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Abstract of the Dissertatlon
-Singularities, Branched Coverings, and

Characteristic Classes
by |
.'Michael Jackson
Doctor of Philosophy
.- -_ in = .

- Mathematics

Btate University of New York at Stony Brook
1978

1l

A certain class of singularities of vector bundlé
homomorphisms is defined and the relationship between the
characteristic ciasses of the vector bundles involved
determined. These vector bundle homomorphisms have the
property that near its' singularity subsets, (ﬁhich are
assumed to be submanifolds), the behavior of the homomorphism
is :controlled by the topology of thé embedding of the singu-
laritiés, and 1s an isomorphisnm élsewhere.

f:, Examples are given that show that many naturally
oeeuring maps between manifolds give rise to these types of
hémomorphisms,'notably: 'branched coverings, dilétations,

- &and some types of generic mags._

The basic results are then applied to these examples

to obtain relaticns between the characteristic numbers of

iii




manifolds related in these fashions.. Some known results
are re-obtained without appealling to deep results of
'Atiyah—Singer. -Promihent among these 1s the signature
formula for branched coverings due to Hirzebruch.

The method isrto compute the difference of the two

" vector bundles:in the appropriate Grothendleck ring in

terms of local datum that arise from the homomorphiém;
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Introduction

Consider the foilowing problém: Given a mapping
f : M~—~ N of manifolds, (here M and N can belong to any of
the categories; TOP, PL, ¢”, Real or Complex Analytic, or
Algebraic and f is a morphism); determine relations betwéen
the invariants of the manifolds M and W and the‘invériants_
arising from the map f. | |
_ A first illusiration of a solution to-tﬁis probiem

is the clagsical Riemann-Hurwits theorem on the holomorphic
mapping £ : M - N of compact Riemann surfaces. This'formﬁla

can be wriltten
o - 2g(M) + w = d-(2-2g(N))

where d is an integer, the degree of the mapping, and w is

the index of ramification, i.e., the sum of the orders of
2 -]

the various pté. of ramification. The genera g(M), g(W)
are analytic invariants of M and N themselves while d, w
depend upon the mapping. - |

For ndn-singular, complex projective algebralc vari-
eties a much more profound relationship exists between
invariants of these manifolds ané quantities depending upon

a holomorphic mapping. This is the so-called Grothendieck-

fRiemananoch Theorem. This theorem contains, as a special

cage, the Riemann-Hurwitz formula.
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In the Riemann-Hurwitz formula notice that the.terms
2 - 2g(M), 2 - 2g(N) are, respectively, the Euler charact-

eristics of M and N. ©Now, forgetting the holomorphic

‘structure of the map, we obtain a formula relating the

Euler characteristics of M and N.to ihvariantsrwhigh arisé

'fro&'f when f is considered to be smootﬁ or PIL. .
Since the Ruler characteristic is a "charactefiétic

class" we see, at least in this special case, that if the

singularities of the map are sufficiently nice and, the

~behavior of the map near to these-éingularities is of a

special nature, i1t should be possible to make some kind of
-quantitative statement about the relationship of the char-

acteristic classes of M and N, the local behavior of the

"map £, and the topology of the singularity subset in M

{or in ).
Assume for a moment that M and N are smooth manifolds
and T is a smooth mapping. Then there is an induced map

of tangents:

B ¥
{f* 1% denotes the "Pulled back" bundle via the map T of the
tangent bundle of N).

Suppese that df has the following properties:




3.

: IM - (flTN)m is an isomorbhism for all m € M, except
for m belonging to‘a flnlte collection %lY of Q&E&E&?t

1=
closed sub-manifolds of M, along each of which 4f has
constant rank, {the rank may diffef o each Yi}, and the
behavior of df near Y, is “controlled" by the tqulogy of.
ﬁhe embedding éi I PP M. Then one would expect that the
,difference of théfcharacteristic classes of M and the
pulled-back classas of N should be a sum of co -homology
.classes "concentrabed" on the subfmanifolds Yi' Speci tcally,
assume Y, < M is, for each i, of;codimension 1, (resp. of |

"codimension 2, with an oriented normal bundle). Then for

any point y € Y. it should be possible to choose local

Iin i-ll

i ‘ n- J
co~ordinates (uz,.,,,u l,x )(ul’°°"Un l) € R x, &R,
1 i i 2 ) .
(resp. (u Ups-eestl Q’Z'G(ul""’in 2) € g* zy € @) about

vy, S0 that Y. is given locally by x; =0 {resp. z; = 0),

i 1)

i ' i
) (resp. (Vl"°"vn—2’zi

‘and local co-ordinates (v ,...,vn e
‘about f(y), such that f(Yi) 1s a submanifeld of codimension
1, (resp. codimension 2, oriented normal bundle) given locally

= 0), and &f having the local description

i
i

by x| = O(resp. =z

= l,..., 11~ 1




Oi,,(resp.-df_(ag )

_
ov
s dy Py
sy =77 T T

L

Ly |-t

Ay

where Py is an integer = 1.

More generally, let E,F be two real, (resp. complex)
wector bundles of the same fibré dimensicn, say n, over a

‘manifold M and o a vector bundle homomorphism between them.

a
‘Suppose that except for a finite collection U Y, of codimen-
' ' imd S
sion 1, {resp. codimension 2, oriented normal bundle), closed

sub-manifolds of M ¢ is an isoworphism, and o has constant
rank, say n - ji, along-Yi. LetuKeri(u) be the kernal vector

bundle of o restrictad to Yi.of'fibra dimensionzji3 and let

i i i i X PR .
81,»,.,sn.and tlga,ajtq be local szpanning sectlions of B and
, : I =

¥ respectively in a nelghborhood of any polnt y & Yi chosen

" ' i
- in such a way as to have s> 41228, Span Keri(a), Then
i _ ' _ '

n-j
W, near Yi'should have the form

I
4 ct
AL R

u(si)

i_J‘o

1
i

of codimension 1)}, or

E=1,..., n ~




in the complex case (Yi'of codimension_?s oriented ndfmai
bundle). Under these conditions we say that o is a local
-wrapping homomorphism of degree pi'ébout Yi'
It will be shown that many naturally occuring maps
have this kind of property. | |
Since the characteristié classes thét.will be.of
interest here'are_stable invariants, to,find formuiae 1t
is sufficient to have a representatioﬁ 6f thé diffefenae
bundie ¥ - & & KO(M), (resp. K(M)) where X0{M) {resp. winm))
denotes the Grothendieck ring~éf_real-(resp; éoﬁplex)

vector bundles on M, Since F - E is, in some sense, zero

; 1 .
1 .
that P - E is in the image of a Gysin type homomorphism

@ KO(Yi) - KO0(M), {(resp. D K(Yi) - K(M)).
i - - B . i - ,

In fact, in these special cases the Gysin homomorphisn in
‘co-homology and the “push forward" homomorphism J, are

essentially the ssme. Tt is thiis fact that allows us to

:type homomorphismsa This resuit, which will be referred to

s "the main result" in the future, may be stated in the
_following fashion:

In KO(M), (resp. K{M)) the following identity holds:

o Py Byl |
F-E=] (ngi +hy +-~n+xi)Ker1§m))

t
-

fode

on M -~ U Y, 1t 1s reasonable to expect, just as in cohomology,

write the main result of fthis paper concerning local wrapping




6.
where J, = Ji- ---+3? is the direct sum of the individual
push forward" h@momorphlbms, ki.is the normal {real) iine
bundle of Y in M, (resp k is the naturally'associated_
complex line bundls to the codimensioﬁ 2 sub-manifold Y, ),
Py D Y
and kg * denotes Xj%T%ﬁ§li9 ®-product over R, (rgsp. over §).
Thege is an interesﬁing combination of the above two
types of“homomorphisms. Considér real vector bundles and
homomorphisms having the:property}thaf o is an isomorphism
except on a finite collection U Y, of codimension 2 closed
-sub~manlfolds with oriented-noimal bundies ki, li is.con-
sidered as a complex line:buﬁdlé ag usual. Near Y, demand

that o be the realization of a homomorphlsm of the second

Jkind mentloned above, Spe iflcallj,- b is regquir ed that

et

the bundle Ker.{n) be the'realization of a complex vector
bundle, call 1% K;,'then we obtain the second result:

p. Py-1 - .
F ~FE =603, (300" 4+-x. ) ED)]
. 1_ i L v 64

where ¢: K(M) - K0(M) is the forgetful homomorphism.

I give now some indication of the type of results cne

can obtain by applying the above formulae.

'Suppose b : M7 - N© is a local branched covering of

.e. there is a seguence

[

eompact complex analytic manifolds,

_Yl,..ﬁ,Yq of ¢ disjoint codimension 1 (camglex);closed, and

analytic gub-manifclds of M and open neighborhoods U o Y

TSueh that b(Ui) is open and the restriction of b exhibits
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U; -Y; as a p; - sheeted ccveringsspace of b(Ui) - b(Yi)'

The integer (pi—l) is called the branching order of b

:alongiYi.'
it can be shown that for any point y € Yi there oné
n-1 '

local co-ordinates (%BZi)j E. € ¢ A Zi'é ¢ about y and

local eo-ordinates (81,21) about £(y) such that b has the

Yocal description

D,
g =g Z' = 7."
i

- wWhere Yi is given locally by Ziu= 0. Taking the differential
clearly eihibits the_bundiéamap“thus,obﬁained a8 a local |
wrapping homomoprphism of degreé'(pi;l)fébout ¥

Let td(M), (respa td(N))3.dénote the'(total) Todd class
I t (M) o

&

of M, {resp. W). ERecall its definition. 1L

(M) = T (1+d E(Mgzﬂ, be a formal factorization of

ﬁ)’ dj € H

the {total) Chern class of M. ‘Then set

d,
T e
N exp(ﬁdjj

I

td{y)
- J

= 1+ tdy (M)+---

- Note that for a compact Rlemann surface an easy cal-

ulation gilves
td{M) = L + %cl(M) = 1+ §(2-2g{M))[M] ] € Hy(M,22 )

5 the canonical generator.
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- Now,.to-each~of the sub-manifolds Yi there corresponds
a (holomorphic) line bundle L; suqh-that_cl(Li) = ¥is ¥y
is the;Poincaré dual of the homology class determined by

- the sub-manifold Yi’ Applying the main result,rand_noting

that Keri(db) = ki = normal line bundle of Y, in M, we see

that in K(M) the following relation holds: b TN - TM = ;(LiimLi).
] /

Now upon taking the (total) Todd class of both sides of |

-this relation we get the following: | |

b £ (M) (L-exp(-y)) = ta ()T (y,).
- o L - i
In particular, 1etfsfassume:that.the manifolds in

guestion are algebraic, (:af_-,e‘;.'non?s,isﬂ.g;u;}.:a,rﬂ9 irreducible,

_prejecﬁive algebraié v&rieties}ﬁ.ih:Whimh case it is well

known that the Todd and arithmetic genera agréé, (Hirzebruch-

Riemann-Roch Theorem), recall thét:éhe'Todd genué is obtained

by evaluation of the top dimensional term of the (total) Todd

M,77). Using th

o}

class on the preferred generator -of Hqﬁ(
. Loty &

above relation one can now detefminé the relationship
between the arithmetic genera of two such manifolds related
in this manner. |

As a specific examplé, consider the Qase_of compact

Riemann surfaces. Computing we easily obtain:

. .
b cl(N) = %{p ml)yi + clfM)

which gives, upon evaluation on the fundamental 2-cycle of M,




a(e—Eg(N))-% W+ (2-2g())

E(p -1), and d is the degree of the mapping.
Another important class of examp]es of maps which
give rise to wrapping homomorphlsms are the "dilatations" or
PBlow-ups". AYdilatatod of a manifold X ‘aiong a sub-manifold

Y gives rise to a commutative diagram offmanifolds and maps: -

¢
!.,,_,_,,____?X
1o 1
Yt —3 v .,

X' is'an n-dimensional manlfold and ¢ 1s a proper map. Blow
ups exist in the smooth, analytic, and PL categories. In

K

any -ease, the restriction of g to the complimenﬁ'cf Y!' in
X' &8 a bi-morphlsm onto the compliment of ¥ in X; and ¢
on ¥Y' is the projection of the "projectified" normal bundle
of Y in X onto Y. | |

It will be shown that the induced map_sf tangents
satisTies the conditions fpr a wrapping homomorphism of
degree 1 along V' . _ H
In this case we obtain the following formﬁla:
Iet cc( ) denote the (total) Chern class in the complex
case or the {(total) Stiefel;Whitney class in the ¢”, real

or PL case. Then

g ()-8 "ec (1))




m = codimension of Y in X; and v :-ccl(l), Wheré A is
the normal line bundle of Y! iﬁ X', N is the normal bundle
of Y in X. o |

A special case of this result was obtained by Ian
Porteous in his thesis. If X 1s algebraic then this is
the result that he obtained verifyihg'earlier éonjectures
of TGddeegre; He obtained his result by algebraic methods,
i.e., by application of the Grothend;éck—Riemann—Roch Theorem.
In their paper [1] Atiyah-Hiréebfuch éxtend Poftéous' result
to arbitrary compact complex manifolds,'théy aléo settie
the real analytic case as”well;l Since they cthtruct their
"real Grothendieck elemeht“_by means of resolutions of
sheaves of &nalyﬁic functioné this method does not carry
over 0 the C case. They then prove a differentiable
~analogue of the Grothendieck;Riemann—Rbbh Theorem which
allows one to extend the results of Porteous to this case.
Again they use sheéf theoretic methods, this time with
germs of ¢” functions. Tbe.approaéh taken in this paper
avoids this and is more geometric in nature. In any case
there is nothing new to be added in this conﬁext.
Possibly the most important application is to branched
coverings of smooth or PL manifolés. Suppose that b : M - N
is a branched covering of ¢” closed and oriented manifolds,
_branched . along g codimension 2 closéd (and oriented) sub-

manifolds Yl,.,.,Yq, {associated to the sub-manifolds s

I rn




1.

are the q-complex.line bundles ki), With ordef'offbranching

p; ~ 1 respectively.

g

Iet Ll"“"L be complex line bundles on M correspond-
ing to the co-homology classes.yl,---,yq dual to ‘the homology

classes determined by Ei,.;.,Yq. _Then'aceording'to the
maln result we have: '
- [ 2
{*) DTN - TM = ¢ {31, -1, ).
11 i

This formula leads to the following relationship between
the characteristic classes of M and N. Let P( ) denote

the (total) rational Pontrjagin class, then

rb*P(N)’§(l+y§) = P(M)-ﬁ(l+p?y§),
: 1

i 1

{cup product is understood), or for W{ ), the (total)

~-Stiefel-Whitney class.
b*W(N)ﬁ(l+y.mod 2) = W(M)ﬁ(1+p.y.mod 23.
R i : ivi

Sylvan Cappell has informed me that he hag obtained
the same formuia relating the Stiefel~Whitney classes by
combinatorial methods.

The virtue of this formulation lies in the fact that
1t may be used to find the relatidns eiisting between any
of the various characteristic numbers of M and N.

In particular, let £( ) denote the (total) Hirzebruch

L class. Recall its definition, If ﬁ(l+d§) = P({M) is a
; . 3- N




12,

formai_factorization of the (totai),Pontrjagin class of

M, where d € HZ(M,Z), then set .

d.
£(m) = ’;Ea?r“‘jT—h )

= 1 + £l§M)+--~

Now suppose that the dimension of M is divisible by

4, say Lk. Applying £{ )} to both sidés of the relation

{*) yielas

& Y tann(p.y. )
E(M) = b £(N) T { e @ S A P
_ _ ) i tgnhgyi) piyi

i

It is well known that by evaluatio@=of &k(M} on the
fundamentsl cycle, [M], of M one obtains the signature of
the mardfold M. -

ﬂ@w,_b&ya= p;v; where yi € HQ(N,ZQ is dual to the

-hdmology class determined by'b(Yi) < N, In pafticular

_y& = Py, - Rewriting the abo?e'formula, we obtain
, & X, tanh(p.x. )
(M) = b (S(W)T 2 - e
3 -tamh(xij' Py
and evaluating on [M] gives
o X4 tanh(p.x, .
X il ir = ﬂ' * e
**) Slgnature§M) d[i(N)i EEEHTigj I 1[N]

here d is the degree of the mapping. Note that for
=1, ﬂiuzhﬁN'is,a p=fold branched cover, branched along

< N. In this special; but extremely important case we




obtain

(x5! Signature (M) = (£(W) .tanh(px)cotarih(x')-){N_]-:i-

This is precisely the formula obtained by'ThomaSwWon [27.
They obtain their formula by using elementary group rep-
resentation theory and the G-signature theorem of Atiyah-

Singer.

Thomas-Wood obtained this result during their investig-
ationlof the problem of representing homology classes by
embédded sub~manifolds in codimension 2. They'draw upon
an earlier work of Hiréebrueh [37 who was concerned with
a different question. His ihvestigation of the signature
of branched coverings arosé in connecfion work of Atiyah
4] and Kodaira [5] who studied the signature of ramified
coverings in some special cases which are of interest be-
,éause they show that the signature of the total space:of a
differentiable fibre bundle need net be equal to the product
of the sighatures of the base and fibre (fhis multiplicative
-property does hold however if the fundaméntal group of the
.base operates trivially on the co-homology of the fibre

[6]1). Briefly, Hirzebruchs result can be stated as follows: ~

"'rSignature(M) = Signature((l+U
: ()P + (1-m)P

oo -u)? 1
[§)

‘ p(p°-1)
= p-Signature(n) - B %——~w8ignature(U°U)+-«-




where U c N is a closed, and oriented sub-manifold of | ‘ é
ucoﬁimensibn 2 whieh realizes the co—homélogy class x, and
iUﬁ---OU-denotes the oriented éelf—intérsectiOn co-bordism
class of U in N. |
The equivalence of this formula to (**)' is contained
in ‘fhomas-Wood. | o | |
If one cdnsiders ap@ropriate actions of the finiﬁe

abelian group Z% @---@Z%‘ on smooth manifolds one can, by
1 a _
using the G-signature theorem, obtain the result (**) and

_ thereby generalize Hirzebruchs résﬁlt"to this case.
in the TOP category brﬁnched covefiﬁgs exist, (oné
jas$umes that the branching éets Yl";"Yq afe locally flat
in M). The methods of Hirzebruch-Thomas-Wood do not apply
here. Wall [7] has extended the G-signature theorem to

certain types of group actions'on tépOlogical manifolds.

Applying this theorem to this particular case yields (*%),

- ©On the other hand, if one assumes that the local

branching sets Yis5¢-.5Y, are locally flat and have normal

a
vector bundles then it is possible to construct a "topological

‘ﬁiemann—ﬂoch Theorem™, (i.e. push forward homoﬁorphisms in
‘K~theory), and the proof of (*) goes through in this case
&avoiding the G-signature theorem.

| The last application is to generic ﬁector bundle maps.

Sinee this topic will not be incliuded in this paper I mention
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it only briefly and for the sake of completeness.  This
topic should be the subject of future work. '_

In this paragraph assume that all manifolds and maps
are at least of class ¢”. The vector bundles may be either

real or complex. Let

n % n .
E" =2 F {({n = fibre dimension)

o

denote a vector bundle homomorphism. Now any such vector

: buﬁdle.homomorphism.can be viewed as-a section sa df the _
vector bundle HGM(E,F) over,M;'ALet'Zi dénote the sub (fibre)
bundle of HOM(E,F) whose fibre Zi at each point m éaM con--
silsts of all those homgmorpﬁismsfin.HOM(EsF)m'With-Kérﬁ&l

3 (). A
vector bundle homomorpnism is generic-jusﬁ in case the map

rank precisely equal to i. Define 5™ (a)

sa is tranverse to all of the sub-manifolds &7,

: . - ; =1
Assume 0 ig generic and let k = max|2 (a) # ¢, - Then
: i : :

'Zk(a) is & closed sub-manifold of M.e Performing a dilstation
of M along Zk(a) we obtain a new manifold ﬁ and a vector

n \ . .
bundle ﬁ over ﬁ together with homomoerphisms



such that this diagram éommﬁtes,.ék satlsfies the con-
ditioné fbr a wrapping homomorphism, (in the appropriate
sense), and wk is a generic vector bundle homomorphlsm |
with =X (‘yk) = d.

By repeated appllcatlons of this construction one
-can obtain a formula for the difference F - E lifted to
some manifold obtained from M by a seduence of dilations;

This should ; 1eld 1nformatlon on the Thom polynomials for

some special types of higher order singularities.




41. Preliminaries

‘A. Complex line bundles and homology.

In this section the relatiénrbetween'complex liner
bundles ahd homélngy is discusséd. VThese‘results will be
of fundamental importance in all that fd1lows.

Let X be a "nice" space, by this I meaﬁ X is paracom—- |
pact and haviﬁg-thE'homotbpy type 6f a finite polyhedron.
Denoﬁe by LineG(X) the set of all isomorphism classés.of‘.

complex line bundles on X. Tensor product of elements of

_LineC(X) turiis this set into an abelian group. The unit,

1, is the trivial line bundle. - The inverse of an element
-1

) ¥
A is given by L= HOM(A 1) as 1s easily checked by

considering trangibtion data.
The classification theorem [8] implies that the U(1)-
bundles over X are in one-to-one correspondence with Homo-

topy classes of continuous maps from X to BU(1l), the

classifying space for the group U(1l). Therefore we have

- & bijection of sats

Linec(X) = [X,BU{1)]. - ' : .

Since BU{1) is a K{Z2), [X,BU(1)] has a group structure

2

“and is_isomorphic to H(X,Z). The correspondence \ cl(k),

where cl\k) 15 the Chern class of A, induces an isomorphism -

2,
La‘.nec(X} = H{X,2).
.

NCW, el(k®n) ci(k) + cl(ﬂ) S0 we see that the correspondence |

17
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is additive. It is clear from thefabove.discussiqn that
the-map is surjective and.it'follows from.elementafy
obstruction theory that it is injective as well.

Assume for a moment that Xﬁis a compact and oriented
smooth manifold without boundary. Then we have the following
result of ‘Thom [9}: Every 2 dimensional integral co—homolbgy
class of such an X can be represeﬁted.by a codimenéion 2
oriented, and closed subwménifold; i.e. the sub-manifold
.éetermines a homology class which.corresponds under Polncaré
dﬁality in-X ta the.2.dimensionél-échcmology class béing
represented. | -

This result c¢an immediately'bé‘eﬁtended to the case
where X 1s a TOP mamifold,'theIBadimensiaﬁal cchomology
class being represented by a locally flat cédimension tWo
closéd, énﬁ orlented sub-manifold;"' L

| Assume now that X is a G driented and closed manifold.
The connection bebtween cbmplex_lige pundles and -homology
is now clear. Suppose Y ¢ X is an.Qrientable codimension
2 sub-manifold of X, mmnYkmsafmmmleLmebmﬁkaL.
Orient Y and 1ts® normal bundle so as to span the given

s orientation of X. Now, the bundle X has structure group

the special orthogonal group 80(2) and is therefore the

_realization of a U{l) bundle, also denoted X, on Y. There

~1s then the following theoren [10]:

Iet J : ¥ - X be an embedding of an oriented compact
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manifold Y as a codimension 2 sub-manifold of a compact
2(

-and oriented manifold X. Let y € H(X,Z) be the cohomqldgy 
class which corresponds under Poincaré duality to the |
oriented cycle Y and let L be the normal S0(2) bundle of
Y_in.X. Then considering X as a complex line bdndle we

have thaq

(v, 7).

¥
ey (v) =iJ'¥ € H

Hence \ 1s the restriction of a unigque, {up to homo-
. . B . 1
topy) complex line bundle L on X, i.e. we have J°L =

and'clgL) = vy.

B. The diagonal section.

 Let ) € Tiney(Y) with projection 7 : A - Y. Consider
the pulled back bundle, :

-

b e 5
3

TN ——Y

R4

A e
' )

Now, 7'k < A X A consisting of all pairs (wx, mk,) such that

x =x' and w,_ € v-l(x)_w%, € W_l(xf). This bundle has a

t
canonically deflned section s : A = 7 '\ given by s(wx)=(wx,wX

This section vanishes precisely along the zero section of )

).

and is iIn fact transverse to it. This section is called the

diagonal section.
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If a line bundle (real or_éomplex) admits a nén-vanisbing
section then it is isomorphic to é trivial bundle;_-Hénce3
the bundle th restricted to kb = K'e (zero section) is
trivialized in a canonical way. R p

In a similar fashion the bundle vl(kp) = WF(N®1--®k)
admits a natural'section sP defined by sp(wx) = (wx,wx®--°®mx)
This section also vaﬁishes only along the zero section of .
but is not transwverse to it if p > l..

In a similar fashion any codimehsion one closed sub-
manifold Y of a closed.manifdld‘x gives rise, via Poincaré
dvality, to sn element y € Hl(X;Z%)Q  In a manner analogous
to the above we see that théré is a real line bundle L on
X whoge Stilefel-Whitney class is the elemént ¥, and the
restriction of the bundle I to Y is the normal bundle of
Y in X. 'Also, diagohal sections and.théir powéré can be

defined in this case.

C. The Casa of a Non¥compact Manifold.

If one wishes o extend these results to the case 'of
a non-compact X there are problems. For any pair (Z,W)

of CW complexes, define #4(z,w) ='l;m Hq(za,wa), (7, or Z,.
) o . .

coeffecients are understcod), the ZOL runs through all finite
subcomplexes of 7 and W& =W N Za’
In particular if (Z,W) is a pair of finite CW complexes

= & ,
then ﬁ*(z,w) = H (Z,W). All the elementary properties of
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P

H (Z,W) extend to ¥ (Z,W). Thus ¥ (Z,W) is a contravariant

_ S e
functor of homotopy type and ¥ (Z,W) is a ¥ (Z)-module. It.

is easy to see that if Z and W are manifolds. with a count-
able topology then the natural map H{Z,W) - ﬁq(Z,W).is
.surjective. | | _

;ﬁbw for ény CW complex X define &ineC(X),_(reSp.

X )):;“An

zin%R(K))|ﬁS'Iém Line@(X&)s (resp. 1im Linem( ")

element £ € &iﬁew(x)g.(resp. Sin%R(X)), assigns to any
1
inclusion i : X, - X an element 1 % € Line (Xa)’ (resp.

C
,'Lineﬁ(xa)). - :_ |
In particular if ¥ is a manifold and Y is a closed
codimension 2 subemanifold.with,an35riented‘normal bundle,
{resp. Y a codimension l'ﬂlOsed}éuBQmanifold) then there

(x), {resp. $ine (X)), such

_ R
2x,2), (resp. ¥ (x,%)),

!
.

is a umigque element & in £iné@

‘that & correspbnds-to Je(1) € ¥

{see next paragraph), and for the_inclusion j H Y - X, J'¥

gives the normal complex, {resp..real) line bundle of Y in

X, with this in mind define ccl(i) = Jo(1) in either case.
A few properties of the relative groups u*(X,X—Y),

ﬁhere Y is =»n g;osed sub-manifold of X will be needed.' If

¥ has an orlentable normal bundle then Z coefficlents are

‘understood, otherwlse use Z,. In this case we have "Thom.
% *
homomorphisms™ ¢, : ¥ (Y) = ¥ (X,X-Y). There 1s also the

*
natursl map 1 induced by the map i : (X,f) - (X,X-¥),
K '

. o . * : . ¥ * x
1 B {X,X-Y) »~ ¥ (X). The composition iep, : ¥ (Y) -~ H (X)
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is a "Gysin homomorphism” and 1s denoted by Jee
L Let ko be an open neighborhood of the subwmanifoidl
Y in X, then there~is,thefexcision'isomOrphism.

o # (XX ~Y) ~ B (X,X-Y).

D. The "Push Forward" Homomorphism in'K¥Theory;

In drder.to construct the "push forward" homomofphism

it is Pirst necéssary to give the “difference bundle" con-

struction of Atiyah~Hirzebruch [11]. The construction
given here differs from the one given.there, it is due to
Bott [12]. |
Let X denote a finite CW complex, Y a subcomplex and
E and F two complex vector bundles on X. Suppose also that
fﬁeﬁhave-an-isomorphism, @j_betweeﬁ the Eﬁndle iy festrioted
o Y and F restricted to Y..'The.difference bun&le_Will'

then be an element of the relative Grothendiedk ring

X{X,Y), denoted by d(E,F;a). This element is analogous

to the difference co-cycle in cdhomoiégy in the sense that
G(E,Fs0) = 0 i a extends to an-isomorphism over all of X.
© Set Z = X,UX,, i.e., Z is the space obtained from the
'sdisjoiht union of two copies of X, say X; and X,, joined .
along Y « Xi.

| Take the bundie E U&F over Z; i.e. take‘E over X15

F over KE’ and glue them together using o on Y. Let

! Z = X be the natural projection given by the Ldentity
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on each factor and let s; + X; = Z be the two inclusions
of:Xi c.Z.
Now the sequence of maps
8y _
X—r~f;—} Z-m—;z/%i o X/Y

gives risé to an exact seguence
1

S
0~ K(Z,X,) = K(2)—> K(x) = 0
which splits. Hence we may identify K(X,Y) with the kernal
of s; in K(Z). Make this identification in what follows.

Consider the element E QuF_m-#lF € K(z), clearly this be~
‘w&@ﬁgﬁwtanthe"kernal of éé and therefore defines an elemenﬁ
a(E,Fs0) € K(X,T). "

'The maln properties of the difference bundle that
will be of use to us are summarizedrin the foliowiné proposi-

tion:

-Proposition. (Atiyah-Hirzebruch [13])

(1) 4(E,F;qa) depends only upon the homotopy class

of the isomorphism a.

(11) if 1" : K(X,Y) = K(X) denotes the natural map,

, |
then i"d(E,F30) = E - F.

(iii) If o extends to an isomorphism over all of X,

then d(E,F3a) = O.
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(iv) q(Eer',Fer';aea') = d(E,F;a) + a(E',F'sat).

:(V) a(F,Ez0™t) = - a(E,Fsa)

(vi) If D is a vector bundle on'X,-theﬁ
d(FeD,MeD;a®l) = d(E,F3;a)-D, (where the multi-
.;plication on the right makes -use of the fact

that K(X,Y) is a K(X)-module).
(vii) a(e,F;a) is functorial.

There is a Grothendzeck rlng of real vector bundiles
over a-nlce space X. In exactly the same way one can con-
8truct difference elements far this case.

-We are now ready o construct. the push forward homo -
_ morphism, for more details see [1], let (Z,W) be any pair
of CW complexes define H(Z W) = l%m K( 3W ), where Z runs
through all finite subcomplexes of 2 and W =W N Za._ All
the elementary properties of the relative Grothendieck
ring extend to X{(Z,W). In particular there is a homomorphism
' * *x : x% " ' ,
of rings Ch : ¥ (Z) =¥ (Z;Q), where ¥ (Z,Q) is the direct
product of the #%(2,Q). An element £ € ¥(Z) assigns an
element i'€E € K(Z_ ) for any inclusion i_ = Z. = Z. Thus

o a ! o - &

one can define Chern classes of elements of ¥(Z) as elements
of ¥ (Z,77).

Now let X be a smooth manifold, ¥ a closed differentiable

sub-manifold of codimension 2, (this construction can be

K
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generalized to any codimension).. Suppose that the normal 
bundle of Y in X is given an almosﬁlcomplex strudtufe, and
denote by A\ the complék:line'bundle_over Y thus obtained.

Let E be any complex vector bﬁndle on f; The purpose here
b

is8 to construck elements-yy E) € ¥(X,X-Y) and jL(E).E X(X).

Using a Riemannian metric we can find an open neighbor-
hood X of Y in %, (¥ is identified with the zero section
of \), an open heighborhood X, of Y in X and a différent;f
‘iable. homeomorphism of \° with Xojwhich is-the identity

on.Y. Assume this identification ‘has been made and denote-
by T XoiﬂfY the-projéctimn ﬁa§~Which corresponds to the
bundle projection N = Y.
Consider the sequence of vector bundles on Xo :
1 C 4 x -
O= 7 (1) 7 (A )= 0

where ¢ 1s defined by

e{z,1) = (z,%) z € X, ~Y,

% is the dual of the element z considered as an element of

A» and ¢ = 0 on Y. This sequence is exact 0ﬁ=XO‘- Y. Thus‘

we may Torm the element d(wtl,wtx*;C) € H(XQ,XO~Y). Since
K(XD,XbHY) is a H(XO)_module we may, for ény'element

E € %(Y), foru the product A(r 1,7 X ,c)-7 B = d{r E,7 A ®F,c®1)
‘belonging to H(XOjXO-Y)“ Finally, using the excision iso-

morphism g : 3(XO,xOnY) -+ ¥(X,X-Y) define
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t(E_).= c(d(th,wtkﬁﬁE,c®l))._-The;assiggﬁéﬁﬁ_Eiﬁ.yt(E)

gives a'homomorphismA¢L 2 H(Y) - ¥(X,X-Y). 9, is analogous
to the Thom homomorphism in coh@mé;ogyo ‘The image of Y§(E)
in the natural homomorphism it-:JH(X,XnY) - H{X) is.dénoted

by jL(E)' Thus we have_an_g@ditivgﬁhomomofphism 3y ¥(Y) - %(X),
jlais‘the push forward homomorphism. It ié similar to the .
Gysin hombmorphism in cohomology. ;In.particular we have
the identity 31(3«3?(Ef)) =~Jt(E)-Ef§'E é-ﬁ(y),'Eﬁ erx(x) |
and J : Y = X is the embedding, also j, (1) = 1 - £, where
&£ 1s the element afuﬁinec(x);ccrresponding.tc the elémént
Je(1) € ¥2(x). ' o f |
It can be shown that these ﬁefinitioﬁs are independent -
of the choics foKDa@d the idéntificationofxo with A°.
In just the zame way we can define W& (X,%X-7). Suppose
that ¥ is a closed codimensién‘ene sub—manifoldiof X.  Denote

by N the real normal line bundie of Y in X. It is then

possible to construct homomcrphisms:

yg : ¥6({Y) - ¥8(X,X-Y)

¥ {Y) - ¥6(X)

d

Just as for the complex case.
\
It is essential for applications that one have a formula -
|
for the characteristic classes of J, (E) in terms of the

classes of E. This is easy bto chtain in this case, the




formula is the so-called "differentiable Riemann-Roch

(E—k*@E))
ecl(k) ?

Theorem". The formula is [1], ce(J,E) = j*(cc

here cc{ ) denotes the Chern class in the complex case,

or the Stiefel-Whitney class in the real case. ccl(X)

is the element of ne(Y,Zﬂ in the complex case. or of

1 . , LR '
b ] (Y,Z%) in the real case, given by j (jy,(1)). Note:

the characteristic classes of the difference FE - ¥ of two

ce(E)

-

bundles is defined to be cc(E-F) =
To derive this formula note that it is sufficient to
prove 1t for the element j, (1). This follows from the
o | % *, ' *
fact that ¢, : ¥ (Y) - ¥ (X,X-Y) is an ¥ {Y)}-homomorphismn,

- ard ‘the definition of j, (E).
*
E) =1

Now, J, ( - £ so T e e LA ST
. ' +*
ce(J, (1)) = ce(1-2")
_ 1
-1 - Je il

which, by properties of Jji

R L 1
= J*(ccl(k) (= gcl(k))f
and
_ ..(Egjlux* )
* ceq A )

This formula will not actually be used in this form.
The foellowing one, which is a formal consequence of the above,

will:

cc(E—k%®E) - l)..

ce(dy(B)) = 1+ (gm0




§2. Definitions.

A. Wrapping Homomorphisms {complex case)

Let X be a nice space, and let K be an i-dimensional .
complex vector bundle on X. Now for any element X\ € Line¢(X)
and integer p = 1 we have the follow1ng canonlcally defined

homomorphism over the total space of the bundle A\ :

I . S xp@()

_ M |
w(mx,ki) = (wx,mx®--f®wx®kx)'wheré k belongs to the fibre
of K at x, and v : A » X is the bundle projection.

Note that Zj(w) =@ for j > 0 and j ¥ i, Ei(w) = the
zero section of X. \

Let T of (fibre) dimension n-i be another complex vector

bundle on X, then we can extend the above homomorpbiSm:to

t I.__,W. ot 1..p
wz@m‘:K—-———? I® 7' (\eK)

o, ¢

%

'where W=18 w.

Definition. The qunituple {A,K,I,W,p} will be called the

Toecal model for a wrapping homomerphism of degree p.
Notice that the bundle Ker{(W) along the zero section

©of X is precisely the bundle K, (X is identified with the
28
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zero ‘section of \), the bundle coker(W) is AP ® K, and the
bundle I can be thought ef as an lmage bundle.
Assume now that X is a TOP manifold and

a .
E—~—3 T

N

& honomorphism of {(complex) vectortbumdles'of the same
fibre dimension over X. If o satisfies the following con-

“ditione:

‘&) Except for 2 finite collection Yl,.;.,Yq of locally
flat codimension 2 sub-manifolds with oriented normal vector
bundleﬂ'aé, n 18 an isomorphismj'and;on each Y, & has con-

-#tant rank.

Befine the bundle.Imz( ).over-Yg by -the exactness of

the segquences
st
0 - KEIiga) = JE Im%(u) - 0
. 1 ' o
O - Im%(a) = J4F A'Cokegﬂ(m) -0

4 = 1,...,9, and Jy Y@ - X, and identify an open neighbor-

fhondlxz of T, in ¥ with an open neighborhood Kz of the zero

section of ), in the usual fashion, (the assumption is that

this can be done), let 7 Xﬁ,w Y% be the projection coming

Trom tiwe bundle projection k% 4.Y¢ regarded, as usual, as
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a complex line bundle.

) b) There.exists'isomorphisms A{‘,i BL such that the

dlagram
. : A{, ot t -

- E/ 4 %-W‘Im%(a) ® W'KEPL(G)

' X ' : - -

i O
) | i
. Xy
F/ 4 : > 1 Im&(a) ® 7" (3 ®Ker, (a))

o
-comm&tes,'thenfa will be called a local wrapplng homomorphism

of degrese p, about Y, .

-B. Resal Cage,

- The deTinitions given in the preceeding sﬁb—séctioﬁ_
can be extended to real vector bundles and homomorphismé‘
in two distinect ways. The first way is to replace the word
Yeomplex" with “real"'evérywhéré.and;demand that the éub—
manifolds Yl""fYq have codimension 1, be_localiy flat,
and make no orlentability assumptions on the normal bundles.
The second way is to retain‘the.assumptions“on thé sub-
- manifolds Y15--+5Yy, and rank assumptions on X - g Y, , but
demand that anear each Y&, & be conjugate to_the<realization

of the local model {k4,Kc,Im$(a)®$,w;p$}, whers Kera(a) is

the realization of the complex vector bundle Kc and Imﬁ(a)®®
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denotes. the com@léxification of Imt(a).

C. Complex Analytic Case.

Suppose ¥ 1g a complex analytlc manlfold of dlmen81on
nandD ,t=21,...,q,a collectlon of dlSJOlnt non-51ngular
divisors on M. Then, in an approprlate sense, each D&
determines g holomorphlc line bundles {D },...,{D } on X,
and also g-codimension oner(complex) analytlc sub- manlfolds
~also denoted hy‘@ﬁ, Ef j& ; Ek - M‘;o the inclﬁsion then
jé[D&} corresponds to.the'holomorphic:hormal bundle of D
in X. If X is compact and hy E:HQ(X,ZQ is the cohomology
class representad by the orienﬁed (2n-2)—oyole D ,Vthen
cl({Q&}) = hy . If X is.not compacﬁ_we ﬁust use the inverse
liﬁit singular theaory defined in Section 1. |

Now a holomorphic vector bundle homomorphism will
be called a local wrapping homomorphism of degree by about

Ik if for each 4 it is pbi- holomorphloally conjugate to the

local model
1 . '
{Ji{ﬁ&}: Ker&(c{‘): Im{‘(@): W, PL}°
In any case we have the followine:

Proposition. A wector bundle homomorphisma : B - F over

X satlsfies the Zocal equations given in the introduction

if and only if it is a (local) wrapping homomorphism.




§3. Examples.

A. generic S'-type Singularities.

It is easy to see by considering local data that a
wrapping homomorphism of real vector bundles with codimension b.
one singularity subsets or of complex_vector bundles with
(complex) codimension 1 51ngularlty subsets is almost
never generlc. They are generic however if the (flbre)
dlmen51ons of the kernal bundles are all one, and the logcal

degree about Y{ is one also.

B. Banal Vector Bundle'Homomorphisms.

Definition. [14] A vector bundle homomorphism

a T S .
En 'v;/Fn ' -

of vector bundles of the same fibre dimension over. a man-

ifold X 1s called banal if
i} rank a, = n -1 for all x € X and

ii) Zl(m) is a closed submanifold of codimension 1,

and if x € SH{&) “then

1

s , 1
dlm(dsa(TXX) + T

(X)) z dim Z7 + 1,
G‘<

where TX is the tangent space of X at x, ang TZl ) is

(x
the tanoent space to the sub-manlfold zl o HOM(E F) at

8o (%) | 32
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Levine proved the following:

Lemma (Levine [14]). Let o : E = F be a banal vector
bundle homomorphism over a manifold X. - Then there exists

another vector bundle %n.and homomorphisms .

. _6/;];1\_1‘;’
E —% " F

haVing'the properties:
1) a. jos = g and 3%(a) = 51(s).
b. ¢ is an isomorphism.

ii) let A be the normal line bundle of Zl(a) in X,

then Ker{a) = Ker(s), and the sequence
!
0~ Tu(a) = j°B = » ® Rer(a) - O

+is exact.
It is easy to see that the homomorphism &8 : E - %

is a wrapping homomorphism of degree one about Zl(a).

C. Ramified Coverings.

Suppose b : X - X' is a local ramified (branched)

: q
covering of real manifolds, branched along U Yi of
i=]
branching degree (pi-l) on Y,. Consider the induced map




of tangents
db '
X ——3p " TX'

| o ¥x g

from the local deécription of b'giﬁén iﬁ_the intrdduction
it is easy to:see that db is a local wrapping homomorphism
of degree pi-l on, each Yi, in the second sense, i.e. db

is the realization of the local wrapping homomorphism of
.compléx bundles {xi,xi,TYiem,w,piél}, where \; denotes the

associated complex line bundle of 'Y, in X.

D. Dilatations.

It is not so easy tolsee that a dilatation'gives‘rise
to a wrapping homomorphism. |

The manifolds of this section can be smooth, real or
complex analytic, and algebraic.,, |
| Let X" be a manifold and Y a sub-manifold of dimension
m.By dilatation of X along Y we obtain new manifolds X!
of dimension n, and Y' of dimension n-l. Y' is a closed sub-
manifold of X!'. We also have thé diagram of manifoldsrand

maps

Xt._._....q_}X

J"l‘ TJ

b B 3> Y

‘which commutes, ¢ is a proper map and 8 is the restriction
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:of:éxto'Y‘ ¢ is a blnmorphlsm except on Y', and B :VY‘ - Y
-has the structure of a proaectlve fibre bundle over Y w1th
fibres the projective space of dimension n-m-1.

Agssoclated to this diagram there.are é numbef ofr
vector bundles. Tﬁey are: the tangent bundles of
X, X', Y, and Y' denoted by TX, TX', TY and TY' respectively,
N the normal bundle of Y in X, A the normal line bundle
of Y* in X', and F, the hernal of dg.

Clearly we have the isomorphisms_
ARt '
J X =17V @ I

Jrhext < Tvro@ 3

]

1 '
B'TY ® F @ . _ !

- Suppose now that p' and p ;,c(p') are a pair of
corresponding points under ¢, and é € Y. Then it is possible
to choose local co-ordinates xl,;,.,xn
local co-ordinates Xi,..,,xa on X'_about p' so that locally

on X about p and

¢ has the form

P
i

X4°0 = Xi l,...,m

X, 20 = x] x! K=m+ 1l,...,n -1

X°eg = x!
n

n

The local equations of Y at p are X = O, and the local
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equation of Y' at p' is XE = Q,

The map ¢ induces a map of tangents ' —
TX'-“~*—? G "TX

N\

From the -local description of ¢ we see that do is an

isomorphism except along Y', at p' d¢ is given locally by

3, _ 3 -. |
dc(&"‘{) —-é‘i'c—i-" l-—l,...,m
3.y 3 a1 :
da(ggg) = x!- §§£f k f n+ l,...,n -1
y d n-1 3
(*) CA0(s2-) = 2+ T x-S
ay Xy k=mtl ° §§k _

First of all, the equation (*) is the equation of
the natural embedding of the line bundle \ into BLN.- Secondly,
coker(dg) = A ® ker(ds) = \ ® F. Tt then follows that
Im(dBj-= A @ BrTY. -

On the other hand we may construct a degree one wrapping

homomorphism of the bundles

v LR P
T'A® T'F 7\ @ 7 (ASF)

N,

where Xg is an open neighborhood of ¥' in X' and 7w : Xé - Yt




37. -

is the'prgjection coming from the bundle projection A - Y!

NoW=ﬂs/k,_gives rise to a homomorphism
. ! ; ;

r(er) - ptietm)

Ny

{i.e. on Xl do mey be written as 1 ® ¢, where
) Ta ot 1
Lz (B'TY) » 7- (B TY) is the identity, I have ignored Lhis

term).

Propesition. G is conjugate to W and is therefore s

wrapping homomorphism of degree cne about val
Proof. Now the seqguence
' .
O A"B'N-ANB®F~- O

1
is exact [15], and the isomorphism B : A ® A ® F - B'N
is given locally by

-1

r d o)
B(§——-+ 0) = w2~ + 3 x!- v
Xﬁ _ 5:Xn kK=m+1 k X
d o D d "
B(O + SxT ® axk) =_axk k=m+ 1,...,n - 1.
Since W is given locally by
S _ 9
W+ 0) = g+ 0
n n
And
0

3_
w(o + BEE)_

!
O
+
)

4
@
_ gTQ,

"l
o
It
=

+
=
o]
1
-
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it then follows that the diagram -

1 1

: | _ _ ' ,
: TN T T 'y @ 7 (A8F)

commutes. Q.E.D.

- Thus any dilatation gives rise to a wrapping homomorphism

in the appropriate sense.




§4, Statement and proéf of the main theoremn.

Theorem l, Suppose

N2
X .
is a localﬂwrépping homomorphism of complex (resp. real,
analogous sense) vector bundles with data'pi,-Yi, and
li’ i=1,...,49.  Then the identity ‘
q . p.=1 ' Ny
i i :
z (A ™+ A"+ Xy ) Keri(u))__
holds in X{x), (resp. ¥&(X)).
The proof of theorem 1 will be divided into two lemmas.
Note that 1t is sufficient to consiﬁer the case of one
wrapping locusjralso'the proof in the real case is analogous
tc the complex one, just replace the word "complex" with
the word "real" everywhere.

With the notation of the preceeding secticns we cah

‘now state

Lemma A. As elements of X(X_,X -Y) d(E/KO,F/XO;u/XO) =

] 1 1 . : - H 1
= alr'l, v \F; Bp)=v'K, where K = Ker{o/Y) and Bp sl - AP
is given by Sp(zjl) = (z, ®---®@2) for z € X, ~ Y and Bp = C

on Y.

Procf. By assumption the dlagranm
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. 1 1
E/X —'IL——} T'I @& r'K
O

e/ W
X, _ |

t 1
F/f{, —g— 1’18 wf§x9®K)

commutes, A and B are isomorphisms over all of X Now

G./X .y is an 1somorphlsm 50 we may fo:rwm the element
d(E/ko, F/XO; o XO_Y) 3 H(XO,XO—Y),

" Since ca/X = B lWA, and by propertles of the difference

element we obtain

-d(.E/XO, F/X 3 a/X ) = d(?T"I@TT'.K, WE-I@TFL(XQ&K)S W)
: o o ._ . :

and the right hand side gives
1 1 p Lot o p 1
a{r K, 7 (\ex); 5p®1) = d(m 1, 7"\ Bp)-v K.

. | .
Lemma B. - d(r'1l, 7 3P 8,) = alr (xa(xp@xp “To ---@x))
1 - ¥
7 (e (3Fer" o e ) ¢ ® 1), (recalle : g1 - A" is
given by c(z,1) = (2,%7) z € X_ - ¥, ¥ is the dual of the

element z, and ¢ = O on Y).

Proof. Consider the following diagram:




w‘(ma(xp@-—-@x))—ffzi—a7rl(xﬁ3(xpao--@x))

Bp@. . .@Bl | ot ep@- . .@)el = g

, ' \r
—_— (Xp l@' <e@1)
.. Bl
p-1 |
' Lo oo d 1,i-1 | i : .
where e, : 7 (A ®\7) = 7°) is the canonical isomorphism.
This diagram commutes on XO - Y, this 1g easy to see. Thus

wWe have

28 el) =

a(r* (1@---01), 7" (W Lo -01); ¢

Y

2 : - )
= d{wr" (1@ --21), wl(kp l@--s®1; ebe®l * (sp@-~-@al)) which,

by properties of the difference element gives

' _ - o
a{r (1@--+01), 7 (W’ o---01); 8 .&--01) =

p-l

= d(vt(le--'®l), v‘(xp@-°-@x); ap®---osl) +

d(w'(kp@'--®k), wl(xf®(xp@-3o@x); c ® 1). Expand both

sides and cancel to obtain

alr'a, w05 8) +alrt (WPor--en), (1 (2P0 - -en)

“nm

and the result follows. _

We have now shown that in H(XO,XO—Y) there is the
identity d(E/ko, F/XO; m/ko.=Md(ﬁ£1,wlk*;c)-vi((XPQ{--®A)K).
Applying the excision isomorphism to each side of this

equation and we find that in H(X,X—?) 4(E,Fi0) = —Yg((kp@o--@k)ﬁé.




Lo,
Apply the natufal map i_ ' .:' : | | -
D K(X,X~Y) - H(x)
and we obtain the main result
3, ((Po- - @1 )K) .
Corollaryt Sdpéose
E -2 F
\
%
is a real vector bundle homomorphism that is the realization

of a complex wWrapping homomorphlsm of degree p about Y& X.

Then in %@(X) we have the identity

P -5 = o(3, (ParPTon 0] o 1))

Proof. Congider the element d(E,F; o) € X(X,X-¥) con-
‘structed in the usual way. By the.assumption on the homo-

morphism o it is clear that

a(E,F; o) = ¢(c(d(w£kc, 7 (ZWPeK); w).

Now, from the proof of the main theorem we have
! Lyb D
2((r s 7 0% )s W) = w0 @---@x)) @ K,).

The result then follows by applying the natural map

: K6 (X,X-Y) —~ ¥e(X).




45. - Characteristic classeés and wrappihg.homomdfphisms.

Statement, and proof of results.

Theorem. Suppose o o | -

E S

Wi

is a local wrapping homomorphiém of complex, (resp. real,

-analogous sense), vector bundles with data pi’Yi’ and

xiﬁ i=1,...,4. Then the characteristic classes cc(E)

and cc{F) are related by the formula
. A pP.
i
1 ey ®Ki)—ce(Ki)

ce(F-E) ¥§ (l+J* ccl(kl) T ¢C(Ki) 1)

where K; = Keri(m).

Proof. The proof consists.of a straightforward application
of the formula for the characteristic classes of elements

of the form j,( .

Corollary. If g = l,'thén'there is the formula

4 _
co() = co(m) + 1%L - (3 (1pw)fee, (O-co(®)]

where I = Im(a), K = Ker(a), 4 = dimension of the Ffibres

of K, and v = ccl{k).

Proof. Taking ce of both sides of the main identity




Lk,

éc(F)

ce(F-E) = S5 < ce(d, ((WP@---a1) X)) \
c 14 gk feelOPean)) ) . S
= 3_ o - 1 -
Py ( e (WP ™. . .01) k) /] |
-1+ g0k - ce (W PoK) -ce (k) ] o - ' - ;~:;
*ly s Tl

cc(K)
multiply both .sides by cc(E) to obbain

R cé(kgaKj-cc(K)_]
' ce (K}

cc(Fj
N _')m(' . - p _
cc(E)'+ Jxl EQ(E) : “c(}cﬁ%%)cch)]_

a“j*(b)a
E) + g%[ggigg (cef kp®K) - ce(K))]
. ,! ) "
because J'E = I ® K. Now substituticn of the formula
S 2
ce(aPer) = = (i+pv) e, K(K)
k=0

gives the desired result,

For example, if 4 = 1, so -that Ker(s) is a line bundle

on Y, the formula reduces to-

ce(F) = ce(E) + p+J;(ec(1)).




§6. Applications

A. Banal vect@r bundle homomorphisms.

~ Suppose

E g i3

N/

is a banal vector bundle homomorphism then

4

ce(F) = éc(E) + j*[i%iil (= (l+v)K
| - k=0

cc&_k(K)-cc(K))}.

‘The special case where the dimension of the kernal is 1

was obtained by FLevine [14] and is
ce(F) = celm) + Jxlce(1)) .

- For generlc vector bundle maps the formula is the same as

Levine's.

B. Dilatations

Suppose X' is obtalned from X.by_a dilatation along

Y, then if ¢ : X' - X denotes the map we have
L
¢ TX - TX' = J, (W®F),

which holds in ¥{X') in the complex case or in ¥6(X') in

the real case.

Corolliary. [1], [15]. The behavior of the characteristic

iy

b5
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classes under a dilatation is expressed by the formula

B * | ¥ . nem i _ | |
ce(x') = o cc(x) + 3B ((14v) = (1-)lp%ee_ (W) -s"ce(M))]
: : 1=0 ' '
Proof. Since ELN = A @LXA®T we may write A ® F = SIN - A

Then the formula becomes.

] L |
O TX - TX! = JL (B N-\)

or, what is equlwvalent

Taking ce{ ) of both sides we obtain

5(1-v)lg” (m)

ALV R Gl e b
ce(X') _ 1+ Jiri((atv)- & . - 1)]
g ccl{X) M - B ee(N)

now multiply both sides of this equation by ¢ cc(X) and

use t_he fact that

e = 8 e (W) gt [
8 ccln) ¢ cc(X)

and the result follows. : , ' | )

C. Ramified Coverings (Real case). ' -

uy

In this section denote by ¥ > X' a {local) branched
acovering of smooth and orientable closed manifolds with

local datas Y., p,, and Ay (3=15...,49).



“Now, accordlng to. the main result concernlng these

types of homomorphlsms we have the
Theorem. The idenity

1 : q
b'TX'" - TX = ¢{ = L

7,

holds in KO(X), where L; € Linew(X') corresponds to the

‘sub~manifold Y .

Proof. It is sufficient to prove the result for a single

branehing locus. In this case, as we have already seen,

“the kernal of db along the brénching locus Y « X can be

identified with the normal Bund;e k of Y in X.

the main result to this situation yields

Since % = "L and J, (1)

menﬁal function property of J,.

Y
b 'TX' - TX

il

= ¢ (1F-1).

Coroliary. Let P( ), (resp. W{ )), denote the total

rational Pontrjagin class, {resp. the total Stiefel-Whitney

elass). Then

b*TX' - TX = ¢(j,.((xp"l@---@xj & x)).

¢ (tPo- @B (1-1"))

Applying

*
I, , we have, using the funda-



8.

* g @ k-1, Pk-2 DPk. 2k
b P(x') T (1+ 2 (-1)" T (p5 S-ps )y sT)
i=1 k=1

v
-
p—
i

* q 2 -1, k- o
W) =) T (1 2 (-0 o0l (7 moa 2)F)

' Proof. Write

Ty q p;
X - b"TX' = = @(LieLi ).
i=1 .

Applying P( ) to both sides we obtain -

~

& g 14y$

"P(X) = b P(X') ﬂ_(____lg)
: iml~l+p§yi

5 ‘

1+ oy ® ' Ky

: 3 - k-1, 2k-2 2k, 2k
e R R CE D el (L

1+ ply; k=1

the result follows. The proof for the Stiefel-Whitney
classes is similar. |
Suppose new that the dimension of X' is devisible by

’

four, say 44,

- Corollary. The £-classes are related by the formula

a ! q
(o pi)S(X) = b*s(X') W'cotann(yi)taﬁh(piyi)
) . o Ti=1 - -

mLil), taking £( )

Proof. Since TX - b TX' = ¢( 3 1,
Zxroot io

of both sides yields




49,

o £(X) _ % Y4 : tanh(piyi)
b e(x)  i=1 teRRlyy) ey
or _
q s q
(1 pi)£(X) = b £(X') _cotanh(yi)tanh(p.y.).
i=1 ‘ i=1 : _ L

Now, by¥i = pi¥; where y} € H (X',%Z ) is dual to the

sub-manifold b(Yi) < X', In particular vy = py-x; for
some x, € HE(X',Zﬂ. We can then rewrite the above formula
as | |

cotanh( i)tanh(pixi)].

s q
pILS(x) T
h i=1 "

Evaluation of both sides on [X] gives the

Thecorem.

| q
pi)Signature(X) = d4d[&{x') T cotanh(xi)tanh(pixi)][xf].
i= : .

1

D. Ramified Coverings (Complex case).

Theorem. Suppose

b : X - Xt

is a local branched covering of complex analytic manifolds

with data Yi’ li’ and Py Then the identity

!- i pj_
' - TX = L - L

b :
i=] T

i




hO.

holds in ¥(x).
~The proof of this is 51mllar to the real case and will

be omitted.

Corollary. The (total) Todd classes of X and X' are
related by the formula

q - q 1 ~exp(-p,y.)
T p.Jta(x) = b talxi) 1 1
(i:lpl)td(Y) b d(x )1~1 — exp(_yi)

Proof. Write

1 b
X - b 0 = L, - Li

Apply td( ) to both sides of the eguation and the resgult
follows.
Now, suppose that X end X' are algebraic manifolds,

and denote by %{ ) the arithmetic genus.

Theorem. If X 3 X' is a local branched covering then the

arithmetic genus of X is given by

1 - exp(-p,x,)

| ; - L 1
(P pon() - atsage) 1 et )

Proof, We have

* - exp(-p,y,)
(%) = b ta(x L
; | g ? F ?i“l 1 - expl-yy)

' *
Since there is an element x, € H?(x' 57) such that b Xy = Yis

%the result follows by the HirzebruchwRiemann~Roch theoren.




,_ S 51,

E.g. 1If X - X' is a branched covering of surfaces
branched along a curve C' < X' dual to y' € HQ(X‘,Z@'

with order of ramification p - 1, a calculation gives

X(X) = pI%(X') + TA((1-3p+202)x243 (1D )xe, (x )X 11,

N
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