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Abstract of the Dissertation
On the subalgebras of continuous

function lying between A{D") and c(T")
by

Richard Taylor
‘chtor of Philosophy
in
Mathematics

State University of New York at Stony Brook
1978

In this thesis; I outline the basics of Gelfand
theory., and just that part of function theory and harmonic
analysis necessary to state and prove certain results
concerning the closed subalgebras of continuous
functions, lying in between A(DM) and ¢(1™), n = 2.
Interest in these algebras is due, in part, to the fallure
of Wermers maximality theorem, which says that A(D) is
maximal in C{T) (making the problem vacuous in case n = J),
in dimensioné n > 1: at best this theorem yields the
relative maximality of A(D?) in c(T™) (Theorem III.2.8).

The classical work on'spectral syntheslis, dﬁe td

Peter-Weyl and others, shows that any closed translation

invariant subspace of the continuous functions on a compact




abelian group is geﬁerated by a set of characfers of
the group; Since ™ is such a group, in pointwise
multiplication, all clésed translation invariant sub~
algebras of c(T") are easily'characterized. along with
their maximal ideal spaces.

| It is the purpose of this theslis to see what can be
said, in general, about any algebra B, A(D") @ B < ¢(T").
To this end I classify those of the form A(K), where
™ ¢ K ¢ D%, yielding a "Hartogs like" extension theorem

for mm_.{notation: page 10) of this form.

g(
I wish to thank Professor R. G. Douglas for his in--

valﬁable-help during both. the research and writing of this

thesis, and Pat Belus, Gleﬁddra Milligan and Barbara Ginther

for the tedious tasks of typing and correcting the manuscript.
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_List of Symbols

Let E ¢ be compact.

n . .
.3 ~+ . R = Z..
5 C C 1s'def1ned by Tr](zl 'Zn) Z]
p" = space of formal polynomials in variables Zyste a2
Pg = subspace of C(E) given by restricting P! to E.
Rp = (P/0: P,Q € Pp» Q(z) # 0 for all z € E).
Mn(E) = {f: E -+ C: There is a neighborhood, U, of E and
an analytic function, g: U = C such that
f =g on E}.
ﬁ?(E) = (f: E » C: for all z € E, there is a neighborhood,
u, of z, and an analytic function
g: U, » C such that f = g on u, N EJ].
_ oo
P(E) = P
. i
R(E) = RE
A(E) = o(E)

A
E = polynomial convex hull of E - i.e.,

(¢ ec™ |P(0]| < sup |P(z)] for all P € P"3.

A z2€E
E = rational convex hull of E - i.e.,
(c ec™ |p(Q)] < sup |¥)1 for all P,Q € P"
_ 2 CE Q(z)

such that Q(z) # 0 for all z € E}.

Let X be locally compact, Hausdorf.
=¢0(X) = set of continuous functions on X wvanishing at

infinity.




CB(X) set of continuous bounded functions on X.

1}

M(X). space of complex Borel measures on X.

Let YcX, AccC(X).

AJY = gubset of C(Y) given by restricting A to Y.
AIY denotes the closure in C(Y) of AIY.

For any two spaces A and B, A » B [resp. A ¢ B] will
mean A identifies with B [resp. a subset of B].

If A € B are Banach algebras and £ € B, then

A(f) = minimal closed subalgebra of B containing A and £.




-

CHAPTER I

Background

§0. Introduction.

We present, here, the function and Banach algebra
theory necesSary to state and prove the more specialized

results of later chapters on subalgebras of C(E), E ol

compact, and in particular, on C(T"), n = 1. The role
played by the theory of one and several complex variables 1is
not ignored, and thus some proofs of classical results,

stemming from complex variable theory, are presented.

§1. Abstract Banach Algebras.

(i) Motivation. A Banach algebra is a Banach space,

B, with a multiplication satisfying ||fgl} < ||f] |lgl} for any
two elements, f, g € B. Interest.in Banach algebras arose
largely from the subjéct of Harmonic analysis: Ll(G), G a
lOCally_compact group is a Banach algebra of principal con-
cern, where multiplication is convolution (Rudin-[1]). Every
'Banécﬁ algebra repreéents.itself as alspacé of operators on
itself: Tf(g) = fg is the operator induced by £; thus
algebras of operators on Banach sﬁaces form another impor-.
tant class of Banach algebra.

If B is a commutative Banach algebra, then B is often
isomorphic (as will be shown) to a subalgebra of CO(X), X

locally compact and Hausdorff, whose completion in the supremum

norm is a functlon algebra.




(ii) The Spectrum and the Gelfand-Mazur Theorem.

Let A be any algebra with unit, I.

Definition. For f € A, OA(f) denotes the set of all x € ¢
such that £ -~ ALl is not invertible in A. We define

= a
Rn(f) C A(f).

If A= G(X), X compact-Hausdorff, then clearly

1H

oﬁ(f) = £(X) for each £ € A, which motivated this definition.
For B a normed llnear space and S ¢ B, let [S]B denote

the smallest closed subspace of B containing_s.
I.1.1. Lemma. Let B be a normed linear space, §§ € ¢ open
and connected, and F : Q - B analytic. If Kc Q has a

limit point in Q, then [F(z) : z € K]B = [F(z): z € Q]B.

Proof: Fix ¢ € B¥*(the dual of B). If ¢(F(z))} = 0 for each
2z é'K, then ¢oF : 00 = C is an analytic function vanishing on
a set with a limit point from which we conclude that
p{(F(z)) = 0 for all z € Q. The proof is complete by the

Hahn-Banach théorem. QED, "’

I.1.2. Theoren. VLet f € AcB, Ba Banach algebra with
unit_ I, A a closed subalgebré containing I. Then |
| (1) UA(f) is a nonembty closed, bounded, subset of
7 0,(f) < ball of radius {f] and

(2) Boundary = UB(f) = cﬁ(f).




Proof: (1) To show OA(f) is bounded - in fact, lies in
the ball of radius ||f]], assume [r| > ||£}|. Then £ - Az
=237t - 1), But In7Iel < 1, so that A7Mf - T ang

thus £ - AI. ' is invertible in A (we've used the elementary

fact that the unit ball about I, in A, consists of

invertible elements). Thus X € R,(f) for |x| > ||f|j.
Now, for each A € Rﬂ(f), f - AT has an inverse in A

denoted'by (£ - RI)-l: standard calculations show that

x - (f - XI)_l is analytic from R,(f) into A and will

vanish at infinity. Thus, by Liouville's'theoran,UA(f) = ¢
© implies that (f - )LI)-l = 0 fof ail RVEIC, a contradiction.
Thus UA(f) # 9. It is closed because the set of invertible
elements of A form an open set. This forces C ~;UA{f)=to

be open.

(2) Clearly GB(f) c GA(f). Now suppose there is a

{ € Boundary GA(f) - dB(f). Then there is an open
ball, U, such that

(a) { € Uc RB(f)

{(b) U n‘RA(f) is open and non-empty.

(c) o, (£) N U #o.

(a) implies that \ - (f - kI)—l is analytic from U into B.

Thus, (b) and Lemma T.1.1 with Q = U, k= U N RA(f) imply

)—l

hat (f - AI € A for each N € U. But this contradicts (c).

QED.




I.1.3. Corollary (Gelfand-Mazur). ILet B be a Banach

algebra for which each non-zero element has an inverse.

Then B = C.

Proof: We show that [AI: A € C} equals B. If not, there is
an f € B such that £ - AL ¥ O for all \ € ¢, from which we

‘conclude that £ - AI is invertible for all A € ¢, le - QB(f)

= ¢ . contradicting Theorem I.1.2.(1).

I.1.4. "éorollary. In the notation of Lemma I.l.l,
k
qA(f) = og(f) U U Q., where Qj is some bounded component '

J=1

of'RB(f).

Proof: This follows from Theorem 1.1.2.(2) and elementary

point set topology. QED.

| {iii) The Maximal Tdeal Space.

Let B be a commutative Banach algebra (not necessarily
with unit) and Mg denote the set of multipiicative linear
functionals on B: those linear ¢ : B = C for which
(fg) = ¢(£)¢(g) for each £, g € B. it is easily shown
hat ||¢]l = 1 for such ¢, that is Mﬁlc (B*), the unit ball in
and that M, is closed in the weak-* topology. Since (B*);
- weakly compact and Hausdor ££, so is MB. We endow ME with

his topology. Note that the zero functional, denoted "O",




lies in M, so that M, 7 ¢.

Let £(n) = n(f) for h€ My, £ € B; then £ » & 15 a

homomorphism from-B into C(MB)’ and MB is clearly a

maximal set onto which B "extends" itself to a point

separating algebra of complex valued functions (If MB c M’
is arlarger such set and x € M, then £ - ?(x) is multi-
plicative on B, so that there éxists an h € MB for which
h(f) = ?(h) =l%(x) for each £ € B. But then B is not point
separating on M}). Thus My is a "domain of holomorphy" for

B.

We define m, = My - {0}, the maximal ideal space of

BQ which may or may not be empty. Endowed with the relative

topology , m., is locally compact, and 8 = CO(mB) since

B ,
%(O)'=‘O implies that %lmB vanishes at infinity for each e
f € B. From the last paragraph. it is clear that my is a |
maximal set onto which ﬁ extends itself to a point.sepa-
rating , non-vanishing, algebra of complex valued functions.

. In case B < CO(X) is hohvanishing‘ X locally compact-
Hausdorff,each x € X defines an element h, € my via
h, (£)

Xcm

f(x), £ € B. 'Thus if B is point separating, then

Al

é. If B = CO(X), then it is well known that X Z mg-
Note that MB identifieé wlth the one polnt compactification
of X. In particular, it follows that for B a function

. algebra, LU # ¢. That this is always the case for a

commutative Banach algebra with unlt 1s shown below.




For the rest of the section, B is commutative with

unit (although it 1s clear that many statements hold in

more generality).
If J < B is a closed ideal, B/J is a ring which is a

Since the invertible

Banach algebra in the guotient norm.

elements of B form an open set disjoint from any proper ‘

ideal, the closure of a proper ideal is also a prdper ideal.

Thus any maximal (proper) ideal, J < B, is closed; since
(as shown in ring theory) B/J is a field, B/J is thus a ‘

Banach field. It follows, by Corollary 1.1.3, that there -

exists an 1somorphlsm
8y : B/J = €

which is easily shown to be uniqué. If
my: B - B/J

1s the natural projection, then ¢J°‘mjis a non-zero multi-

plicative linear functional on B,i.e.—¢JPwJ E'mB. Conversely,

if h € L (as shown in ring theory) J = ker h is a maximal

YAY

B——————)B/J

ideal and




commutes (using uniqﬁeness of ¢&).- Thus mB'is in one to
one correspondence with the set of maximal ideals of B
(hence its name) . By Zorn's lemma, this is nonempty. Thus
we've shown

(@) my # 4
and ‘

{bp) PFor each f € B, £ 1is not invertible in B. if
and only if £ is contained in a proper, maximal ideal,

which in turn holds if and only if £(h) = O for some

h € mB. We summarize this below.

1.1.5. Theorem. TLet B be commutative, with unit, I. Then

(1) wmg # ¢ and compack.
(2) For £ € B, oy{f) = {h(f): h € mB] and thus is also
a compact, non-empty subset of C.

A _
(3) £ is nonvanishing on m, if and only if f is in-

B

Vvertible in B.

Proof: (1) Because My is itself compact, Wy

and only if {0} is open in MB' This is, in fact, the case

is compact if

when B has a unit I: For

A 1, h € my
h(1) = I(h) =

forcing {0] to be open in My - Thus my is compact and non-

emptf {{(a) above}.
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(2) ‘We note that, by (b), A € GB(f) if and only if
h(f-)\1) =0, i.e.- h{(f) = A for some h ¢ Mg .
{(3) To say f is invertible in B means O Q’GB(f).

By (2}, this occurs if and only if f is nonvanishing on m .
QED.

Note that Theorem I.1.5 contains Theorem I.1.2(1)
in the case when B is commutative.

(iv) Q.Remafk on Banach Algebras Without Unit.

For B commutative without unit, B ® ¢ is a Banach
algebra in point wise addition and scalar multiplication,

where the product operation is given by
(£,1) (g9.B) = (fg + Ag + BE,\B).

B ® C has the unit I = (0,1). Define i(f) = (£f,0),f € B,

then

exhibits a homeomorphism between my; ® C and Mp:  Clearly

hoicg MB for each h ¢ Moeo? COnversely, if h, € Mg, then

il

h(£, ) hy (£) + 2 is an element of m for which h°i=h,.

BaC'’
Thus the desired homeomorphism is h 2+ h o i==h1.

We define, for f €B, 0y (£) = 0,0, (£), which, by 1.1.5(2),
and the argument above, is compact and equal to {h(f):f GMB].

The theory of maximal ideals and spectrum for an arbi-

trary commutative algebra, B, easily reduces to that for B®C.




(v) Semisimple Algebras.

For Commutative B, define ¢ : B = c(my) vy ¢(r) = %;

then J = Ker ¢ is a closed ideal and por: B/T - B~ g;&
is an isomorphism. If J = {0}, B is called semisimple.
This is equivalent‘to saying that the intersection of all
kKernals. of multiplicative linear functionals is trivial .,
These kernals are precisely the regular maﬁimal ideals of

B, which are the same as the maximal ones if B has a unit.

We note that., in general, HfHB z H%Hm sup ]%&;)].
hem

B

However, B is a closed subalgebra of C(mB) and it is
easily shown that m§'= mB/U' Thus a semisimple algebra
(7 = {0}) is isomorphic to a dense subalgebra of a function

algebra with the same maximal ideal space.

(vi)  The Silov Boundary.

For B commutative, OB i1s defined to be the (unique)

least closed subset, X,of m, such thatl%-achieveS‘its

supremum on X for each f € B. Clearly, E - f|aB is an

isometry from B into ¢{oB), so that ) represents itself as

1

a function algebra.on oB. TFor B commutative, define, for

e B,

Iells = swo In(e)]  (=18)_).
hE:mB
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1 .
I.1.6. Theorem. |\flis = 1im}|£™|™ . This is the spectral

o

radius formula, proved in any sftandard text - e.g.
(Loomis - [1]) .

If A'c B, A a subalgebra, then 7 : m_ - m, denotes

B
.restriction : w(h) = hIA . 7 is clearly continuous.

I.1.7. Cdrollary. If B is commutative, A € B a subalgebra,

“then dA < 7w(dB).

+

Proof: PFix f € A, By Theorem I.l.6, -

sqplh(f)[ = imufnmJﬁi sup |n(f)| = sup |[w(h)(£f)| = sup|n(£}].
heim,, n—+e hem, h€dB - h€7dB

Clearly, since this holds for each f € A, dA < 7oB. QED.

{vii) Automorphisms of a Banach Algebra.

Let B be a commutative Banach algebra.

Definition. ILet Hom B denote the semigroup of (linear)

homomorphisms of B. Let Aut B denote the group of invertible
elements of Hom B. o

An element, o € Hom B, induces a map, ®, of m_, given
by ®(h) = hep. Clearly, if B is semisimple, then o . ® is

one to one.

The following may_be directly verified
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for ¢ € Hom B, £ € B.

’ e
By (a), Hom B is a semlﬂroup via composition of

which Aut B is a subgroup, so that, a priori, ¢ is a bi-

jection of m, onto my for each 9 € Aut B. 1In fact, (b)

B

shows that ® is a homeomorphism of mp onto my, ® € Aut B.

I.1.8. Lemma. ®OB = OB for o € Aut B.

Proof: Directly from the definitions.
1.1.9. Lemma. If A c B and 7: mB -omy is restriction,
then $(me) o w(mB) for each w € Hom B such that o(A) < A.

Proof: Direct from the deflnitions.

§2. The Theory of Function Algebras.

(i) Some Properties of & Function Algebra on
its Maximal Ideal gSpace. _

Certaln theorems on holomorphic functions generalize,

in part, to shed light on the local behavior on my of an

algebra. A Lo C( ). X compact.Hausdorfﬁ. "This ‘includes a
generalized maxlimum modulus pfinciple and the related

result that. says if f € C(mA) is locally A-approximatable,

then we "might as well" assume £ € A.

Here, we state these theorems and prove some elementary

related theorems and a .dorollary. These will play a

crucial role later on.
I.2.1. Theorem. Let A c C(X) be a closed subalgebra, X i
|
compact Hausdorff,viewed as an algebra on its maximal i
|

ideal spéce.




1z

: A
(1) Let E C my be compact. Then for £ € A, f]E

achieves its maximum on (Boundary E) U (®BME).

(2) If £ ¢ C(mA) is A-approximatable at each point

h € mA—z(f), then mA(f) =m 9A({f) = 3A, that is, A(f)

A'
is a function algebra on my such that each h ¢ m, extends

uniquely to a multiplicative linear functional on A(f).

{(3) .If £ -,fn € A, and g is analytic in a neigh-

L
borhood of G(£y,+++,£), then there is exactly one £ € A

such that

A A A
f(h.) = g(fl(h) Pt 'an(h) ) . h GmA.

Proof (Gamelin—{i]). For A 'a-comﬂhtative Banach
Algebra, I <« A an ideal, we 1e£'z(I) denote those h € mA

for which h{g) = 0 for all g € I.

I.2.2. Lemma. Let I A < B, B a commutative Banach
algebra, A a closed subalgebra, I a closed ideal in A such
that IB ¢ A. Then each h € My - z(I) extends uniquely to

a multiplicative linear functional on B.

Proof: Fix such an h, and choose £, € I such that h(f, ) #0.
If h does extend to h e My, WE must have, for each g € B,

h(fo)A(g) = h(f.g) = h(f.g) so that

(*) h(g) = h(fe9)/h(fs).

Thus the uniqueness.

It remains to show that h, defined by (*), is linear

and multiplicative on B. Linearity is clear. To show
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mpltiplicativity: for 9,:9, € B,-E(glgz) = h(foglgz)/h(fo)
2 2 '

h(fog,9,)h (fo) /h(f,)
h(£09)) b (£09,) /b (£e) ?

h(fog; fog,) /h (£o)

B(gy) b (g,) - QED.

1.2.3. Theorem. Let Y be a sét, and A C B be uniformly
closed algebras of functions on ¥. Assume 3A CY and X is
dense in 3A (this means that each £ € A approximates its
supremum on X). If I € A is an ideal such that z(I) NYCX

and IB A, then X is dense in 9B.

Proof: We give two proofs.

Proof l: Since IB A, we have le Bl

XCAIX'_

Thus, by Lemma I.2.2, each v € Y - X extends to hy'e m____ .
: reh _ 5]
X

But for g € B we must have hy(g) = g(y). Thus, since

Ix |
hyris bounded on Blx * t@is.gives la ) | S-”g|xnmf

Proof 2: Let fx denote £ for £ € B. Fix

|x ¢
vy €Y - X,9 € B and assume (*)[g(y)1>”9‘x“oo = 1. Choose
f € I such that £(y) # 0. Then |£(y)]|g) |® = |

n
l(gg™ ) | < gl = <llg Iollg " = = g )l for alln » 1.
By (*), the left side approaches infinity as n gets large,

a contradiction. QED.

I.2.4. Corollary. Let A be as in Theorem I.2.1, and
assume X = 8A. Define Y = X U(mA—z(I)), I €A an ideal.
If B © Cy(Y) extends AIY and is locally A - approximatable

on Y, then 3B = X,
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Proof: Define Ay to be the (closed) subalgebra of c(mA)
consisting of all continuous functions locally A-approxima-
table on Y. Define B1 to be the (closed)subalgebra of

By Theorem I.2.1(2) we

'CB(Y) generated byrB and AllY'
have

() | 2, = 2 = X
Thus, Al ~ A1|Y and

(b) Al C B1

®) . I.B, CA

171 1

where Ilis the ideal in Ay generated by 1. Thus the

hypothesis of Theorem I.2.3 are satisfied so that BBl = X.

Since 3A = X C Y and AlY CB CB we have 9B = X. QED.

ll‘
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(11) Representing Measures.
Let X be locally compact and Hausdorff,B C.CO(X) a
closed subalgebra. Note that, as expected, 0B £ X : for

[f(h)] = §£)o = sup|f(x)| for each £ € B, h € m,. Thus,
© X€X |

we might as well assume 0B = X, although this assumption
will not be used.
For h € m. there exists a p € M(X) (complex Borel

measures on X) such that
h(f) = [ fdu for each £ € B
X

and lJull = bl by the Hahn-Banach theorem. If X is compact,
1€ B, then flul = [|nll =1 ana flul = 2 = n(2) = jxlau = u(x).,
. showing that u 1s positive. Conversely, if u is chosen to be
‘positive, then |jul| = u(x) = Ix}du = h(1) = 1. Such a
positive measure, u, "representing" h 1s naturally called

a representing measure for h.

(1i1) Polynomial and Rational Convexity.

Let Y be a set, B an algebra of complex valued functions

on ¥, and K € Y such that f]K is bounded for each f € B.

‘Definition. R(B) denotes the set of all ¥y € Y for which

[£(v)] = |£|2 for each £ € B.
%(B) denotes the set of all ¥y € Y for which
f(y)| = HE“EIE(Y)I for each g € B bounded below on K.

%(B), the B—polynomially convex hull of K, coincides
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with the set of y € Y for which f]K - f{y) extends to

: \'4
be the multiplicative on By = PB(K). K(B), the B-rational

convex hull of K, coincides with the set of y € Y for which
(f/8)|K - f( ) /e(y) extends to be multiplicative on Ry (K},
the space of rational functions on X; note that this space

ig automatically'an algebra, since B is.

Remark. (L) For B an algebra of functions on a locally

compact-Hausdorff space X, and Y denoting Mo e K<Y, then

Q(B) is clearly equal to m :(K), and K( ) equal to m_, (K)
| | Py "Ry

Definition. K is B-polynomially convex 1f K = %(B): K isB-

rationally convex If K = %(B).
In case Y = ¢° (n bossibly infiniﬁe)_ K cc® compact,

B =$? (the algebra of polynomlials in SRRV A aéting
~on ¢™) then, since fIK ié bounded for each f € Pn; R = ﬁ@Dn

ig" defined and equal to Mo () for h € Mo (k ),C = (h(wl),---lh(vn)},
then Q(¢) = h(Q) for Q a polynomial in wy,---,7 . showing
" that g represents h on P(K) and so lies in % by defini-
)

i
tion. . Similar statements hold for K = K@ ). It there-

fore follows that R < c®, ¢ ¢ c™, ¢ ¢ £ (respectfully E)
if, and only if; wl-gl,---,wn—cn generate a proper ideal in

P(X) (respectfully R(K)).

o ' v
I.2.5. Lemma. Iet K ¢ c" be compact. Then { € K if, and

~only if, for each polynomial, P. such that P({) = 0, P(z) = 0O

ifor some z € K.
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Proof (Gamelin - [2]): Fix { € ¢®. If P is a polynomial
such that P(() = 0 and P(z) # O.for all z € K, then clearly

\'4 ) N
{ ¥ K. Conversely, if { % K, then, by the remark proceed-

ing Lemma I.2.5, there are quotients, P. /Q ,Q (z) # 0 for

all z € K, such that the function R(z) deflned by

n P.{(=z)
2 “J———-(z.—-g_) is nonvanishing for z € K.
Then Ql(z),---,Qn(z)R(z) does the job. QED.

Let E € C be compact.

I.2.6. Theorem. Assume P(E) < B < C(E), B a closed sub-
. A A
= . (==} 3 I
algebra. Let K . Ty C E where 7 my -+ mP(E) E is re

striction. Then R(K) CIA(K) C B.

Qggggz Clearly R(K) € A{(K). Note that Theorem I.1.5(3)
shbws that R(K) © B. However,we can do better and show
that A(K) < B. ' | |
Fix g € YK). We have 0 (W TTraT, ) = ¥, so that,
upon appllcatlon of Theorem I.2. 1.(3), we see that g € B.

Thus #Y(K) < B and, therefore, 1ts closure, A(K) < B. QED

I.2.7. Corollary. If K C et is rationally or polynomially

convex, then A(K) = R{(K) or P(K), respectfully.

:TPfoof: Let B = R(K) or P(K), respectfully, and define
E = 3B. Then the hypothesis of Theorem I.2.6 hold. Thus’
A(K) © B. But clearly B < A(K). QED .,

A
.{2) For E ¢ K C E,note the inclusions and relations:
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P(E) ~ P(R) = a(®), & ~ Pp(g)

P(E) c A(E)_.

In many cases. A(E) = C(E) - e.g. E = T,n = 1. _
We will often write A(ﬁ) in place of P(E) to conform
ﬁith convention; the identification of A(%)'with a cloéed
subalgebra of C(E), as opposed to one of C(ﬁ) will be
clear from the éontext.
(iv) Some Deeper Properties of Function Algebras:

Maximality, —~ Relaflve Maximality, and Rxtensions
of "Half Plane" Algebras.

ADefinitions: Let X0 X, be compact, Hausdorff,xl_exlfxz EXé..

2

X
(a) TFor 7 G‘C(Xlxxg), define £ < ¢ c(xl) by

x) = f@ﬁch), £, € C(XQ),by‘fx () = f(xlng .

1 1

(b) For Aj c C(Xj) closed subspaces (j=1,2)

Ay ®4, C C (X, XX ) is the closed subspace generated by

108! 18
{(fg : £ s A, 8 € Ag}.
. ., o |
A @ Azzf‘{f € C(x1 xXz): f €Ay for all %, € X,
~and ﬁxl € A, for all Xl € Xl].

If Ay» A, (above) are algebras, then so is Ay @ Ay, A) ® A,

~In this case, for hl € my h2 € m

. ’ hl® hQE My @n is

A 188

2
_defined by
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n

il
N ™Mo
fnt

J
easlly shown to be well defined and bounded.

Cleayly-(hl.hg) - hl ® he.maps mAl X mA2 on§ to one‘

and onto m .
Al & Ae
(e) ‘Let 2 c X, be closed. Then(Al)Es A+ I, I

denoting the ideal of continuous functions vanishing on E.

If Al is an algebra, so is IE + Al. Then Alﬂ—IE isg

Cclosed if, and-only.if.Al B is cldsedvin C(E).

(d) A © ¢(X) is maximal if A, € Bc ¢(X), B a closed

subalgebra, implies Ay = B.

A © C(X) is relatively maximal if A; € B C C(X) and
L ]rmAl (wher\e T omy - mAl 1s restriction) implies Al = B.
We now prove the key lemma in our study of relative

maximality.

Definition. If f € ¢(X), E < X, then f "peaks" on E if f(x)=1

for each x€ E, |f(X)] < 1 for x € X-E.
Let B < ¢(X) be a closed subalgebra such that X = m.

I.2.8. TLemma (Gamelin - [3]). Suppose f peaks on

B C mB . Then

(1) B'E = B,E

(2) h € my. n{f} = 1 implies that supp u < E for
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each representing measure, u. for h.

Proof: Suppose f(x) = 1 for all X € E and |{f(x)| < 1 for
all x € X-E. Conéider the mab"r : B -+ C(E) given by |
r{g) = g,ﬁ. ' This induces the map r‘: B/ker r ~ C(E). To
show (1), we must show r’ has closed raﬁge: since f” is
clearly bounded if suffices to show it is bounded below.

For g € B, g + ker r € B/ker r, and

lg + ker ¢l =  inf Yg + uﬂi. Since for each n = 1,g(f™-1)
uEker r n
on E, this is less then or equal to |lg + g(£™-1)||X = Jer™®

for each n = 1. But Hgfnui - HgHE as n - «, Thus,
g + ker r| = ﬂgHE.' Since g € B was arbitrarily chosen, r
is bounded below, ‘and (1) follows.

To show (2}, let w € M(X) represent h € my, chosen

such that n(f) = 1. For each n= 1, 1 = n(r") = [ rlau
' X
= ,I oy + I fndu,_which approaches I ™y = u(E). Thus,
E-X K E

w(E) = 1. since p(X) = 1, clearly (2) follows.
- Finally, (3) follows from (2) by choosing u. above,
such that supp u < OB. QED,

Henceforth, we let My denoté point mass at x € X and

we will assume that if A < C(X) is a closed subalgebra, then

each x € X is a peak point for A.

1.2.9. Lemma. Let Ay ® A, © B @ C(X;XX,), B a closed sub-

algebra. Then for gll Xj-e Xl' A2 ond Bx

ig closed in C(Xe),
l .

o




2%

and if x; @ h € m extends to B and pu € M(Xlxxg)

N
represents x, ® h on B, then  supp W < {x,)} %X X,. Thus., i
‘ 1 1 2

B=p  ®&0,0¢ M(Xg): a priori, O represents h on A,

and is multiplicativé on B, . Thus h extends to By
1 1

Proof: Choose @ €.A; which peaks at x; : m(xl) =1, |o(x)]< 1

for x # x,. Then ¢ ® 1 peaks on {xl] X X Thus , by Lemma

2‘
I.2.8 (2), ‘suppu C {x;} x X,. Elementary measure theory
then shows that u =u  ®0, 0 € M(xg). The rest is Jjust

1
computation. QED.

- 1.2.10. Lemma. Fach h; @ h, € mAl®A2 . extends to A, ®332'

Proof: If by represents hj (j=1.,2) then My ® M, represents

hl’® h2 on Al ®,A2 and is easily seen to be multiplicative

on Al ® Aé. QED,

We congider this éxtensiou, clearly independent of the
representing meagures Mg and Mo v the canonical one . and

‘denote it by  hy

i ® h2 € m

Al ® A2

The following theorem is essentially contained in

“Rudin ~ [2] .

I.2.11. Theoré@; If Aj < C(XJ)(j=l.2) are relatively

maximal subalgebras , then so is Ay B A,

: Let A, ® A, C B c‘C(XlxXE)a and assume 7m, = mﬂl@Aﬁ'
) for all Xy € Xy, PFix x; € X, h € m, .

5> C By ccC(X .

3 2




22

By hypothesis, X4 @ h extends to B. Thus, by Lemma TI.2,9

h extends to 'BX' . Since this holds, thus, for all h € m

L]
1 Ao
relative maximality of A2 shows that Bx = AQ. Similarly,
_ x2‘_ . _ . 1
for >N € X2 , B = Al‘ ThusrB = Al @ A2' QED.

Although the problem of characterizing all extensions
-of relatively maximal subalgebras, B < C(X), is far from
solved  a complete solution exists in the cage B = C(Xl) ® A
where A < C(Xg) 1s maximal.

Definition. TLet A < C(X) be a function algebra. Then F c X
is antisymmetric (for A) if f € A and f|p 18 real valued
implies flE is constant. '

I.2.12. Theorem. TFix uE‘(Al)l,_an extreme point. Then
supﬁ U is antisymmetric. For the proof see.Gamelin—[4].

In what'follows o/ denotes the collection of all anti-
syﬁmetric seﬁé for'A.

I.2.13. Corollary (Bishop): A= (f € C(x): £
each E € #}. o :

E G,A IE for

Proof: If f]E GA}E » B €¢, then [ fdu = 0 for each extreme
X

‘point measure | € (Bl)l by Theorem I.2.12. Thus j fau = 0
X

for each p € (Bl)l, by the Krein-Milman Theorem. fThus

€ A by the Hahn Banach  Theorem. QED.
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I.2.14. Theorem. TfLet A c C(Xz) be a maximal closed sub-

algebra, and assume C(Xl) ® ACB C C(Xl X X2 ), B a
Then there is a closed subset E c ¥

closed subalgebra.

such that

(1) B={f € C(X,%X,): £, € A for each x € E}

= (c(x;) ® &), . and

2
(2) m, = (Xlxxg) U (ExmA) where E X m, g my via,
(x,h)(f) = h(fx) which extends X ® h on G(Xl) ® A.

Proof: Clearly each antisymmetric set, Vo Xl'x Xg, for

for some x, € X,. Thus, by

B, satisfies V c'fxl} X X2 1 1
X XX,): £ € B, for each

Corrollary I.2.13, B={f € ¢( %%,
x € Xl]. -

_ But for x € X,, AC B, © C(XE),'SO
of A, E; is either A4 or c(xz). Let E

Then E is closed, and B = {f € C(leXQ): f. € A for each
< B, Equality

that by maximality
fx ¢ X2 B = A}.

m

x € E}. Thus clearly (C(Xl)-® A)E.x X,

follows from an argument similar to that in the first

paragraph. Finally (2) follows directly from .(1). QED.

(v) The Role of Compactification in the Study of ‘m,.

Quite often a function algebra, B, on a compact set,

_K, is known to extend itself tb a locally compact set, Y,

80 that
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XcYc ?‘;-@B .

Then Y is, up to homebmorphism,_a certain compactification

of Y, defined below.

Definition. Let Y be locally compact and Hausdor ff,

AcC QB(Y)‘a point separating algebra. Tet I c A be a

generating set, and define ¢(y) = (f(y)) ¥y € Y. The

fer !
A - compactification of Y, denoted YA. is (represented by)
the closure in o (in product topology) of ¢(Y).

Note that ¢: Y - ¢ is an embedding, since Yo ™ y in
f, if, and only if, f(yd) = f(y) for each f € = (using |
the Stone-Weierstrass Theorem). By the Tychonof£f product
theorem, YA is, indeed, compéct. Clearly YA is well defined

up to homeomorphism.

L z - | . ?
Define m.:C” 4 C by Wf((zg)gez) = Z.. The diagram {

commutes for each £ € 5. Thus, 80 does

P(Te)ees

&
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-

for P a polynomial in [Ff}

Y = dX, d@E)

oy ‘Since d(X) is dense in

= P(wf) is a well defined isometry

ey fFex
and thus extends uniquely to an isometry from A onto P(YA).

We clearly have Y o YA_S m_. In case Y is compact
o A
to begin with, then & maps Y homeomorphically onto YAc:cZ.
/\
R Em L= P(YA). Thus, the deter-
4 P (Y*)
mination of my amounts, conceptually, to the determination

of the polynomially convex hull of a certain compact

Thus, B =~ P(YA) and m

subset, namely YA, of CE.
We now apply this to the problem of uniqueness of

extension of maximal ideals. TLet B 2 A be commutative

Banach algebras. As already noted,

L L T(h) = hlA

is continuous.

For A € B © C(X),8 = X, 7 is rarely one.to one.
Thus, the question, when is rﬁl(h) a unique point?, and
if ndf, why not?, are relevant to the study of extending

algebras for:A.

Remarks. (1) For X compact, A € B € C(X) closed algebras,
B generatéd by A and a collection of quotients,

£/g9,£f,9 € A,g(x) % 0 for each x € X, it is clear that

h ErmA, card W_l(h) > 1 implies h(g) = 0: for if

h ¢ v—l(h), k = £/g then kg = £, so that
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h(f) = 0(£) = B(k)E(g)
= "(k)h(g), ana thus,
B(k) = n(£)/n(g) 1if n(g) # o.

(2) If E is defined by z(g) n TW, ©m, ~X then E is

ée;osed,'and therefore m, -E is locally compaet,;on which
“é;gi# QKS is bounded for any one of the denominators g in
b(l): Thue B C CB(mA-Ef, and we may apply the notion of
compectification to help describe v_l(Ey. ‘The foilowing

theorem is helpful in predicting the s1ze and shape of

(z(g) nwm ) for g € B when B = A(f/g).

I. 2 15 Theorem Let X be compact Hausdorff, metrizable,

A CB < C(X) funCtion algebras. Choose E c:v(mB) C my

such that card ﬁ”l(h) = 1 for each h € v = W(mB) - E. Then

-1 c ¥ o_oy E'F_I(E).

|m™" (8)
Proof: Note that YB - Y identifies with the set of sequences.

(hj); C Y such that hj is approaching E as J = o and

lim %(h.) exists for each f € B, and sequences ( (1 )) ( (2))m
J J ‘ Jj ‘1 J 1
identify if lim %(hgl)) = 1im ?(n Jg)) for each £ € B. Tt
J J

Assume the first inclusion of the theoremrwere false.

'hen there exists an £ € B, ho€ 7° (E)“(YB"Y){ € > 0 such that
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(%) [%(ho)[ = [?(h)l + ¢ for each h € Y® - v,

Choose (ha.)g_0 € Y, hj approaching E. Since my is compact,,

there exists a convergent subsequence (hji)g'o: this means
%(hj.) converges for each f € B. Thus, by the identifica-
_tiOnlmade above, v(hii)m, 'identifies itself with an”-elemenlt,
h, of YB— Y. and

|11im %(hj_)] +e=Bm)| +e= |Bn] . |

i-ca i

{1

Let % be open sets in , such that E = Vo
© (VJ)le p WmB ‘ - 3=1 Jd’
Vqy2V,=2-:. . We claim that for some j = jo . (*) holds for

each h ¢ Vj —.E.’,_ For assume not: then__._fo_r each j, th_ere
exists hj € Vj - E such that .(*), is Ifalse fof h Ehﬁ. Clearly
hj approaches E; thus, as shown above, there exists a sub-
seguence (h..)u?' such that (%) holds, a contradiction.

Choosge Xz} open such that Ec V c: v c Vjo . Then (%)

holds for each h € V - E, and, in particular, for

h € Boundary V. But 'nr—l(E) < w_l(V). open in my s and
Theorem I1.2.1(1) implies that 8UD _ 1#(n)| is achieved
, hE?T"l(V)

on Boundary ’IT—l(V) < Boundary TI‘—l(V) < v—l(Boundary V)
s Boundary V-, a contradiction, since we showed that (*)

must hold for points in Boundary V. QED.

N

‘Remarks. (3) It follows that m, e ¥y =Y, where
o . _ Bt . |
5 - ¥ ¢ C” identifies with all limits (£(b)) .oy 35 b 4 E.
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(W) 1f ® is ﬁ—polynomially convex, then clearly

o -1
m
%|F-1

=7 (E). Thus 7TU(B) ¥, -Y by (3).
I.2.16. Corollary. = In the notation of Theorem I.2.15,

if E {hQ},'then card W-l(ho) > 1, if, and only if, for

[t}

some { € B, % has no continuous extension to a neighborhood

Of hﬂ .
Proof: (Clearly #-l(h ) = mPr([hgl) contains more then one

‘polit if; and only if, dPp(r"I(he)) does. By the theorem,

.this holds if, and only if, YB - Y contains more then one

(1)

point, i.e. - there exist sequences (hgl))z (h( ))z, hj |
approaching ho(i=l,2) such that 1im @ ) # llm % for
J

some f € B. But this means, for such f, that 9 has no con-

tinuous extension to. a neighbqrhood of he . QED.

Note that for x € X, v ~(h,) is trivial. ror if

_l( let W be a representing measure for h,. Then

h€r ~(h,),

I fdu i'hx(f) = f(x) for each £ € A. But there exists an

f € A peaking at x, for01ng supp u {x}. Thus,for each
£ €3, n(f) = j fdp r(x) = hx(f). showing that h, extends

uniquely to B.



CHAPTER II

Algebras with Conformal Structure

§0. Introduction.

Banach spaces acted on by'groups are tne easgiest ones
to study structure wise. In'particular, if B is a Banach
algebra. actéd on bj a group G, that is G ¢ Aut B, then
Mo is also acfed on by G (see I;§1,(viin and in some cases is
‘thus easily charécterized, along with B. These "translation
invariant" algebras form‘the building blocks of a larger,
more interesting class of algebra some of which will be
discussed. |

Before going on, we'muét present, some basic facts
from harmonié analysis. Let G.be a locally compact abelilan
group and,m Hagr neasure on G. Then 6, the group of contin-
uous homomorphisms, A: G - T; identifies withanl(G):
for \ € 6 £ o I f(x k(~x)dm(x) is multiplicative in con-
volution. and all multiplicative linear functlonals on Ll(G)
arise in this manner for a unique A € e.' An element of @
1s called a character. i

A theorem of Pon+ryag1n states that

(l) e separates points on G, and

A

(2) Each x € @ is defined by evaluation at a point
A

of G. Put another way: A =g (Pontryagin duality).

The uniqueness theorem for Fourier transforms states




that if, for u € M(G)

W

() J Mxau(x) = o

for each A e'@ then'u = 0. Note that, for G compact,
this implies that the characters on ¢ form a complete

‘orthonormal bases on'Lg(G): it only remains to verify that

1,0 = 1

I Adm = .
G O, £ 1

This 1is a mere exercise. For a complete reference, see
Rudin - [3]. |

For A'a Banach space , F : G - A a continuous function
"such that x - r(x)] € Ll(G), we define the "generalized"

Fourier transform of F : ﬁ(k) = [ P(x)a(-x)dm(x). In
: G

general, [ F(x)dm(x) exists whenever F is continuous and
G

| IgllF(x)Hdm(x)-<-.mii.-e. -x 4 [F(x ] e tte).

§1. Spectral Synthesis in Banach Spaces Acted on by a Group.

Let A be a Banach space, and G a locally compact,

abellan group and consider a map
AX G- A
(f,X) - fxf

continuous in each variable separately such thet




(1ii) (af+BgL{ = af, + Bﬁy
for each f, g € A, x,y € ¢. If BcC A satisfies f, € B
for each £ € B, then B is called translation invariant.

For £ € A, let fT denote the Banach space valued function,

x - f. . on G,
X

II.1.1. Theorem. TIet ¢ € ¢(G) satisfy ¢(1) = 1, and assume

x - “¢(x)kaA lies in Ll(G) for each £ € A, Then

(1) A is generated by elements,

X

Ao ] |
67 (A) = [ ¢(x)f A" (x)am(x), for £ € A, x € B.
a . o
(2) If G is compact then A is generated by _
A ‘ A A . )
(£T(A): v e €, r e a) and £T(0). = Mx)FT(N), x € a, £ € A.

Proof: (1) Sﬁppose‘L € A*,and_L(g}T(k)) = 0 for each
feA,\E€ 6. Then for such £ and A,
-jGL(qs(x)fx)x*l(x)dm(x)
) ~ AT, |
= L(f 8 (x)r A "H(x)am(x)) = L(EET(\)) = o,
G

from which it follows that L(¢(x)f2) = 0 for each x € G by
he unigueness theorem. Thus L{f) = ¢(1)L(fi) = 0., since
¢(1) = 1. Since thig is so for each £ € A, and L € A%

was arbitrary , the Hahn Banach Theorem now applies to
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complete the proof.

(2) We may choose ¢(x) = 1. For A € ﬁ;,y € G,

¥

.?T()L) = (‘]‘Gf}'{‘k"l(x)dm(X))y

= [ (gg)yxfl(x)dm(x) - j £y “L(x)am(x)

i
]

j 7 oy ™ an(x) = () [ M) am(x)
G

= ?T . QED.

Remark. By observing the proof of (1) and choosing @,

1f possible, such that ¢(x) # O for each x € G, we may

conclude that for T C A any set whose translates generate
AN A _

A, {¢f (\): £ €2, % € G} in fact, generates A.

§2. A Study of Translation Invarlant Subalgebras of
ContInuous Functions on Compact Abelian Groups :

The 013851cal Group Theoretic Results.

' Let G be compact, abelian. For f € C(a), fx(y) = f{xy)
)

defines a group action of G on C(G) satisfying (i) and (ii

of II.§1,with A = c(g).

IT.2.1. Theorem. Let A < C(G) be a closed subspace. Then
A is translation invariant if, and only if, A is generated
by characters. Furthermore, in this case a character X\

lies in A if, and only 1if, %(k) # O for some f € A.

‘Proof: Iet A < C(G) be translation invariant. By Theorem
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I1.1.1 (2), A is generated by functions of the form
220000 = £ 1) = $T00, (1) = a0 ()

bl
= K(x)%(x), A £ e, f € A. Thus A is generated by just
those characters \ € é for which g(x) # 0 for some f € A.
Conversely, if A is generated by characters, then, since
‘XX(Y) = Mx)\(y) is scaler multiplication by A(x), A is

translation invariant. This shows the first statement.

As for the second, only note that if X € A, A()\) = 1 # 0. QED.
1

Now consider a semigroup Ic 8 such that Z U s
_geperates 6: each \ € G can be written as By_l, B, v & .
A(S) denotes the closed subalgebra of C(G) generated by
2 (acting as characters on G). Hom 5 denotes the semi-
group of non-zero homomorphiéms h : % - D topologized
weakly with respect to X : ha - h if, and only if,

h (A) = () for each » € . Then

G < Hom 2 via x = h, hk(k) = )s.(x).

To show this, note that if hkr= hy, then A(x) = A(y) for
each A € 3, and thus for each ) € B (since = genérates @).
Thus X = y 8ince the characters éepafate points on G
(Pontryagin duality).

Ifs = e, fhen the above embedding is onto, since
each'homomorphism of 6 into D arises from an element of

G, again, by Pontryagin duality. The following theorem

is due to Arens and Singer - [1] .
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= 1
1I1.2.2. Theorem. Hom I '\ Z)

G = JA(Z) .

Proof: We identify BLl(Z) with G, and m l( ) with Hom >:
S L=
If h € Hom 2, one can compute that

n(e) = #n) = = £(x)h(n), £ e 115)
AES

is multiplicative in convolution. It i1s a classical result
that all multiplicative linear functionals on Ll(Z) arise

in this manner. Thus m
It (z) |

Now, if 5 = 6, then (by previous remarks) m l( )
‘ Lz

= Hom @ = G and thus BLl(e) < G. By Corollary I.l.7 , since

= Hom Z.

lLl(Z) c Ll(e). we thus have BLl(Z) < G. Equality follows
by noting that f;?%) is invariantrwith respect to trans-
latlions by elements of G.

Finally, note that ﬁhe'uniform closure of L;(Z) on
1ts maximal ideal space, Hom 3, coincides with A(Z). Thus,

by the remark in the last paragraph of I.§l.(v),

m Hom =

Il

A(3)
JA(S)

G . QED.
Now let = c 6 be an arbitrary collection of characters.

IT.2.3. Lemma. For f € C(G), f € A(Z) if and only if
;%(X) = 0 for each A € & - 3.
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Proof (Rudin - [4]): For £ € A(Y),

A ' - )
AEL,E(Q) = J £(x) )\‘ l(x)dm(x) . Approximating f by poly-
G

nomials, ¥ aBES, we can approximate this integral by
pEL |

L a J' B (x) l—l(x)dm(x), which equals zero since S)L-l;ié 1
G. A _
implies J’ﬁl” {x)dmn(x) = 0. Conversely, assume g(\) = O
for reach.)\ £ Z. To show g € A(L) we assume U € M{G) is
such that y 1A(X) and show thatj gdy = O (from which the
G

Hahn-Banach Theorem applies to complete the proof).
-1
).

n

Define g(y) = g(y

Jean= [ gy hauwy = -,
_ G
A
But é‘r’(k‘l) = [ gexHrmant) =50 =0, £ T, and
A G -1
Ll(l Jx(l)du(x) =0, €T. Thus G * (AT =
Y A1 é
g(\~ )u()\ )= 0 for each X € so that g = TR

almost everywhere with respect to Haar measure. Noting

continuity of §* u, we thus have I gdu = g * u(l) =0. QED.

. G
Now assume ¥ is a semigroup. Then I induces an order-

ing on G via A < B if, and only 1if, "X’B“l € 2. This ordering

is total if XA €L or )\.—1 € L for each X EG Archimedean if

for each X EG there exists an n such that l >B. If

Z induces an Archimedean ordering, then it also induces a

-1

total ordering such that A, A ~ €% implies = 1; further-

A
. . . A
more, if T’ O T is another semigroup, then T’/ = G.

I¥.2.4. Lemma. Assume 1l € X, ¥ Archimedean,p ¢M(G) is
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positive, and

J7 0, BE S, B #1
J Bau = |

& Ii L= 1. . -

Then y = m, Hadr measure on G.

Proof: Since 3 U Z-l = @ and {4 is positive, we have for

BE S, B € = and thus

[ Bap = [ 8 1oy = o.
G . G
Thus
A Othél
uig) = (,
Ll.3=l.

idéntifying M as Hadr measure, m. QED.

IT1.2.5. Theorem (Wemer's Maximélity Theorem (Rudin - [57]).
If ¥ is Archimedean, then A(ZX) is a maximal, proper, sub-
algebra of C(G).

Proof: Suppose A(Z) c;?B c7:! c{G), B a closed subalgebra.

Fix A€ 2, AV # 1. 1If xfl € B, then since we observed that
.l"l g5, s, 21 generate a~semigrou92} # 3 which we observed
must therefore be equal to 8. Tnus B E;B- and B = ¢(G) by

the Stone-Weierstrass Theorem.
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Now suppose 1 £ B. Then ) is not invertible in

B, so that by Theorem I.1.5 (2), there is an h € m_, such

B
that h(A) = 0. For B(¥ 1) € I, there exists an.n > 0
such that Bn?«._l =y € £; thus ™ = xy, and (h(p))"
= h(\h(y) = 0; thus h(B) = O for each B € Z, B # 1.

Since h(l) = 1, Lemma II.2.4 shows that m represents h. '

Thus, for each £ € B, A £ I, we have

J' £2"tam = h(HHh (Y = o.
G . :
Finally, by Lemma IT.2.3, we conclude that £ € A(Z). QED.

§3. Application to the Study of Certain Subalgebras of
2
c{r).

(i) The Translation Invariant Ones.

Since our main interest centers around subalgebras of
C(Tn) , we discuss the simplest of these berfore going on -
the translation invariant ones. By Theorem II.2.1, these
are precisély’ those gene;:ated by a semigroup of characters.

Such semigroups identify with subsemigroups T c m": for
' K K

K € Zz" corresponds to the character Ty ey, " on T". wWe

are interested in algebras B such that A(Dn) cB CC(Tn)'.

Thus we assume P+ c czzn ,where P+ =

_ Ky K

A{%) is generated by ['JTl ceeT
11.2.2.,

mA(E) ~ Hom ¥, s0 we have the map -

+
w:HomE—*DnNm ~ Hom (P ).

A (D)




38

Clearly 7 (Hom =) is the subéemigroup of D" consist-
ing of preciéely thosg ¢ € " ﬁhich extend to:homomorphisms
hc-:')l‘.-*D. " |

We consider examples only for n = 2, since they are
the simplest. PFix { € w(Hom =). If ¢, 70, L, =0,

then each (n,m) € = satisfies m = O, so that A(S) is
"generated by a semigrouprof quotients, wg/wﬁ,ﬁm, n z 0).
along with pt. Since w? does not vanish at ¢ = ({3, O).
remark (1) Chapter I.§2.(v) shows that card W-l(cl;O) = 1.

Similar statements hold if ¢ = (0:€,), ¢, # O.

We've shown, thus, that (0,0) is the only point that

may blow up in Hom = = mA(Z)- equivalently, have more than

one extension to a homomorphism hC : 2 - D. By Corollary
I.2.16, this occurs if, and only if, for some
nm o e | . e _
(n,m) € 3, TYT2 Jur (Hom £) ={ (0,0) ) has no continuocus exten
- sion to w{(Hom ).
The simplest concrete, yet conceptually general,

example of this phenomenon occurs when = = {(n,m): n+mz 0}.

In this case, A(3) = A(FF)(myfr) = A(wry/ry). and

il

m(Hom £) - {(0,0)} = (¢ € D%: [, ¢, 1™t = 1), since (0,0)
is a limit point of this set, we have

T

m(ma(z=) = w(ron %) = (¢ € 0% ¢l = [¢)])
" Now, by Theorem T.2.15, BA(#E/wl)iﬁ_l[(o oy] s con-

- tained in the set of limits of gg/gl as { approaches O with




]g2| < [gl], gl # 0. Clearly such limits lie ith:f:Thus,
if o is such é-limit, then {{ # 0, ¢ € D Ce/cl ﬁ'a17¢ T (Hom ) .
Thus, S

Co

(¢ € D2: € - mCl = 0} < ow(Hom =) .

Cdnversely, 1f such a set, C,_, lies in w(Hom 3), then as C.

aj'
approaches 0, { € Ca' ¢ # o, Ce/gl - a, trivially. Since
wm, (7,/m.) = U C., we see that these 1limits exhaust all
ANV 2T €D &

of Dt since D is polynomially convex, .we g8ee, using Remark
i, Chapter I.§2.(v) that A(w, /) . =~ A(D) and its
_ (ra/Ty lr=1( (0,0 (o)

maximal ideal space identifies with D. Thus,we see that

. - -1 -1
m =HmZ=7"(vc)= urc)
A(WE/%l) acp & a€D «
= 77H0) u (U rHe, - ((0,0)}))
G-E;.’D
=DU UCgC
oD @

where Ca méets:D at the point a. Note this is homeomorphic

to D2.

Diagram:

protruding from the point o € D represents Ca
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(ii) Ektensions of Half Plane Subalgebras of C(Tz).

Now we classify all extensions of the "half plane®

algebras
AL ) cc@?)  where
a,b
{a) E‘a b {{nm) €z 2, an + bm _}_ 0}, a,b positive real

numbers. Clearly A(Dz) < A(ZI) . These algebras are

translation invariant, since they are generated by charac-

ters. Their maximal ideal spaces were discussed in

general at the beginning of 17I. §3.

The classification of the closed algebras B such that

(b) A(Z ) € B C(Tz)
: a,b , .

’

will be shown to follow from Theorem 1.2.14 (Theorems

II.3.1 and 1I.3.1°9).

First we consider the special case a = 0, b # 0.

+ .
Clearly I =Z X Z . Since

A (Zz)

cm, az’) = am)

A(Z C(T) ® A(D) < c(T?).

"O,'b)

Noting that A(D) is maximal in CA(T) (by Theorem

£I.2.5), Theorem I.2.14 applies verbatim to characterize

all extending algebras defined by (b}, with a = 0.




Theorem IT.3.1. I1f c(T) ® A(D) < B C C(T ) then-there is

a closed set E < T such that

{f € C(Tz):. fg(z)

extends to be analytic on D for each { € EJ,

and ff

mBFSTZUExD.

t

- For Eg p defined by (a), two cases arise:
’

1-(ii) a/b is rational
2-(ii) a/b is irrational.

In case a,b satisfy (1), Theorem II.3.1’ will reduce the
characterization of the algebras defined by (b) to Theorem
II;3.1. In case a,b safisfy (2), the line an + bm = 0
passesfthrough no lattice point so that Ea,b induces an
Afchimedean ordering on 22.2 . Thus, A{Z) 1is meximal in
C(Tz) by Theorem II.2.5 and thus the only extensions given
by (b) are the trivial ones: B = A(Eg’b) or B = C(Tz).

Thus we consider case 1-(ii).

Theorem II.3.1’. ‘Assume a and b are relatively prime in-

tegers and let B be a closed algebra satisfying (b). Choose

integers o and B such that Ba - odb = 1 (possible because a
and b are relatively prime). Then there exists a closed

et E T such that

=

(£ € (T :£(%2?, "2P)
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-extends to an analytic function, fC' on D for each

¢ ¢ E}, and

' 2
~ 7
mB UEXD

£ ) D, . .
where for ((,z) € E x h(g,z) € my is defined by

-

Big,z (B) = £(2).

Proof: Consider the map giVen by
T2_9’>T2

(2,0 —> (%%, P2

We show that ¢ is an isomorphic homeomorphism onto T2.

Since @ is clearly a continuous homomorphism, and T2 con-
tains no proper subset homeomorphic to itself, it suffices

to show that ker & is trivial. Suppose (Qaza,gszb)==(l,l).

We must only show z = { = 1. for each (n,m) € 232, we
have |

Z20 Cwan

zﬁm ; g—Bm
S0 thaﬁ

zan+bm - C-anmﬁm.

The definition of ad and B simply says that

ab

G'B) =1

(*) det (
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s0 that the simultaneous eguations

an + bm = k

on + Bb =

have integral solutions for each pair of integers X, 4.

Thus zk = C,“'é' for each integer pair k, 4, implying that

z = (= 1=, and we are done.

*
Now consider the adjoint, @, of ¢ given by
. ‘
]

c(r?) L c(r?

£f—> f o ¢,

* ' N .
Then ¢ is clearly an isometric isomorphism of the Banach

algebra C(Tz') onto itself. ILet I = Za b We claim that

&
(*x) g (a(%))=Aa(D) ® Cc(T).

For {n,m) € I, we have

) g = AP AnBR ¢ ) ec ()

since an + bm > O defines . Thus ¢*(a(T)) < A(D) ®C{T).

Since the set {Trlkﬁz'e

algebra of A(D) ® C(T) (by the Stone-Weierstrass Theorem),

tk €2, & €z spans a dense sub-

to show containment in. the other direction, namely

* _ k_ 4 *
A(D) @ C(T) < ¢ (B), we must show that Ty Ty € g (A(E))
+ 4 € Z . But this follows from (*) and

Thus (**) is verified.
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From (xx) we conclude that A(D) ®c(T) g’ (8) cco(r?).
Thus Ey Theorem II. 3.1, there is a closed set E ¢ T such
that Q*(B) ; {f € C(Tz):fg(z) extends to be analytic on
D for each { € E}. Thus B = {g ¢ C(Tz):‘d*(g)g(z) extends
to be analyfic on D.for all ¢ € E}]. But this is_just the

desired characterization of B, since

7 (@) (2) =& (9) (CLz) = 9(@(C2)) = g(z2¢% PPy,

QED.-

(iii) The "Big Disk" Approach to Half Plane Algebras
~and their Extensions.

Now we show that all the algebras discussed in (ii)
are intersections of "Disk" algebras. In.particular, we
" show that if ﬂé'bCIZZZinduces an Archimedean ordering (i.e.
- %-is irrational), thenA(fa'b)'is the "Big Disk" Algebra.
fine .
cts (z € C: Imz >0}
and

A(CY) = (f ¢ Cq (€*): £ is analytic on c'}.

i

We first prove the following crucial fact:

" Lemma II.3.2, a(ch) is a uniformly closed subalgebra of

Cb«f} such that IR is dense in its Silov boundary (i.e. -

each £ ¢ A(C+) approximates its supremum on R).

Proof: Since uniform limits of bounded (resp. analytic)

functions are bounded (resp. analytic) we see that A(C+)

rva—ry

is uniformly closed in CB(Cf). Clearly,AA(C+)is an algebra.
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To verify the second statement, we use the fact that

1
z+ 17

—_—

if Q: ¢ —> ¢ is defined by Q(z) = then @ € a(ch

and vanishes at infinity.
For f ¢ A(C+), the maximum modulus principle implies

that f approximates its supremum on ]RlJ{W}. Since Q

vanishes at 5; Of thus achieves its supremum on IR. We've
shown that B(QA(C+))<:JR. Note also that Z(QA(C+)) ={z €C+:
Q(z) = 0} = ¢.

‘Thus the hypothesis of Theorem I.2.3 are satisfied o

with ¥ = C+ r X = IR, B==A(C+),A==I==QB. By the conclusion

of that theorem, X=IR is dense in BB€=BA(C+). But this |
is just the desired result. _ , QED.

Now we define, for 7 € T2. a,b positive real numbers,

the function

— b

iaz ibz
z > (Tle ,» Ty ).

For fixed a,b we will simply write QT for ﬁ:“k>.

A simple computation shows that dT(z) € p? for z ect

(so that the definition makes sensé) and that gT(nn - Tz.

Note also that dl(ﬂn is a subgroup of T2 so that T2 is

the disjoint union of the cosets {ﬁ}(nﬂ: T GTZ]..

Now, for T‘ETz, we define the subalgebra ﬁ?k), of

b

c(r?y, by £:P= (fec(r®: £ () (t real) extends to a

bounded analytic function on C'},
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By Lemma II.3.2., Af is a uniformly closed subalgebra of -
c(r?).

Now Theorem II.3.1 is contained in the following:

Theorem IT. 3 3. Fix a,b > O.' Then the closed subalgebras

of C(Tz) extending A/( Za b) are precisely the intersections
r

of maximal algebras of the form'A?'b, T € 'I'2 . If S% b
induces an Archimedean ordering on 222 . then A( Ea b) = A?r'b

for each T € ‘I‘2.

Proof: If a,b satisfy case 1-(ii) and the hypotheses of
Theorem II.3.1° hold, then
B= (N Aa'b where E, = {(g“,ga): L €T}. To see
T 1 , -
‘TEEl - .
this, simply let z = elt (t real) in the conclusion of

Theorem IT. 3. 1'.

Assume now that a,b satisfy case 2-(ii} and let

=22

a.b " " Then ¥ induces an Archimedean ordering on Z ,
“a, A

a,b 2

and we proceed to show that A(Z) = AT for each 7 € T°.
Again, we méy assume a = 1,b is irrational. Fix 7 € 'I'2,
and define fn m = TTI; 'rrI;l for (n,m) ¢ %, Then for real

_ it,n ibt,m = n m_i(n+bm)t
t, we have fn,mog"r(t) = ('rle ) ('rze ) = 1 o€ .

Since b is irrational, n + bm > O and thus ol (ntbm) 2 is

bounded for Imz > 0. Thus fn o ° Q’;r extends to be bounded

. s + . 1,b
and analytic in C', i.e. fn,m € A'r

. Since A(Z) is

generated by polynomials in the functions fn m ' e have

1
A(Z) < Al'b. BEquality follows from the maximality of

'r
A(Z) (Theorem II.2.5).




It remains to show that Ai'b,is maximal in C(Tz) for

2, a,b positive real humbers. But A?'b is

essentially the disk algebra in case a,b satisfies 1-(ii)

each T € T

(I1.3.1 ') and the "Big Disk" algebra in case a,b satisfies
2-(ii) (as shown above). In either case, Theorem II.2.5

applies to conclude that Ai'b is maximal. QED.
It is interesting to note that in the Archimedean case

(2=1,b irrational) Qi'b(ﬂn is a dense subgroup of T2

(Arens and Singer {2]}) so that each di’b(ﬂu is a dense
coset of the subgroup Qi’b(nn . We will proceed to show

that the maximal ideal space of A(El b) is the disjoint

union of the "Big Disks™" di'b(0+)(T € Tg)and the "point at
'infinity.“
In fact, we have a characterization of mA(Za p) for

‘a,b > 0 independent of Theorem II.2.2.

Theorem II.3.,4. For a,b > O and B a closed algebra extend-

. o 2, ,a,b
ing A(Zé'b), let B. = {17 € 7°: A

1 > B}. Then

(1) m =~ U gi'b(z—3 U [E, a/b rational (1-(ii))

1 {«}, a/b irrational (2-(ii)})

B

~where E = {( € T: (ga,g ) € El}, o,B as in Theorem IT.3.1'.

———

(2) = U 2P (ch .
1
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Note that El = T2 in case 2-(ii).. We first bprove

the following lemma.

Lemma II.3.5. Fix (21.2,) € p?, |z, 1 # 0, |z, #0. Then
the following two statements are equivalent.

. n m -
(i) :ﬁ|zl| |zz| L1 for each. (nfm) € Ea,
'11‘1]21\

_a
(ii) W—B.

To see this, let ¢ = - in]zll, d=-1n |22| Then

b

Izlln]zzrmg 1 is equivalent to nlnlz, | + mlﬁlzz| <o,

that is cn + dm > 0, or (n,m) € Ec q-°
[

Now (i) can be rephrased as Ea,b c 'Zc,d . Since

'Ea b is maximal proper subsemigroup of %z 2 , this is equiv-

alent to Ea b= Sc q’ which clearly occurs if and only if
-g— = % , i.e. (ii) holds. . ' “QED.

Now to the proof of the theorem. ILet L = T

. - ( 2 1n|z, | a'].:
Define 5§ = (zl,zz) € D7: zl #Z 0, z2 # 0, _Elz_zT = ]‘5'} ’ and

let 7 A (5) —_ D2 be projection. First we consider the
| case B = A(Y) .

We proceed to show

o 7T
(@ U, #277(ch) oy

m <) CS. The first set
TET T A(Z)
inclusion follows from Theorem II.3.3 noting that
(Zfi'b(C-F) C ™ a.b for each 1 € T2 . The last set inclu-
_ , 22
T

m (IE) we have
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1) o] v ] <1 for (am) ¢ I ana
(29 ‘h(ry)=0 if and only if h(r,) =o0.

Statement (2f) follows’from the observation that -there are

integers n,m,k, {. > 0 such that -
n k

ﬁz _ Wl ‘
—5€ A(E). (i.e. (-mn) € T) and-: 7 € A(D)  (i.e.

(ko-f €%). By (2, each z € 7 My xy = ((0.0)]
satisfies z, # 0, z, # O (i.e. the hypothesis of the lemma).
Thus by (1') and the lemma, T (5 " {(0,0)} c 8. s8ince
(0,0) € S, we have WmA(E) C S, which is the last set
inclusion of (a).

Now one can compute the following:

®) sc U

ﬁaT’b ch .
TET

2

Putting (a) and (b) together, we get

b — - 2,b —T
U. g crm Yo U, ¥ ch.
rep? T AT qgp2 T
Since the middle term is itself closed, (2) is verified
with B = A (0) .

To verify (1), first we note that
(c) w*l(g) is a singleton for each { ¢ W(mAiiD ) such

that € ¥ (0,0) (this follows from (2') and remark (1) = (v)
of I-2-(v)) and

:b | ;; Ty
@ Y, =y, a2 huo0),




the union being disjoint (this follows from simple, vet

tedious computations). By (¢), (d) and (2) we have
A(E, ~ U oY ey ™ (0,0)).

Now it remains to examine v-l{(0,0)].
First we consider case 1F(ii)2 A( %) is generated by.

Fl,wz.fgwi ' Wl 5m for two positive integers n,m such that

an - bm = 0. It thus suffices to'check the spectrum of

2N\

2 ln in A(E) . But clearly if we choose, for each
|Tr {(0,0)} -
Cer, T=1C) €T® such that 'rI;'rl"“'n = ¢, then
ibzm= @ihmHMMz=g

i -n
o™ 0 g2 (z) = (1,eM3%) " (r1,eM%)

L)

since an - bm = 0. Thus Wgﬁin takes the constant value ¢

on ¢a(g)(c ). for each { € T. But P
(*) (0,00 € N ca”f‘r"(]z) (cy.
geT
Thus T lies in the desired spectrum (see Theorem I.2.15

{(0,0)}, second inclusion:

i

with A = A(Dz), B=AaA(Y), E

we just showed that T C YB - Y in the notation of that

theorem) . Since (w Ty ) =-Wnn_m

2"1 1 %/\

equals the spectrum of Fgﬁin in A(Y) _1 and
' | lm™*{ (0.0) )

€ A(Z), clearly T

case l-(ii) 1is taken care of.
Next we consider 2-(ii). Neting that (*) gtild
holds and using Theorem I.2.15, first inclusion, we

must only check that for each (n,m) € &,




1.b
(e) 1lim. v?ﬁ?"dT (z) = 0.
mz e

Since b is ifrational, (n,m) € % means n + bm > 0. Thus

for (n,m) E'S the left side of (e) equals

1iannTmel(n+bm)(Rez+1Imz) 1 2 lim el(n+bm)Rez -(n+bm)Imz
Imz e Inz -
since |el(n+bm)Rez) l=1 and e—(n+bm)Imz

approaches 0 as
Imz + . Thus (e) is verified and case 2-(ii) is taken

care of.

Now for an arbitrary algebra B extending A(Ea b)'

case l-(ii). only remains (since only the trivial exten-

-

sions exist for case 2). But (1) and (2) follow readily
from Theorem II.3.1', and a discussion analogous to the

one above shows that w”l{(0,0)} identifies with the subset

E of 7, QED,

We note that although the map s my D2 was shown to

be non-injective -for exten51ons B of A(Z b) with a # 0,

*x
b # 0, a/b rational, 7 is 1n3ect1ve for the algebrang(B N

defined in Theorem 11.3.1’ Slnce Q is an isometric

isdmetry, we see that the nature of the map T is not an

algebraic propertf of B.

(iv) A comment on a More General Class of Subalgebra
of C(T ).

Finally, we must mention that all translation

>lane ‘algebras considered in (1i) and (iii) are- special




cases of ‘algebras generated by semigroups of “generalized 
. n, - m ' _ . n
characters‘,‘(zl—gl).(z2 Qz) , Wwhere ( = (Crcz) € Int D,
These are just those algebras invariant with respect to
all translations about ( (these_automorphisms of p" are
discussed in Chapter III.§l. (ii)). Thus all observations

of this section apply to this more general class of

algebra.




.CHAPTER III

‘Rational Subalgebras gg.c(Tn) Extending A (D")

§0. Introduction.

A rationél algebrarcontaining A, or a rational exten-
sion of A, is one generated by A and a set of inverses of
elements of A, |

For E c cn, compact, P(E) € B c C(E), B a rétional
extensioﬁ of P(E), then m identifies with a rationally
convex set, K C Cn, such that E ¢ ¥ ¢ Q ~m

P(E)
- A N ‘
have B ~ R(K): for let 7: m, 4 E be restriction: since

and we

(by Theorem 1.1.5(3)) the generating functions of B do not
vanish on m,, T is one to one (using Remark (1), T.§2. (v))
and B c R(K) where K = w(mB). But, by Theorgm I.2.6,

R{K) © B. Thus B ~ R(K) and K = mR(K) is ﬁherefore ratio-~
nally convex.

We characterize allrrationél extensions, B; of
A(M: a0 cB c (™), along with their maximal idesl
spaces, for n > 2 (case n = 1 is trivial by Wermer's
Maximality Theorem) are characterized. Thus we deduce

certain restrictions on the shape of Ty if B is not a

rational extension - improved upon in Chapter IV.

§1. Invariance of A(ld Under Continuous Deformatlon of £,

Where £ € A,A a Closed Subalgebra of a Banach
Algebra B.

Let A € B be Banach algebras, 1 € A the unit. Let EA
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denote the semigroup of elements of ‘A invertible in B,

For f, g ¢ Z' define f ~ g if, and only if, £ and g lie

in the same connected component of Z (here, path connecteg

and connected are syndnomous). If = /b denotes the set of
~ equivalence classes and ¥ denotes the equivalence class
of f, then TE=Trg1s a well defined operatlon making Sp/~

into a semlgroup with unlt 1.

1II.1.1. Theorem. For f, g € Zpe £~ g implies A(%) = A(é).

Proof: Let f ~ g, Then there exists a continuous ¢:[o; 11ax,

such that £ = ¢(0), g = ¢(1). Let E = {telo,1]:
Clearly E is closed. If to € E,

g(t) €A )}.
then, a priori— and this is
the crux of the proof — ¢(to) is invertible in A(—) and
~therefore so is $(t) for t near to, .Thus E is open. ¥We
conclude that E = [0,1]. Thus, =

1

::aTTT € A(F)“ Similarly,
feoa L
F e,A(é-). QED.

- ITT. 1.2, Corollary.  Suppose A is commutative. Then, for £,

g € 2y % € A( ) if, and only if, T divides gN in %, for some

N 2 0 (this just means that fi ~ gN for some 4 ¢ ;A).
: . 1 1 . :
Proof: First suppose FE A(g). Choose € > 0 such that

(a) H% - vll < ¢ implies v is invertible for all v € B,

ince A is commutative, so is A(é), which is thus the closure

ot (e™p: sea,n= 0}, Thus, there exists £ € A N = 0




such that

Q

(b) H%-- "NLH < €. Then (%)

il
] o
+

invertible for 0 £ 't < 1, by {(a). Thus

N

€3 for O t < 1.

p(t)fg "

¥ (t)

Since §(0) = #f p(1) = gN we have f4 ~ gN. Conversely,
if £4 ~ gN. fsg, 2 € Za then by Theorem Ir7.1.1,

1 1 1 - - ‘
A(Fp) = A(x). But therefore ¥ = A(£4) te adp) = ad)
| g

1.- .
= A(%). QED.
(g) Q |
Note that the converse did not depend on A being

commutative.

Let G be a connected semigroup with unit, e, and con-

sider a map

(£,x) = £, such that

(i11) (f,x) - £, 1s continuous in each variable separately.

IIT.1.3. Corollary. ILet A © B be a commutative sub-
algebra containing 1. Then A translation invariant implies

1
A\(F) 1s translation invariant.



Proof: Assume A is so invariant. By (i) and (ii),.th ref

2 is invariant. Thus, by the connectedness of G, and
(111) (with £ held fixed), Af = {fx'_: x € G} is connected_-___
in Z,¢ since:iﬁ éontains £ =f,,clearly £~ f for all
X € G. Thus, by Corollary IiI.l.Q or Theorem IIX.1l.1,

(a) L+ ead),xcea.

Fix x € Gs k € A(F). Then (VI 45) - k € A, £, € A ang
(11i) (with x held fixed) implies that
-NJ- R . ' )
(b) (a,‘:'.x) (.tz,J)x k. . | | o
But (23}, € A by assumption, and thus (a) implies that
@;fNjfzjhceA(%) for all j, and finally (b) shows that
k€ A(%), gince A(%) is closed. Since k € A(%) and x € G

‘were chosen arbitrarily, we are done. -QED.

§2." The Role of Aut P(E) in Studylnv Extending Algebrasg
for P(E).T

(i) The General Case.

Definition.- Let G denote the connected component of e in

the topological semigroup, G.
For‘B a commutative Banach algebra, topologize Hom B
(defined—I.§l.(vii» weakly with respect to B: ©, ”® if,

and only if, fb$a -+ fop for all f € B.

Definition. For A ¢ B, let GE denote the subsemigroup of




Hom B consisting of the continuous elements of Hom B
leaving A invarisant.
Then (Gﬁ)e satisfies (1), (ii), and (iii) precedihgi

‘Corollary IIT.1.3. If B is a function algebra, then
B

fo} -

we let G° denote G

IIT1.2.1.,- corollary. If A cC'B, B a commutative Banach

algebra, then (Gﬁ)e leaves A(%) Invariant for each f € e

~

" Proof: Direct application of Corollary III.1.3. QED

Now we fix E cn, E compact.

Definition. Hom E denotes the set of maps ¢ : E - E for

which foq € A(E) for each f € A(E). Aut E denotes the group

:of invertible elements of Hom E. Clearly Hom E is a seml.-

group of continuous functions from E into E (of which aut E

1s a subgroup) defining a semigroup action on A(E) via. the |

‘map
A(E) x Hom E - A(E)

‘ |
— o] o] - ‘
(£,9) = fop ~ £, |

We topologize Hom E weakly with respect to A(E). Now

We have the topological inclusions

Hom E ¢ Hom A(E) < Hom ¢(E)

Aut E ¢ Aut A(E) < Aut C(E),



" (n21), A(E) = C(E) and thepes

Remarks. (1) For E = T
Hom E = C(B,E) = Hom ¢(k) = Hom A(E). similarly. for

with C(E.,E) replaced by Homeo (F;E).

(2) For E polynomially convex, A(E) = p(E) aﬁd 

since F =~ mP(E) we have Hom E ~ Hom A(E), Aut E ~ Aut A(E)

Definition. HDQP(E) denotes the set © € Hom E such that

poP(E) < P(E).

IiI.2.2. Lemma. Iet A = P(E) and fix £ € A, f(x) # O for
'all X € E. Then the connected component of e in HomP(E)
leaveS‘A(%J invariant. Thus HomP(E) induces an action on

ﬁ leaving m, 1, c ﬁ invariant.
YRS

Proof: Direct application of Corollary III.2.1 with
B = A(E). QED.

Now assume E = OP(E). Then Aut ® ~ Aut A(@) by Remark
(E)rIII.§2.(ﬂ which, by Theorem I.1.8, leaves E invariant.

It follows that
CAut ﬁ c Aut E, via o - mlE.

For K ¢ £, let ® genote the least compacf set, containing K,
fixed by Aute(ﬁ)(the connected component of e in Aut (g)).
For P(E) ¢ B ¢ C(E), let B denote the largest rational
extension of P(E) contained in B. By Theorem 1.1.5(3), each
f e P(E).is ihvertible in B if and only if £(z) # 0 for each

z € mmy. Thus, by definition, B = R (rmy) .




I1I.2.3. Theorem. Let P(E) ¢ B c G(E), B any closed
subalgebra. Then if 7 : My = ﬁ is restriction, we'haq

(1) B is fixed by Aug;(ﬁ)

'and _
o . N
() Wiy < wlmy).
Proof: (learly Mo = w(mB) » since § = R(me). By Lemma

ITI.2.2, therefore, ¥ and w(mB) are fixed by Aute(@). This
shows (1) and (2). QgD

N

Before we apply all this to characterize all rational

extensions of A(D™) (n=2), we describe the one parameter

subgroups of Aut DV,
A(D™).

and prove the relative maximality of

(11) The One Parameter Subgroups of Aut D,

For E c Gn, comgact, if $: R- Aut E is a continuous

homomorphism, we obtain the group action
A(E) x R = A(E)
(£,x) = (£,8(x)) = res(x).

Since, as observed in IIT.82. (i), Aut E ¢ Aut OP(R)

Wwhen E is polynomially convex, we obtain the continuous

homomorphism

¢|BP(E) : R~ Au£ oP(E),




inducing the one parameter action
A(BP(E))VX'R - A(JP(E)).

Note that a one paraméter subgroup of Aut(E) has connectédff
image, and thue lies in Aute(E). This Tact enables the
proceeding results to apply.

The automorphisms of D are precisely those functions

® : D= ¢ of the form o(z.) = o 2= f for fa|l =1, |¢] <1
(Cartanﬂ- [11). Thesé act homogégéously on D, and thérefore
their tensor products,

| .. ' | #5755
(*) m(zl'i'(’zn) = oplEy) ey (Eh)05(zg) = ay 25051

act homogeneously on Dn, n = 1. However, we must do better.

The simplest examples of (*) are the translations about

Ta(g'l!".rzn) = (q:lzlr-.":.unzn)l .‘Qr,j"l_=]:"(jrz]_,-'..’n)_

‘Now we show that Ffor every u, v € Int Dn} there is a continu-

Ous one parameter subgroup of Aut_Dn one of whose elements

takes u onto v.

IIT.2.4. Theorem. Fix v,u € Int »™. Then there is a
© € Aut " of the form (*) such that $-loT_low(v) = u

Thus x - m—loTkom is the desired one parameter subgroup of




Proof: By taking tensor products,'the theorem redug:

to the case n = 1. Thus, u,v € D, Define

@1(2) = 22, ¢ = wl(v), so that
Zu-1 : '

@l(V) = ¢ mil(O) = u.

It suffices to find a ®, of form (*) such that

1l

-1 ~ .
v, oT_locpe(c) = 0, for then o P9, does the job. Ir

. 4(z) = 26

76 -1

r

then ¥(€) = 0 and we must only find a © such that

o oL
¥ = oD oT_loCP .

First we obtain a particular fixed point for .

6 = 4(t§), or £{ = —(EE)=C
’ (£¢)T-1

telgfg'- 2t + 1 = 0, which has a solution in (0,1). we

is equivalent to

conclude that | has a fixed peoint, T

T ¥ ¢
thatm-mm-—m or

(@) rlel = Iric, 4(7) = =.
Now we definé
olz) = 27
o ZT~1

and claim that thig ® will do the job. We must only show




that § and ¢ L _1°® send O to the same point (for.

easily verifles that the later is also of the form

@(Z) “1 + and clearly such a ‘gadget 1is determined b7
mw—u

= ©(0)) ,i.e.—that (noting o = 'l) e{-p(0)) = ¢. But
®(0) = T, so that this says o(-T) = {. or

(1) ihj%%—* ={ .

\ T+
2 2, .2
But -;;Q = §(7) = 7 equivalently. 27T = T_ T e . But
TT-1 .
2.2, .2 . : 2T
A T + 2 . 1
by (a) this 1s 27 = l—l—g——g—-= {Ir]™+1)¢, ie ¢ =
( c (1] 16 ¢ ]——gr—

, T|%+1
which is (b), and we are done.  QED,

We have shown that, for each v,u € D, there exists a

¢ € Aut D" of form (*) and a Co € ™, namely

CO = ('lz"';“l)

such that

@"léIt-am(v) = U. One easily verifies that
, o)

-1
t - cL L,
@ OT(e'H'lt .._'e'ﬂ'lt)d
a e
is a.continuous homomorphism into Aut Dn,'which takes:v onto

ufor t = 1.

(iii) Relative Maximality of a Certaln Class of
Subalgebra of C({qgn),” L.

We define, now, for each integer n, ol subalgebras of




¢(1") which will be shown to be relativly maximal in

We need some notation: K. = D, x. = T.

0 1= Define, for J

Aj- < ¢(T) by Aj = A(K.). If 5 = (a rroe, b )

8, =0or
(n) ( ) ph
1 (i=1,+-+,n),then define A c c(™) by A = ® A,
. A e
Then ' '
n' _ _(n) (n) _ a/mfy _ . (1)
A{D?) =21 (Oi'._'O)CA{)CC(T)—A(']})-—A(l’_“"l).
s 7zt = Z .= H s L) = J (3=
If‘ZO "El ., thgn Kﬁ Ekmlzj A(#J) A(EJ)(j 1,2).
Thus, for § = (61,---,6n),
(n) n 4] n
A =®A(K)=®A(2)=A( ).
R T :?=<1 ®
n
Thus , with g™ = X K, , we have
5 7> s
=1 °j |
oo . n . n. N
, : ' (n)
Tm=Hom (X2 ) = Wooms, = Yg =@
(n) / .- . 5. N Ts.
Ag 1% 5 jog=1ty ®

We record these and other pertinent facts below.

ITT.2.5. Lemma. Fix & = (al,---,a )

(1) m -k
R n
(2) A(Ka( )) = R(Kén)) = Agn) = X
. ’ 1=

Proof: By Lemma I.2.6, since (1) 1is already verified, we

have R(Kén)) C A(Kén)) < Aén). But clearly, Aén) < R(Kéni).

Thus (2) follows. QED.

We now attack the more function theoretic question of

elative maximality of Aén) and related ideas. Clearly this



Aoy ¥ 2(D) is, in fact, maximal. Although a(D") fo,

is far from being maximal, enough properties are retained

to assure the weaker bproperty of relative maxz.mallty

Note that each ¢ € 7T is a peak p01nt for A(D): —gzi-l

peaks at (. Thus, for each ( = (Ql,---,Cn)- €T,

i=1
peaks at (. : '
By Lemma 1I.2.4, O € D has the unique representing
n
measure, m € M(T) (Haar measure),on A{(D). Since Aut D acts

homogeneously on Int D, each { € D has a unique represent-

ing measure on A (D), denoted MC. .
1 2 _ :
III-2-6- Lemma. Let g = (Cl'...lgrﬂ—l)-' g = '(Cﬂ'\’l"l"‘.'gn)

and ( = (C,l,'r, §2) € p=. Assume Igi|=1(i=1, --,m—l.,m+1,---,n),

[‘rl <1, and let y be a representing measure for € on A(Dn) .
Thenu=u1®mT®u2.
¢ ¢ _
' o, n-1 _ n- 1
Proof: Apply Lemma I.2.9 with Xl =T ,X2 = T,Al-—A(D '
A2=A(D),x1 = (g]‘, Qz) € Xl' and apply above remarks. QED.

ITT.2.7. Lemma.. IFf 5 = (51,...,511) then

(n) _ (n—l) ‘

n
Proof: By Lemma IIT.2.5(2) A(Gn)= A(Y) where T = x X

. i=1 03
By Lemma II.2.3., A(Y) = {f e C(Tn):f(kl,---,kn) = 0 when-
, . -1)
ever k., £ T, for some i}. Now fix f ¢ A(n @A

and ky,«-e,k, €. If k., £ Zs. for i < n-1, then for each
i
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' (n-1) ’
2 €, £(-,2) € A(él""'an~l} so that [ 1f(z,zn)

k k_ i
™ I | _ A ... _
A 3 ok
£lky, ook ) = f (I . Blziz)zy © ..l g -1 ¢9z)8z_ = o, )
(o . A \ (n)
Similarly, if k £ 25 By 0,k ) = 0. Thus fFeA(Z)=a'n)
. n n 1 n & .
We've shown A(n_IZ‘, . -} ®A CA (n) - The opposite
61' ’ an_l . 6n <8 T
inequality is clear. QED,
TII.2.8. Theorem (Rudin - [2]). 1f 8= (8,7°°.5) then
(n)
A

5 is relatively maxima] in C(Tn) A{for definition see p.19qg),

Proof: Trivial for n=1: by Wermer's, maximality theorem

applied to A(D), this is maximal and, a priori, relatively

maximal; C(T) is trivially relatively max:l.mal in itself,
The theorem now follows by induction on n, using Theorem
I.2.11 and Lemma IIZ.2.7. QED .

(iv)

Characterlzatlon of all Ratlonal Extens:.ons of

A" in c(pY . - -

II1.2.9. Lemma. Let Tn'C K © D™, Then K is invariant

with respect to each automorphlsm (x), the one Parameter

groups if,. and only if K' is a union of sets of the form K(n)

&

1s so invariant, ang there-
fore so is any union of such sets.

Proof: Observe that each set K(é)

Conversely, Suppose K
is so invariant. ror each ¢ € K, it suffices to find a ﬁc
n (h)

such that QGK(C)CK, for then X = Ui¢c UKCC U K=K,
& CER CEK 5 €K

So that Kk = |y g

cac e To this end, fix € € K, Define




Then § € Ka(n), where §

i
o

H
o

:u
g
'—I
%

Int D, ’Cj] <1
(a) 7, €
dJ

. T, 153’ = 1

and choosge Py € Aut D such that cpj(gj) =Ty (which exists

by the choice of'Tj). Then ¢ = mi®---®¢n takes { to

T = (Tl,"',Tn). Since T was chosen to be any point satis~

{n)
Tying (a), and K is closed, we've shown that £ €K <K,

&
. QED.
IIT.2.10. Lemma. TLet K, as in Lemma IIT.2.9, be invariant
with respect to each one parameter group of automorphisms.
- n
Then K is g subsemigroup of Dn, if, and only if, K = K( )for

5
some §,

Proof: Sets of the form Kén) are clearly semigroups.

Conversely, suppose K is a- subsemigroup of DV, To
show K is of the‘desired form, 1t suffices to show that any
two Kgn'skcontained in K both 1lie in a third. por then the
set of all Kén)'s contained in. K (of which there are at most
2n) contains a maximal element (one contained in all the rest)
which musgt equal K by Lemma ITT.2.9. To this end, say

n n
KJEL K‘g)c K. By assumption K(l%£2)= thlg c K( ). But

& 3 [ )
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K:;’ c K;n)ae (J =1,2). QED.

: n
III.2.11. Theorem. Iet A" ¢ g c(h),

B a closed sub-
Then the following statements are equivalent.

algebra.

(1) B is invariant with respect to all one parameter
sub~groups of Aut "

(2) mmy is rationally convex.

(3) B A(n) N K(n)

5, = Ky for some 8 .

In particular, such a B is determineg by its maximal

ideal Space , Kén)

Proof: (1) = (2): If-(l) holds,

then va is invariant by
Lemma, I.1.9,

Since B 1s, a priori, translation invariant,

mB is a semlgroup u31ng IT.2.1 and 17T, 2.2, and thus S0 is

Ty, Which is therefore by III 2 10,0f the Fform K( n)
ratlonally convex,

Theorem (2) = (3): 1f (2) holds, then with K = Ty and

Theorem I,2.6, we getR(K)<:B and K = mR(K)' Also, R(K) satis-

fies (1) by Theorem TIT.2. 3 Thus,by the argument in the last

K( )for some §. But then R(X) = Agn)
IIT.2.5(2). Finally B = al™

max1ma11ty of A(n))

bparagraph, K = by Lemma
by Theorem ITIT.2.8 (Relative

(3) = (1): clear by observation. qgp,
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n Ty -
I1I.2.12, Theorem, Let A(D") € B < ¢(T%). Then

ntzzjziﬂj(rmB)'

?;oof; Let K- = mmy. Flrst_gotilthat FJ(K) = cB(vj) =
or D by Cerollary T.1.4. Thus X 5 (R) is rationally.
. y=1

convex. -Thus it reméins to show that

v oy n
; + for this will force K = XTF.(K),
J=1 9 “ o g=1d
the desireq resuls,

H . V
By Remark(1)-1.2,(1i1) X mR(K) and thus Theorem

6(11) for some 5.

<

IIT. 2.11._ imjplies that Kc .K' =K -Therefore,

n)y tee Xom) e ¥k ) o ) Y
j=19 J= % e

which is (a). QED,

T3 (K) € xy (3e1,

We end this Section with a characterization (up to

maximal ideal space) of all algebras B,A(Tg) < BCcC C(Tg)
such that (LSS BoundaryrD2

TII.2.13. Theorem. Iet A(D?) c p C(T°). Then either

. ' (2)
(a) B extends an algebra of the form 4. , & # (0.0)
(2) ' ¥
2
(A 7= A(DXT) , A(rxD)
&

+

. Or A(T2)(= C(Tz)l) and thus is completely

idescribed by Theorem II.3.1 as (Aé?%v,v =FE X T or T X E




If mm, C Boundary p°, then 7 is an injection onto a

set of the form El XDUDx E2 U Te, and B has the same
. D . .
#. Otherwise case (b) prevails.

maximal ideal space as (C(T)®A(D))E

In case (a), =4 or E

E."lr 2
Proof: Suppose £t ¢ B for some f € A(D ) not invertible
in A(D ). Then & & A(f ) € B. 'The algebra A(f"l) is a
rational extension and thus of the form A(z) by Theorem
I11,2. i1., Clearly al? 2 A" . Thus (a) holds.

Now suppose otherwise: r~1 ¢ B implies £~ ¢ A(De).

-1

This 18 equivalent to (b) for £ € B (resp. A{Dz)) says

f(z) % 0 for all z ¢ Ty (resp. Dz). Now use Lemma I.2.5,
In Case (a), say B o A(TxD) = ¢(T) ® A(D). With the
notation of Chapter I, §2r(iv),{c),'Theerem III.3.f,shows

that

= (£ ec(1®): r, € am)

for allz, € E} = A(TXD) g s

where E = (2) € 1 f, € A(D) for all r ¢ B},

If MMy < Boundary IY, then the desired conclusion follows
directly from Lemma ITT.2.6, which characterizes alil repre-

- Senting measures for maximal ideals on B,

If, say E, = ¢, then w(mB) = 7 U E, XDCS T X D. Thus,

¢(T) ® a(D) < A(TxD) < A(va) C B by Theorem I.2.6 which is

Case (a).
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Prevails.




Recall that the dual of R is R: yix) = z;kx,:g LNER.

§1. Translation Partials

(1) The Ccase for a General Banach Space A.

let MW = {f € A: x - f, is analytic near 0}.
It can bé shown from Theorem II.1.1(1) that if E
is bounded in x for each f € A sthen ¥ is dense in A (hint:let
p(x) = l/1+x and compute the translate of ¢f(x) k € R).

However, this fact will not be used.

L d;f ‘ o | |

For £ € ﬂ;-iet' rzf denote the nth order derivative of
' - dx”

X - f at y G R; that thls exists for each y € R is seen

below. | ' . )

IV.1.1. Lemma. (1) % 1is translation invariant. Thus f € o

implieg f has a power series expans1on about each y € R, 80
n

that wX-—
dx

(2)

exists as a function from R into A.

For f € 9, y € .R

n n
dof - dyfx _ a( Y)X
ax™ Y. ax' ax™ :

n
als :
we see that f € ¥ implies Orf € ¥ for all n >

' dx

Proof: Fix f € %,y € R. Then there is a

of 0, anda £®) ¢ a (n=0,1,2,-.-) such that




CHAPTER IV

Sbme Deeper Properties of #mB

§0. Introduction.

We retﬁrn to the group action defined in Chapter II.$1,

this time lebtting G = R: the action becomes
AXR- A
(f,X) i fx'
In particular. we examine the action

A(E) x R~ A(E) - - defined by

£o(x))

n

' (f'x) - (f,ﬁ(]{))

Of III.§2.(ii) where gd: R = aut is not only continuoﬁs,
but also analytic (as will be made clear).

When T = K < D, 3A(K) = ™, we show, via use of this
group action, that A(K) = R(K). This yields immediately
the. corollary: if K N Int D® # ¢, then £ ¢ A(K) implies
that f extends "analytiéally”-to all of D". Tt also sheds
light on the more general class of algebras of form Al(K):
‘the locally power series approximatable functions on K.

In discussing any oné barameter action on a space a,
wWe adapt the notation of Chapter IT.§1. In particular ,> < A
is translation invariant if :f'x € 2 for all f ¢ 2s+X € Rj

fX = (£.6(x)) (4 ¢ is fixed);
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£ =§ p(n)
X n=0

,l x:,

.:IXGN-

Thus, by (i) and (ii) of II.§1, and continuity of translation; 

(fy)x = fy+g = fx+y = (gx)y.
'—“-(Ef(n)ch =Zf(n)-}c—,,}C€N.
n=0 Y oY e

This clearly shows (1). To show (2}, simply note that

n
: ale ,
f(n) = —9—§~ and -
dx |
' n n, n
; as(f JIx a.f a’f
;Y(n) _ .0 % e zrx - QED.

: dx dx ax™
IV.1.2. Theorem. Tet B = ¥ be a subspace. Then

a.f
(1) B is translation invariant implies gxx € B for

all f € B,

d fx

(2) _gf_ € B for all £ € B implies T is translation

invariant.
_ dOfx f.-ft _
Proof: If f_ € T for all Yy € R, then —& = 1ip Y € B.
—_— B 4 . dx y=0 y
This shows (1).
_ : dOf
To show (2) we use induction. Assume dx# € B for all

f € B, We first showrthat therefore

n

o , da . f - .-

(%) O§EB.’n20.‘

-dx

For if (*) holds for n = m and f ¢ B, we have




applying the 1nduct1ve hypoth831s to the case n = 1. Now,
w0 n
if £ € B, we have, fy nzo & 5T € B. by (* ). for

small y. Lemms T.1.1 now applies to show fy € & for all
¥y € R. Qup,

(i1) Application to the Case A = A(E).

le Ec ¢h ,» compact,

Iet ¢ : R - Aut T be g homomorphism, and ¢ : RX E - |

|13

~defined by q(x,z) ¢(x)(z). Tet ay denote  the jth coordi-

Vnate of q(j = 1,-f-;n).

Definition. # is analytic if there exists a compact neighbor-

hood: 0 € N c R, such that qj € mn+l(N XE). -

The homomorphlsm R = Aut D" in Theorem III.2.k4 ig

easily seen to be analytic since eacheo € Aut pt has analytic

‘extension to g neighborhood of p~
IV.1.3. Lemma. Iet ¢ be analytic. Then

(1) % () c o,

(2) fe um) = dgix € a(g).

Proof: Fix f ¢ Y(E). Then £ extends analytically to

o

£:vV-¢ Ec V., open,

4
=3 (yxy_Zo (LX) by Lemma Iv.1.1(2)) ¢p,
dy ax™ o
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Since ¢ ig analytic,

qQ:NXE-qQ

extends analytically to

d:0-¢, NxEcaq,

open in C#*l (q.N as above ) Since Q(NxE) c E €V  there

exist neighborhoods U o N, W 2 E such that UX WecQ ang
a(uxw) c v, Then

Foq : Uxy-c

is analytic S0 that, by the Riemann extension theorem

(Gunning and Rossi - [11), so is

G:UXUXTWo Ce where

Fod(x,z

i

- ?°q(y, )

G{xry,2) ; =5 -~

Fix a compact neighbornood. W

NXNxw

1 G(x,

¥+2) is uniformly continuous. Thus, for

fixed x ¢ W,

Fx(z) lim G(x,y,z) is

Jo X

analytic on Int (Wl), being a uniform limit of functions

analytic on Int (Wl). But




the limit taken in the supremum norm in A(E), for each |

X € N. This clearly shows (1) and (2). QED.

§2. An Extension Theorem.

(i) Discussion.

This section is devoted 'to a study of the properties of
. B . A
A(K) for a certain class of sets K, E € K ¢ E, where E ig

acted on by lots of analytic homomorphisms. 1In particular,

we show that if B3A(K) = E, E sufficieﬁtly nice,  e.g. E = Tn,
then A(XK) = P(K). ‘This is equivalent to saying that for

each £ € %(K), there exists a g € A(R) such that £ - &g —
that is, each f analytic near K "extends analytically” to

ﬁ. Classical examples of éueh sets are K E-Boundafy @
whene#er this 1s connected. Hartogs' Theorem states that for
each £ € %K), f-extends analytically to a neighborhood of 8.
Here we show that for certain sets E, a piece of Boundary @
can be removed and replaced by a chunk of Intefior % to obtain

a set K which satisfies a similar extension theoremn.

(i1) Eguivalence of Algebras of the Form
A(K) and R(K), ik < Kc Dnj _aA(K) = 7,

As in ITI.2.(ii), we fix a compact set E < c such

that E = 3P(E). Fix an analytic homomorphism

 : R- Aut ﬁ




Recall the inclusion Aut < Aut E (IIT-§2-(ii))'én&
the corresponding homomorphism ¢IE : R= Aut B. We note'

that ¢IE 1s, a priori, analytic whenever ¢ is.

F

We let £ denote either fop(x) or fo(¢,E)(x) = f$(¢(x)’E)
depending on whether T € A(ﬁ) or £ € A(R) respectively. wo

confusion should result.

.21 Lemma. If EcKcf, 3A(K) = &, then A(K) 1s

translation invariant,

Proof: PFix g analytic in a nelghborhood, Q, of XK. Since

X - ¢j(x) 1s continuous from R into A(ﬁ)(j=l,---,n),¢(x)(K) < Q

1t

for small x. Thus 8y = 800(x) € U(K) A(K) for small x, so
that (glE)X € A(K),E ~ A(K) for small x. Since, by Lemma
Iv.1.3(1), ==~ (g’E)x is analytic from R into A(E), Lemma

I.1.1 shows that (g,E)x € A(K) for all x € R, QED.

IV.2.2, Lemma. 71r A < %(E) is an m(%) module satisfying

Of ¢ A for each £ € A, , then & is translation invariant.
oz . 1 _ 1 1

Proof: By Theorem IV.1.2(2) it suffices to show that

f .
X ¢ Ay for each £ € 4. . But, by the chain rule, for
dx 1 1 _
A5t () = dofxﬁ (x) (=)
Tdx \B = T odx
I OF do¢ .(X)
= 351553 (2) ——s—" (2) .



By assumption ,_gi € Al (j=l,"',n)‘ and Lemnms IV.l.S.(Q).,

shows that do¢-(xi € Qﬁﬁ). Thus the sum lies in Ay (since
X

we assumed A, is an ﬂﬂﬁ) module). QED.

Note that Lemma IV. 2.2 contains IV.2.1 which wasg pre-
sented for its simplicity (e.g. it avoids use of translation

partials) and elegance.

Definition. For K, Vv c ¢, g compact , let 9 (k) denote

the set of all r ¢ U(K-V) such that all mixed partials of
f are bounded on K-V, Tet Ay (K) denote U (K) .
Clearly m¢(K) = ¥(K). Note that MV(K) is an algebra

closed under 327 (J=l."°,n).
J ,

IV.2.3. Lemma. Iet P(E) ¢ B c C{E), B a closed subalgebra .
‘ ’ A
-Let w: My * E be restriction. Fix I. € B an - ideal. Then

AZ(I)-E(WmB) is translation invariant.

Proof: Let v = z(I)-E, K = Ty . By Co:éllary'l.2.4,aA§(K).
'Since, thus , 91(%) S¥,(K) ¢ QTCE) » Lemma IV,2.2 applies ﬁo show
that AV(K) ~ AV(K)’E is translation invariant. QED.

We apply thesé results in the case F = Tn, and use the
fact that=the one parameter homomorphisms, $ : R = Aut Dn,

are analytic.

IV.2.4, Theorem. ILet p™ ¢ K c 1,
(1) If 3A(K) = 7™, then A(K) = A" for some
0= (Byeeagy).




In particular, by Theorem IIT.?2. ll we see that algeb

of the form A(K) are precisely those of the form.ﬁ

(x).

(2) 1f K = 7my, A(D") € B < c@™), I c B an idesl
then A (I.)-Tn)(K) =A™ for some s.
Bl 1/

Proof: Usihg“Theorem III.Q.ll,_(l) follows directly from
Lemma IV.2.1, and (2) from IV.2.3. QED.

(111) A Generalization of Hartogs' Theorem.

When K N Int D" # ¢, we get the following generalization

of Hartogs' Theorem (stated in IV.§2.(i)).

IV.2.5. Theorem. Let E satisfy 3P(E) =.F and assume

(i) ‘there is a dense subset, Q, of @j such that for
each Cl. 52 € O there exists an analytic homomorphism,,

A
¢ : R- Aut E- such that ¢(x)(Cl) = ;2 for some x € R, and

(it) A(ﬁ) is relatively maximal in c(E).
Then, .

(1) if_.”Ec:Kc:ﬁ,Knn%e& and dA(K) = E, then
A(K) = P(X) ~ A(B) |

.and._

(2) if P(E) € B < C(E), B a cloged subalgebra such
that 7my N Q ¥ ¢ ,I ¢ B an ideal, then

1

AT = Ay () glmmg) = Plrmg) ~ ac).
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Proof: Let B be either A(K) (in(1)) or a1 (in (2)). By
(11) + 1t suffices to show that my - B. By Lemma TV.2.1
(applied to (1)) and IV.2.3 (applied to (2)), B, is invariant
with respect fo evéry énalytic, one-parameter action induced

by an analytic homomorphism, $ : R - Aut ﬁ. Thus so 1is

. Since this intersects Q, (i) implies Ty = B, QED.
¢ - l

Discussion. As already mentioned, (1) expresses an extension

result , whereas (2) may be rephrased as follows. Let
K = g - (z(I)-E) and £ € 9(K). Then f extends to lie
“in A(%) if, and only if, all mixed partials of f are bounded
on K,

If'we assume , in Iv.2.5.(1), that Boundary K is connected,
then Hartogs' Theorem yields a stronger result:
A(Boundary X) ~ A(ﬁ)r'For each f € A(Boundary K) can be approx-
imated by functions in i{Boundary K) which extend analytically
to a neighborhood of K (by Hartogs' Theorem); thus A (Boundary K)
. A i
.= A(K) #® A(E) by Theorem IV.2.5.

If E,, E, both satisfy the hypothesis of Theorem IV.2.5,

1 2
. ) A A A
then so does Ele Egg noting that El X E2 = El X E2. To
verify (i) for'Ei X E,, simply note that if x - ¢,(x) is an
analytic homomorphism (i=1,2), then so is x - ¢l(x) ® ¢2(x).
: s ox . . A A
The verification of (ii) for El X E2 1s merely Theorem I.2.11,
A A A A - '

noting that -m(Eleg) = QI(El) ® ‘JJ(EQ) by a basic theorem in

complex variables. Thus if we knew that (1) and (ii) of



Theorem IV.2.5 held for § = 8” or g = = [0,1], then the

conclu31on of the theorem would hold for the clasg of

m
objects, T x gix-o-xs Kx IP. n, m Pz O

m m_ Lk
(Note that § Ix-+-xg £ # 5 mk

The relevance of IV.2.5.(2) needs some explanation. If
wé assume that z(I) N E = ¢, and z(I) n w(mB)is a singlefon.
.thihés begin to make sense.

%)

‘Let A(D®) ¢ Bc o(T°). 1f B = A(r,/ry ). its maximal

ideal space projects onto K = closure of
ce D°: ¢ # o, l€p/61] = 1) = (¢ € p? slepl = ey 1.
Clearly wl(z) = 0 implies ve(z) = 0, 2 € K. Thus,

Z(Wl) = z(wl,vg) = (0,0), and we may appiy the extension

theorem to any function analytic near K - {(0,0)}: if such
an T extends analytically to a neighborhood of K, then, a
priori, all its mixed partials are bounded on K ~ {(0,0)].

The point is that this 1s enough, and, in fact, implies that

f must have been an element of A(De) to begin with!

Using corollary I.2.16, we have: TFor f € B, p extends

continuously to (0,0) if, and only if, all extensions of

A
(0,0) to B agree on f;we've shown that f extends analytically

to (0,0) if, and only if, f € A(DE). An example of a function
analytic and bounded near K - {(0,0)]}, having no analytic
3"

A
extension to a neighborhood of K is £, = wg/ﬁl.- for
azg

blows up at (0,0). Note, however, that £ has no continuous




so that (OLO) "plows up" in m

exten51on to all of K, A(f )

while £, n > 2 does have a contlnuous extension because:f(z_

;_zgzl== (z /21) approaches 0 as z approaches (0,0) in R

(iv) .The plgebra of Locally Power Series Approxima-
table Functions on K,T" ¢ K < p° '

Fix X c ¢, compact. TLet o L (K) denote all £ € ¢(k)

hav1ng the property that for all ¢ € K. there is a néeighbor-
hood N of C, a functlon u analytlc in N, such that
ulNﬂK = f|NﬂK . Let Al(K) denote EQTEQ.

Let Uk denote the set of ¢ € K for which there is a
function analytic near (., vanishihg on K.

Note that UK is open in K. Thus X *'UK is gompact.
Alsd

(%) »ﬁl(K)IK -5, © ”(K;UK)'

For each { € K - Up. T € ml(K), f must have a unique analytic
extension to a neighborhood of §{, lest { € Uy - It is not
hard to show that f therefore extends analyt1cally to a

neighborhood of K.

IV.2.6. Lemma. JLet E c K c ﬁJ aAl(K) - E, and assume
UK NE=¢, and that UK has the global property that there

exists an T € M(ﬁ), f = 0, vanishing on it. Then, r

(1) aA(K-UK) = E. Thus 4)(K) < A(K-U) < C(E) and
(2) each h € m such that h{(f) # 0 has a unique

1({K)
extension to A(K-UK).

K

Proof: For each g € W(KuUK), fg is locally analytic on K-U ?




(in fact ﬁg]K g € m(K-UK)) and extends uniquely to a COntin
X

uous functlon, still denoted fg,on K vanishing onUk Slnceka j

is a relatively open subset of K, fg is thus locally zero at

each point of U

g+ Thus we've shown that fg € ml(K). and since

\g is arbitrary,
(a) fg(K-UK) c Al(K)'

The definition of UK

dense in K-Uk. Thus,

shows that z(f) n (K-UK) is nowhere

(b) (K-z(f)) U E 1s dense in L
Now (a) along with Theorem 1.2.3, shows that for each

g € A(K-U ) 8 JR-z(£)) U E achieves its supremum on E. Thus,

by (b). so does g. and (1) follows. Finally (a) and Lemma

I.2.2 imply (2). QED.
n nooL n
IV..2.7.  Theorem. Assume T" c K c D", 29, (K) = T". Then

(1) ifug =9, then & (k) = &A™ for some s.

K )

(2) If some £ € (D) vanishes on Uy » then |

AlCK)c:Aén)(some 8) and n, (K) projects onto Kén)[JE where
1 :

E ¢ z(f), and the only points in this projection that blow

up in m, (K) lie in z(f).
1

me:ByHLmﬂmcmm)ﬁU

K
Thus Uy = g implies Al(K) = A(K). This shows (1).

= ¢. Clearly #(K) c ml(K).




By Lemma IV.2.6(l) (with B = ") and Theorem.::['v_. b

_ _ p(n) (n)
. A{K UK) = A& for some §, and thus Al (K) Aﬁ .

fore, K(n) Cm, (K). By IV.2.6(2) we have: h €n

implies h(f) = 0. This shows (2). QED.
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