 1P occurs as a leaf in a foliation of some compact Mm,

then L must be "plaque-like" with respect to the metric Lt

inherits from M. This follows directly from the existence

of a '"plague decomposition" of M into a finite number of

"flow boxes". These last two terms will be defined later.
For an example of & non-plaque-like quasi-isometry type,

consider a plane in R3 with a sequence of smooth gpilkes

going off to w, and becoming progressively longer and thinner.

If we give this plane the metric it inherits from RB, then

1t 1s not plaque-like.

S0 a leaf of a foliation must be plaque-like. The converse.
would say that if a p-manifold is plaque-like, then it must
appear as a leaf 1n some compact foliated manifold. Does this
hold? If not, what additional conditions must a p-manifold
satisfy to ensure 1t appears as a leaf in some compact foliated
manifold? This type of questlon, to the effect that "If a p-
manifold 1s regular, must 1t occur?" will not be pursued here.
Its answer would involve & construction, from the data of’
the regularity notion, of an appropriate compact foliated

manifold in which I occurs as a leaf. It is (as far as T know)

quite possible that the assumption "I is plaque-like" micht be




enough to guarantee 1t appears, perhaps with very nigh
codimenslon, as a leaf in some compact follated manifold.
[M. Gromov has & conJecture in thig direction, ]

Let P be a property which can be stated about a leaf
L in a foliation F of a comp&ct M. This property P might
depend only on the leaf L with 1ts metric d, as is the case
for example when P is the property "L has polynomial growth".
On the other hand, the property P may depend on the way L is
embedded 1In M. An example here is when P is the property
"the closure of L in M is a minimal set of leaves". For
such a property P we may ask phe guestlon:

Question 2, Which quasi-~isometry types of p-manifold

[Lp] admit realizations as leaves with the property P
in some compact foliated M (depending on [Lp])?
As with question 1 above, this guestion can be approached
nezgatively by defining a regularity notion and showing that
an irregular quasi-isometry type of p-manifold cannot occur
as a leaf wlth property P in any follated compact manifold

whatsoever.

Fof the special case of class C% transversally oriented,
codimension one foliations of compact manifolds, some answers
to question 2 are known. Cantwell and Conlon[ 1l | have givén
what amounts to an answer to question 2 where P 1s taken to

be the property "I is a nowhere dense leaf of F which has

polynomial growth," Note that this property refers both to




the metric on L and to the way L is embedded in M,

To describe their result we need the notion of the class of
a leaf in a foliation. The leaves of class O are the compact
leaves. A leaf is of class k » 0 1if it 1s asymptotic only to

leaves of class at most k-1 and to at least one leaf of class

exactly k-1. To defilne the asymptote of a leaf L, choose an

exhaustion AlC.A2C1...c=L by compact sets; the asymptote is

1ﬁmw1£}closure(L - A,). One leaf is sald to be asymptotic to

another if the latter 1lg in the asymptote of the former.

Cantwell and Conlon show the followinr:

Theorem [C-C Thm. 11 The leaves of class k are exactly the

nowhere dense leaves having polynomial growth of decree k.

The notion of class k still refers to the way L, is embedded in
M. In order to answer question two we must show that class k
implies some property of the leaf L, which depends only on its
quasi-igometry type, and not on the amblent metric. Cantwell
and Conlon do not explicitly defilne such a quasi-isometry

property. However they do prove a theorem from which such a

property easily follows. The theorem in question depends on

the notion of an "infinite repetition", which we now describe.

Since the foliation is assumed to have codimension one,
we can fix a transverse foliation 4 of dimension one whose leaves

are transverse to the leaves of 31 We use a transverse orientation

for ?rto define a linear order in each leaf of L. Thus we can




talk about subarcs [x,y), (x,y], etc. of such leaves.

Definition. Let (xo,x] be & subarc of & leaf of X, and let

L, be the leaf of F through X If (xo,x]n Ly = @, we say

that x projects (in the negative directlon) to L, and we

0
write this p(x) = X, € Lge
Let L and LO he leaves of 9rand let B L be a complete

connected noncompact submanifold of dimension m-1 (= dimension L)

with & single boundary component N, = 0B which 18 a compact

O
connected manifold. Finally, suppose that each point of B

projects to LO a8 above and remark that p:Beee-—»l,_. 1is locally

0
a diffeomorphism.

Definition. We will say that B is an infinite repetitlon of LO

(on the positive side) i1f the following conditions are satisfied.
a) B =LJjBi where each B; 1s a complete m-1 dimensional
submanifold, BBi = N;u Ny, is a unlon of two compact
components, and int(Bi)n int(Bj) = ¢f when 1 # j,

b) There is a compact connected m-2 dimensional manifold

N& L, (called the juncture of the repetition) such that

o (
plNi maps N, diffeomorphically onto N, 0€ i€,

(B - Ny,,) s

i
¢) For each y €L, and each 13 0, p-

& single point Yy

d) For each y €L, the sequence p_l(y) = {yi} converges

monotonically to y in [y, yo].




Theorem; {C-C Prop. 2] Let L be & leaf of F of class k 2 1.
Then L can be written
L =aAuslu .,.uB"

where A is a compact connected m-1 manifold wilth boundary
components Nl, cees Nr, and

1.) AaBd =1, 1¢ ¢,

2.) stasd =g, 1 4 3,

3.) Each BY 1s an infinite repltion of a leaf 1d of class

at most k-1, ’

I.) For at least one value of J, 1d 18 exactly of class k-l.

From [C-C Prp. 2] we wlll derive a quasl-isometry property,

defined only via the metric on =L

, which a leaf must possess

if 1t appears as a leaf of class k for some kP 1l in some
transversally orientable 62 codimension 1 foliation of a compact
manifold. Note that, because of [C-C Thm 1}, such a property
will constlitute a necessary condition for L to appear as a
nowhere dense leal of polynomial growth in some compact foliated
manifold, glving an answer to question 2 in this context.

We treat here the case of class 1 leaves, which by [C-C Thm 1]
is the same as nowhere dense leaves of linear growth. Now by
[C~C Prop.2] such a leaf can be written

I, = AUB™W ..,uB"
‘Where A is compact and connected, with boundary components

1

 N s +..5 N, and each BY is an infinite repition of a compact

(class 0) lear Cj, and where BY meets A along NY. Write the

‘repitition for BY as




i
I

J - riurdu.

with juncture J9c 09. We see from the definitions that for

fixed J all the Bi are diffeomorphlec via the projection map p.
Furthermore the compactness of the Bi together with condition
(¢) in the definition of infinite repitition shows that, for

a fixed Jj, all the Bi ayre diffeomorphlc to a fixed model Ej,
obtalned by splitting OJ along J'j and dbubling JJ, and these
diffeomorphisms fi:Bi-w—&JJ all share a single pair (k,K) of -
dilatlon constants. Thus in the description

(#*) I, = AyBlu---uB"

each noncompact component BY consists of a "gquasl-isometric

repetition" of compact pieces 39, We formaiize this notion:

Definition Given a noncompact manifold BP whose boundary 1s

a compact connected manifold Np_l, we say Bp is a gquasi-isometric

repetition of the compact manifold-with~boundary AP (called the

model) if

1.) AP has just two boundary components, diffeomorphic to NPt
and denoted d-, o+,

2.) There is a collection of diffeomorphisms f, tA-——sB where

a) the images fk(A)’ called pieces, fit together along
thelr ends fk(6+) and fk(a-) to exhaust B,

b) the diffeomorphisms f K= 1, 2, ..., all share

K’
g common pair (k,K) of dilation constants.

h this definition it 1s clear that the expression (*) for

1s a quasi-lsometry invariant.




We wlll gilve detalls later for the construction of

the followlng follatlon, It contains leaves of linear

growth which fail to be quasi-isometry repetiltions.

Example 1. There exlsts a codlmension two follation ﬂﬁ
of a compact manifold Ml‘L having the followlng propertles:
1.) & has one compact leaf T, a torus.
2,) T 1s 1in the 1limit set (asymptote) of every leaf
of 9. (In particular T is the only minim-;.ﬁtl leaf)
3.) Each leaf of ¥ other than T has two ends. '
4.) At least one end of each leaf has the quasl-isometry
type of a cylinder R'% S', with handles attached,
spaced at 1intervals dk’ where the sequence dk is

unbounded as k increases (see figure below).

Al {?gl— -#CE?‘”'T/?QE _7/;;}‘Fd—§3|‘.‘
W ¥

By conslderlng the product Mux Sl = M5, follated by

surfaces (leaf of J )X (point of Sl), we obtaln a foliation
%, of the compact manifold M>. The leaves of 31 are nowhere
:dense,'have linear growth, and fall to be quasi-isometry
repetitions, This example shows that in general codimension,
one does.not have the counterpart to [C-C Thm 1)]; that is, ’
nowhere dense leaves having llnear growth nesed not be of

Class 1. The non-compact leaves of.?{cn‘gifail to have ends

which are quasi-lgometry repetitlons of compact pieces,
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because the 1lncreasing lengths between handles make it
lmpossible to obtain a slngle palr of dilation constants
for the famlly of maps from the model to the pieces . (See
the definition of quasl-lsometry repetition.) "Ends" of a

non-compact manlfold, 1n particular of a leaf 1in a follation.

wlll be deflned in the appendix,

It 1s one of the purposes of thls thesls to glve some
answef to question 2 for foliatlons , Where leaf dimen—
tions and codimensions are arbiltrary, and the follations
.ére assumed to be of class Cl. We wlll take P in gquestlion 2

to be the property "L 1s a minimal leaf".

Definit}gg. A minimal leaf 1n a foliatlon is a leaf whose

closure 1n the follated manifold 1s a minimal set of leaves,

A minimal set of leaves in a follated compact manifold M is

a union of leaves whilch 1is closed in M, and has no proper

subsets which are closed unlons of lesaves,.

We will define a notion of quasi-homogeneous,(which will

be a quasi-isometry property of Riemannlan p-manifolds Lp)

and show that any minimal leaf must be ghomogeneous . It will
turn out that the leaves of Hxample 1 are not 4 -homogeneous,’
Thls implies that, viewing these leaves as Riemannlan 2-
manifolds, they cannot appear as minimal leaves 1n any compact

foliation at all, though they do appear in the example as

non-minimal leaves,
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Definitlon. A Riemannlan p-manlfold L 1s said to be

quasi-homogeneous(or g-homogeneous) 1f there exist dilation
constants (k,K) such that for each r > 0 there 13 R > 0, so
that any "cover ball" B(x,r) can be "cover immersed" in any
" metric ball B(y,R), and all the maps

£:8(x, r)~—>B(y, R)
which arise this way share the common palr (k,K) of dilation

constants,

Tn this definition, a "cover ball" B(x,r) 1s the set of
paths from x in L of length at most r, where two such paths
are ldentified if théy end at the same polnt and are homotoplec
rel boundary through paths of length at most r,

Also & cover immersion is an lmmerslion of such a cover
ball B(x,r) into L which has the property that £(¥) = £(¥*)

lmplies that the paths ¥ and Y’end at the same point.

Theorem 2, If I, is a minimal leaf in a compact follated

manifold, then L is quagl-homogeneous with its metric

inherlited from the follated manifold.

The proof of thls theorem relles on two things. One is
the 1dees that leaves 1n a follatlon pull apart in a contlnuous
way. (Thils 1s formalized in Lemma 1)} The other 18 the

followlng theorem, generalizing some results of Blrkhoff

concerning flows on metrlc spaces.
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Theorem 1, Iet L be a leaf of the foliation Fof the compact

manifold M, Then L 18 minimal if and only i1f I, 18 recurrent.

The definition of recurrent follows:

Definltlon. Let L be a leaf of a compact follated manifold M™,

ILet d be the distance function on M, and d the induced distance
function on L. (d comes from the Riemannian metric which L
inherits from M.,) Then L is sald to be recurrent if given

£ 0 there is T(€) > 0, such that the entire leaf I 1s within
£ (in the G-metric) of the leaf-ball By(x,T(€)). 'This T

must depend only on € and not on the polnt x € L.

Theorem 1 allows ug to pass from the propefty "L 18 minimal"
‘to the intermediate property "L 1s recurrent”, Then to show
Theorem 2, we use the recurrence condition along with the
normal bundle to the foliation, 1n order to define maps between
‘nearby leaves which serve as the cover immersions in the
definition of quasi_homogeneoﬁs.
Theorem 2 glves a restriction on the possible quasi-isometry
types of manifold L whilch can occur as minimal leaves in follated
compact manifolds. Leter we will exhibit a class E(p,q) p,q> 1, \ %
of examples of foliations, where in each case most of the leaves

fall to be quasil-homogeneous,
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THE NORMAL BUNDLE AND MAPS BETWEEN NEARBY LEAVES

Glve Mm a ¢ Riemannian metric v . 1nducing & distance function
d on M. The leaves L.€ % inherit Riemannlan metrics

and corresponding distance functions d, We wili always

ﬁrite d for metrlice 1in leaves. The leaves are p-dimensional
manifolds (possibly non-properly) imbedded 1n M, Tangent
planes to leaves are each p dimenslonal subspaces of ™ ;

the collection of complements to these 1s B, the "normal
bundle" to the folilation F ., Thus for any x € M®, ®(x) is

a g-dimensilonal plane 1in TMx transverse to the leaves of 9:.
If the leaves of F are C° smooth, the bundle ¥ 1s Cl smooth,
Even 1f the leaves are only Cl smooth, there still exists

a smooth complement to the bundle of tangent planes to leaves;
plck one and call 1t T 1in what follows.

The exponential map exp:TM-——=M 1s defined in a neilghborhood
of M = zero-sectlon(TM). Restriction of exp to the sub-bundle
A glves a map deflned 1n a nelghborheood of M = zero-section(n):

exp: n~—*—bM,
and exp has rank m along the zero section M, The fiber dimension
of n 1s 4, the leaves have dlmension p, and p+q = m. It
follows thét, 1f L 1s a leaf cﬁ‘%:and K a compact part of L,
exp: ﬁ]Kﬂ_——aMm
‘1ls an embedding near K. More precisely, given such KT, there

s a disc bundle of size 8§ > O around the zero section of Al s

denocted ﬁs(K), s.t.exp embeds Tg(K) 1nto M™,




T4

If & ig sufficlently small, each disc ﬁg(y) wlth y€ K is then
mappéd by exp to a g-disc 1n M transverse to the leaves of % .
We will sometimes write Tig(y) instead of exp(Mg(y)) when the
context implies Tg(y)c M. Now we make preclse the idea that
leaves in a compact follated manifold pull apart 1n a

continuous way; 1in fact, such pulling apart is uniform:

Lemma 1., Let £ and A be glven posltive numbers. Then there are
positive numbers £, € and 8§ , such that:
1.) For any x €M, ﬁe‘[fﬁc,ﬁ)]-ﬂ‘-ﬁ-ﬂ\& 1s an 1mmersion.
.2.) Given @ a smooth path from x in the leaf L _ with
length |o|l 1ess than A, then for any yeTg(x), o
11fts via ‘I‘TEI[B(X,A)] to & path & from y in the leaf
Ly, and we have ]M‘”—]]B‘M(E .

3.) The map defined by path 1lifting

P

£f: B(x,A)—L_ ¥ ¥(1)€L

N ¥y
~E
18 en-immersion with dilation constants (2 ,2

£

).
Proof, Statement 1 follows from the fact that exp has the
right rank along the zero-section of W, Statement 3 follows
from 2 applled to sufficilently small £ , by compactness of M and

smoothness of exp. The long proof of Statement 2 occupiles the

followlng pages,.
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For any positlve numbers (A,¢,8) let H(A,g,8) denote the

statement:

H(A,&,8): If yefy(x) and ¥, 1s a path from x in L, with
1ength“u|<A, then ¥, 1ifts via ® to ¥ a path in

L., and (¥, ¥t) (e, for all telo,1].

v
Then Lemma ldsays that glven A, €,there exlsts § so that
H(A,€,8) 1s true, In other words, if S(A) 1s the statement
"For each & there 1s & so that H(A,€,8) 1s true," then Lemma 1.2
says S(A) holds for all positive A,

To begin with, note that S(Aj implies S8{B) when B A.

We also assert:
Cleim 1: s(A) implies S(2A).
proof: Assume S(A) holds. Let E,be given. We must produce &
& so that H(2A,£,8) holds. We proceed as follows. First,
apply S(A) to € =€, producing § < €,80 that H(A,&,$) holds.
- Then apply S{A) to€&€=§,producing a §,so that H(A,§,S,) holds.
".We claim that & =§,makes H(2A,E,8) true. To see this, let
_Xxbe & path from X in L with length | 4, K 2A. We can write
_}{,:acx[&,zwhere axend Boare paths of length at most A, (The
subscripts here indicate starting points of paths.) The path
Bubeging at x’=a) Now to check H(28,6,5) for the path ¥y,
We pick any ye:ﬁs(x) and note first that H(4,§,8,) implies that
&,1ifts to &) a path in L, from y, and we have
1.) d(a,t, &) (€,, for telo,1],
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In particular at x' = (1) end y' = (1) we have y'e ﬁs(x')
and so H(A ,EO,S) implies that B,1lifts via @ toﬂx.and we have
2.) ﬂ,,t ,3 <€o, for te{0,1].
Then (1) and (2) together insure that the whole path K;::cq,ﬁx,
satlsfies _
3(K;t,§?t)'(£°, for tel0,1], as long as yeRg(x).
This proves that H(2A,€,§) 1s true, hence proves Claim 1.

We have shown: (a) ) 1mplies S(24),

We will show: (c) ) holds for some positive A,

S{A
S(A) implies S(B) when B{ A,
S(A
When (c) is shown, S(A) will be shown for all positive A,

by repeated application of {a) and {(b).

In order to show (c¢) we must first show the following claim,
which 1s weaker than (c), but allows us to define later a certaln
continuous function on M; this function will enable us to show
‘(c). Initially we pick some fixed €, small enough that'ﬁai

restricted to leaves of % 1s immersed by the exponential map.

Claim 2. There exlsts some positive A and a § > 0 such that:
If yefg(x) and Yy is of lengthnXAK.A, U;a path in L,

then ¥, 11fts via g, to ¥)a path in L, and we have
20ut, B (e, .

hey read e.ﬂ\\(\fiy(ﬂguhereas here they are(Vé](aA)GS))

This claim 1s weaker than (c) since the quantiflers differ. Tn (c)
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. Proof of c¢laim 2.

‘Recall that ﬁ}ois the image under exp of a tubular nelghbor-

hood U of the zero-section of the normal bundle y to the follation.

We can pull the foliation ¥ on M back via exp to a foliation T/
on U of dimension p = dim(F). The codimension of F’/is dim(W)-p
whilch 18 2q, M 1tself 1g identified with the zero-section

of V and so 18 a compact subset of Uj; the foliation % ’when
restricted to M 1s Just the original foliation F. Since M is
compact and contained 1n the follated set U, there exist
finitely many distingulshed follation neighborhoods {Wi\

for ¥, such that M";\) W,. Then the sets V, = MaW, are finite
in number and cover M, Hence we can pick some A > 0 so that
Bd(x,A)cBa(x,A)c some V,, for each point xeM. This 1s the A
we will use to show clalm 2; 1t remalns to produce the &

appropriate & to satisfy the clalm, which we do now,

For each xe Me U, choose open subsets NX and Ni of U such
that xe;Nxch%c Nlcsome Wy,. (The N, are mtg-dimensional sets.)
:Then the Nx glve an open cover of M, We assume the Nx are
gsmall enough to glve a cover subordinate to the cover Vi above.
In other words, each an M should be contalned in one of the
= W,AM  mentioned above, Now select Nys... N, & finite
:ubcover of M,
| Under the exponential map, the metric d on M pulls back to a
etric d* on fibers of ¥ . On any of the closed sets ﬁf\M each point
”Vﬂ’nM 1s at a positive dlstance from the intersection ‘VGﬁ\n(N{)mmP

i
the continuocus function z——-;d*(z,ﬂ&kﬂﬂﬂ takes on a minimum
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. &; on the closed set NyA M. If we set §=min &, then this & ,
together with the A chosen sbove, satilsfles the regulrements

of claim 2, Namely, if ye Ry(x) where xeN,, and B(x,A)ecV,,
then by our cholce of § , y is forced to lile inside Ni’ hence y
lies 1n Wi, and 80 the plagque contalning y also lies in Wi.
(By 2 "plaque" 1s meant a leaf of &F'|W..' Generally a plaque
ls a leaf of a follation restricted to a distingulshed chart.)
Then any path from x of length lesg than A 1s contalned in

Bfx,A)C(plaque containing x)c‘.’.wi, and so 1ifts via A to & path

in the plaque containing y. Since the latter plaque lies in ﬂ}o

we have gshown claim 2,

Proof of (¢} using Claim 2:
Recall we have chosen a fixed €,50 that ?EJQeaves of F)

immerses under exp. Cleim 2 says there 1s A. and S.so that:

0
If ye.ﬁggx) and ¥x 1is & path in L, of length| I Ao
then ¥4 11fts via B to 3y and we have

We now show (c¢) from thils; that 1s, we show the statement S(A

S(Ay): For each € there 1s & so that H(A,€,8) holds.

o)
Let £ >0 be gilven, Claim 2 allows us to define the following
map s

£ [0, )

(*]
s

(%, yehg(x)) ~——smax d(t,t') -

' ® t€ B&A)
For each t € B(x,A) we pick a path Y from x to t of length < A,
and then put t' = %271). Yg denotes a nelghborhood of the

o
zero section M of VY on which the map f 1s defined., Such &

nelghborhood exists, by clalm 2,

O)'
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Now note that £ is continuous and f = 0 on M, where M is

regarded &g the zero-gection of ¥V . Thus f"l([O,ﬁé]) ig

some nelghborhood of M in V . It follows that :

there exists a & small enough that y e Rg(x) implies _ i 3
A 3

f{x,y) which implles max d(t,t') . This proves (c)
C &4 plies mex d(t, 7 p (

4 1

and ends the proof of Lemma 1.
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PROOF OF THEOREM 1
forward implication: A minimal leaf must be recurrent,

Assume L 1s & minimal leaf with closure Z., This means
that £ 1s a minimal set of leaves, or equlvalently that 1f
L' 1s any leaf 1in ¥ then closure(l') = X. Now agsume that
L 18 not recurrent, Then 1t 1s possible to find a;iO, Tn“-;m’
and polnts Py qnelg such that
(*) a, 1s further than a (in the g-metric) from By(p,sT,) .
Slnce 2 1s a compact subset of M we can passg to subseqguences

and asgume Pp=—>P, 4,1 where p,q€Z%, Conslder the leaf LD'

Claim., Every polnt of Lp 1s at least at dilstance

a/3 from 4.

(This claim implies a contradictiocn to minimallty of %, since
T is a closed lnvariant set, whilch 1s a proper subset of 3
because 1t faills to contain q.)

Proof of clalmg

Plck a point x on Lp and connect it to p vlia a path @, Loib)=‘F’]
If n 1s large enough, lemma 1 1mplies ¢ will 1ift via 7 to

a path @ in L = leaf through p,- The endpoint g(l) will 1lie

in Bd(pn’Tn) &s long as T  1is larger than say 2| o). Further

—y

increasing n we can ensure (putting z =@ (1)) that

g{z,x) < a/3
glqpa) < a/3

and (*) glves that g(z,qn) >a, . i
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To finlsh the proof of the clalm, we apply the triangle
lnequality to the sequence of polints (z,x,q,qn) of M,

using the metric g (we supress the "g" in the distances):

(Z)qn)< (Z,J{) + (X,Q) + (q,qn)-

When we reverse thils lnequality we obtain

(x,a) > (z,a,) - (z,x) - (a,9,) >a - a/3 - a/3 = a/3,

Thus every polnt x of Lp 1s at least at distance a/3 from q

ags clalmed, Thils proves the forward impllcation,
reverse Implication: A recurrent leaf must be minimsal.

Assume L 1s & recurrent leaf with closure 2%, and that
L is not minimal, Then some leaf K of X has closure K + =,
L 1s not contalned in K, otherwlse we would have K = %,
So pilck a point x on I, at a positive dlstance a > 0 (g-metric) .
from the compact set K., Plck also a point y on the leaf XK. |
Slnce K 1s a leaf of 3 = closure of L, we can plilck a sequence
y, of points of Aly)NL, with YV

The recurrence assumption produces T(&/3) large enough
that any ball of radius T In L approxlmates the whole leaf
to within a/3. Now apply lemma 1 with € = a/3, A = T.
It is then clear that for large enough n, paths o in BA&H;T)

of length less than T will 1ift via B to paths & in Bd(y,T),

satlsfylng

gla(t),T(t)]1{ a/3, for t&l0,1].
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The ball B(y,,T) must approximate all of L to within a/3,
In particular, x 1s within a/3 of some point z of B(yn?T).
But if & 1s a path in L from y_ to z of length { T, then the
endpolnt of 1ts 1ift z' =7 (1) will be wlthin &/3 of the point z.
This gilves |
(x,29) { (%x,2) + (2,2')( &/3 + a/3 = 2a8/3,
contradlcting the fact that x 1s at dlstance a from K and z'€ K.

This contradictlon completes the proof of the reverse

Implication, ending the proof of theorem 1.
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PROOF OF THEOREM 2: A minimal leaf must be quasi homogeneous,

By theorem 1 we can assume I, 1s recurrent, We will show it
1s quasil-homogeneous for dilation constants (1/2,2). So let
r >0 be a glven positive number; we must produce R >0, so as
to satigfy the condltlons of guasi-homogeneous.,

Filrst note that we can prove the exlstence of R under the
assumption that r > 1, since for smaller r the same big R will
work. 8o assume glven r > 1,

Set ry =7r+ 1, We apply lemma 1,3 to ry and any &€ small

enough that [o° 2%

le[1/2,2], 'This ensures the maps f coming
from path 1ifting will have dilation numbers (1/2,2). Specifically.
lemma 1.3 glves us §,> 0 (we also assume 8, 1/2), small enough
so that whenever x,y are polnts of M with ye ﬁi(x), We can always
U

define a path 11fting map

£: B, > T

. d(x-’r‘l) y,

as stated 1n the lemma.

Now we choose &, small enough so that for xeM we have

Ba(x: 8:\-) c ﬁéi[Bd(x, ‘SI )]-
Such a 8,exists because M is compact and is the zero section of T.
We now apply recurrence with 1ts £ = 51, producing T(8,) with the
property that any d-ball of radius T(8) in L 1s &-close (3 metric)

to the entire leaf L. Finally we set R = T(§,) + 2r We claim

1 L]
that thils R satisfies the conditions of quasi-homogenelty.




24

To check that this 1s so, assume we are glven & cover bhall
ﬁé(x,r) and & metric ball B,(y,R), situated at random in the
leaf L. By recurrence, some point y, of Bd(y,TTSJ) 18 &;-close
to the polnt x, This Implies {see sketch below) there is Xy
with y € ﬁ&ﬁxl)’ and d(x,xl) <&, . Our choice of & then gives

the exlstence of a path lifting map

Fa¥™l
£ Bd(xl,rl)~-—--—9~Ly:L |
Since f must have dllation bounds (1/2,2) it follows that the
image f(ﬁé(xl,rl)) is contailned 1in Bd(yl,er). Finally, our

cholece of r, Implies that

1

ﬁ:j(x,r)cnd(xl,rl), since d(x_,xl)<5, .
and our cholce of R implies Bd(yl’ Erl)ch(y,R). Thus the map
for quasl-homogeneity 1s the restriction of the above f to
the cover ball ﬁé(x,r). ‘The map £ 18 a "cover immersion",
since 1t 1s defined by path 1lifting to fibers of W, and T

restricted to Bd(x,r) is embedded by exp. H

(GQD

Bi(x,8,)

€ Lx‘
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DESCRIPTION OF EXAMPLE 1

Start wlth the torus T2 vliewed as the unit square in
the x-y plane, with the usual side ldentifications. Pick

an angle @ which 1s an irrational multiple of 7, Tet @

denote the unlt vector field on T2 all of whose vectors
make the angle @ wlth the x-axis, Each orbit of & iz dense
in Tg.

Choose a polnt Xq in the Interlor of the square and a

small € -disc around x,, which we call D. Tet f be a &

O)
functlon defined on D which 1s zero only at x

0 and is

1 oﬂ:a subdisc D‘ contalning x We now slow down the

O.
vector fleld ¥ near xs by multiplying lengths by f:

B(x,y) = f(x,y)*F, 1if (x,y)e D,
B otherwise.
As 1t stands, 2 1s a flow on the unlt square in Re.
Use the same letter ¥ to denote the flow on the unlt cube
1n R° where now 2(x,y,2) = B(x,y). This 1s the old flow
acting trivially in the z-direction.

We also use the unit flow 1in the Zz-dlrectlion, which we

call dz, This 1is a vector fleld on the unilt cube which points
strailght up, having no x- or y-components.

We now add these two flows to obtain W = T + dz. This is
a flow on the unit cube 1in R3, whilch 18 invarlant under
unit translation of the three axes, and so defines a flow

on the torus T3 viewed as the cube with identifications.
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The flow W has now no stationary points, Adjust the lengths
of the vectors so that W 1s a unit flow. There willl be one
closed orbit in W, namely xoX (z-axls), There are two
special types of orbit in W which «-1imit and wW-1imit on
the closed orbit. All other orbilts have the property that
with time —p 40 or -«, they spend arbitrarily long times
near the closed orblt, only to escape eventually, cross the
X-Z plane some number of times, and then return again near the
closed orblt. Note that the closer an orbit passes to the
closed orbit, the more vertlcal 1t becomes, making more and
more passes 1n the vertical direction before esgcaping finally
from the cylinder DX {z-axis), only to return in time to
thlis cylinder., The following pilctures 1llustrate thls behaviour.

o?\r]]'t F HOW
oYl Tg. ‘g

orbit of 4

X /
g %7

Q

7 - oxis

/

(ylindedn@lice)

slice near x,

Flow becomes nf?arfy verlll’ca’.

NN
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For definiteness, assume the cylinder DX (z-axis) 1iles
In the left half x<{ O of the cube, Tnen on the right .half
of the cube the flow W goes in a constant direction. Pick now
four numbers a<{ b c< d between 1/2 and 1, where d_a is
small, We want to adjust W to a flow 'ﬁg by straightening
1t out to go in the dx direction between b and ¢. That 1s,
1.) Outside (a,d)x(y-axis)x(z-axis),'ﬁg = W. (outside the "slab")
2.) Each orbit of '1?3'2 enters and leaves the slab at the same
points as the corresponding orbit of W,
3.) In the interval [b,c] crossed with (y-z plane) the
perturbed flow WE, 1s jJust dx.
It 1s clear we can change W to "'v?g In this way, so that W‘Q
1s ¢°. The purpose of thils change 1s to make the flow
especlally simple in the region [b,clx(y-z plane), because
the next step is to perform & surgery operation involving
the tori b, x(y-z plane)and b,X (y-2 plane) (where b (b (b c),

80 that these torl are now at right angles to the flow WQ.

—

T LY A
/]

Y- Qs
AN

Z-qx3

\\

e/ @

X-axis YN~ T-axss

- =old flow CL}L'ILLQ\

—_— ‘owhv\a«ﬂ flow (side V(ew)
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Thie tori just mentioned we will denote Tg(bl) and Tg(bg).
They are situated in the unit cube of RS perpendicular to

the x-axls, and so also to the flow Wé, which 1s dx in the

slab [b,c] X (y-z plane); thils slab contalns both tori,
The orbits of ﬁé have the property that they cross the palr
of tori Infinitely often 1in elther direction (except for the.
8peclal orbits limiting on the cloged orblt, which do so in
one directlon and cross the tori Infinitely often 1in thé other),
They spend arbltrarily long times between crossings for time
going to 4® or -w, in the sense that glven a long time T we
can find a time interval (t, t+T) in which the orbit remains
in the cylinder DX (z-axis), and so stays away from the pair
of tori, After we perform the surgery operatlon mentiloned
above, these long perilods in which an orblt stays away from
the palr of tori, will produce long cylinders in tha surface
which comes from the orbilt,

We are constructing a foliation of a manlfold Mq.‘ We
will obtain M4 by removing tubes around Tg(bi) and Tg(b

o),
which are two-dimensional compact submanifolds of T4 = TSX'Sl.
Then we will identify the two holes in T along the circles
bounding the two tubes, after a flip of orientation,
So flrst consider T)’l = T3x:31 Foliated by two-dimensional

surfaces {orbit of wg)X Sl. In this folilation there 1s one

toral leaf, coming from the closed orbit of ﬁé. All other leaves
are Infinite cylindefs, whilch course around T4 similarly to

the way the orbits of WE course around T3.
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The torl Tg(bl) and Tg(be) are thought of as at the level

t = 1/2, where t is the parameter of S¥ 1in the product

4 3

T =17 )<Sl. Thus each torus 1s orthogonal to the dx and dt

directlions, Each cylindrical leaf crosses the two tori,
Intersecting each 1n one point: these polnts have co-ordinates
(bl’ ¥, 2z, 1/2) and (be, y: 2, 1/2) where y and z depend on
the leaf, or rather on the particular paggage of the leaf
through the two tori.

Now we choose a very small radlus r, so that the intervals
of radius r around Bl and b2 are disjoint and contailned in
the interval [b,c] (where the Fflow W, goes 1in the dx direction),
This r will be the radius of the tubular nelghborhoods removed
around the tori. The tube around Tg(bl), for instance,
conslists of a unlon of two-dimensional dlscs, WIthrcenters

at the points of Te(b and radlus r, and sltuated in the

1)
x-t plane. That 1s, for each point (bl, v, z, 1/2) of
2

(

i bl)’ the two-disc in question 1s the followlng subset

of T4:

1 { L 2 2 2}
Dy,z = x,y,z,t)eT " : (prl) + (t-1/2)" ¢ r
The union of these discs D; for y and z ranging over the

2(

3

y-z plane conétitutes the tubular neighborhond of T (b

V-

The tube around Ta(bg) 1s defined analogously, using discs Di 2
. b

To complete the construction, we remove the interiors

of the tubes around the two torl, then ldentify the two

M

boundary components of [T - (two tubes)]. Thls identification

should reverse orientation and sew together the corresponding

1 2
clreles, aDy,z and aDy,z .

.
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The reason for the flip in orientation 1s so we end up

wlth a cylinder-with-handles a&s typical leaf,

S =S o

o : o ) - L
¥

gl 7 :

< d"-ﬂ@’*aklﬁf'\

We have already shown why the distances between these handles,

namely dk above, are unbounded 85 k ———a»%w, Thls completes

the descriptlion of example 1.
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FURTHER REMARKS ON EXAMPLE 1.,

Remazﬁ_}. Let L be a noncompact leaf 1in the foliation of
example 1, Then considered as s Riemannian 2-manifold, L

18 not quasi-homogeneous. [It follows that the quasi-isometry
type of I cannot appear as a minimal leaf in any compact

foliated manifold, ]
This follows from four facts about I:

Fact 1: There is some A >0 so that I does not contaln any
Slmply connected metric balls of radius >A.

(This fact 1s obvious from the construction of example 1.)

Fact 2: TFor every ¢ > O there 1s some ( > 0 such that, if ¥,
and U;are homotoplc paths (rel endpoints) in Iuﬂm“<c,there

exlsts a homotopy between them through paths of length< 0.

(This fact 1s proved 1n the appendix uslng fact 1 and

a8 plaque decomposition,)

Fact 3: vl(L) 1s a countably generated free group.
(This 1s because L is an open oriented surface with

an infinite number of handles.)

Fact 4: I, contains arbitrarily large metric balls which lie
in subsets of L homeomorphic to cylinders.
(These cylinders correspond to the Increasing distances

between handles in leaves of example 1.)
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The following lemma will also be used:

PIGEON HOLE LOOP LEMMA: Given any collection of loops in L*
based at a common point, 1f there ig g bound on lengths of 1ooﬁs
1n the collection, then the collection can represent only
finitely many clagsses in wl(L).

(This 18 proved in the appendix using plagues,)

ot

We are using the term "cover balll, with the notation B(x,r),
to mean equivalence classes of (plecewlse smooth) paths from x
in L, which have length { r., Two such paths are called equivalent

1f they are homotopic through paths of length less than r.
This notion 18 to be distingulshed from that of s "ball 1in the
universal cover'. Notation for the latter will ve B(T,x,r).
:It consists of equivalence classes of paths from x of length
(f r, where in thils case paths are called equivalent if they are

‘homotopic (no restriction on lengths of paths used).

Now we assume that facts 1-% hold for the Rilemannian 2_-manifold
» &nd In addition that I, is quasl-homogeneous. We wlll show

his arises 1in a contradiction.

That L is quasi-homogeneous means there are dilation constants

¢,K) so that for every r there is R such that any cover ball

X,r) can be cover-immersed in any metric ball B(y,R); all

h Immersions f:ﬁ?x,r)-—>B(y,R) share dilation (k,K),
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Applying fact 2 to the radius Yn» We produce for each ¢ = o
a homotopy bound ¢ = CO' Then applying quasi—homogeneity to
the radius r = CO, we obtaln & larger radius R = Rl'
(Quasi-homogeneity produces for each r an R such that certain
conditions hold., PFact 2 is Similar in that fof each ¢ 1t produces
C so that certain conditions hold. When we apply elther of these
to particular constants, we will indicate the application ag
above; for example "from r = D we produce R = K" would mean
that we applied quasi homogenelty to the radius D, and obtailned

a larger radius appropriate to the conditions of quasi-homogeneity,

and we call this larger radius K. )

Thus for each Ty and any x,y L we have the mappings

(1) Blx,r) = g(X,CO)-—-—F—-u,-B(y,Rl)
The image balls B(y,Rl) can be chosen to Ile in cylindrical
subsets of I, In fact, uslng fact 4 we can chdose 8 sequénce Ze
of points of I, and radii Dy tending monotonicaelly to «, such that
each ball B(Zk’Dk) 1s contained in(&k, a cylindrical subset
of L, with theck pairwise disjoint. Then for large k, Dy >Ry
and so the mappings 1in (1) apply to Y = 2.

Now given a map £ from (1) above, 1ts restriction to ﬁ?x,ro)
can be factored through B(T,x, ro) producing maps

%Tx,ro)lﬁﬁhyB (Lox, g -—@4>B (y,R,).

The first map 1s the naturallinclusion coming from the fact that

the equlvalence relation on paths of B(i;x,ro) 1s weaker than

that for paths of ﬁTx,roi. To show the second map 1s well defined,

we note that if ¥ ang Y’ are paths from x which are homotopic,
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then there 1g a homotopy thetween them through paths of length
less than CO, 80 that Htgoes through paths which remain ingide

B(x,CO). So each path Hy 18 taken by f:ﬁTx,Co),—de(y,Rl) to

& path in B(y,Rl). Since all the image paths f(Ht) end at the
game point, we gee that ?(X):f(30=f(ﬂt(l)).

Now we apply fact 1, and claim there must be Tq large enough
that all the maps f:B(f:x,ro) produced as above must fall to be
one-to;one. If this were not 80, the 8imply connected balls
B(f;x,ro) would be carried by the immersions P (which are 1-1
and so diffeomorphisms) to slmply connected subsets of L.

These subsets would for large Ty contain gimply connected balls
of radius greater than A of fact one, because all_the f's share
the same fixed dilation (k,K). We pilck such an ro and fix 1t
in what follows.

Now we choose a basge point Xy On L. Momentarily let AETO
denote the set of (plecewlse 8mooth) loops in L based at Xqy» ‘
of length ¢ 2ro. Apply the "pigeon hole loop lemma" to this class
of loops. We see that these loops can only represent a finite
collection of classes in wl(L,xO), and so we can choose a
generator[&]in the free groﬁp vl(L,xO) which 1s not used in
the expression of any loop of AE?O by generators,

This loOp[SJis Independent of any homotopy class coming
from loops at Xq of length less than 2r0,-in the sense that

there can be no non-trivial word in{8]and geherators used to

@Xpress loops at Xq of length less than 2ro, whlch reduces to 1.
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With rq fixed as above and & chosen, a loop at x we define the

OJ
following auxllliary constants:

=
H

.max(QrO,“Su)
E; = KE, (where K comes from quasi-homogeneity constants (k,K))

By = C(E5) (we apply fact 2 to ¢ = Ey producing ¢ = E,)

23|
il

5 = KBy (K from quasi-homogeneity)

These constants chosen, we apply quasl-homogenelty once'more, to
the consgtant E5. We obtain say R = R6. For large enough k,
the radius Dk of balls contained in cylinders(fk 1 so large

that D )>R6. Hence we have the mappings:

s . ~ £1 -
B(xo,ro) BLLIN B(XO’ES) — B(Zk’Dk) Jﬂi»(fk.

e

Let f denote the restriction of f'!' to the set B(xo, ro) .

By choice of Ty the map £ arising from factofing f through
B(f:xo,rg), cannot be 1-1, This means for each k there are paths
Xk and B of length ¢ ns wWhlch are not homotopic in I. and yet
f(mk) = f\(pk). Therefore ¥, =¢gﬁf<’is a closed loop bhased at
Xowhich 1s carried to a loop by f , and the 1ength."hﬂ< 2ry.

It follows from construction of[&]that 1t 18 independent of

all the classes [Xk]. Also, ¥ 1s a non-trivial loop in 7, (L,x

(L %o) |

because the paths aand By ere not homotopic, |
Now the loop & gets carried by fk to a pathls starting at

fk(xo). We cannot say that & ig & closed loop. However, from

the fact that ngoes by fk to a loop, 1t follows that the loop

§ % 8 14 carried to a loop based at fk(xo). Call the latter




loop & Y §'. For large enough k, the two loopg ?k and

m are contained in the cylinderek, and so they commute'
in that cylinder. This implies there is a homotopy from the
commutator [¥,, 5¥8Y to the trivial loop based at £ (x0) .
Recalling the definitions of the constants El""’EB’ we see

the following: First, since & and ¥ are each no longer than Eq,
Wwe have that the commutator [¥.,8¥%8" 18 no longer than E,
Since fk has dilation bound X, the lmage loop [ﬁ,m] is no
longer than E3. We have observed that this loop 1is homotopic to
the constant loop at fk(xO); therefore there 18 a homotopy ’ﬁ;
to the constant loop, through loops no longer than El}

Finally, since the map fi 18 locally a diffeomorphism, we see
that 1f we begin to perform the homotopy near t = 0, the

loop Ht’ which starts as the image by fx of the commutator

[ ¥, $¥cS8Y] at X4, remains above & loop Hy which has length

at most KEJ1L = EB’ gc that Ht 1s a loop at wahich remalns, for
tef0,1], within the cover ball 'B’(XO,ES). We are thus assured
that the homotopy ﬁ't "pulls back" by fyx to a homotopy Hy

from the commutator [ ¥,8 &' to the constant loop at Xqe

This 18 & contradiction, because § was chosen in such a way that

no such relation as [¥,d¥%&8Y = 1 ig possible.

Thls establlshes Remark 1.
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Recall from the Description of Example 1 that we have

constructed a compact 4-manifold M4 with a ¢° foliation F or

codlmension 2, most of whose leaves look like thig:

2 (W TN A AN )

[ fe——di ] « dy le—diye— dya T 5 ... |
dk 1s unbounded ag k ——y 00,

We generate examples E(p,q), > 1, 9 >1, from example 1,
E(2,2) 15 Just example 1 1tself., To get an example for the
palr (dimension, codimension) = (p,q) with p,q > 1, we take

the manifold MMX’SP“?X Sq"z, foliated by leaves which are products
(leaf of .?)xsp"Qx (point of Sq"g). Call the resulting

manifold M(p,q) and the follation so constructed call F(p,q).

Remark 2. If p >1, g >1, then the follation F(p,q) of the
compact manifold M(p,q) contains leaves which fail to be
quasi-homogeneous. [It follows that these leaves, considered

&8 Riemannilan p-manifolds, cannot appear as minimal leaves in -

compact foliated manifolds, ]

This 18 shown by noting that facts 1-4, holding for most leaves
of the foliation F of Mu, have ‘counterparts holding for the
corresponding leaves of gr(p,q). The differences are that 1in
case p = 3, fact 3 must be replaced by

(fact 31); vl(L) 1s Z @ (countable free group)
and fact 4 must be repiaced In 811 cases by

(fact 4'): I contains arbitrarily large metric balls

which 11e in subsets of T, homeomorphic to:[xslv<sp’2.




APPENDIX

Plaque Decompositions. Let M? be g compact manifold with a :fjﬁ

follation F of leaf dimension P, codimension g, Then using

the distingulshed coordinate charts for F , we can construct

8 finilte cover M =(J'Vi where each Vy 18 the image of 5
diffeomorphism f:DP x Dq-——-->Vic: M. Here DP and D9 denote

the unit balls in RP and RY centered at 0, The Vi are called

flow boxes. They can be chogen so that each "plaque”jD = fi(D%d&)

1s a geodesically convex subset of the leaf of & on which 1t

lles, and so there are no triple Intersectlions of plagque boun-

daries. It seems approprlate to call the images fi(bﬁxDq) by
the term "coplaques", Then the definition of foliatlion implies
that when we change flow boxes, plaques are preserved, whereas

coplagues generally are not,

Proof of Pigeon Hole Loop Lemma, Say we are glven a collection

A of loops based at x,€L", with a bound K on the lengths of loops

In the collection. Then a1l loops of A remain inside the metric
ball Bd(xO,K).

Let PysecesPy be the get of plaques in a plaque

decomposition of F which intersect Bd(x,K). The plaques Py

dlvide each other into "sectors" 8 where each 84 18 defined:

complement complement
8g = P4n(py y-rup; I (p NNASTIN )
a v Iy dpryq UV -1

Each such sector has vertlices V%,...,Vg whilch are points where

two plaque boundaries meet. Now for each triple (sq,vg,vg) of
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8 sector wilth two of itg vertices, choose two deformation
retracts R%’i’d and Rg’i’J from sq onto each boundary component
Bsq.—-{v%,vg - We obtaln a finite collection of such retractions
for all sector-vertex triples ocecurring in the sectors sq.
Thus - for all these retractions there 1g a global bound D on
dlstortion,

‘Now each loop in 4 can be deformed to one which enters and *
leaves sectors at vertlices., This will increage the length bound
K to some K'. (eall the set of deformed loops A', It follows
by applications of the retractions chosgen above, that each loop
In A" 1s homotopic to some loop of length { DK' which goes
along plaque boundaries, entering and leaving at vertices.

But 1t is clear that there can be only finitely many homotopy

classes of such loops along boundaries which have length

bounded by DK', This shows the pilgeon hole loop lemma,

‘Eroof of fact 2 for a 2-manifold which satisfles fact 1.

This proof 1s similar to the above, but slightly more
complicated becesuse the assertion is made independent of
endpolnts, So let Xl, XL be paths 1in L from p to g of
length { ¢, which are homotopilc rel endpoints. We wish to
produce C so that K,and Klare homotopic through paths of

length at most ¢, and thig C should be independent both of

paths Xland K;as well as of the endpoints p and q.
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Flrst, we can esssume & and XLtogether bound a region R which
18 silmply connected, since otherwige we could argue separately
on the regilons produced.
From fact 1 we know R contains no metric ball of size > A,
This allows us to obtain a universal bound N (in terms of c and A)

on the number of plaques meeting R: Each point in R must be { A

from some point of ¥ = Y, U;h(OtherWise there 1g a ball of

slze > A contained in R) Therefore R 19 contained in the metric
ball B(p,A + 2)¥)). It s clear we can find a universal upper
bound on the number of plagues meeting any B(x,r) where r 1s
fixed and x varles in M.
Since there are only finitely many flow boxes in the
plagque decomposition of EF, 1t follows there are only finitely
many "sector boxes", contalned in intersections of neighboring
flow boxes, For each sactob box we choose & distinguished
secton»sq. We have a finite collection Sq of distinguished
Sectors. Any other sector is diffeomorphic to one of these,
and the diffeomorphisms arlsing this way all share a single
distortion bound Kl‘
We proceed asg before, first adjusting X\and Xlto enter and
leave sectors at vertlces, choosing deformation retracts onto
boundary components, etc, Thus we deform K,and Jlinto some
path along plaque boundaries Joining p to gq. The distortion bound
Kl,along with distortion bounds for the retractions on the
distingulshed sectors, together ensure there Wwlll be a large C

88 required, since as remarked above there 18 a bound N on

the number of plaques used,
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