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Abstract of the Dlsgertation
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by
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Doctor of Philosophy
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1979

et S be a closed Riemann surface of genus g = 2.

Suppose S i hyperelliptic and J : S = S is the hyperelliptic
involution., ILet S be represented as D/f where D is the unlt {
disc and T is a fixed point free Fuchslan group of the first
kind. Moreover, let J(z) = -z be a 1ift of the Involution
to D.

We show that T has a fundamental polygon (called &
hyperelliptic polygon) P © D with the following properties:

P is a 4g sided, simple, convex hyperbolic polygon which is
j-invariant. The welerstrass polnts of S correspond to the
midpoints of the sides of P, the vertices of P and the origin.

Let T(T') be the Teichmliller space of T, It 1s known that

i1




T(T') 18 a complex manifold of dlmension 3g-3. For each
[u] € T(T') there exlsts a well defined Jordan domaln

D, < ¢ U {»)} and a quasi-Fucheian group TH acting on Dp
such that Dp/ , =85, is 8 Riemann surface of genus g. The
mep J acts iﬁra natural manner on T(T) and the fixed point
set T(I‘)'j corresponde to a component of the hyperelliptic
locus in T(T').

The Bers fiber space F(T') = {([u],z) € T(T) x € U {e};
[p] € (') and z € Du} is also a complex manifold of dimension
3g-2. For each [p] € T(I‘)J we show the existence of a canon-
ical fundamental polygon Ph, c DH for TH., The vertices
of Pu' lie on holomorphic sections of F(I') over T(T)j.

Using TeichmUller theory we compute the polynomlal of the
surface corresponding to a specific hyperelliptic polygon.

We then study topologlecal properties of dlssectlons of
hyperelliptic surfaces of the type glven by hyperelilptic
polygons. We conglder the possibllity of prescrlbing for a
surface of genus 2 (necessarily, hyperelliptic) the perlods
of holomorphic differentials on half the loops of such a

disggection.
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1. INTRODUCTION

Canonical polygons for finltely generated Fuchslan
groups were first studied by Fricke (1920's) and later by
Keen (1966). 1In this thesis we study a different type of
polygon which 1s canonlcal for Fuchsian groups whose orbit
space is a hyperelliptic Riemann surface, The involution
~f the surface 1s represented by a symmetry of the polygon
and the Weierstrass points are displayed symmetrically. We

call such a polygon a hyperelliptic polygon.

Tt turns out that hyperelliptic polygons were first
considered by Whittaker [18] in 1899. Whittaker's proofs
however, are incomplete and his treatment relies mainly on
gpecific examples.

By the use of quasiconformal maps, Iin particular the
Ahlfors-Bers solution to the mapping problem for & glven
dilatation (and the continuity of that solution when the
dilatation depends linearly on & real parameter t), we are
able to prove the existence of hyperelllptlc polygons for
all hyperelliptlic surfaces.

In Chapter II, after establishing the preliminaries,
we count real parameters for hyperelliptlc polygons. Their
number coincldes with the dimension of the Teichmiiller space

of hyperelliptic surfaces.

In II.4 we prove the existence of a simple, convex hyper-

elliptic polygon for any glven hyperelliptic surface. .This




polygon gives a specific set of generators for the Fuchslan

- group which uniformizes the hyperelliptic surface.

In Chapter III we look at unliformizatlions of hyperelliptic

surfaces by quasi-Fuchsian groups and find similar fundamental

polygons, In fact we show that 1f the quasl-Fuchsian group
belongs to the ldentlity component of the hyperelliptic locus
in the Teichmuller space, then the vertices of the polygon
1ie on holomorphic sections of the Bers fiber space over the
Teichmuller space. Flnally, using a theorem of Kravetz, we
compute the polynomlal of the surface correspondlng to a
specific hyperellilptic polygon.

In Chapter IV we conslder topological dissectlons of
hyperelliptic surfaces of the type given by hyperelliptilc
polygons. We compute the intersection matrix of such a
dissection and establish & relatlon among perlods of two Cl
closed differentials.

In the last two sections we consider the possibllity of

prescribing for a surface of genus 2 (necessarily, hyperelliptic),

the periods of holomorphic differentials on half the loops of

such & dissection,




II. UNIFORMIZATION AND HYPERELLIPTIC SURFACES

ITI.1 Preliminaries. We wlll work with groups T whose

elements are Mobius transformations T(z) = %%Eg

where ad - bec = 1. Hence the elements of T are
conformal self maps of the extended complex plane € U {w}.

If z € C U [}, let r, = {y €T3 y(z) =2z}. We say

' is discontinuoug at z 1f

i) Tz is finite, and
1i) there is & neighborhood U of 2z such that

vy(U) =U for all ¥ € TZ, and
Yy(UyNU =¢ for ally €T -T,.
Let @ =Q(T) = {z € € U {»}3; T 1s discontinuous at z}.

We call O the region of discontinulty of T and say that T
18 discontinuous 1f Q £ ¢. We call A = A(T) =CU {«} - Q

the l1imit set.
It can be shown (Ford [9]) that card A = 0,1,2 or .

If card A £ 2 then T is called an elementary group. If

Q0 is not empty and card A > 2 then T 1s called a (non-elementary)

Kleinlan group.
If there exlists a component 3 of the reglon of discontinulty

of & Kleinian group T which is invariant (i.e. ¥(2) = 2 for all

Yy €T), then T is called a function group.
_ If T is a Klelnlan group the projection p : O = %-onto
the get of orbits of I in 0 induces a unlique conformal structure

on &
r.
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Let S be a Riemann surface and I a function group with

invarlant component 2. If T acts freely on = and %-: S we

say that T’ uniformlizes S.

Iet A be an open subset of ¢ U {«} that 1s invariant

under a discontlnuous group T and A € {i. By a fundamental

domain R for T In A we wlll mean an open subset of A wlth
the followling properties:
i) whenever Yz = 2, for some ¥y €T, z
then ¥y = 1d.

12 %2 € R
11) every point z € A 1s equivalent to a point
of R (R is the closure of R).
ii1) the two diﬁensional Lebesgue measure of
R - R 1s zero.
If T is a Kleinian group and there is a circle Cc ¢ U {=]
guch that the lnterior of C ls fixed by I', then T 1s called
Fuchslan. In this case A c C and T’ is called of the first

kind if A = C, otherwise it 1s of the second kind (see [12]).

We will congider only Fuchslan groups of the first kind
which leave the open unit disc D fixed., We note that if T(z)

is a Mobilus transformatlon belonging to such a

sy

group then T(z) = &Z+E,and Ia]2 - Ib]2 =1 (see [9]). We
‘ bz+a

i_denote by Aut D the group of all Moblus transformations which
- fix D.

By Koebe's uniformization theorem [17] every compact

surface S5 of genus g 2 2 may be obtained via a fixed point




free Fuchsian group T as ?u

We will assume throughout that g 2 2. (For uniformiza-
tions of surfaces of genus O or 1 see [11].) A Riemann
surface S of genus g 1s hyperelliptic if there exists a con-

formal gelf map J : 3 = £ such that J2 = 1d, and J has 2g + 2

fixed points. It is known that every hyperelllptic surface
corresponds to the surface of a polynomlial of two variables
z and w: we = iﬁig(z ~ a,) where the a, € € are distinct
(see [171]).

There are variloug other characterlzations of hyperelliptilc
surfaces (see [17]). The only ones we will use are the exlst-
ence of an involiution with 2g + 2 flxed polints or equivalently
the exlstence of a representation of the surface as a twofold
cover of the sphere branched at 2g + 2 points.

The Poincaré metric on the unit disc 1s defined by

dg = gi%E%E-. In this metric geodesics are arcs of circléﬁ
l-|z

orthogonal to the unit cilrcle (including straight lines through

the origin).
Let BysesesBo s n>1, be a get of points such that

2 # g, 15 J, ksnanda = a,, which are joined together

i+l
(in order) by Jorden arcs Ays...,A . By & polygon P we will

mean the closed curve formed by the arcs Al,...,An. The polnts
BissessB BYE called the vertices of P and the arcs Al,...,An
are called the sides of P.

If a polygon P is contained in D and its sides are hyper-

bolic line segments then we say P is & hyperbollc polygon.




A hyperbolic polygon 1g simple 1if no two non-adjacent eldes
intersect and adjacent sides Intersect only at a vertex. For

& simple hyperbolic polygon P, 1t 1s easy to construct & homeo-
morphism from the unit circle onto P. Thus P 18 a Jordan curve
and we denote by P° that component of the complement of P which
is contained in D. We say a simple hyperbolic polygon is a

fundamental polygon for a Fuchslan group I' 1f P° 1g a funda-

mental domain for T in D.
A simple hyperbolic polygon 1s called convex if any two

points zl,z2 € p° U P may be Joined by a geodesic line segment
which is contained in P° U P.
We will work with simple hyperbolic polygens P € D which
have U4g sides and satisfy the following properties:
1) P is invarilant under the transformation j(z) = -z.
11) (We denote the sum of the interlor angels of
P by %.) B = or. |
114) If we glve P the counterclockwlse orientatlon
and label the sides Al"“’AAg (in counterclockwise
order} then there exist Mobius transformations

T, € Aut D, 1 = 1,...,2¢, such that T, (A;) = Ay,

1
with the reverse orientation. (Note that by the

14
invariance property A2g+i = j(AiL 1=1,ve.,28.)
We call such a polygon a hyperelliptic polygon (Fig. 1).

In what follows we wlll prove that every hyperelliptic

surface may be uniformized by a Fuchslan group I which has

j(Ai)-;éfers to the point set with no implied orientation.




& hyperelliptlc polygon as a fundamental polygon.

II.2 Poincaré's Theorem. We will need the following theorem

of Poincaré to prove that every hyperelliptic polygon is a
fundamental polygon for a Fuchsian group whlch unlformlzes
a hyperelliptic surface. 8Since such polygons lle in D, we
will omit conglderatlon of polygons wlth vertices on the unlt

circle,

Poincaré's Theorem. ILet Pc D be & simple, hyperbolic

polygon which satisfiles the following:2

1) the sides of P are ldentified in palrs by
elements of Aut D which generate a group G.
11) the vertices of P distribute themselves into sets
of G-equlvalent vertices which we call cycles, and
the sum of the angles of & cycle 1is equal to
ef/v, where VvV is & positive integer.
Then G ie & Fuchsian group and P is & fundamentael Bglygon

for G, (For a proof see [15].)

In order to apply Poincarf's theorem to hyperelliptic
polygons we need to verlfy conditlon 11),

Lemms IT.2.1. Let P be a hyperelllptlc polygon. Then

there 1s one equivalence class of vertices,

Proof., ILet Al be the first slde of the polygon. We
label 1ts vertices 8q and a, and denote the oriented hyper-
bolic line joining a, to a, by <a;,a,>. We label the rest

of the vertices Iin counterclockwise order. Thus Ai = <ai,ai+l>,

If a polygon contains vertices on the unlit circle there i=s
also a completeness condition which must be satisfled (see [15]).




1 = 1,0..,4g-1, and A4g = <8y 81> (see Fig.1 ). (Note

th&t -a-i = &Qg“l"i, i- = 1,..0,2g0)

- =faq |

~ Qx4 | .

."ﬁzq-r ‘

-Q;.‘_,

Fig, 1

2g-2 €
Iet T = NI T
n=0

the identificationsin Flg. 1, we obtain that T(al) = 8.

n

2g-n By tracing

where € = .
n -1 n even

[ 1l n odd 3
Thus aq is equivalent to B e By relabelling the transforma-
tlons sultably we cobtain that 8y is equivalent to 84,94
1 =1,...,4g-1. Thus all vertices are squlvalent.

Corollary II.2.2. Let P be a hyperelllptic polygon. Then
the group T generated by the Ti, 1 =1,...,28, 1s a Fuchslan

group and P is & fundamental polygon for T'.
Proof. Iemma ITI.2.1 and Poincaré's theorem yield the

When multiplying two Moblius transformations R and S
we wlll use the notatlon S<R to mean R followed by S.

m
Thus I Sp = S,0-..05,°5.




desgired result.

Let P be a hyperelliptic polygon. By Corollary I1.2.2,
the group generated by the Ty» 1 =1,...,2¢g, 18 Fuchelan.

We call T the group assoclated to F.

Lemms II.2.3. Let P be a hyperelliptic polygon with

side pairing transformations Ti’ 1 =1,...,2¢. Then

) uiZ-I-B 1

2 2
Ti(z) where iail - Isil =1end a; €R.

Byztoy
Proof. Each T1 leaves D fixed and is thus of the form
o, z+By
T,(z) = ——= . Since T,(A,) = J(A,) wlth the reverse
1 —— 148y 1
ByZhay
prientation, Ti(ai) = -a, 4 and Ti(ai+1) = -a,, where a, and

are the vertices of A, = <ay,8, ,> and &, FoByy-

B2
Cy84TB a,8,+1+p
Therefore T,(a;) = S - S and T, (a, ) = 11 1
171 T8, -+ i+1 1V 141 T 8 15
18370 PiBi4170

and we obtain the following equations
(II.2.1) -8y (Byoyyptoy) = 0484 9+By
(I1.2.2) -ai+l(6iai+ai) = 0484,

Subtracting (II.2.1) from (II.2.2) we get
(8y - 84,308 =ay(ay ~2a;,q). BSince a; - &, £ 0oy =0y
and oy € IR.

Temms IT.2.4, Under the same hypothesls of Iemma II.Z2.

J conjugates each generator T, to 1ts inverse., Moreover,

3,




DT D-.-DTi

Since ToJ = joT*, T, (JoT*(z)) = Ty
n

1

ffNow from (II.2.3) we obtailn

1

10
€1 €1, i &1
’I‘i O...O’I‘:L pj = joTi D...DTi s
n 1 n 1
where 1 € i £ 2g, k €IN' and €, = 7F 1.
k 1
Proof, We use iInductlon on n. If Ei = 1 then by
1
Lemma II.2.3
uilz+5i1
Ti (z) = — where oy € R. Thus
1 B: Z+g. 1 A
:T.l 1 - J
—uiiz+gil —(ailz+si)
Tiloj(z) = Til(~z) = — = —
-8, Z+g B; z-0
L7 TR
-1 -1
= ~T, (z) = JoT, (z)
ol il
and J conjugates Ti to 1ts inverse.
1
N €1y e 1
Assume Ti o...oTi o = joTi o...oTi . Let
n-1 1 n~1 1
e €1, 1 61
T = Ti o...o‘I‘i and T¥ = Ti o...o’I‘i . If Ei = 1
n-=1 1 n-1 1 n
then agein using Lemma II.2.3 we obtain
=1 =1
(IT.2.3) 1T, (JoT*(z)) = T, (-T*(z)) = -T;(T*(z)) = JoT; 0T*(z).
In 1 n ih

oj(z).
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€ € | -€, -€
oj(z) = joT{loT*(z) = joT;loTi D=L, . .oT
n n-1 1 n n "n-l il

i
Hz)

which 1s the deslred result, IfEi = -1 a similar computatlon
n

€ € -€, -€,
yields T-YoT, ™ lo...oT, Toj(z) = joT, oT, ““lo...T
1 eeo0ly 3 OTy -eeTy

ol
1
n n-~1l 1 n n-1 1

Z).

Corpollary II.2.5. Let P be a hyperelliptic polygon
with assoclated Fuchslan group I'. Then %—has an involution J.

Proof, Define J : ?—ﬂ §~by J({z}) = {J(z)}}. To show

that J 1s well defined suppose {zD] = {z;}. Then there exlsts
a T € T" such that T(zo) = z; and by Lemma II.2.4
joT(zo) = T*oj(zo) where T* € T. Thus J({zD]) = J([zl]).

In order to prove that D/T is hyperelliptic we wlll show
that the involution J of Corollary II.2.5 has 2g + 2 fixed
points. Trivially {o} is a fixed polnt. Since the vertices
ag, 1 = 1,...,4g, are equivalent and their orbit {a;} contains
the negative of each vertex, [ai} is & fixed point of J. We
will show that the hyperbolic midpointe cy of the gldes
Ai’ 1 =1,...,2g, are also fixed polnts.

Lemms, IT.2.6, Iet A be & Mobius transformation of the

form A(z) = %giﬁ-where Ia]e - ]BI2 =1, g # 0 and ¢ € R, Then
pz+a

A(z) = -z hag & unique solution z, € D.

Proof, The solutlone to %ﬁiﬁ = -Z are :gii .

Bzt B
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[ 2 /.2
I-—c,—i—ll = [od ~2-2u‘+l (resp. ]—Cx—l' - o ;2(1-!—1) and since

o -1 13 a"~1

a > 1, az - 1> aE - 2¢+1(resp. a2 + 20 + 1> a2 - 1). Thus

o) 2
1> & 20t] (regp, @ A2+l 5 1) ang 1 » |28*1| (resp,
o -1 a -1 B

1< |28ty

—

B

The generatlng transformations Ti’ i=1,..,,2g, of &

group T asgociated to a hyperelliptlic polygon are of the form

o 2Ry
= ———=swhere a, € R, By lemma II.2.6, T,(2) = -z has
i 1
Fiz+ai

a unique sgolution cy €D. {ci} is thus a fixed point of J.

T, (2)

To show that the (cl], 1 =1,.e.,2g, are distinct we need

to know that they are not congruent module T,

Lemma I1T.2.7. Let Ti map Ai = <ai’ai+l> onto <—ai,-ai+l>
and let ey be the hyperbolic midpolnt of <&i’&i+l>° Then

Proof. Since ¢y is the hyperbolic midpoint of Ay (see Fig. 1)

Ci ]dz _

84 1-|z]|?
the unique geodeslc Joining the 1limits of integration., But

¢
Xai _laz] where the line Integral is along
141 1~|z]

the Poincaré metric is invarlant under the transformations

j and Ti' Hence
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Il -l el B exl amH—%

] ] 81 1-1z] i+1 1- jz]
u dz! ] [ i) Idz]
s I'ai 1-z]| ITi 1+1) 1- ]z ]| 1-]z]|?

and Ti(ci) = =Cy .

We have shown that the Cy s 1 =1,...,2g, 1lie on & funda-
mental polygon for T', They are distinct since the gides Ai
intersect only at vertices and none of the ey is a vertex.

Since P 1s a fundamental polygon and identifications
occur in palrs 1t 1s obvious that the ¢y are not congruent.
Similarly O is not congruent to any of the vertices or the
hyperbollc mldpoints and none of the hyperbolic midpoints is

congruent to a vertex.
Thus {0}, {al], {cl},...,{ceg} are distinct fixed points

of J. Since 1t ls well known that a conformal automorphism

of & compact surface of genus g has at most 2g+2 flxed points,

these are all the fixed points of J.

We have proven the following:

Lemma. IT.2.8. Iet P be a hyperelliptic polygon with

gsoclated Fuchslan group IT'. Then D/T ie hyperelliptic and
he fixed polnts of the hyperelliptic involution are {0},

al} where &q ig the first vertex, and {ci], 1=1,.0.,2g,

here ey 1g the hyperbolic midpoint of the side A

g



14

IT.3. Parameters. Before proving that any hyperelliptic

surface of genus g may be uniformized by a fixed point free
Fuchslan group which has a hyperelliptic fundamental polygon,
one would llke to know that the number of parameters which
determine hyperelliptlic polygons agrees with the dimension
of the Telchmiller space of hyperelliptic surfaces (see
Chapter III),

In thls section we informally construct a space of hyper-
elliptic polygons which is disconnected and not well defined,
Qur constructlion will show that thls space depends on 4g-2
real parameters. On the other hand, the Telchmuller space of
hyperelliptic surfaces 18 a complex manifold of dimension 2g-1.

Iet Rl,...,R be raye through the origin such that

2g

2g-1 '
iZl ay < T, where g » 0, 1 =1,...,2g~-1, 18 the angle between

R, and R Clearly there are 2g-1 real parameters which

i i+1°
determine thls construction. We let Rl = R, the real axls

(Fig. 2).
We now flx a cholce of rays Rl""’REg and construct a

2g~1 real parameter family of polygons wlth vertlces on the

given rays satisfylng properties 1) and ii1) of II.1, page 6.

Iet &, and "ti’ 1 =1,...2g, be the points of Intersection

1

of Ry with [z] =1. Let I, be the arc of a circle orthogonal

to [z| =1 which joins the points -tp, 8nd ty and lies inside
and t, (Fig. 3).)

(We call I, the hyperbolic line Joining -t,

g




15

L, intersects R, at a polnt ry, 0 < |r | < 1.

Choose al € Rl such that Ty < aq < 1 and construct the

POlygDn Pl = <al,t2,t3,...,t2g, —al, “tg,oo.,—t2g1a1> (Fig.4 )o
(<Z1’22"°"Zn’zl> denotes the hyperbolic polygon formed by
Joinlng the polnts Zys i=1,...,n, in thelr given order by
hyperbolic lines.) Each angle at the vertlces of P, 1s O
except for the angle By at the vertices 84 and ~8q . Since
ry < aq < 1, Bl < 7 and %l 1s less than 27,

Let L, be the hyperbolic line joining 84 to t3 and let
be the polnt of intersection of L, wlth R,. Let
-t}

2
%i > 27 since the angle By at the vertices té and ~t}

Pi = <a1:t2'3t3:---.| tEg’ “a-_-;_: » ’t3:-~-:"t2gsal> (Fig. 5).
is equal to 7w,

For each cholce of r € Ry such that [ti]| < |r| = |t,]
we obtaln a polygon

t
r 2 _
Pl - <al,r,t3,...,t2g, —al, -r, —ts,.oc’—teg,al> and Pl —_ Pl,
t
1

A
As r varles from [té] to lt2| along 32: Pi is strictly

decreasing from ky > 2r to 28; < 2r. (Thie last fact may be
shown by isolating the triangles <8,sT,tg,8.>. As r varles
:the sum of the interlor angles of <a,,Tyt3,8.> 1s strictly
‘decreasing since the hyperbolic area of <a,,T,t3,8.> 18

‘strictly increasing (Fig.'z)ﬁd

pre—

The continulty of % will be shown in Iemma II.4.15.
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£

2

A~ Thus for some r, € Ry, ]té[ < ]rz[ < ]t2|, P,~ = 27 and
T
P] < 2r for 21l r € R, such that [rp} < |r| < [,

Choose a, € R, such that lrol < lag] < ltg .

We now repeat the same process to find an interval from

which to choose 84 € R3.




Let L3 be the hyperbolic line Jolining 8g to tLL and let

tl be the point of intersection of L wilth R3. Construct the

3
lengI'lS Pé = <a-1,a~2, té’ tl]_, ;.otzg_’ "al, "5-2, _té,.o.’-tzg,a‘l>
a-nd P2 = <a.l,a.2, ta) t)_]_, o..'tzg’ ‘-al, ""8:2’ ‘-ts‘, "’tl’», ooc,"‘teg,al>.
For each r € Ry such that |té] < |r| < [t5] let

r=

P2 <a-l)a'2,lr;tl+,.at’t2g, "'anl, "au2, -I‘, "t)_l_,.-.,-tzg,a:l).

As in the previous case there 1s an r5 € Rg,
Py

r
[t4] < Irgl < |t5], such th&t/323 = 2rj and for all r € Ry
such that [rg] < |r] < |tg]s PE < 2r (Filg. 8).
We continue this process and choose points 8y € Ri’

= 2g-1
L = 1,...,2g-1, Buch that P2g-2 < 2r (Fig. 9). Let ng be the




. .
o “

. o Fig. 9 . ) :
o ' .__T-— - ,
e - - N .
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hyperbolle line Jolning a to -a, and let tég be the

2g-1 1
wlth R . As before there exists s
g 73

2g
g-1

intersection of Leg

unlguely determined point &g € REg such that Py = 2r,

Thus we have constructed a U4g-2 real parameter famlly
of polygong satlsfylng properties 1) and 1i).

As 1t stands we need to know the exlstence of Mobius
transformatlions pairing opposite sidesg of each polygon
(property 11i)) before we can clalm they are hyperelliptic
polygons.

The following Lemma shows that they all satlsfy

property 1i1i).

Lemma II.3.l1. Let a,b € D - {0}, a # b. Then there
exists a unique Moblus transformation A which filxes D such

that A(a) = -b and A(b) = -a.

Proof. Silnce both determinants

1-16]2  1.pE

1-]a]®  1-aF

1- b2

D
1 |i-]al

l-ab l-]a[z

1-ba 1-|b]

are = 0, we have sufficlent condltions for the existence of
an analytlc map A with the desired properties (Ahlfors [1]).
|A(a)-A(b)] _ Ja-b]

— )
|1-ET2Y A(b)| [1-&b]

By Plck'e lemma and the equallty

A 1s fractional linear (Ahlfors [1]).

= 0O D2= =0
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To prove unlqueness let B be another transformation
with the same properties. By Lemma II.2.7 both A and B map
the hyperbolic midpoint pf the line Joining a to b onto
the hyperbolic midpoint of the line Joining -a to -b. Thus

1 1

B A fixes the line Jolning a to b and B™"A = id.

We include a geometric proof of the existence part of %

ILemma II.3.1.

Proof. We wlll flrsgt construct a transformation T € Aut D
such that T{a) = r > 0 and T(b) = -r. Let ¢ be the hyperbolic
midpoint of the llne segment <a,b> and let Al € Aut D be such
that Al(c) = 0 (gee Ford [ 9]). A, maps the line segment
<a,b> onto & line segment through the origin with zero as

midpoint. Let AE be & rotatlion about the origin such that
AzoAl(a) =1r » 0 and AQoAl(b) = ~r. let
-1 .
T = A2°Al and A = joT “pjoT.

1ojoT(a) = joT“l(nr) -b.

Now A{a) = JoT
Similarly A(b) = -a and trivially A € Aut D,

II.4, Continulty argument, Let S be & surface of genus g

fwith a hyperelliptlc involution J and let Wl""’w2g+2 be

the Welerstrass points of S, We denote this data by the

] Bymbol (S,Jjwl: e 'JW‘O_g.I_Q) .

In thle gectlon we will construct a hyperelliptic polygon
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and, by means of quasiconformal maps, deform the polygon
to obtaln a new hyperelliptic polygon whoee associated

Fuchsian group uniformizes S,

We begin by defilnlng quasiconformal meps, A homeomorphism

w of the open unlt dlsc D onto itself is gquasiconformal (or

p-conformal) if it has generalized locally square integrable

derivatives which satlsfy the equation w_ = u(z)wz almost
3

everywhere on D, where p is a measurable complex valued function

on D with ess. sup.|u(z)| = k < 1.

We say p 1s a Beltraml cpefficlent for a Fuchsian group

I if yoA = £ for a1l A €T.
Al

The followlng theorem will be needed.

Theorem IT.4.1  (Ahlfors-Bers [ 3]). Let u be a measurable

complex valued functlon on D with ess. sup.|u(z)| = k < 1,
Then there exists a unique quasiconformal sgelf map W of D

satisfying the Beltraml equation wﬂ =lw§u(z) and normalized
Z

by wH(0) = 0, w(1) = 1.

We now construct a specific hyperelliptic polygon
Which is somewhsat eagier to work wilth. Subdivide the unit

disc D by lines Rl""’R through the origin such that the

2g
angle between Ri and Ri+l is EE. Let Rl be on the real

axis (Filg. 10).
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For each O < r < 1 choose polnts Tys =Ty € Ri such that
[ri] = r and construct the non-eculidean polygon

Pr = <I‘1,...,I'2g, ‘-rl, ..-,*—I'?_g,r:L) (Fig. 11).

The Interlor angle L at each vertex of Pr is strictly
Increasing from ©C to 0 - %g-as r decreages from 1 to 0. We
show this fact by lsolating the hyperbolic triangle
A, = <01 ,r,,0> (Fig. 12). The hyperbolic area lAr] of A,

1s strictly decreaslng to O as r = 0. Thus

_ 2 - 2r b5
IAr[‘n”@"“r Oasr-Oandqrun-Eg.

The sum of the interilor angles of Pr 1s thus strictly

increasing from O to 4g(ll - E%J =1 (4g-2) » 2r. Hence there
exists an r_ € (0,1) for which %r = 27, We let P_ = P*
O O

and call 1t the perfectly symmetric polygon.

If we label the sides of P* by A¥, 1 = 1,...,42, (in
counterclockwlse order) then lemms II1.3.2 guarantees the
exlstence of Moblus transformations Ti, i1=1,...,2g, 1dentify-
Ing opposlte sldes so that P*¥ is a hyperelliptic polygon.

Iet T'* be the group assoclated to P* (as defined in II.2)

and denote the Welerstrass polnts of ?1-as follows : w; = [cg},

1=1,...,2g, where c; is the hyperbolic midpoint of

* * —_ * — * *
AL, Waghl T {0} and Wigip = {aj} where 8] is any vertex,
We extend the group I'* by the map z ¥» ~z to obtaiﬁ the
group {j,T*}. As is well known, T3~%;7~is conformally a sphere
4

with 2g+2 distinguished points {wiL...,[w§g+2], each of which

5 The continulty of @, will be shown in Lemma IT.4.15.
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1s the fixed point of an elliptic element of order two in
{3,T*}.

Choose a quaslconformel map f: D - §-with the

[ER

property that f([w;}) = Wy, 1 = 1,...,2g8+2. Such a map
exists by Bers'! theorem [ 5]. The map f deflnes on P¥ a
function p(z) = EZ and we extend u to all of D by requiring

f

that 1t be compatible with {J,I'*}. K 1s thus a Beltramil
coefficient for {j,T*}.
Thrpughout the remalnder of this sectlon P¥*,f, and

(S,J,wl,...,w2g+2) will remain fixed.

Iemma II.}.2. Let p be a Beltraml coefficlent for the

group {J,T*} and let wl'L be the unique normalized quaslcon-

formal self map of D such that wM = wﬁp(z). Then woJl = jowu.
2

Proof., By Bers' theorenm | 5] w“ojohﬁﬂélis an elliptic
transformation of order two which fixes D wlith flxed polnt
w(0) = 0. Thus w”o,jo(w”)"l=3.

let az,...,aﬁg be the vertices of P* and let t € [0,11].
Trivially tu is also a Beltraml coefflclent for the group

{j,T*}. We define P, = <wt”(a§),...,wt“(aﬁg),wt“(a-f)>.

o

For convenience we denote each vertex wt“(ai),
1= 1,...,4g, by az. FBach side Ai = <a2,az+l>, 1 = 1,...,4g-1,
18 oriented from the lower to the higher index. When 1 = 4g

t _ t t % t
we prient Ai = <ahg’a1> from g%g to By
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The angle O = a; < 2r at the vertex az to the left of

the line Ai_l, 1 =2,...,4g, 1s called the interior angle

ty at aE. When 1 = 1, 0 < ai < Il is the angle to the

left of Aﬁg' %t 1s the sum of the Interior angles of Ptp'

M

lemma II. 4.3, Iet t € [0,1]. Then the followlng

properties hold.

group (see Bers [ 5 ]).

1) P_. 1s J-invarlant.

b
11) The transformati L - GRS /TR
mation Ty = w™roTjo(w™) =, 1 =1,...,2g,

identlfy opposlte sldes of Ptu'

Proof.
1) This is & trivial consequence of ILemms II.L.2 and

the fact that j 1z an isometry.

11) Consider the sides AJ = <af,al >, 1 =1,...,2¢.

L t tu=-1,_t t
Then T;(ai) = W LloTiow M= (y ”(aiD =W uoT;(a;)

= woH( In the same manner

£
—afi1) = gy

t,.t _ ot .
Ti(ai+l) = -a;. By Bers' theorem [ 5] the elements

T; are Moblus transformatlons which preserve the
unilt disc. Silnce Ag 1ls the geodesic Jolning

b bty Nt
with ag o T,(A7) = -A.

ot
1

Before proceeding we make two observations.
First, the group Tt = [TE}, 1=1,...,2g8, 158 a Fuchslan

Second, slnce the transformstions Ti
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identlfy opposite sldes of Ptp’ the same argument used iIn
II.2.1 shows that all vertices are equlvalent under Tt.

In order to prove that Ptp is a simple polygon we use
a continuity argument. We will show in Lemmas II.4.13 and
IT 4,14 that A = {t € [0,1] : Ptu is a simple polygon} is
both open and closed and thus equal to [0,1].

We will need the preliminary lemmas II.4.4-11,

ILemma II. 4.4, ILet G = {yl,v2,Y3} be & Fuchsian group
generated by three elllptlc transformations Yqs 72 and )
of order two whose fixed points are not equivalent in G.

Then the fixed points are not colinear.

Proof. Suppose the fixed polnts Zqs 25 and Zq lie on

a hyperbolic line L. Slnce Y s Yo and ¥, are elliptic of

order two, L 1s invariant under G. Since G is Fuchelan, the
unit circle ig also invariant under G. Thus the two polints

of intersection of L with the unit circle 1s a cloged 1n-
variant set. Since any closed Ilnvariant set conslsting of

at least two points must contain all the 1limit points (see

Ford [ 9]), G has at most two 1limlt points., G is thus =
finitely generated elementary Fuchslan group. This ls a con-
tradiction since the bnly finitely generated elementary Fuchsian
groups are either cyclic or have exactly two elliptic con-
jugacy classes (see Greenberg [10]). On the other hand, G

has three non-conjJugate elllptic elements.




Lemms, ITI.4.5., No two distinct sides of Ptu are

colinear.,

t .t .t
Proof. Suppose the two sides Ai = <ai’ai+l> and

AE = <a§,a§+l>, 0<1, 1< 4g, 1 # 1 are colinear.

According to Lemms II.4,3 the transformations TE and TE

ldentify each side with 1ts corresponding opposlte slide. Thus

the transformations—T; and -TE are elliptic of order two with
t t

fixed polints at the midpoints of the slides Ai and A1 respective-

ly.
Since all verticeg of Ptu are equivalent there exists a

| £ ty .t
transformation T, € I'" such that Tal(al) = -a;. Thus -T_

1
1s also elliptlc of order two and 1ts flxed polnt 1is ag.

Iet G = [-Tz, -TE, —Tal} c [J,Tt} be the group generated

by -T:, -Tg and ~T§ . Nopte that no two of these elements can
1

be conjJugate since the corresponding elements in {J,T*} are

1

not conjugate (Iemma II.2.8). Moreover, by our original

agsumption the fixed points of these elements are colinear.

This contradicts Iemma II.4.4.

t
| Corollary II.4.6, ILet oy be thetinterior angles of
Ptp., i = l,...,l‘g. Then d,jt— }é 0} and ai % m

Proof. It suffices to note that if ai = 0 or 7 then
the two sides of Ptu whilch determine ai are colinear, This

contradicts Lemma II.4.5.
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Throughout the remalnder of the sectlon we wlll adopt

the following conventions,
Z
Glven distinct points ZisZp €D, Iia denotes the hyperbolic
1
ang z, which 18 orlented from z

llne determined by z to Zge

1 1
Given a hyperbolilc line segment <zysZ5>, We gay that

<zl,22> separates the set A from the set B 1f A and B 1lie on
z

distinct sides of L~ .

' 1

The notatlon U; wlll mean an e-~nelghborhood centered &t zl.
1

Lemme, II.4.7 and Corollary II.4.8 are obvious and we omit

the proofs.

ILemme IIA4.7. Iet a,b,c € D be distinct points and let

¢ lle to the left of LZ. Then thers exisgte € » 0 such that

€

the e-neighborhoods U;, Uy

and Ug have the following propertles,

1) US, Up and U; are pairwise disjolnt.

b
€ € €
11) Given aq € [ bl € U, and ¢ € U, then ey lies
By
to the left of L_ .
&

Corplliary II1.4.8. Let a,b,c,d € D be distinct points and
let LZ separate ¢ from d. Then there existes € » O such fthat the

e-neighborhoods U;, Ug, Uz and Ug have the following properties.
€

€
1) U, U, U, and Ug

a? Uy are palrwlise disjoint.

1) Given &y € US,b; € Up,cq € U; and d; € U7 the

b
1
line Lal separates ¢, from d,.




es

Lemma II.4.9. Let ui, 1 = l,...,4g, be the interior

£
. < T,
angles of Ptu Then O ai <

Proof. We will use a continulty argument. We assume
4 i1g fixed and for simplicity 1 # 1. By relabeling sultably
the same proof may be used when 1 = 1. '

Let B, = [t € [0,1] such that O < of < ). We note first
that Bi 1s not empty since each interior angle of P¥* lies in

the interval (0,7 =~ EE) (see p.23).
Lg &

o)
To show that By is open let t, € By. Thus ai+llies to

5 t
the left of Ay, = <841 a,%>. Iet ¢ > 0 be such that the

g-neighborhoods Uet s Uet and Uet satisfy the properties
D 0 o)

a

&y.1 1 a441

of Lemma II.4.7. (Flg. 13).
For each m, m = 1-1, 1, 1+1, the map t Eﬂe wtu(ag) is
continuous (see [ 3 ]). Thus there exist 0 < & such

that w*(s) € US, for all |t; - t] <6, t €[0,1]. Iet

a o]
m

8 = min {5 }. Then for all [t - t] <&, t € [0,1],
T € t
W (am) €U 6" Thus the vertex &, . lies to the left of
a.
m
t t
the geodesic line determined by Ay 1 and 0 < @y <T. Con-
sequently, By is open.

In the above we have gesumed O < to < 1. A similar

argument works for to = 0 and to = 1.
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"To show that Bi is closed let tk = { where tk € Bi

By Corollary II.4.6 we know that azwﬁ 0 or 7. Thus we.

agsume gi > 7 and az ; lies to the right of Ai_l (Fig. 14).

-
Iet € > O be sBuch that the e-nelghborhoods Uet » Uet
841 B4

and Uet satisfy the properties of Lemma IT.4.7 (with the

%341
b

k
Kk € Bi be such that w
n tk

€ Uet , m=1-1, i, 1+1. Thus the point ai+§ lies to the
a.

m t £

k K
right of A and Oy 5> 7. This contradicts tk € Bi'

n

n*

orientation reversed). Ilet t (a;)

n
i-1
We have shown that 0 < n; < 1 and Bi s closed. Since.

By ig both open and closed By = [0,1].

Corollary II.4.10. let P t € [0,1] be simple. Then

T

P 1s convex.

tu

Proof. By Lemme IIL.%4.9 0 < a; <7, L =1,...,%g. A
simple pelygon with this property i1s convex (see Magnus [14]).

lemms II.4.11. ILet Pc D be a simple, convex, hyperbolic
polygon with sldes Ai’ 1 =1,...,4g. Then there exist convex

neighborhoods Hi of Ay with the followlng property:

Hk N H* = ¢ whenever Ak N AL =9, 15 k,4& = 4g, i]

Proof. For each fixed side A,, 1 = l,...,4g, of P, we
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denote by Ai yeoasd,

1, the sides of P which are disjolint
1

g-3
from Ai'

Clearly, since P is convex, there exists for each side

4eg-3
Ay a line L, which separates A, from le Ay (Fig. 15). Let
= J
Hi {resp. H;) be the open half plane determined by Li which
LJg-3
contains Ay (resp. Ul Ay )+ Note that H{ and H; are disjoint,
J= J
open, convex sets.
L\Lg_a "
Let H, = Hi n{n Hy )+ We note that Hy is open and
J= J
convex, Moreover, Ai c Hi and gince Aij, Jj = 1,...,4g—3, is
+ n
not adjacent to Ai, Ai c Hi-' Thus Ai c Hi'

J
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Suppose A, and Ay, 1 % k, 4 % 4g, are disjoint sides.

If z € Hy, then z € H/ and z £ Hy. But Ay = A;r for sone
< <l . , 4g-3

1% r g-3. Thus z ¢ Hkr and z ¢ He = H N (ng ij).

Hence ﬂ& n Hk = ¢.

Corollary IT.4,12. Iet P c D be a simple, convex, hyper-
bolic polygon with vertlces 8y 1 =1,...,4g. Then there exists

e > O such that the c-neighborhoods Ug have the Ffollowing
i

properties.

€ € _

1) Uﬁi n U&‘j = ¢ whenever ai‘# &y 1= 1,3=< 4g
1

gldes of pplygon <zl,...,z4g,zl> are disjoint.

Proof. Iet Hi’ 1 =1,...,42, be convex neighborhoods ag
deBcribEd m Iﬁmma- II.l]'tllo Thuﬁ ai e Hi n Hi-l’ i = 2,..0,4%,
and a4 € Hl n HAg' Chopge ¢ » O small enough so that

€ €
a; €U, <H NHy 4, 1= 2,...,4g, and a, €U,

S H, N Hy, ..
i 4 1 1 Lo

Clearly, the U; » L =1,...,4g, are pairwise disjoint.
b

We need to verify property 1i).
Let <z,,%, > and <zj,z3+l>, 1<43i, j< 4g, be non-adJacent

Sides Df <Zl, -w .,Z}-g’zl>.

Clearly, Ai = <ai’&i+l> and Aj = <aj’aj+l> are not adjacent.
Thus H, N H, = ¢. But U® , U® < H, and US , U¢ c H,, thus
i J 8y aj i aj aj+l J
<zi’zi+l> c Hi and <zj’zj+1> c Hj. Therefore <zi’zi+l>

ﬂ<zj,zj+l> = ¢. The same argument works if one of the gides

is of the form <24g,zl>.
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Therefore <Zi’zi+l> n <ZJ’ZJ+1> =¢. The same argument
works if one of the sldes 1s of the form <24g’zl>’

We are now in a posltlon to prove that the set A pre-
viously defined 1s both copen and closed. We note flrst that

A is not empty since O € A,
Lemma II.4.23, A is open.

Proof. ILet tD € A. Thus Pt " 1s slmple and by Corollary
0
ITX.4.10 it 1s convex. Let ¢ » O be such that the e-nelghbor-

hoods Uet s 1 = 1,...,4g, satigfy the propertlies of Corollary

E‘D

II.4.12.
As in the proof of Lemme II.4.9 we choose O < & such that

for all [t - t| <6, t € [0,1] and 1 = 1y..aste.

T €
W (a;) €U 6

81
Thus the non-adjacent sides of Pt‘_1 are disjolnt. By Lemma

II.4.5 the adjacent sides of Ptu are not colinear. Thus

P, is simple.

tu
In the above we have assumed 0 < to < 1l. A similer

argument works for t0 = 0 and to =1,
Lemma II.4.14., A is closed.

Propof. Let t, = t where t. € A. We need to show that

k kK

P, 1is simple. By Lemma II.4.5 no two sides of Ptu are colinear

ty
thus the proof will follow from the definition of & slmple
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polygon when we prove that no two non-adjacent sides of

P

th intersect at exactly one polnt. ' §

We asgume that there exist sldes Ag and AE

J A4 -1, 4, ¢t + 1 which intersect in a single point (Figs. 16

0 < JJ_"" i"g.r

and 17). The point of intersection may be a vertex as in
Fig. 16 or an Interior point of both sldes as in Fig. 17.
In elther case we may assume that the side AE separates ag

£
from aj+1.

Let ¢ » 0 be Buch that the e-nelghborhoods satisfy the

properties of Corollary II.4.8.

tknu €
Let %, €A be such that w (ag) €U , m=J-1, J, 4-1, ¢.
n a
by by by
Thus the line Al n separates the polnt aj D from aj+§. This
is a contradiction since by Corollary II.4.10 Py is
Kou
n

convex and no slde can separate two vertices.

Lemma II.4.15. Let ﬂg: J=1,...,42 be the interior

angleg of P Then ag 1s continuous function of t.

tp.
Proof., Suppose Z1s%032%4 € D are dlstinct polnte. We
first construct s Moblus transformation T whilech fixes D guch

ar-az
where

) = 0 and T(zl) €R'. Let T(z) = e
-az, z+8

1 -10/2 Z1-2
B = __.7. e and 6 = arg (-—:—.-..__...) -
1-]z -Z.%Z.+1

2| 2“1 i
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We need to verify that T has the required properties.

10 al® - [al®lz]? = |al®(1-]z,]7) =

Thus T fixes D.

2.

(Note that r = |

Join z, to z, (resp. 2, to z3) by & geodesic 1, (resp. 1)

T(ze) = 8z, ~ 8Zy = 0

a8z.-az
(z)) = ——E = & re
na.zezl—ka a
Z.=-Z
i 2 | > 0.)
-zezl+l

ie

il
H
.

oriented from zy to z, (resp. z, to z5).

2
l-]z2]

T 2
1-lz

2l°

Since T is a con-

formal map, the angle formed at z, to the left of the line

19

(I1.4,1)

is egual to

2r -arg T(ZS)

(In the above formula we use the principal branch of the

argument lying between O and 27.)

Now consilder the polnts wtu(ag_l), wt”(ag) and wt“(

From (II.4.1) we obtain

(II.4.2)

where a§

j2E - - Suax
ag o ~arg(atw (aj+1) 8 W (aj)
_atwt”(aﬁjwt“(a§+l)+a£
-1 /2
[7 1 e t/ and

z“’l-lwt”(aj;)lz

) s

*
a¥y1)-
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(II.L4.3) B

By Lemma II.4.9 0 < “3 < 7. Thug the values of the

argument function Iin formuls (II.4.2) 1le in the open interval
(W,EW) and the argument functlion ls therefore continuous. In
formula (II.4.3) the argument function 1s allowed to vary con-
tinuously with respect to t. All other functlons consldered
are continuous, thus ug 18 & continuous function of t. (Note
that we have again asgumed that j # 1. The same proof may be
used when J=1 by a sultable relabeling of indices.)

We also note that in general 1f z;,zg,zg € D are three
distinct polnts varylng continuously wlith respect to s para-
meter t, then ot (defined analogously) ig also & continuous
functlon of t provided at lieg in an intervel properly con-
tained in (0,2r). In particular, this applies to the con-
gtructlon of the perfectly symmetric polygon in thie sectlon

and the polygons constructed in section II.3.
Lemms, II.4.16, Iet t € [0,1]. Then ﬁtu = 27,

Proof, Since the elements T, 1 = 1,...,2g, generate |
the group I'* the elements TE rleo generate & Fuchslan group :

and satisfy the same relatlon as the T¥ (Berg [ 5]). Thus

t t S I T R

t,-1 t t o -1, ob-1
(T5) o..,DTEg_lo(ng) o(Tl)

Iet “E’ 1 =1,...,4g, be the interior angies of Ptp' Since
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t,-1 t =1 mby-L t o taty _ st
(TQ) D"°°(T2g) D(Tl) D"‘DTEgDTl(Al) = A/ the angle
ﬁtu = 3 ai fills out a circle and 1s a multiple of 2r.
But ﬁtp 18 & continuous function of t (lemms II.4.15) and
%t“ = or.

Corollary II.4.17. Eh is a hyperelliptic polygon and
1s & fundamental polygon for I'M. ”% is conformally equivalent
to S. ’

Proof. Since A 1s both open and closed A = {0,1] and
Pu is a simple polygon. From Lemms II.4.4 and II.4.16 we
obtaln that Ph is j-invariant, the transformations Tg,
1 =1,...y2g, 1dentify opposite sides of Ph and ﬁu = 271.
Using Poincaré's theorem Pu 1s a fundamental polygon for TH

To prove the lest assertion we construct the diagram

(with commutative squares)

where hﬁ and h% are the induced mape.



4o

The maps £ and hg have the same dllation, Thus

h‘é‘c’f_:L : %-d —S___ 1g conformel (see Bers [ 5]). Consequently
]:.jsru} '
S and QE arve twofold covers of %— branched over the same 2g+2
T

points and are conformally equivalent.

For clarity we restate Corollary II.4,17 as & theorem.

Theorem II.4.18., Iet (S,J,wl,...,w2g+2) be & hyperelliptic
surface. Then there exists a hyperelliptic polygon P with
asgocisted Fuchsian group I’ such that S is conformally equl-
valent to ?-.

The conformal equlvalence 1s given by & map ﬁ with the
property that ﬁ(wi) = {cy}, 1 = 1,...,28, ﬁ(W2g+1) = {0}
and %(w2g+2) = [aJ] where 8y 18 any vertex of P.

Corollary II.4.19. Iet (S,J,wl,;..w2g+2) be & hyper-
elliptic surface. Then S may be uniformized by a Fuchslan group

8, 2+b
generated by elements T, 1 =1,...52g, where Ti(z) = :}_-_lu
biz+&i
By € IR, and
-1 -1 _ -1 -1 _
(II.AH) Tz o...0Ty, 10T, 0T 70 e 0Ty, 50Ty, 10Tp 0Ty = id.

Moreover any uniformization of S by & Fuchsian group (with no

elliptic elements) has a set of generators satisfying (II.H.4),

Proof. Iet P be & hyperelliptic polygon whose asso-
ciated group I’ uniformizes S. The pairing transformations

a,z+b
-—L——i, where &, €

Biz+ai

Ty5 i = 1,..928, generate T and Ti(z) =




o ]

by Lemma II.2,3. If T?! is another uniformlzation of S

(without elliptic elements) then 1t 1s well known that

It = TDTDT-l for Bome nmption T. The elements Ti = ToTioT"l

g generate T' and satisfy (IL.4.4).
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III. MODULI OF HYPERELLIPTIC SURFACES

TILI Teichmiiller spaces. In order to study the modull of

hyperelliptic surfaces we need to establish some facts about
Telchmiiller spaces. All the material in this section is
expository.

We first define quasi-Fuchsian groups and then give
brlef desgcriptions of the Telchmlller space and the Bers
fiber space of a Fuchsian group. (For a more detailed
description see [ 4 ].)

Let ' be a discontinuous group of Mobius transformations
and let C be an orlented Jordan curve guch that the domains
D' and D", interior and exterior to C respectively, are in-

variant under I' T is called a guasi-Fuchslan group and the

domadns D' and D" are called the invariant components of T.
In this case A(T') i contained in C and T is mald to be pf
the first kind if A(T) = C, ptherwise it is of the gecond
kind (see [12]).

Ag in Chapter II, D wlll denote the open unit disc. We
denote by Aut D the group of all Moblus transformationg which
fix D.

let T be & quasl-Fuchslan group with an invariant com-

ponent D' and let ¥ : D = D' be a Riemann map. Define the

group

G = {y € Aut Djy = v"loTcn for some T € T'},

G is a Fuchsian group (see Kra [12]) and is called the Fuchsian
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1
equivalent of I'. Clearly % = ?—.—- .

A polygon will be called a sgmooth Jordan polygon if it

ls & simple polygon whose sides are analytic arcs.

Let T be & Fuchslan group with no parabolic elements.
L7(T') 1s the space of Beltrami differentials for T (II.h )
with norm |jufl = ess. sup.{|n(z)] 3 z € D).

The open unlt ball M(T') of L (I') i the space of Beltrami
coefficlents for T.

Let y € M({T') and extend p to all of € U {»} by requiring
that uIDC = 0. We denote by wu the unlgue quasiconformal
self map of C U {»} which fixes 1, -1 and 1, and satiefles the
Beltrami equation (W“)E = u(z)(wg)z (see [ 31).

We say that p,v € M(T') are equivalent (and write y ~ vy)
if and only if W, =W, on the unit circle. T(T') ig the space
of equivalence classes In M(T). & 1is the projection of M(T)
onto T(T'}. The domain wu(D) depends only on the equlvalence
class 3 (u) of y.

The Bers filber space 1s defined by F(T') ={(3 (n),z)
€ I(T) x ¢ U {=}; n €M(T) and z € w (D)},

Both T(T'} and F(I') are complex manifolds (see [ 4 ]).

The group T acts discontinuously on F(T') ag a group of

blholomorphic self maps by the rule

®w)ezdy = () ¥ (2)),

-1 (see Bers [ 4 ]).

w € M{T), 2 € w (D) and ™ = wuoyo(wu)

M




i

v() = E%El is also a complex manifold and the pro-
jection (#{p),z) » 8 (u) 1s a holomorphic map from V(T)

ont> T(I'). The inverse image of § (p) is the closed

w (D) 1
surface B — - Note that ™ =w oro(w )~
wuoro(wp) ” ¥

is a

quasi-Fuchsian group with invarlant component wu(D).

Iet T be a fixed point free Fuchslan group such that
D/P is a closed surface of genus g, and let H be a non-
trivial group of automorphisms of D/T. P : D= D/T is the

natural projection map.

Tet T' = {y € Aut Dy poy = hop for some h € H}. It is
well known that T'' is a Fuchsian group, T is a normal sub-
group of T' and r‘/T =~ H.

We will now define actions of T'/T on T(T') and of T

on F(T).
T! acts on the space M{(I') of Beltraml coeffilcients

for T by
(III.1.1) Heg = (uog)g'/g'ﬂ:)r all y € M(T), geT!',

The subgroup T acts trivially on M(T') and the action
of g € T' depends only on 1ts equlvalence class moduloT.

Therefore (III.1.1) induces an action of H on T(T) by the rule
3 (u)a(g) =8(u-g) for all p € M(T), g €T',

where ¢ : T'®» H 1is the quotlent map.

We now define the action of T'! on F(I') by the rule
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(B(n),z)g = (8 (neg), g'rl (2))

her € D ! d e
where p € M(T'), =z WU( ), g €T, an g“owu_g W, 08,

II1.2 The hyperelliptic locus. In this sectlon we consider

the subspace of Telichmiiller space which consists of hyper-
elliptic surfaces. In order to do so we will first define
the Teichmuller moduler group.

Uging the material from Chapter IL we then obtain new
results on unlformizations of hyperelliptic surfacee by
quesl-Fuchslan groups.

Iet 6§ be an automorphism of the Fuchsglan group I' with
the property that 8(y) = wovow"l for all y € T, where w is &
quasiconformal self map of D. & 1s called a geopmetric auto-
morphism.

The map w induces a bilholomorphic self map of M(I') by
sending py € M(T) into the Beltraml coefficient of wuow_l.

It 18 easy to check that this mapping preserves equlvalence
classes and hence induces a blholomorphlic self map

6* 3 T(T') = T(T') which depends only on the eonjugecy clasg of
® modulo the group of inner automorphisms of I',

Thug the (Teichmiiller) modular group Mod T, which is
defined to be the guotient of the group of geometric auto-

morphisms by the normal subgroup of inner automorphisms, acts

on T(I') as a group of blholomorphic self maps,

w (D) |
Iet H= [3(n) € T(T)s —Il{—“— is hyperelliptic}. Thus if




w (D)
% (u) € H then -EE—— has an involution Ju. The map
T

w (D)

w tD=w (D) induces a quasiconformal map £ = = "
W il pw T TH

1

D

Hence f; oJuoflJ ls & quasiconformal self map of‘?-and we
may 1lift 1t to a geometric automorphism of T. In this

manner J‘-1 induces a self map J: of T(T).

J* *
Let T(r') ¥ be the fixed point set of the map Iy JS
I JE
and J: are called equivalent if T(T) - T(T") Y. Kravetz

J-X-
[13] hae shown that T(T') M is a component of H and that when

€ » 2 there are infinitely meny inequivalent J:. It is not
hard to show that each component of H contains & copy from

each conformal equivalence class of hyperelliptic surfaces,
J¥
When g = 2 1t is well known that T(I') M= T(T).

Proposition ITI.2.1. Iet T be a fixed point free quasi-
Fuchslan group and D' an invariant component of T. Iet.?l

be hyperelliptic with involution J and let {zo} be a Welerstrass

point of ?i-. Iet E : D'= D! be a 1ift of the involution
such that B = 14.|D' end E(z_) = z_ . Then there exists &
fundamental region R ¢ D' which is bounded by a emooth Jordan
poiygon P! invariant under E. Moreover, if we label the sides

of P! by %&...,Ad (in order), there exiet generating trans-

g
formations Ti,...,Tég for T such that Ti(Ai) = E(Ai),

i = l’ooo,zgl




Rt

Proof. ILet 7 : Dt D' be a Riemann map such that

w(o):zo. Then'w"loEow ls & conformal self map of D with a

1

fixed point at zero, thus 7 ~oEor = J|D (see [ 9 ]). Ilet G be

the Fuchsian equivalent of T'. Thus %-is hyperelliptic and |
by Theorem II.4.16, G has & fundamental polygon PcD with
sldes Al""’A4g and generating transformations Ti € G,

1=1,...,2, such that T,(A;) = -A;. Ilet R = r(P°), It

is easy to verify that R is a fundamental domain for T

bounded by mw{(P) = P' a smooth Jordan polygon with sides

-1
= A 1 —
i) = Ai. The transformatlons 'I'i oniun

and Ti(Ai) = E(Ai).

generate T

Lemma III.2.2. Let $(y) € He T(T) and let Ju be the

w (D)
involution of —ﬂa—— . Let {zo} be & Welerstrass point of

w (D) r

A ___ | Then there exists a 1ift E : w (D)= w (D) of the
TH u M
involutlon J‘_l such that E2 = id.[wu(D) and E(zD) = Z .

Propof. Let E' be & 1ift of Ju to Wﬁ(D). Since {zD}

is a Welerstrass polnt E'(zo) = T(zo). But T E' 15 also a

g1 (z ) =z . Let E = TT'E', then B2

where S € TH. Since EZ has & fixed point S = id.

1ift of J and T = 8w, (D)

Corollary IIT.2.3. Iet 8(u) € H< T(T'). Then there

exists a fundamental region R c WH(D) ag described in Pro-

position ITI.Z2.1.




48

Proof, Lemma III.2.2 and Proposltlon IITI.2.1 yleld

the desired result.

Iet G be & Fuchsian group such that D g hyperelliptic.

[

It is well known that G is conjJugate to & Fuchslan group T

which 1s J-invarlant, We call T a normgilzed hyperelllptic |

group. |

If T is8 a normalized hyperelliptic Fuchslan group then

j(z) = -z 1s & 1ift of the involution J of 2 . ILet <J>

T
% generated by J. Let
T' be the group of all 1ifts of elements uf<jj>to.D. It 1s

essy to verify that {j,T} =T"' and %l-m 2J>

be the group of conformal gelf maps of

We will assume throughout the rest of this section that

T is a normalized hyperelliptic Fuchsian group and T' = [j,T'].

We now turn our attention to the fundamental reglons in

the fibers over T(r)J c Hec T(T). We call T(T‘)'j the identity

component of H,

Proposition III.2.4, Iet u € M(T') be an even coefficlent

(i.e. p =uol). Then

1) wu(l‘.%)/I“'l is hyperelliptic and M o= wuojo(wp)'l
ig an elliptic Mobius transformation of order 2
that fixes WH(D)' Moreover, J“Iwu(D) is & 11ft
pf the hyperelliptic involutlon of wu(D)/Tu.

11) the quesi-Fuchsien group TH hes & fundamental reglon
R c wh(D) whose boundary i1s a smooth JHeinvariant
Jorden polygon with sldes Ai,...,A&g. Moreover,
TH 1g generasted by transformations Ti, i=121,...,28,

such that TJ(A]) = JM(A]).
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Proof.

1) Since u is even, the mappling Y - M (where
y € {J,T}) maps elliptic elements onto elliptic
elements of the same order (see [ 4 ]), Since

the group (¥, ™) is quasi-Fuchsian, it follows

trivielly that J“Iwu(D) induces an involution
of wu(D)/ru with 2g + 2 fixed polnts.
11) The proof follows from part 1 of this lemma and

Proposition ITI.Z2.1.

Corollery III.2.5. Let y € M(T) such that &(u) € T(T)3.
Then there exlsts a p' € & (u) such that 3“' is an elliptic
Mobiug trensformation of order 2, wu(D) is j“'-invariant,
and the group ™ nez a ju!- inveriant fundamental region

as defined in Proposition III.2.4.

Proof. Let &(u) € T(T)J, thus p ~ poj. In prder to
apply Proposition III.2.4 we need to show that there exists
a p' € & (u) such that pu' = putoj.

We first show that in general 1f Vi ~ Vp then vloj ~ vaoj.

Let v, and W, be the normeallized solutions to the mapplng
1 2
problem for Vi and Vo respectlvely. Then w, o] and LN 0 are
2

v
1
solutions for v,oj and v,o]. Since w, (z) = W, (z) on the
2

v
1
unit cilrcle we have that L ol = LS oJ on the unlt cilrcle,
1 2
Thug for scme O < § < 27, eiewv o] and eiewv o] are normallzed
1 2

solutions for vloj and vaoj. Hence vloj ~ veoj.
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Now let p' € 2(p) be the unique Telchmiiller differential
wlth minimal maximal dilstion (see [13]). By the above argu-
ment p'of ~ p'. But the maximal dilation of u' ig the same
as that of p'oJ, hence p'oj = ', The proof now proceeds asg

that of Proposition III,2.4 using the coefficlent p'.

The fundamental regions for the groups rg,where
() € T(T)J may be described more Preclsely.
Let z € D such that {zD] ls & Welerstrass point of
D/T. As 1n the proof of Lemma III.2.2, there exists an
elliptic element of order two, T, € T'! such that T, (z_ ) = z_.
) o T,
Since J and Tzo are equlvalent modulo T, T(I‘)‘j = T(T) ~.
As in the proof of Corollary IIT.2.5, if §(y) € T(T)J,
there exists & u' € $(u) such that p' = y'oj. Thus, we

define the section s, : T(T)) = F(T) by 5. (3 (n))
0 ZO

= (Q(l—l)x Wur(zo))- .

Lemme III.2.6. The map s, : T(T)J = F(T) 1s a holomor-
D
bhic section.

Proof. It follows from & theprem of Reuch (see [ 61)
that the natural mep £ : T(T!) - T(T)j c T(T') is a complex

analytic embeddlng, Thus the map £* : F(Tt) = F(T') given
by £*(2 (u),z) = (£(8(u)),2) 18 also a complex analytic embed-

ding,

It is well known that s} : T(T'') = F(T'') defined by
8]
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B} @ u)) = (3{n), Wﬁ(zo)) is a holomorphic sectlon (see [7]).
D
-1

*
Now s, = f*osz of ~. |
D 0 ,
(Note that when g = 2, 5, 1 a globhal section, l.e. E
o
s, ! T{T) = F(T)).
o)

When zZ, = 0 we call sz the zero section. Thus Corol-
D

lary III.2.5 states that every group TH such that &(y) € T(I‘)'j
hag a fundamental reglon symmetric about a point in the zero
gectlon. We wlll show that the vertlces of these reglons

may also be chosen to lle on holomorphic sections.

Before continuing we need to define the Poinceré metric

) for w (D). A i1s deflned as follows:
D{n) u( ) D{(p)
Ilet XD = ——%nTg be the Poincaré metric on the unilt disc.
1~z

Choose w 1 D - Wﬁ(D), a Rlemann map and define XD(H) by

XD(u)(w(z)) lri(z)] = kD(z) for z € D.

RD(H) is well defined (see Kra [12]). In fact geodesics

in Wu(D) are the images under 7 of geodesicse in D.

By Theorem II.4.18, T has a hyperelliptic fundamentsl

polygen with vertices al,...,aug. let T&i be a 1ift of the

involutlion J on 2-such that Ta

T (ay) =24, 1 =1,...,%g. Thus |

1

8 (T(T)J) = {(3(u), w ,(ai)) 1 8 (n) € T(T)J} is & holomor-
8y u




he

phlc section.
Let Pu' c WH(D) be the polygon formed by joining the
points Wu'(ai) (in order), 1 = 1,...,4g, by geodesics in

Theorem III.2.7. Iet &(u) € T(I‘)J° Then Pu, c wu(D)
is a simple j“’-invariant polygon and Pﬁ, (the interior of

Pu,) 1s & fundamentsl region for M,

Proof, Letw D = WH(D) be a Riemann map such that
7(0) = wu,(o) and 7(1) =1 (see [ 2 ]). As in the proof of
Proppsition III.2.1, w“loj”'ow =J. W= w"lowu, is a quesi-
conformel self map of D (see | 2 ]) which is j-invariant and
satisfles w(0) = 0. w extends to & self map fofCuU {«}
with the followlng properties: Q(O) = 0, Q(l) = 1 and

Q(;J 1 (see [ 2 ]).

H

Z w(z
A A-1

Thus Wol'ow ~ 18 & Fuchsian group and by Theorem III.4.8
P% = <w(al),...,w(a4g), W(al)> 18 & hyperelliptic polygon.
Now w(PA) = Pu' and it is easy to verify that Ih, has the

W

required properties.

In order to simplify our resulte for the identity com-
ponent T(T)J, we construct & fiber space over T(I‘)'j in which
the flbers are J-invariant.

let uw € M(T') and ¢u be the unique quasiconformal suto-
morphism of ¢ U{x} which fixes 0, 1 and =, and satisfies the
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I

)

Beltrami equation (¢u _ ”(Z)(¢p)z where p|D® = 0 (see [3]).
Z

Lemms III.2.8, Iet u, v € M(I''). Then p ~ v 1f and

only if ¢p = ¢v oen the unit circle.

Proof. Since W, and ¢u (resp. w, and ¢,,)ere solutions

v
of the game Beltraml equation, there exists & Mobius trans-

8D. = .
formation o, ( resp av) such that 0,0, ¢u (resp

a,oW,, = &) (see [3]).
_ -1 ~
If ¢u = ¢, on the unit circle, then (av) Og,OW, = W,

1

on the unit circle. Since wvo(wu)' fixes 1, -1 and 1, we

-1 aa _
obtain that (av) oa, = id. and W, =W, bn the unit circle.

Suppose conversely that wu = W, on the unlt circle. Then

-1 _
(II.2.1) avo(au) oau =8,

on the unit circle., Since the transformations di‘-‘tz,jo(tzbu)":L
and 6,0J0(8, )™ both are of order 2 and fix O and =, they

are equal. We obtaln hence from (II.2.1)

-1 -1

1

(I1.2.2) ¢ oJo(e ) ¢,0J0(9,,)

..1 -l -l
= a,o(a,) 708, 030(8 ) ""oa,0(c,)

on the image of the unit clrcle under ov.
Since the transformatiors of (II.2.2) are Mobiug, (III.2.2)

-1 =1
holds for all z € ¢ U{w}, Thus ¢uojo(¢u) and uvo(“u)

commute and must have the seme fixed points (see [9]), or
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gince they are of order 2, one Interchanges the fixed points
of the other, We assume the latter posslibility doesg not

occur. By definitlon, e, and %, fix 1. Thus avo(au) = 1d.
The desired result followe from (II.2.1).
We must verify that c.vo(au)"l cannot interchange the

two points 0, «. Since W, and w,, agree on the unit circle,

1 -1

WUDYD(Wu) = wvoyo(wv) for all v € T}

In partlicular W = (wv)"lowu commutes with each ¥ € T'! Let

Y = J. Thus W elther fixes 0 and = pr permubtes them. It 1g well
known that & quasiconformal map that commutes with T'! must

map each component of I'' onto itself (see [16]). In particular
w (0) = Wv(O) and w,(w) = w,(=).

The relations o, OW, = 8 (and the similar one for v)

show that up(wu(o)) = av(wv(o)) and Gu(Wu(”)) = ﬂv(Wv(“))«

Thus o and o,, agree on the three points w (0), Wu(l) = 1 and

wu(m). Hence they are the same Moblus traisformation.

We now define F(T'') = {(3(n),z) € T(T') X €3 p € M(TT)
and z € ¢p(D)]. Note that by Lemms III.2.8 F(T'') im well
defined,

Lemme III.2.9, F(T'') 18 & manifold isomorphic to F(I'!)
(i.e. there exists & biholomorphic map £ : F(T'!) = (1)

gsuch that the followlng diagram commutes




where p and § are the natux, rojection maps),

Proof, We first constr » Moblus trensformation o,
such that au(l) = 1, d 'W4(O}J iQ:and au(wu(m)) = w, We

conglder three cases, -

Case 1, wu(O)i%'éiahd- () # w. Then

where

n

(1 - w,(=))u,(0),

n

.wu(w)(l - WM(O)J

We need to verify th§# _ .Tﬁ the required properties.

(0 ()-1) + (1

) e (0)
e = R e G (e o, T

(Note that neitherﬂthé?ﬁﬁmerator nor the denominator

can be 0 since wu(o)lgﬁi and W“(m) #1.)




(w, (o)-1)w (0) + (1-w (e))w (0)
T B
2) o, (w,(0)) (v, (0)-1)w, (0] + wu(ml;(l_pr(lo))

(Note that since wu(m) ¥ 1 and wu(o) # wu(w)

the numerator can never be 0,)

(w
Case 2, Wu(o) = w, Then Up(z) = %%‘:17”—))
and
1-w (=)
l) U.u(l) = 1 - wu(m) = 1
2 (w (0)) = L - () =
) U.u Wu )) wu(o) - Wu(oo) =0
1-w (o)
o)) = B =
3) U'Ll(w}-l( )) Wu(m) - Wu(oo)
z - w (0)
Case 3, wu(oo) = w, Then QH(Z) = :—LT‘;E'—(W
and
1-w (0)
l) U-u(l)nl__w(o)=l
M
1:“(0) -

)
o




W, (=) ~w (0)

3) (wu(m)) =B T = wu(o) =

%y

In 81l cases o, has the required properties. Since

8 thus ha = .
au 18 unique, we u ve uuowu ﬁp

Let £ 3 F(T!) = F(T') be defined by £(&(p),z)
= (8(u)s auéz)). Thug £75 ¢ F(rt) ~ F(I't) i1s given by

£7HE (w)o2) = (8 () (o) 7H(2))s

Since wu(O) end wu(m) are the fixed points of the elliptic
transformation j*, they depend (homomorphically) on & (u) € T(T'!)
(see [3]). Thus, from our previous computations in Cases 1, 2
and 3 of this lemma, we obtain that the coefficlents of au
depend (holomorphically) on & (u) € T(T?),

It follows that F(I'') is a manifold (see [4]) and £ 1is
& biholomorphlc map. The commutativity of the above diagram
is frivial. The proof is complete.

We define the space

F(T(T)) = {(B(u)yz) € T(T)Y x €3 p € M(T) and z ¢ ¢, (D)1

(F(T(T)j) 1s the pullback of F(I'') via the natural map
g 1 T(T)d = T(T") where g(8(u)) =38 (ur).)

Proposition ITI.2.10, Let &(u) € T(T)J. Then the
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followlng hold:
1) ¢u(D) 1s & J-invariant domain.

¢ ¢

11) Iet T M = audro(¢u)"l. T ¥ has & fundamental
region R c ¢u(D) whose boundary 1s a smooth
j-invariant°Jordan polygon with sides Ai,...,Aig.
Moreover, T' ¥ i1s generated by transformations

Ti, i=1,...,2g, such that Ti(Ai) = j(Ai).

111) Iet Pc D be a hyperelliptlc fundamental polygon
for T and let al,...,aug be the vertices of P, ILet
gt T(T)J ~ F(T(r)j) be defined by

81
%'ai(@(u)) = (8(u),®,,(ay))s L = 1,005, The
maps Ea are holomorphic sections.
i
iv) let P¢ c ¢M(D) be the polygon formed by Joining
w!

the points ’u'(al)""’¢u'(a4g) (in order) with

geodegice in ¢u,(D).6 P, is a J-lnvariant
pt

P
fundamental polygon for T M,

~1
- t = =
:roof We note first tha ¢uojo(¢p) P ¢u(D) uu(wu(D))
and T |- auur“o(au)-l. The asgertions now follow from Lemma

I11.2.9, Corpllary III.2.5 and Theorem ITT.2.7.

® The Ppincare metric for au(D) is defined in the same manner
a8 that for wp(D).
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IIT.3 The polynomlal corresponding to the rerfectly sym~

metric polygon. The perfectly symmetric polyzon P* with

sides A;,...,Aﬁg was defined in II.4. We note that

2 Bar (J=1)2r
A;‘——eizrgA;, A;:eizrgAz,oooo,’A:;zei g A*

1
J=1,...,4e.7
Let T'* be the group generated by the transformationg
T; € Aut D such that T;(A;{) = A¥ with opposite orienta-

1+2¢g
tlon, 1 = 1,...,2¢. Let y* t D = D be the map given by

27
y*(z) = (ei Ig)z, thus

(IT1I1.3.1) Ty = (y*)3~1 DT;‘-’-’!(Y*)—(J_J'): J

From (III.3.1) it is clear that Y* To*oy* = T* and y*

= 2;.-.,2ga

induces an automorphiem y of %g{where v({z}) = {v*(z)}) Buch that

the followlng dilagram commutes (here p* 18 the projection

p* 1D - P fex),

From the definition of y* 1t 1s obvious that y4g = 14d.

Each map yk, 1<k < 4g, k # 2g, fixes the points {0}
and [ag}, where ag ig any vertex, and no other points. When
k = 2g, y* is the hyperelliptic involution J and its fixed

points are {0}, {aj) and {ci}, i =1,...,2g, where cj 1s

the hyperbollc midpolnt of Aj.

ip

T Here eiBAg = {e

z3 2 € Ag}
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Consider the twofold cover P/T*éi D/T*]2J> where <J>
1 the group generated by J and J is the natural projection.
From (III.3.1) and Lemms 11.2.4% we obtain that
v*-lo{J,P*}oy* = {J,T*}. Thus y* induces an sutomorphism
¢ or Dyresc> = € U (=) (wheve ¥({{z)}) = [(¥({2])}) such that
the followling dlagram commutes:

D Y
s T Pe

J J

CU{x] a—— U]
Slnce YEg = dJd, it follows that Qeg = 1d. Hence Q is
elliptic of order 2g and its fixed polnts are J({0}) and

J({al}). Moreover,

(111.3.2)  F(le 1 =T(v({e,1)) = 4(F(Le 1))y n = 1,..0,28-1
ang
(111.3.3)  F((ey)) = Vv (legy))) = $(F(lep ).

By normelizing, we may assume that J({0}) = 0,
3({&1}) = w, 3({01]) = 1 and Q ie & rotation about the origin

by E-. From (III.3.2) and (III.3.3) we obtain that
ny

F((c - })=el &, n=o0,...,2¢1.

®n+1
The surface correspondling to the polynomlal
nmw
Pg-1 —_—
Wwe = 7 n _(zuei-g ) 1s branched over 0, = and the 2g points
n=0
nw

ig,n =0,...,2¢-1. Since the conformal equivalence class
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of a hyperelliptic surface is uniquely determined by the two-

fold cover, we have that the polynomial corresponding to P/T*
nm
2g-1 —
iS W2 = Z n (Z—Ei g ), n = O,...,Eg—l.
n=0

The same result may be obtained by means of Teichmilller

theory in the following manner:

Let A = <y> be the group generated by vy and consider
the covering D/T* i;(D/I‘*)/A. Y is branched at the points
{0}, {agl and [c;} (these are the only fixed points of the
elements of A). We now compute the branching orders.

Since {0} and {ag] are fixed by every element of A,
the branching order of ¥ at each of these points is lg-1.

The only element of A which fixes the [ci} is the involution
vzg. Thus the branching order at each [c;} 18 one.

We compute the genus g' of (D/T*)/A by the Riemann-
Hurwitz relation (see [17]). Thus 2g - 2 = 2n(g'-1) + B
where n = 4g and B is the sum of the branching orders. Since
B = 10g - 2 we obtaln g' = O.

Let T(T*) be the Teichmliller space of T* and let T'' be

the group of 1ifts to D of the elements of A. Thus
T!' = {g € Aut D3j p*og = gop* for some h € A} where
p¥ : D = D/T* 18 the naturél projection. The group r'/T* = A
acts on T(T*) in the manner defined in IIT.1. T(I‘*)A (the
fixed point set of A in T(T'*)) corresponds to surfaces admit-
ting a group isomorphic to A as a group of conformal auto-

morphigms,
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Theorem III,3.7 (Kravetz [13]). The set of pointe in
T(T') left fixed by every member of r‘/T is precisely T(T'!').

(Here T' is the group of 1lifts of a group of sutomorphism
of U/r.)
Using Theorem III.3.7 and our previous computation
T('r‘*)A = T(0,3) (here T(0,3) is the Teichmliller space of
a three times punctured sphere)} and there 18 only one con-
A

formal equivalence class of surfaces in T(T*) .

et S* be the surface corresponding to the polynomial

inr
2 2g-1 z
w =21 (z-e )o S%* admits the sutomorphism
n=0
JT_ T
(wyz) & (eF B8y et By

which is of order l4g.

Trivially of,1 < k < 4g, k £ 2g, fixes (0,0), (w,®) and
no other points. Since agg(w,z) = (-w,z), 028 1g the hyper-
elllptic involutlon.

Clearly there exists & y € M(T*) such that &(y) € T(r*)"
and wu(D)/’Tu = 3%, Since there ls only one conformal equilv-

alence claés of gurfaces represented In T(T*)A, S¥* = D/T*.
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IV. TOPOIOGICAL PROPERTIES

IV.1 A topological dissectlion. In Chapter I1I, by means of

uniformizatlon theory, we were able to find hyperelliptic
polygons for hypefelliptic surfaces. In this chapter we
wlll find dissections of hyperelliptic surfaces into polygons
of the same type without using uniformizing groups. To be
more precise, glven a hyperelliptic surface S with involu-
tion J, we wlll exhibit & set of J-invariant loops 71""’72g
on S such that by cutting along these loops one obtains a
4g sided J invariant polygon.

Suppose S5 1s the hyperelliptic surface corresponding
to the polynomisl wo= 22%1+2(z-ai). Let y € ¢ U {=] be an

1=1
oriented Jordan curve such that the points a

122280040
lie on y and are ordered according to the orientation of
y (Fig. 18).

Iet Li’ 1=1,...,g+1, be the arc of y which joins
Bpy_1 B0 85y, Let My, 1 =1,...,2g, be an arc (whoge
interior 1s contained in the interior component of y) Join-
Ing 8y to 85 4" We assume the arce Mi Intersect only at
2y (Fig. 18).

We make cuts along the arcs Li labeling one side of
each cut + and the other - as in Fig. 19. It ig well known
that 1f we take another sphere with the same cuts (we label

! 1
the points on the second sphere al""’a2g+2’ the cuts

Li,;..,Lé+1 and the arcs M{,...,M} ) and attach the two
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spheres along corresponding cute (identifying + with -), we

obtain s conformal representation of S. Note that the in-
volution J 1s the interchange of spheres (Fig. 20).

On the surface S the loops Yy = MiMi (Mi followed by
Mi) are simple and J-invariant (Fig. 20). We will dissect
S along these loops.

We cut each sphere along the arcs Mi and Mi respectively
and then make the proper identiflcations to obtain the dis-
gectlion of S.

On the first sphere we start at the point & and cut

in the direction of a s labeling the right hand side of

i+2

the cut MI and the left hand side Mi (Fig. 21 ). We meke

gimilar conventlong on the second sphere
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We now attach the two spheres along the cuts Li and Li
to obtain the dissection of S given by Fig. 22. (For clarity,
in Figs. 22 and 23 we have drawn sll arcs as straight lines.)

The sldes of Flg, 22 are relabeled as follows:

M;fM; 1 o0dd

YL T A _ _
Yl = Ml M]_’ Yo = M2M2 2oy Yi = e 1=1,...,2g
MiMi i1 even

— gt — Y o _—
Yogsr = MMy s Yogio = MoMpseisvpgyy = .

The desired 4g sided polygon is thus obtained in Fig. 23.

We note that on this polygon the involution J corres -
ponds to a conformal eelf map which identifies the side Yy
wilth Yi+2g and has a fixed point at &,. The cuts

Li’ i=1,...,gtl, which appear in Fig. 22 correspond to

loops around the handleg of S.

IV A relation among periods of closed Cl differentials.

Proposition IV.2.1. Let w and v be closed C1 differen-

tlals on a compact Riemann surface S pf genus g and let

\]‘Yiw = Ai" IYiﬂ = Ai!_, Wher'e Yi’ i = 1,.0.,28,

are the loops corresponding to the dissection in IV.1.

A = AlA < = 2
Then Ifsm n iiqeij i j,Where 1 i1, J g,

and
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AU
5
e
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Proof. We dlssect S along the loops Yy to obtain
the polygon P of IV.1 (Fig. 24), Here we have labeled
the vertices a1"°"“4g‘

. S T
D Y- SR A

NG e R .'
- ‘2%q+| - —rg, . O3 o S
qn XJ,%I ‘E‘i y o1 o o

-— '-ii;ig. el '

Since the interior of P is simply connected, w = df in

the interior of P. Thus, by Stokes! theorem

2g
(Iv.2.1) Jfgwamn=[p =23

M+ fn).
121 IYi Iv‘l n)

i

Jet zO lie in the interior of P and let z and z' be

equivalent polnts on Yy and Yil respectively. Joiln z to z!

by a curve zz' passing through z_ and 1lying in the interior
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of P (Fig. 24). Then f£(z) = [Z  where the integral is
D

teken along the segment of zz' from z_ to z. Thus

(v.2.2) [y fn+ [ )oen= [, (7 @)~ ([Flw)m=-[, ([ wn.
1

i o) o) 1 Tz

Suppose z € Y- Then zz'! is homplogous to Za2 + Y2+...+Y2g

+ 0,z's Thus, since I = - W, we obtaln

Z“E 0pZ

IEE Iﬁt = f(z') - £(z) = Y2w+...+j‘Y2gw.

When z € Yy & similar computation yields

2.3 ty - > - 3
(IV.2.3) £(z') - £(z) i(JI J<if

Now (IV.2.1), (IV.2.2) and (IV.2.3) yield the desired

result.

IV.3. The intersection matrix Po' We orlent the polygon P |

constructed in IV,1l in a counterclockwise direction. Thus
each slde Yy 1 =1,...,28, corresponds to an oriented loop
in 5. The positive direction of Yy ls from 8y to 24 On the
firgt sphere and from aé to aé on the second ephere (Fig. 25).
In general the orlentation of Yy will be positive from
ap to a2+i on the flrst sphere, and positive from a2+1 to 32

on the second sphere when 1 18 odd. When 1 1s even, the

orlentation will be positive from aé to aé+i on the gecond

spherg, and positive from 8o,y to a, on the first sphere

(Fig. 25).




T&

In order to compute the intersection matrix of the
loops Yi we need to glve a precise definition of the inter-
sectlion number of two loops. We state the following lemmas

wilthout proof (a proof may be found in [ 81]),

Lemma IV.2.1, Let c be a simple closed curve on the
Rlemann surface S. Then there exists a real closed dif-

ferential Mo wlth the property fca = (a,*nc).8

Lemma IV.2.2. Let a and b be two homology cycles on S.
The intersectlon number of & and b is a+b = IIS n, A m, and
the followlng properties hold

a*b = =bh.a

(atb)+«c = asc+bsec and a-b € Z .

If we isolate the Intersection point 8y of the loops
¥, and ¥, (Fig. 26) we note that Yi°¥, =1 (a proof may be
found in [ 8 ]).

Similarly, we obtailn Yi'vg = -1 (Fig. 26),

8 Here *“c ls the harmonic conjugate of nc and

(U«J*ﬂc) = .H‘D oA - -ﬁ‘c










In general the Intersection numbers of the loops

Yy» 1 =1,...,2g, are the following (see Fig. 26):

1
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This informetion may be collected in a matrix which

we call the intersection matrix P = (Yi-yj). Note that

by Lemms IV,3, 'PD is skew-symmetrix i.e. Vi"’j = —onyi,

We write the matrix P, below, 1ts entries are Yi'y,j’

1131, J=< 2g.

CYNY % % N e _-;

] 31_‘ oj A |-41]- -] i o
KHi-1 | o | 4 |-4] -1
L4 (-1 o4 1 ot

Axf -L] 4 -4 ] 0 -1 R
& R
;. H.r .l
& -4 14 -4]4] 0 i

-

IV_.lL. A canonical homology basis. To every compact Riemann

surface of genus g 2 2, one may sssoclate & get -of homology geners-

tors al,..._,ug, Bl"“’Bg with the intersection matrix

0 I
-1 0




s

where O is the g X g zero matrix and I 18 the g X g iden- -

tlty matrix. Such & set 1s called a canonical homology

basis,
A canononical homology basis appears in Fig, 27. | ;
In IV.1l we assoclated to every hyperelliptic surface

of genus g = 2 & set of loops L STREETR P (Fig. 25) based at

a8 Welerstrass point 8o (In fact, our construction ylelds

a simlilar get of loops for any compact surface of genus

g =2 2, since topologically such & surface may be obtained

In the same manner.,)

We will now express the homology classes determined by
the loops Yl""’yzg In terms of the canonical homology
loops of Flg. 27 in the following manner:

We firet replace each canonical homology loop ay (resp.
By)s L =1,...,8, by a homologous loop af (resp, Bj) based
at a, (Fig. 28). (A set of loops such as ai,...,aé, Bi,...,Bé
iz traditionally called a canonical dissection of 5 (see [11]).)

We then write each loop Yy 1 =13,.0.,28, in terms of the loops
ai,-..,aé, Bi,“.,Bé.

We will take products of loope as elements of T1(8,85)
Slnce we are only interested in homology, we will write pro-
ducts additively and take equivalence classes of elements in

vl(S,az) modulo the commutator subgroup of wl(S,aE).
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Lemma IV.4.1. Yy = -af

Proof, The assertion is obvious by inspection (Figs.

25 and 28).

Lemma IV.4.2. yy = (-vy_; - @] ;) whenever i < 2g is

odd.

Proof. The loops Y,1 and —aiml appear in Filg. 29.

Their sum appears in Fig. 30.

1/2 |

Lemmsa IV,.4.3. vy = (= uj - B + Bi+2,whenever
J=1

2

1 < 2g 18 even.

Proof. The loops aj and qg (Fig. 31) are homologous
g8ince they are both homologous o “j‘ Thus we obtaln that
i/2 1/2 i/2

" ( Zall) - B! 1s computed

2%

2a", = Za! (Figs. 32 and 33).
3=1 J J=1 J

In Flg. 39. The final sum appesars in Flg. 35.

Propf. The loops Yog_1 and Bé appear in Fig. 36, Their

sum appears in Fig. 37.
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S | \ __./l
F:‘Lg.29(a.)—-xl-'_‘ (t'. OJJ) Fig.29(b) '_"{::-l :
~ N ( )
@ - D |
7 L )
Fig. 30(a) _..31_'__0(54 Fig, 30(b) =~ SNl H




; . J
’ Fig.31(a) 0(3 Fig.31(b) qj‘
g ) (- )
i
. < | < O |
N _ “—/z _J N - o
F1g.32(2)  ~3 o} ((eyen) Flg.32(0) % o even) |
=Y . i |
( Y s N
PRt I A PR |
o) oy O O o O -
% \.-_—\".‘-e"{/ hb'f—-"’l
— ¥ w, - = J
- 2 L/2
. Fig.33(a) - 2 &) Fig.33(b) -3Y D{j“ _,,
4=t .1: |




82

r—'— ﬁ-- r'_ ‘—\’ . |
' /"’>—\\
A Y
— O O OO
! //
L_!‘ J‘ L JI, -
Fig.34(a) 7 Fig,34(b) _ L v, .,
JZ= oi“+/31

)

‘ .
\ y
Fig.35(a) “6_';__\2_

+ .

-

a2
Flg.35(¢) - =~ %ﬁj“fﬁl* ﬂ_‘\:{g_
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IV.5 Prescribing periods for g=2. It is well known that

to every canonical homolpgy basis one may aselgn a unique

basls of holomorphic differentisls nl,...,ng wilth the

property fa My = bjk' Moreover for this basis, the matrix
J

T = (Bjk) with Bjk = Iﬁjnk 1s symmetrlic with positive definite

lmaginary part. We say such a set of differentiale ig normal-
1zed,.

Usling the relationship we have Just established between
the set of loops Yl""’YEg and & canonical homology basgis
“l""’ag’ Bl,...,sg, one may compute the periods of a
normallzed set of holomorphic differentials for this besis

over the lDDPS Yljaoo,Yng

We wlll compute these periods for g=2.

In this case

Ialﬂl =1, I = 0, IaE“E = 0 and faeﬂa =1

Go
We algo have from IV.4
Y1 = 0y
Yp =0y — By T By

Y3 = %) Wyt By - By

7420'1_'"“2_81




s

Thus

Iyeﬂl = Ialﬂl * I»Blﬂl * Isaﬂl
=1-B) 1+ B,

Iv3“1 = I~a1“1 + Ialﬂl + f—sanl + f-aaﬂl
=-1+B) ;- By,

fylﬂz =0, Iyan = =Bi,2 T By 0

np =By p - 32,2 - 1 and IY4“4 =1 - Bl p*

We collect thls Information in a matrix Toe

Mo 0 “B,5B2,2 | By, 2B -1 1-B1 5 |
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Given a palr (Yi,YJ), 1, J =1,.00,4, 1 £ 3 we say
that periods are prescribable Dver'(yi,vj) 1f there exlsts
a basgis wo,W, of holomorphic differentials such that the
matrix of perlods over(yi,yj)has the followlng form

| o

It is obvious that such a basls will exist if the

matrix
Y1

I!iﬂl

"
IYi 2

18 Invertible, In that case one may solve for w in

1°¥2
We will show that glven any compact surface of genus
=2 and a topologlical dlssectlon given by curves Yyseees¥y

ag already defined, there always exists a palr (yi,yj) on

which perlods are prescribable. In fact, we can make a

stronger statement.

Iemma TV.5.1. Let S be a compact surface of genus g=2.

Then if perlode are not prescribable over (yl,ya), they are
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prescribable over the remaining pairs (71,73), (yl,yq),

(Ypsv3) and (vp,vy).

Propf. We examine the possible caseg.
Suppose Det 11,2 = 331"2 - 32,2 = 0.
Then 1) Det I),3 = 1By 5 - By p =1
11) Det Il’4 = -1+B1’2_% O.
Since Im 7 = 0, Im 32,2 # 0. By our original assumption
thus Im By, p # 0 and Det Iy, 4 # 0.

iii) Det 12,3 = -1+Bl,1 - B?_‘l # 0.

1r "1+Bl,l - BQ,l = 0 then Im B = Im B Since

1,1 2,1°

Im Bl,2 = Im B2,2’ we obtain Im Bl,l = Im B = Im B

2,1 7 % B 2

= Im B This 1s a contradiction since Im 7 i=m invertible.

2,2°

iv) Det Ip ) = (1-31,2) (1-B, _+B

1,178, 1)
= (Det 11’4) (Det 12,3) # 0.
In all cases the determinant is not zero, thue the

corresponding periods are prescribable.
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