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“Abstract of the Disseffation
SPECTRUM OF THE RANDOM WAIK
ON THE FUNDAMENTAL GROUP
by
Frank David Eisenberg
Doctof of Phiiosophy
' in
Mathenmatics

State University of New York at Stony Brook

1979

In [5] Bells introduced the notion of a brobability

measure on Cab(M) ~ the space of continuous mars [0,1] = M

with endpoints a,b € M. Based on this he defined a symmetric.

probability distribution on the fundamental group.

We will consider the random walk baéed?on the above
mentioned probability distribution which, in general, is
determined by its matrix of transitiom probabili%ies, “pijn'
Hera pij denotes the probability ofrgoing from ons elemenﬁ

in Wl(M) to another in one step under the given distribution.

Letting » = _ Csup|X] our main result will
AESpectrum of “pij

be that if M is compact with strictly negative curvature

then W < 1.

A group G is called amenable 1f there exists a linear

iiid




functional, B, ‘on the space of bounded real valued Functions

on G with

1) inf r(x) = Bf = sup f{x) and
XEG ' XKEG

2) defining g : G~ R by g(y) = f(xyz), x,y,2 € G

B(f) = B(g), £ a bounded real valued function on (.

It turns out that X < 1 is equivalent to wl(M) being
not amenable. This in turn ig equivalént to provingra cer-
tain Mean Value Inequality on the space of boundedrreal'
valued functions on Wl(M). The functions we degl with in
the proof will be the sum of angles in a triangle, one'sidé

of which remaing on the invariant line, Ly, of a € Fl(M).

Once we know that the fundamental group 1s not amenszble
we obtain results regarding the structure of ”l( ) based on

the theory of amenable groups. B e
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iIntroduction

In this article we will be concerned with a compact,
connected, oriented Riemannian manifold M, wlth curvature
Ksc <O,

We congider a symmetric random walk on the fundamental.
group vl(M). Every such random walk is completely deter-
mined by its matrix of transition probabilities, “pij“,
where Pij denote the probability of going.from one element

to another in one step.

Let x = _ sup | % |
A € Spectrum of Hpijn

We would like to know, can A take on the value one as
" raised in [9]. Our main result will be that it cannot. Our
method of proof will be based on Stochastic Rlemsnnian Geom—
etry which is used to define the probabiiity measure on Wl(M)-
From the above result we will obbain certain immediate
consequences regarding the structure of the fundamentall
group and its subgroups. In particular we have that there
exists .a subgroup, H, of wl(M) such that # is not eyclic,
abelian, or finite. |
1t should be remarked here that these results follow
also from a theorem of Eberlein {3]. If % = 1 then wl(M)

cannot have a free noncyclic proper subgroup, but this

contradicts Iberlein's main theorem.




§1.

let M ﬁé an oriented compact Rieﬁannian manifoid

Let Cab(M) denote the space of continuous functions
from (0,1) - (a,b) with endpoints a,b. We begin by intro-
ducing a measure, called Welner Measure, on C, (M).

Let A be the Laplace operator on M.

The heat operator, L = A - S%jhas a unigue fundamertal

solution h. Some properties of h are as follows: [&]

1) h : Mx Mx R(>0) » R(>0) is a smooth function -

with hg : M X M - R{(>0) and
ht(x,y) = ht(y,x) X,y € M, t >0

2) Lx(h) = Ly(h). Here L _ denotes L operating on the

first variable; Ly is I, operating on the seécond

variable.-
3) I h, (x,y)dy = 1 for all x € M, t >VO .
4) htég,y = fh x,z)h_(7%,y)dz
ht is called the heat density.
Gab(M) topologized with the topology of uniform conver-
gence 1s a complete metric space. The metric is given by

x> = sup d(x(s),y(s)) s € (0,1)

Where x,y € Cab(M) and d is the distance function with

respect to the Riemannian metric on M.

2




Let t = (0t <, <- ?v<tn<1)

- 1772
ME = M X M X---XM n times.
Let B be a Borel subset of M. Define p_ : Cab(M) - M

by

The fibres, pgl(B) generate the o-algebra of Borel‘sets

_in Cab(M). (=]

Define a measure on the Borel sets of C (1) as follows:

For any such Tibre Pgl(B) let
w_. (p. = [ n, (a, my o, L (g ,m Y.
b E '[l tg"ul :.]..J al

We then have the following:
1) wab(cab(M)) = hl(a,b) by #) above.

2) Every nonvoid open subset of C,, has strictly

positive w ~ meagure.

ab
3) W determines a countably addisive measure, called

Weiner measure, on Cab(M)’ since:

a) w b(ptl(B)) > 0 B a Borel seb in M .
b wap (Uleg Y8) = n, (asmy) e ohy o {m ,b)dmg e -am
—_ U.B8. 71 n
1 1
- Lo Ydme - edm = = '
= ? IB hl(a,ml)...hl"tn(mn,u)a@L dm, = ? wab(pE (Bi)‘

L

c) Wab(cab(M)) = hl(a,b); we normalize so that Wy

has total measure 1.




§a.

In this section we will give some preliminary facts
regarding probability which we will nead in order to deflnm
‘and solve our problem. Tn the latter part we will say what
1t means for a group to be anenable and also cite soms re-

sults pertaining to amenable groups.

Definition: A Markov Process is a sequence of random vari-

ables (measurable functlons) {Xn} n=l,--- on the Probabil-
ity Space (2,8,Pr) with the following property:

[Y =0

Prix N1

hJ

n+1:Cn+1’X1:81"'"ancn] = Prix

where ¢, € 8 the State Space and Pr[x, 1=C4 ] > 0.
In other words the conditlonal probability'of an eventy
knowing -the states at previous moments is the same as that

knowing just the last state.

Definition: A Markov Chain is a Markov Process with a

denumerable number of satates.

T0 be given a random walk means to know for each point
of the State Space a set of probabilities for transition to

ancther point of the Space,

Definition: TFor any Markov Chain [Xn} n=1-.+ we define sa

row vector and a square matrix HpiJH by:

h




Ty = Pr[Xi:ci], p.

i3~ P?[X

n+l:cjlxnzci]
where Pr[angi] > 0.

“pij“ 1s called the matrix of transition probabilities for
the Markov Chain.

By basic properties of the probability function we have
then, 0 < pij < 1 and ?'pij = 1. . pij
going from Cy to cj in one step under the given probability

is the probability of -

distribution Pr.

Definition: Tet G be a countable group.

P: G- [0,1]) is & symmetric probability distribution

on G if
-1
)

P(x) = P(x™), x € ¢

S plx) _—
X€G

To this probability distribution P(x) we associate a
matrix of transition prbbabilitiesj M{G,P) = “pin where we

-1
set Pij = P(xi XJ), X% € G.

M(G,P) corresponds to a particular random walk on as
follows: If y € G was reached after the nth step then yx

- willl be reached at the next step with probability'P(x);

— . o _ .._l _
Py yx = FlXpy1=yx|X =51 = P(y T yx) = p(x).

One can consider ¥ = M(G,p) as a bounded linear operator
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on the Hilbert Space LE(G) of functions h(x) (x € ¢ h(x)

real) with 3|n(x)|° < o by setting

X. € G

h{x.) Xy 3

X.X J

M(h(x)) = = p
J 1d

h(xj)'is bounded.

Proof. We must show that Hﬁh“g < Klinl K constant, |-|| the -

norm in %2 ;

By Cauchy's inequality, <A,B>° = HAHgﬂBHE where A,B
are vectors with components in 4 2 and < , > is the inner

product in 42, Tetting

lA:('\/p J’\/p- :«/p ”')J B:"(’\/Q

. . . . K. X .
X3¥y Xi%o X1X3 i*1 12

N Xin J -xixj i 4 3 J
=3 3 ﬁ&_x_hgij) (since %0, =1)
1 1] J 13
=2 Z I&.x.hg(xj) =2 hg(xj) (since Peox. = B x )
J 1 1 dJd J J 3k

I

il -

So K =1 and M is a well defined operator on éz(G)

Definition: The Spectrum of M is the set of numbers, X,




where M - XTI does not have an inverse. (Here I denotes

the unit operator on LQ(G).)

Definition: The Spectral Radius, A, is defined o be

A= sup | %]
A € Spectrum of ¥

We now digress to define amenability of groups‘and

state two of thelr properties.

Definition: A linear functional, B, acting on the space of
all bounded real valued functions on a group G is called
-amenable if:

1) dinf f{x) < Bf < sup f(x)
XEG XEG

2) Define g : G = R by gly) = f(xyz) 5 X,¥.2 € G.
Then B(f) = B(g) for all f, ¥ a bounded real

valued function on C.

Definition: A group G is called amenable if there exists

an amenable functional on the space of bounded real valued

functions on ¢.

A finite, or Abelian group is amenable [21. We will

see that a free group on two generators is nos.

Theorem. (Kesten): [8]. Tet @ be a countable group and p

an arbltrary fixed symmetric probabllity measure on ¢ such
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that F = {x € ¢|p(x) > 0} generates G. A necessary and

sufficient condition for G to be amenable is that » = 1.

Theorem (Folner) : [6]. Tet F be any translation invarlant

space of bounded real valued functions on a group G. A

necessary and sufficient condition for ¢ to be amenable is

that
sup H(x) = 0 for all H of the form
xeG '
(l) H(x) = hl(x)nhl(alxbl)+h2(x)—hg(agxb2)+---+hn(x)~hn(anxb

hi €, afbi € G arbitrary

We can use Folners theorem to show that a free group ocon
two generators 1s not amenablé.

et G be the free group on two generators a,b. Let E
be the set of elements of ¢ which end on =& ééwer of a. We
. Will show that there does not exist an amenable functional
on ﬁhe space spanned by the characteristic function, f(x),
of E and it translates, f(xai), a; € G (f(x) =1 if x € E, O
otherwise), '

It suffices to prove that sup H(x) < 0 for the function
X

2 o 2.2

H(x) = - £(x) + £(xab) + £(x) - £(xa) - £(x) + f(xa“p")

- f(xégb) ~ F(xa) + £(xab?) - £(x)




f(xagb) = characteristic function orf El = Eb"la"g
f(xa) = characteristic function of B, = Ba T
f(xa2b2)= characteristic function of Ey = Eb~%a 2

Now E, consists partly of elements ending on ar(q%o,p%nl),
bartly of elements ending with b° (840} and of the unit ele-
'ment.. Also we have E U E2 = G, El'ﬂ E3 = ?, El C E ﬂ'EE,
Es CEN By We evaluate H(x) on each of the disjoint areas

in the pieture and find that H(x) < ~1.

Definition: Iet CysCqy : [@,B] = M be a differentiable curve

with CO(Q)VZ_Cl(a) = p,co(ﬁ) = cl(B) =g, A conti@uous
map H : [a,B8] x [0,1] - M is called a (p>q)-homotopy between
Co and cq If U : [a,p] - M, where H (t) = H(t,s), is a

differentiable curve from p to q and Ho(t) = co(t), Hl(t) = cl(t).

Definition: Sh and Cy are called homotopic—(p,q) if there
is a (p,q)~homotopy between then.
Homotopic-(p,q) is an equivalence relation in the set
qu, of all differentiable curves Ffrom p to g.
The equivalence classes under the relation "homotopile-(p,p}"

form a group, the Fundamental group of M based at p,wl(M,p).

T o>, {B> are elements of T (M,p), 0,8 : [0,1] = M, then

the group operation 1s defined by




10.
Cap<p> = {ap>

where
af{2t) 0Ot g%

N

aB =

(\B(2t~l) Y2151
Lemma: M compact = Wl(Miﬂ countable.

Proof. Any open cover of M has a finite subcover. In
particular we can choose a finite open cover {U ""’Un}
of M such that each U.i is a convex ball (M locally homeo-
morphic to R%).

If U, n Uj # ¢, pick a 1{_)011’11:,'}_33.“j € u; N Uy arbitrary

(a pij—point). There are at most finitely many pij—points.

For each pair of distinct pij-points choose a path
(which we call a pij~path) joining them. THere are at most

a finite number of pij—paths.

Choose a pij—point, Py, as base point of the fundamental -
group. We will show that any element of wl(M,pK) is equi-
valent to a finite product of pij-paths. This will complete

the proof by the above remark.
Let £ ¢ [0,1] = M represent an elément, a, of Wl(M,pk).‘

0 1 2

- i val
f(wi_l,ti]) - Uy(i - Let g, be the equivalence class of

Partition [0,11, 0 = t, < t. < t <w++<t =1, such that

the"path £{[t, ,,t.1).
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Then g = C(‘l.. .0{'1'1

Each point :E‘(ti) lies in U‘y(i) n U’y(i+l)'

be the minimal geodesic joining f(ti) and the p;-point in

Let Bi

Bea) MOy ) - P S ) 0 Yy

convex.

since the [Ui} are

_ -1 -1 .. ~1
Now @ = @ B84 CoBoBy ag . “n—lﬁn—lsn—lan and each
-1 . X ‘ . .
Bi~laiBi 1s equivalent to a Bhfpath in Uy(i) since the Ui

are simply connected. 8o g is equivalent to a finite pro-

duct of pij—paths and we are done

83. ;t"
Consider the random walk on G :.Wl(M,b) defined in
the previous section. We will prove thét A i1s necessarily
less than 1.
To do this we begin by constructing a symmetric probabil~

ity measure on Wl(M,b)(=Wl). By Kesten's theorem it suffices

to show that T is not amenable, which, by Folner's theorem

1s equivalent to exhibiting a function, H(x), of the form
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{1) such that

sup H(x) < e < 0
x ,

“Recall that H(x) = hl(x) - hl(a,xbl)+h2(x) - he(aexb2}+‘;' +
hn(x) - hn(anxbn) where h, € F, F boundeélreal valued function
on G, ajpi € G arbitrary. |

Tt will turn out that the h's will be chosen as the
sums of the angles of triangles, one side of which will be

on the invariant line of a & -

We construct our probability measure as follows:

bb

Let y € m,y (M,b) and let Qf (M) be the corresponding

equi#alence Qlass in be(M). In Section 1 we defined Weilner

Measure on the space Cab(M).

Setting a = b, we have

(b,b)

(0 . (M) = h

Lo R 1

“where h 1s the fundamental solution to the heat equation.

Define p : 7y = R(>0) by

Y
_ Wey, (0, (M)
DY b, (0557

Since X p(y) = 1 and p(y) = p(y™") (v and y"l are in
YeT

o1 s i s ‘o
the same equivdlence class), p is a symmetric probability

measure on 'JTl .

Let M denote the universal covering space of M.
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Definition: A decktransformation of ¥ is a homeomorphism

h, h : M= Mwith vo h = 7, where # : ¥ = I is the projection

map.

" Definition: Ilet cyscq t [a,B) = M be differentiable curves

with CO(&) = Co(ﬁ) = p03 Cl(@) = Cl(ﬁ) = pl . E [&,B]X[O,l] - Mi

ig called a free homotopy between ¢, and c¢, if the map

0 i
Hy @ [a,B] = M with H () = H(t,8) is a differentiable curve |
with Hs(u) = Hsgg), Hogt) = co(t), and_ﬂl(t) = cl(t). ;

Definition: Differentiable curves CO and cl are called free

homotopic if there exlists a free homotopy between them.

"Free homotopic" is an equivalence relation in the set
of differentiable closed curves from [w,B! - M.

The set of decktransformations forms & group under
éomposition of maps and wl-is isomorphié Lo tnis group-'
of decktransformatlons of ﬁ. |

We view LR asg the group of decktransformations of M.

Definition: ¢ : [a,B] » M is an invariant line of the homeo-

morphism h : M- M 1f ¢ is a geodesic ray with

h(C(tO)) = C(tl) to:tl € [a>3] . !

We will construct the invariant line of a € wl(M,p).

Let c,. representa .(p,p)-homotopyclass a £ wl(M,p). Cq

0
18 free homotopic to a closed geodesic c. L

7 (e} is a

i

geodesic ray in M .,




Let fc be the decktransformation induced by c

0 | O
a representative of a € wl(M,p)), P € Lwith »(p) = p = e(t),
fco(ﬁ) = po- Now if L, = Wﬁl(c) also covers ¢, then fco(ﬁ)zpo'
cannot be 1n Li since by construction fc comes Trom a homo-
O

topyclass of ¢, and the geodesic joining ¥ and Pos Yo must
therefore project to c. This can only happen if Py € L.
This means that £, (P) remains in I, and I is invariant under

O,
f . L is called an invariant line of a € Wl(M,p) in M.

cq !g{lhh
Ly /;1

-
»

/—_\
L~ 3 ¥ s

We proceed to construet our function H(x) and show that
it satlsfies the desired inequality. ~
Let L, be the invariant.line of a & Ty and plck
0 € La arbitrary. An exact choice of p will be made towards
the end of the paper.
We will show that
1

n i
(2) hl(x) < =T % hl(alx) ~ £, £ >0

for hl a suitable bounded real valued function on Ty
Define h : M » R by h(g) = h°x(q) where g € I and x
‘a decktransformation on M.

Tt suffices to prove that
n

T

(3) n(q) < H%’i’ 5 h(a'qy) -~ e, ¢ > O for all ¢ € W,
O 7 .




Let Bé(p) be a 6~neighborhood'0f.p. Denote by C, D
2

the double cone centered at p making an angle o with La

where 1 < cos a = 1L+ 8, & > O..

Let g € M be any point outside the union of ¢, , and

, Fye
By (p) -

the angles in the triangle A(p,a"lp,q). We have, since L

Let h : M~ R be defined as follows: Hh{(q) = sum of _
is invariant, a an isometry,

sum of angles in the triangle-A(p,aHlp,aq)

il

h(aq)
. -1 -2

= sum of angles in A(a "p,a “p,q)

H(aeq)= sum of angles in A(aﬁgp,a-ap,q)

In general, H(atq) = sum of angles in'ﬁ(a—lp,a"(1+l)p,q)




We show first that hiq) <

Lemma T: h(q) v -nn>0

Proof. PFirsl we show that for our compact manifoid we can
always assume -1 < K =-x, K the Riemannian curvel ure of M.

Let X,Y be dlfferentlable Vectorflelds with X, =V, Yp = W.

k(v,w) .
Klv,w) = ——2 where v,w span a 2-plane in M
( » ) Ki(g;;y » b P o

| oy 2
k(v,w) = CR(v,whw, v, Ky (vow) = [l 5jvil® - <v,wd?
Let v : ™M - M be the projection map. Since M is com-

pact,

((vow) lvow € 7740, vl = 2wl = 1 <owd = 0)

is also compact. Since the map k :.TM X TM - R with,fv,w)rﬂ k{v,w
is continuous ( {,> a tensor and X,Y differentiable vector
fields) K is bounded. There exist, then, real numbers PN
such that p 5 K = A (U€A<0). Without loss of generality we
could have used y { , > in place of <, > for the Tundamental
tensor and the above inequality becomes -1 = % < %(2 ).

S0 we assume -1 £ K < . Conglder the same situation

n

in H_ -the hyperbolic 2~plane of constant curvature -# -

Je T in H

ng ~%

and compare our triangle A(p,a“lp,q) to a tria

-1

with sides the same length as A(p,a "~p,q).

Let oy be the angle at p in A(p,a_lp,q) ; let ! in T

correspond to ap. |

Since ¥ < 0 dé >a . [7].

P




i7.

The area A of T attains & positive minimur since g' € H_%
(corresponding to g € M) is outside Bé(p') € H_, {correspond-

ing t ol > > 0.
ing to B,(p)) and p >0y >0

By Gauss~Bonnet, for T we have

2 angles in T -7 = = f o= A < O
A

Since K < 0, % angles of A(p,a"lp,q) is strictly less than

the sum of the angles in T, i.e.

n{q) < = angles in T =7 - 1, n > O.

n .
Lemma II: h(q) < SR hlatq) - n/2, n > O.
: n+l 120
Proof. By construction,
1 08 corner § s . B
= = : r
T % h{a q) e+ — ) + =T jio center {'s.

By corner {'s we mean the angle at a—(Mi£' in A(afﬂ%af(n+lg,q)

and the angle at p in A(p,a_lp,q). The center {'s are the




18.

angles at ¢ in ﬂ(a"jp,a“(j+l£,q); (See diagram).
By the triangle inequality,

n_ .
ny 15 flalq) = O corner {'s . center g

n+l i=0 n%lw‘+ Contl _ n+1

where center ¢ denotes the angle at q of A(p,a"(n+l%gq).

By Lemma T,

= 1
Rlq) - =

i _ _ n  corner J's  center g
Bla™q) <7 - gov Nl Nt L - n

oMp

< E%T(Wncorner Jt's~center §) - q

Choose N, such that for n > N, —ln(w~corner Jts~center ) <
7 n+1

n/2, and
a) < - n/2.

Theorem: Let M be a connected compact manifold with K € ¢ < 0.

Then A < 1.

Proof; It suffices to prove (3) globally. In other words

we will show that

for all g € M and suitable h.
Let L, be another invariant line in M not meeting L,
and let ﬁ, e, ﬁ correspond to T, a, p respectively. Let

Ca,p and Ce,ﬁ be as previous notation. (We will show in the

next lemma that we can always find two invariant lines such
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that the double cones making a small angle, o, with each do

not intersect.)

!

Let T = (n+t1)h(q) - g H(aiQ)
' O

iT = (n+l)%(q) - % %(eiq)
Let H(g) = T + 1IT.

Now, by Lemma 2 we have that if g € C, II < - n/2,
3 .

p
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b_ut for q & Ca,p w¢ have

n .
= 1 = 1 = n corner {'s
Ala) - gpp 2 Blata) = Bla) - gz - =5y
1 D L g
- —— 2. center {'s
L%,
— n corner {'s _ center ¢
= hla) - g - T 01

(by the triangle inequality)

éH(q) -7 + ﬁ%"i“ (7 - center {)

o \

La
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-

Now, h{g) - < O; and HNl 3 n > N, = H%T(w—center J) < n/b.

So if n > max(N,N,), H(g) <-n/2 + nl =x/b = - e,

We shave shown that H(q) < - & < 0 for all g € ¥ imply~
ing that LY is not amenable, which by Kesten's theorem is
equ;valent to % < 1. |

| We will now Show.that we can always find two infariant
lines, Lm agd Ln’ such that the double cones meking a small
angle, o, with them at P € L, and q € L, don't meet.
We first fix some notation and cite facts that we will
need to prove the next Lemma.

If ¢ : [a,B) » M is a geodesic then é'q denotes the
tangent vector at  q = c(al) (oA C.q = B, I Cq and Co
are two geodeslcs which meet at a point, g, with tangent
vectors wy = él]q’ W2.= éélq then by ﬁ(wl,WQ)-wé'mean the
angle between w, and w,. "d(-,-) will denote the distance

function with respect to the Riemannian metric.

Definition: ILet X be a parallel vectorfield along a geodesic

Fs with ch(a} = x (x € Mc(a) the tangent space at cf{a)).

We say that x 1s parallel translated along ¢ to x, € MC(

8)

o=t

i

B
Il

B

i

Definition: Two geodesics CysCp [0,1] - M are called

nearhy if d(ci(ui), cg(u.

1)) < e, € > 0 where O = ui < 1.

Definition: Let c : [a,B] - M be a differentiable curve. A
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variation . of ¢ is a differentiable map V ¢ [6,8] x [~y,vy] = M
with Vo(t) = V(t,0) = c(t) o = t = 8.
Let L(Vﬁ,) = L{y') =y y' 5 vy Where_L(VV,) is the

Y = V,D

length of the curve Voo Let X = ViDy, o T =Y } {YL,X0K
rwhere_ |
Dy = derivative with respect to first varlable
D2 ; derivative with respect to second variable

We recall the Variation Formulae.

B
L'(0) =<, |
|(£,0) o
L'(0) = B(v ¥ D - <R{Y,X)X, Cds o+ v Y, [B
- I& Dy T 000 T D Y (6,0) w

Lemma: Let M be a compact connected Riemannisn manifold with
curvature K £ ¢ < 0. Then for every Lm there =xists an

L,» P € L, d€ Ly, such that

Proof: Our method of proof is as follows:

Given Lm we pick p E_Lm arbitrary. We then construct Ln
and chbose q € Ln in such a way thaft the mininal geodesic
joining p and g is approximately of unit length. We then
show, using the Variation Formulae that the distance between

L, and L attains a minimum at points ? and 9 in neighbor-

hoods of p and q respectively.
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Again using the Variation Formulae we show that the

distance between any geodesics 4(t) < Cp. 3
<8k

and Lg(t) s Cn’a
attains a posltive minimum. |

Let Ly = c(t) where ¢ : [~a,a] — ¥ is parameterized by
arclength, Plick p € Lm érbitrary. Let p : [0,1] = M be a
geodesic with u(0) = p and <Q,é>,p = 0. Iet q, = u(dl)

0 <o, s 1 where IZlHQ(T)HdT = 1.

Let ¢ @ [0,1] - M ve a geodesic with cl(s) = dys

0 < s8< 1, and <é,ﬂ>lq = (),
O

Definition: Let ¢ : [0,1] - M be a geodesic in M with c(z) = p.
By ”invariant lines are dense in the geodesics' we mean ag
follows:

For all &,6 > O there exists an invariant line
e' & [-g,a] » M, such that ¢'(t) € Bé(p) and <é',V‘>ic,tt)'< £
where V' is élp parallel translated to d‘(t) along the minimal
geodesic Joining p and ¢'(t).

K < 0 implies the invariant lines are dense [10].

So, for all e,8 > O there existis an invariant line,
L, = cg(t) (02:[—m,¢] = M) such that for G, = CB{O) € Ba(qo)
Q(él,v>lqo < ¢ where v is ¢,(0) parallel translated to 4

2
along My the minimal geodesic joining Uy and qj .

"~ Let y : [0,1] = M be the minimal geodesic joining p and
02(0).

The following sublemma will state, essentially, that
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if we have two nearby geodesics, c. and ¢ starting at p,

1 2
and x € Mp, then parallel translating % along El to g then
along the minimal geodesic Jjoining g and Eé {at r), makes a

small ahgle with x parallel translated along Eé to r.

~ _
o
Y \

Sublemma: ILet Ei,cg : [0,1] = M be nearby geodesics with

cl(o) = Eé(O) . Let c : [OisO] -+ M be the minimal geodesic

Joining Ei(to) and Eé(t ). Denote by V : [0,t5] x [0,1] = M

a family of geodesics with V{(t,0) = "i(t), V(t,1) = ¢

and V(t,.s) = the minimal geodesic joining Ei(o) and c(s).

0 £ s s So- | |
Let x € M?, X(to,o) = x parallel translated to c_(t

along Ei(t); X{t = X(tO,O) parallel translated to c¢(S

0°50)

along c(s), X(O,SO) = x parallel translated along Eé(t) to
c(sy). ¥V =7V,Dy W= VD, .
Then lx(to,so) - X(O,BO)| < &®, &> O.

Proof: By the fundamental theorem of calculus,

B
x(t,8) = jovwx + X(t,0)

Since X is parallel,




o %o
— f
X(t,,8,) j D j v KX(6,0)) = [ [ wgvx
c 0
o %o
= IO XO LA G A (since VX = 0, X parallel)
= [R(V,W)X where T is the triangle
T
with vertices p,Ei(tO), E(SO)
lX(tO,SO) - X(O,SO)I < ¥, T > 0 since by construction the

areca of T is small.

We continﬁe with the proof of the lemma.

befine F(t) = d(c{0), cp(t)); then F(0) = L(y) and
F'(0) = cos 4(62(0),Q)IC2(0) by the first variation. We

g

show first that ¥ attains.a minimum for some € near 0. Since

K= ¢ < 0 the second variation is strictly positive.' It

suffices, therefore, to show that F' (%) = 0 since F" % & > O.
Parallel translating 62 and y from a; to a, (along wq)

preserves angles, therefore,
: y = ¢ >
Crs : \Cy

Also, since p(0) = v(0) and p and y are nearby geodesics
(their endpoints are close and M simply connected), by the
sublemna, Q and 1 make almost the same angle with 52 at
dg» i.e.

<é2,§>lq = <ég,ﬁ>,q (here ~ signifies that
0 0

|<é2»§>|qo - <ébﬂ>fé0[ < e, g > 0)




) - L rhd - * . - A“ /'i‘ ’l
But <02,p>lqo <cl,g>iqo by den$1ty and {cq,u>
- We have, so far, that [M(0)| < e ,e > 0,
so that
: t
F'{t) = F'(0) + [ F"(s)ds = - g, T 8%
0
and
O ' .
F'(t) =7 (0) + { F"(s)ds = e, + 8%,
, t =
‘ | N N
So there exists T, |T| <« ~5 with F1I(T) = ¢. =
therefore, a minimal geodesic, §, which makes =
with I, -at cé(%) and joints p' and 32(%).

We show next that the distance betwesn thns

line attains a positive minimum by proving theat

r

is attained in neighborhood of p and q. Defins

£t} = d(Ln,c(t)). Then £ (0) = L(g}

fr(0) = cos<J(é(O),é)f

Since € and p are nearby geodesics, {c,Z>,_ = ¢

So [fr(0)] < t5s €5 > 0, and there exists

with £'{s) = 0 by the previous argument.

m
A3
193]

Since £ > 0, £(t), the distance betwsen ©
lines, attains a positive miﬁimum and we nave ¢
two distinet invariant lines.

It remains to show that the double cones a

By the previous construction we have s min

t < 0.

ere exlists,

righ*t angle

invariant

the mininmum

and

he invariant

onstfucted

on't meet.

imal geodesic,
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B, from p = c(s) to g € L, . Let D and § be the vertices
of the double cones to Lm and Ln respectively. To prove -
they don't meet it sufflces to show that any two geodesics

L{t) € Cm,§ and &g(t) € Cn,ﬁ making an angle less than e

.

with L and L, at D and §, resbectively, don't meet.

Let 4,4, i

":‘2(0) = '51',' Q(éa'&)lg < & Q(CEJLE)IE}: < €.

8,8] ~ M be such geodesic with 4(0) = F,

Define g(t) = d(P,4,(t)). Then g (0) = cos Q(g,ég)ia .
By previoug arguments, <E,Lé>la o <§,éé>|a é 0 and

> 0, so that -g) = g (0) = g) and there exists a
£

4 \
<— , and g (to)

O’ = 0. g attains a minimum at &,.

D and ¢.(¢t

Let §, be the minimal geodesic Joining 2( 0).
Finally, denote by G(t) = d(%g,%(t)) the distance bet-

ween the two geodesics

G'(0) = cos Q(L’gl)lﬁ

Now, Q(@,é)lg = 90°, Q(é,&),g < & by construction.

Since gl and € are nearby geodegics

2 . .
Q(gl’g)fﬁ < kg and cos Q(g,&)lg ~ Q0

°6

So G'(0) is near O and there exists s', |s'| < -

with @' (s') = O.
We have then, that the distance between the double cones
attains a positive minimum proving the Lenmmna.

In the proof of the theorem, we let p = P, € =q, m = a

and n = e.




¢ &)
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Since Wl(M) ig not amenable, it cannot be Abelian, a

well known result. A necessary and suffieient condition for

a group ¢ to be amenable 1s that every Tinitely generated

subgroup of G is amenable [2]. It follows bhen that 73(M) has

either no proper subgroups or at least one which 1s not

amenable, e.g., not cyclic, Abelian or finite.
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