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Abstract of the Dissertation
ON THE UNORIEWNTED COBORDISM CLASSES OF
COMPACT FLAT RIEMANNIAN MANTFOLDS \
by
Marc Wofsy Gordon
Doctor of Philosophy
in
Mathematics
State University of New York

1977

In this thesis we study the unoriented cobordism
classes 5f compact flat Riemannian manifolds. Threugh the
analysls of certain Zg~actions wWwith which these manifolds
are naturally endbwed welshow in TIT that i {the holonomy
group of a lat Riemannian manifold, M, 1is isomorphic to
either a finite elementary abelian 2-group, a finlte cyclic
éégroup, or a finite generalized guaternian group, then M 1is
a boundary. In Iv we employ the Steenrod Algebra to obtain
partial results in the case where ¢ is a finite abelian
lQ-group with no direct factors isomorphic to Z,. We also
provide in ITII a bound for each finite 2-group, ¢, on the
dimension of a non-bording flat Riemannian manifold whose

holonomy is ¢.
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CHAPTER I

INTRODUCTION

A flat Riemannian manifold is a compact smooth manifold
together with a metric of everywhere vanishing curvature.
From this definition it follows by the Well homomorphism
.that all of the rational characteristic classes of a compact
flat Riemannian manifold are zero. Howéver, the Well homo-
morphism gives no information on the Stiefel-Whitney classes
or M™ except for Wn since Wh‘is the mod 2 reduction of the
Euler class of the tangent bundle.  No known example of a
flat Riemannian manifold which fails-to bound has been found
although many examples with non-trivial Stiefel-Whitney
classes have been. (See Vasguez [12]). This thesiﬁlprovides
a partial answer to the conjecturé fhat in fact all compact
flat Riemannian manifolds do bound.

This problem 1s part of the more general problem of the
relation between curvature and cobardism. One hopes that
concrete formulag Tor computing Stiefel-Whitney numbers from
curvature can be found. As a Tirst step, it is thought that
curvature zesrc implies all Stiefel-Whitney numbers are zero
is néeded in order for there to be any hope of such a relation-
ship. “he theorems in this thesis indicate that this may be

true although they do not give a complete answexr.



CHAPTER II

PRELIMINARTES

Holonomy. If M is a Riemannlan manifold and if p is a point
of M then we can considef the linear maps of TMP into TMp
gotten by parallel translating tangent vectors at p around
closed curves at p.. The set of aii such linear maps, H, is
a Lie group known as the holonomy group of M; It 1s standard
that the structure group of the tangent bundle of M can be
reduced to H. Further, 1f H is discrete then the map which
associates to each closed curve at p the corresponding ele-
ment of H,induces a representation, r, of vl(M) in H. Since
M o= B(Wl(M)) if we let T : M.” B(H), the claésifying épaee
of H 5@ the map induced by r, then there is a vector bundle,
E, over B(H)'such that F*(E) ~ ™. E itself is just the |
induced bﬁndle of the action of H on TMp. Letting XK denote

the kernel of r, we have the exacﬁ sequence of groups,

r o :
0O K= Wl(M) = H = 0. References for this material are

Kobayashi and Nomizwe[8] and Wolf [1l].

Fiat Rlemannian Manifolds

Definition: A compact smooth Riemannian manifold is sald to

be Tlat if its curvature tensor vanishes everywhere,

. - . . n
Since a ccmpact filat Riemannian manifold, M7, has a

meétric of vanishing curvature, the exponential mappin
{as] 2

1)

e lt . s R .
expp:TMﬁ - M has no singularities so that 1t is a covering
I

o

L.



3.

projection from TMp N G Vil Epr is also a local iso-
metry so that if 7 denotes the group of covering transfor-
mations then 7w <& Mn where Mn iz the group.of rigid motions
of'jR?, Since R is acyclic, it follows from the exact
homotopy sequence of a fibration that M" is a K(v,1) with
w N Wl(Mn).- | |
Tﬁere is‘én isomorphism, F, of categofies which assigns
to each homotopy ciass of K(w,1)'s its fundamental group, 7,
and to each homotopy class of continuous map; ¢ : K(w,i) = K{r',1),
the group homomorphism, p,tm - 7', Further, if H*(W,G) denotes

the discrete cohomology of w with cowefficients in G, then

the following sguare commutles.

F*
H*(R(w,1);G) = H*(w;G)
T px t (py)*
F“K"

Ex(K(rh, 1)36)% 1% (1 356)
Thus, quastions concerning cohomology of K(r,1)'s and cohomology
of discrete groups-are intérchangeable. Ih the case that
K{w,1) ig a flat Riemannian manifold, it is usually easier to
décide such quéstions from the group theoretic standpoint.
This partially stems from a general clagsification of all
groups, m, which are iscmorphic to fundamental groups of flat
Riemannian manifolds (see Wolf [18]) which we now give. The
reader will note that this theorem depends upon the fact that

the holoromy group of a flat Riemannian manifold is finite




and therefore discrete.

Classification Theorem. If 7 is the fundamental group of

a flat Riemannian manifold, then there is an exact seguence, .
o~ Zn-i i L g = 1, where 7z is an n-dimensional lattice
called the subgroup of pure translations and where ¢ is a
fiﬂife group which is isomorphic to the holonomy group of
the flat Riemannian manifold, R?/w. Further, 7 contains no
elements of finite order, and the representétiom of ¢ on 75
induced by conjugation is faithful. QOﬂversely, 1ef W‘be a
group with no elementé of finite order and satisfying an exact
sequence 0. = 2P & T B.¢ = 1 where ¢ is a Tinite group acting
on 7z with zero kevnel. Then ¥ an injective homomorphism

p T Mn such that Rg/n is a -compact flat Riemannian mani-

fold.

Definition A. If O = 2% = ¢ = ¢ = 1 is an exact seguence of

groups such that 7™ is an n-dimensional lattice, ¢ is a
finite'groﬁp'acting faithfﬁlly on Zn,-and such that 7 contains
no elements.of finite order, then 1 1s called a torsion free
Bieberbach group.

It is noteworthy that for a fixed torsion free Bleberbach
group, ¥, any two [lat Riemannian manifolds of the form, Rﬁ/w,
are afTinely equivalent. Said in another way, irf Ty, Yol T = Mn
are two faithful representations, then there is an affine motion,

A, of R? such that ArlA"l .
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We note further that if 0 » Z% = 7 = ¢ = 1 is a torsion
free Bieberbach group represented in M. then 2" may not be

represented as the standard lattice. We retain the notation,

n

2", for an arbitrary n-dimensicnal free abelian group.

Definition B. IfF 0= Z% = ¢ = ¢ - 1 is a torsion free

Bieberbach group, then R%/r is called a ¢-manifold. So a
¢p-manifold is a compact Riemannlian manifold whose holonomy

group is isomorphic to ¢.

Convention. Any element of Mn can be thought of as a pair,

(T,0), where 0 € 0(n) and T is a vector in R™. (T;,0) acts
onx ER® by x = o.x + T. If 4 € 2% < 7, then the homomorphism
r:w = M, is such that r(4).x = x + v(4). The only elements
of 7 which have a matrix part are those which project to a
non-identity element of ¢. Although to each ¢ € ¢, there are
infinitely many elements of 1 which project to 0, we will
not make this distinction in our notation. We will denote
1ifts of ¢ by (T4,0) understanding that Ty is not unique.
We will also drop the notation,‘r(&), and just write 4. We
will speak of Z% rather than r(z™).

In this wOrk, only ¢-manifolds with ¢ at a 2-group will
be considered. In trying to decide whether all flat Riemannian
manifolds bound, it is sufficient to show that all Z2-group -
manifolds bound. ) For let O‘“ z" e TP £ 1 be an

arbitrary torsion free Bieberbach group and let 7' = p'l(¢é)
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where ¢' is a subgroup of ¢. W{ is a torsion free Bieberbach
group of finite index in w. The inclusion j : 7" = 7 corres-
ponds by the-above isomorphism of categories to a finite

covering projection Rg/w‘ - R?/w whose degree eduals the index

of 7' in 7w or equivalently, the index of ¢' in ¢. In particular

if ¢* is a Sylow 2usubgroup of ¢ then 1 : 7' =7 corresponds to
an odd fold cover. R /¢! bounds © R°/r bounds because odd
fold covers preserve Stiefel-Whitney numbers. Hence if one
can show that all ¢-manifolds with ¢ a 2-group are boundaries,
then it will follow that all compacf flat Riemannian manifolds
bound. We next provide a list of facts concerning the co-
homology of torsicn free Bieberbach groups.

1) Since R?/W is an n-manifold, and since

1 (w,6) ~ B (R rs6), EM(r;z o

. n .
~ Zy, W(m;Z) 2 if R /r is

o)

orientable, H ' (r3;Z) ~ Z, if RK"/r is unorientable.

o) w1 (ri0) =0 vy 2 0
3) The representation o of ¢ on z™ induces a homomorphism

r : ¢ = 0(n) such that the classifying map ¢ : R/r = BO(n)

of the tangent bundle of R?/ﬁ can be factored as T o p where

p R?/W =~ B(¢) corresponds to the projection homomorphism
p 1 = ¢ and where ¥ i induced by r. This fact will he

uged heavily in Section 2,

We next give a theorem due to Vasquez [12] which strongly
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restricts the collection of possible non-bounding flat

Riemannian manifolds.

E@eorem,(Vasquez) Let ¢ be a finite group. There exists‘an

integer n(¢) such that if R%/w is a compact fiat Riemannian

manifold whose holonomy group is ¢ and whose dimension

exceeds n(¢) then R/r fibers as a flat k-torus bundle over

a lower dimensional compact flat Riemannian manifold, Rn"k/#'.
Note that since every torus has a trivial tangent bundie

the characteristic algebra of R?/w is the pull back of the

n_k' rl.-'r! . Since ]:{_ ?, l, it fOllOWS

characteristic‘algebra of R
that R?/W is a boundary. Thus; for each ¢ there only finitely
many @—manifolds which are not boundaries. Unfortunately,
n(¢) is difficult to compute for most ¢.

The proof of this theorem involves the followling property
of torsion free Bieberbacﬁ groups. Vasquez shows that 1if
n > n{¢) then % a non-zero ¢_submodule, A, of Z such that
m/A is a torsion free Bieberbach group. 'The projection homo-

morphism p : 7 = w/A corresponds topologically to the above

mentioned fibration.

Involutions

Definition. A homeomorphism of an n-manifold, Mn, whose

squaré is the identity map is called an involution. A group
of involutions is a homomorphlsm of Zg into the group of

homeomorphisms of Mn. A group of involutions is also called
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k
a Zg—action. A stationary point afazg—action 1s a common

fixed point of the involutions determined by the elements

k o

of 22.

Theorem (30.1) Conner and Floyd [5]). IT 25 acts differenti-

ably on a closed n-manifold, Mn, without stationary points,

then [M'], = O. (Here [M"], is the unoriented cobordism
2 2

class of M™.)

Group Extensions

Definition. Let O = H = G = G/II = O be an exact sequence of

groups. Then G is called an extension of H by G/H.

Definition. Let G be an extension of H by G/H. A sectilon

of G/H in H is an injective map (not necessarily a homomorphism)
s, from G/H into G. The elements, s(g), will also be denoted
by the symbols Gg.

For each section we get a cocjcle'a € Hom G/H(BE(G/H);H)
where BE(G/H) denotes the free G/H-module on the elements of
the set G/R X G/H. « is defined by the rule, - . .

a(g,h) = s(g)-s(h)-s(g-n)""

any of the properties of a and thus will not describe them.

. In this work we will not need

A general reference for this subject 1s Cartan and Eilenberg
[1]. We merely note that not every element of Hom Q/H(BE(G/H);H)
is a cocycle and that the symbol for those homomorphisms” which

are cocycles is ZQ(Q/H;H). Note that if s is chosen such that
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S(idG/H_) = 1d, and if 0 € G/H is an element of order 2,

then a(0,0) = 5(0)° since a{o,0) = s(0)+s(c?)t

= 5(0)2.

" s(c)gs(idG/H) - s(o)2idG




CHAPTER IIT
TRANSLATTIONAL INVOLUTIONS

a) Definitions and Basic Results

Let 7 © M, be a torsion free Bieberbaéh group whose _
holonomy group, 6, is a 2-group. ¢ a 2-group = (Zn/EZn)Q #£ (0]
(See sSan [8] pg. 77). Let v e z" represent a non-zero element
of (z?/ezn)¢ and ccnsider the map, I, R = R?, defined by
) heT o (Ty,0) ()

. : -1 I ‘ -1 : x
I, (0-x4T,) = (T, 0) (0-x4+T5+8v) = (Ty,0) -(Tc,G)(X)+EO-?‘:
-1 :

Iv(x) = X + gv. Let (T4,0) € w. Then (14,0
-1
= (TG,U

Thus, (Tﬁ,o) oIvo(Té,c)(x)—I x) = %{0-v-v). Since v repre-

¢

o
n,..n . n
sents an element of (Z7/277)", $(0-v-v) € 2" so that I, bro-
Jjects to a homeomorphism,of Rn/#. This homeomorphism is
actually an involution because Ii(x) =X +vand v € 2% so

that Ii(x) projects to the identity map.

Definition 1. Tet v € z represent an element of (z”/?z”)¢.
Then the involution'fv, of Rn/ﬁ induced by I, 1s called a
translational'involution. The set of all translational invo-
lutions is ca1led the group of translational involutions of
R /r. |

Note that since any two translational involutions commute

? ~ Zg for some k = 1, the group of trans-

and since (z"/2z™)
lational involutions determines a zg_action on R%/r. This
fact will permit us to use Theorem (30.1) of Conner and Floyd.

This theorem implies that if R?/w is not a boundary, then

10
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there must be at least one stationary point of-the group of
translational involutions. If x € Rn is a 1ift of a stationary
point of I_, then #(Ty,0) &€ 7 3 x45v = (T5,0) % = 0-x+Tg.
Clearliy, (TE,O)QZH since %UQZ?- Thus,o is a non-trivial ele-
ment of ¢. TFurther, o lg of order 2 because (T&,G)g(x)

= (Tg,0)(x45V) = x + %v + #0.v and because v + $0.vV € z".

We will need these facts throughout this work., We state them

as

Fact Ta. If x € R is a 1ift of a fixed point of the trans-

lational involution, T then there exists a non-trivial

VJ
element, 0, of order two in ¢ and a 1ift, (Ty,0), of ¢ tow

such that Iv(x) = (Ty,0)-x.

Definition 2. Let x € R® be a 1ift of a stationary point of

the translational involution, T§J‘and let (Ty,0) € ™ 3 x + &v
= 0:x + Ty. Then x is said to be fixed with respect to (Tg,c)

by Bv.

Lemma 1. Suppose x € R projects to . a étatioﬁéry point-of
the group of translatiopal involutions of Rn/ﬁ. Then there
is an injective homomorphism J : (ZI}/EZJ‘Q)dJ = ¢ defined by
J(v) = 0 where X + $v = 0°x + Ty for some (Tg,0) € r and

where v represents v i.e. X is fixed with respect to (Tb,o)

by 2V.

Proof. Choose co-ordinates in R so that x equals the crigin.




d is well-defined if &(Ty,0), (7y,7) € 7 such that

5V + 0 = (T,,0)(0) = (T;

T)(0) then (Tg:c) = (T%,T) because
T acts as a group of covering transformations on R™ from
which 1t follows that any two elements of 7 which agree on

a single point of R are equal. Thus J(V) is well defined.

J_is injective If J(¥) = J(W) then & (Tys159)5 (Tgs550)

22V + 0= (Ty,750)(0) and W + 0 = (1%,2,0)°(O). ‘From this

we get v = T.,, and 3W = Tv But any two lifts of ¢ to
0?1

gre’
7 differ by an element of z". Thus v = %W + 4 for some

L €7% This gives v = w= 20 =% = W,

'J is a homomorphism  Consider two distinct elements ¥ ,'Vg

and (TB,T)(O)_: #v,, where V sV, represent V,, V,. Now

. . n -
(T59)°(T,,T) = (2y40.1,,0T) since if y € R then (T1:0)°(Tp, ) (¥)
= (T,0)(T-y+T,) = Ty + 075 + 0Ty = (T,40-T,,07)(y). In

)
particular, (Tl,c)o(TE,T)(O) = T + 0.7 + FO-T Now

1 2
‘since ¥ represents ?2, Ovﬁg :‘32 + 2m for some m € 2. Con-

sider the element (T1+0-T2—m,OT) € v. Then (T,40.%,-m,0T}

1 2
= (gv,+8Vv,,07) so that (T,+0:T,-m,0T){0) = $v, + %$v,. Thus,

J(v1+vg) = J(vl)oJ(VE). % ( Notice that for each ¥ e(zﬂ/gzn)¢,J(§)

k )

is of order because (ZQ/BZn)¢ &

Example 1: The Klein hottle

The Klein bottle is obtained as the quotient of R2 by the

action of the standard lattice together with the rigid motion,
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((£,0), (5 D). since (3.D%= (59, 8 52, ¢ acts

trivially on 22/222 SO (z“/ezn)¢ ~ Z, X Z,. Thus, by Lemma 1
the intersection of the fixed point sets of the group of
translational involutions must be empty. Explicitly the

L

involutions are given by x = x + ($,0), x = x + (0,%),x = x +(4,

-
—r

Note that x = x + (0,%) is fixed point free and that modulo
z° the fixed point set of x = (%,0) + X 1s represgented by the
lines (%,(0,%}) t € R. Thus, the fixed point set of

x = (%$,0) + x is two circles.

Example 2. The Hansche-Wendt manifold

7 is the subgroup of M3 generated by the standard lattice

in R3 and the rigid motions

( (%: O, O))

o O
t
QO P O
- C ©
*‘mﬂﬂ
a
2
wof-
n
-
:._/
o o =
E
O = O

' o n/oonné .
Here ¢ = Zy X Z, while (Z /22 ) o~ Zp X Zs X Z,. Thus, the
intersection of the fixed point sets of the transiational

inveluticns is empty. Unlike the Klein bottle, none of the

involutions are fixed polint free.

Theorem 1, TLet O - Z 2 4 = ¢ - 1 be a torsion free Bieberbach

group with ¢ a 2-group. TLet k denote the largest integer such

that ¥ a subgroup, G = Zg, of ¢. Then if (anézn)¢ = Z§+1 i=z1,

Rq/w is a boundary.
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k+i
2

there doesg not exist a stationary point of the group of trans-

Proof. (Zn/gzn)qj ~ 7 with i = 1 =» J can not be injective =

lational involutions., ®.

Coroliary 1. TLet O = 7% = 4 = ¢ = 1 be as in Theorem 1.

Let p € Z 9 #(¢) = 2%, fThen if R/r is not a boundary,

n < k-2P,

Proof. dim, (zn/ézn)¢ = n/2P, By Theorem 1 we must have
2

aim, (7277 < k = n/oP < k.
l2 .

In general we do not know the relationship bvetween ﬁhe bound

of Corollary 1 and Vasquez's number, . n(¢). Suffice it to
say that if a flat manifold, M, fibers as a Tlat torus bundle
over anocther flat manifold then M has a fixed point'free.trans_
lational invclution but it does not follow from this that |
k-QP < n(¢). k-2P is probabiy much too crude a bound to be
always less thén or equal to n(¢). It is possible that it

is never less than equal to n{¢). For instance n(Zg) = 1
while k-2F = 2 gince p =1, k= 1. Corollary 1 has the virtue
of giving an easily computable bound while n(¢) is geherally

dgifficult to determine.

Example 3. Let ¢ = Zp,. Then k =1, p=1=mn £ 2, The only
example is the flat Klein bottle which is a boundary because

it fibers as a circle bundle over a clirvele, Thus, all




Zgumanifolds are boundaries.

Example 4. Let ¢ be the dihedral group of order 8. 7Then
k=2, p=8s0 that n < 16.

Corollary 2. Let O = 2% = 5 = ¢ = 1 be a torsion free

Bieberbach group with ¢ a 2-group. Let k denote the largest

k
21

first getti number Bl(Rg/w) is greater than k, Rg/v is a

integer such that ¥ a subgroup, G = 7 of ¢. Then if the

boundary.

Proof. If Bl(Rn/ﬁ) =m thend an mmdimensional subgroup of
z™ upon which ¢ acts trivially. (See Wolf [14 ] pg. ).
Thus, dimz(zn/ézn)¢ Zm. Now m > k = no homomorphism from
'(Zq/ezn)ﬁ = ¢ can be injective so by Theorem 1,R%/7r is a

boundary. =®

Example 5, Let ¢ be the dihedral group of order 2P. Then

k = 2 so that any ¢-manifold of first Betti number greater

than 2 is a boundary.

b) A General Lemma - We will need the Tollowing repeatedly

in this woxrk.

Definition 3. Let Z be a p-module and let 0 € ¢ be an ele-

-ment of order.2. Then ¢ ig said to cancel v € Zrl if there

exists y € z" such that o-y + y = V.
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group and let s = (v, }g &€ ¢ be a section of ¢ in 7 such that

Tige = 0. Let o denote the cocycle 1in ZE(¢3Zn) determined

by s. Then for all elements of order 2, 0 € ¢, o does not

cancel o{0,0).

Proof. Suppose that a{0,0) = o-y+y. Note that since g” = 1

apd T e = 0, af{uv,0) = WG-WO.. Consider the element of

T, (-y+I,,0) where (TG,U) - 7_. For each x € R, (-y+TU,U)2(X)

o
= (-y4T;,0) (-y+T 40 %) = ~ Oy -T+x+4T -y = x- (0 y+y)+0 T 4T, .
\ 2 2
Now o-T, + T, = a{0,0) since wg(x) = (T,,0)7(x) = (7,,0)(0:x4Ty)
= x + 0-T; + T . Thus, (-y+Tc,o)2(x) - x + a{0,0) - (oc-y+y).
" But af{o,0) - (o-y+y}) = 0 = (—y+TG,0)2(X) = x contradicting

the fact that 7 cbntains_no elements of finite order. 8

Lemma 3. Let 7% be a Z?—module and suppose that the non-

identity element, ¢, in 22 acts trivially on v € Zn, and that |

oy +y = v + 2x for some y,X € 7. Then o cancels, V. |

Proof. From 0.y +y =V + 2X we have o {yto-y) = O-v + 20-X = 0-y+¥

:_c5v 4+ D0+x = VvV + 20-%X so that o acts trivially on x. Thus,

o (y-x) + (y-x) = 0-y +y -~ 2x=v. B

c¢) The Cyclic Group of Order 28 and the Generalized Quaternion

Groups
The theorems in this section are essentially corollaries

of the following lemma.

Lemma 4. Tet O = Zrl -~ = ¢ = 1 be a torsion free Bieberbach
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group such that ¢ is a 2-group and such that (ZQ/gzn)¢ ~ 7

o

Suppose He € 7 representing the non-zero element of
znzgzn)¢, (T,>,0) €, and x € R such that o-e = e and such

that x ig fixed with respect to (TU,G) by $#e. Then ¢ is not

in the center of ¢.

Proof. Assume that o is in the center of ¢. Up tb a change

. . n , . . s
of coordinates in R~ we may assume that x is the origin.

Then the equation #e + x = (T,;,0)-x becomes %e + 0 = (T;,0)0

n

or

e =T,. Let s = {wg} g € % be a section of ¢ in 7w chosen

by setting w4 = idgn, 75 = (T;,0), and 7, erbitrary for
L .

g #£ id,o. Tet € Zg(égzn) be the cocycle determined by s.

i

Then a(0,0) = 7 e since ﬁ.d = idpp and since wz(y) = (Tg,

T, + 0T, +y =% +30-e +y =y +%e + je

i
fi

(T ;0)(T 40 -y

i

e + y. By Charlap and Vasquez [4], VA ~ M ® 4 where 1 is

the subgroup of 7 genarated over Z by e. Now there must
exist a vector, v ¢ M, 2 0-v = -v because ¢ and therefore o
is faithfully represehted on 77, We may further assume that

v & 27", Since (zn/ézn)gh ~ 7. and since ¢ projects to the

2
non-zero element of (z“/ézn)¢, it follows from the Fact that
v # e mod 22" (since v € M and 7" M ® f) that v is not
¢-invariant modulo 2Z°. TLet ¥ be the projection of v to
zq/zzn. ¥ # 0 because v ¢ 2%°. TLet L(¥) be the ¢-submodule
of 252" generated by v. Since ® is a 2-group (L(V))® |

contains a non-zero element of L(V). In other words,

L(¥) n ﬂ/2 rl) % 0. Since L{V) is just the set of all
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Z{¢]-linear combinations of Vv where Z[¢] is the integral
group ring of ¢, Ef € Z[¢] 3 £.v = e. It follows that
f.v=1e¢4+ 2y for some y € Zn. Since ¢ is 1n the center of

¢, o.f = £.0 =

o+(et2y) = £(-v) = g-e + 20y = - ~ 2y =

20y + e

‘- e - 2y (because 0-e¢ = e) =
e = - 2(0-y+y) = e = 0-(-y) + (-y) .

In otherwords, o cancels e, But e = a(0,0). This contradicts

Lemma 2. B

Theorem 2. Let Rg/w be a ¢-manifold where ¢ 1s a cyclic

2-group of order 2P, Then R?/ﬂ is a boundary.

Proof. Since ¢ contains a unique element of order 2, by

Theorem 1 we may assume that'(Zn/QZn)¢ M Z,. Let g €@ be

a generator of ¢, and w_ € w a 1ift of g. Then W&gp is an

L] =

element of Zn ~ 27" since otherwise %WUEP ez =

|
20, 2p-1.2 o 2p-1l, . 2 2p-1
(<t7,“Por “E7)7(0) = (mg"P) omg P (g, P P H(0))
2p 2p

+ Ty = 0 contradicting the

P (P HE(0) =

= - Ty *
] _ o g
fact that m acts freely on R". Now since g'vggp = wg_lwggpwgzwge

2p- ny
we see that w} P represents the unidue non-zero element of
=}

(Zn/ézn)¢. In particular, we also have that the unique ele-

D-1

2 .
ment of order 2 in %, g , acts trivially on WgEP. Thuz,

be Lemna 3, no 1ift x € RY of a fixed point of the translational

2p-1 2p-1

involution Ivg2p is fixed with respect to g . Since g
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is the only element of order 2 in ¢, Theorem 2 now follows

from Lemma 1. 8

Theorem 3. Let R?/w be a $-manifold where ¢ is a generalized

guaternion group. Then Rg/w is a boundary.

Proof. We will view ¢ as the group with two generators, h,g,

2p-1 _ h2, hu _ 1, h-lgh _ g*l.'

2le

subject to the relations g
Since g2p—l is the unigque element of order 2 in ¢, g is

in the center of ¢. TFurther by Theorem 1 wa may éssume that

(Zn'/EZn)¢ ~ 7 Let m, € w be a 1ift of g to w. Then

2’ 23
vfep € Zn ~ 27" and g-w-gp = ?p. If h‘vfgp = Wﬁgp ncd EZD,
g g q g g
then Lemmas 1 and 3 give that the translaticnal involution,
IWng,is fixed point free. Thus we may assume that
hfﬁqu 72 Fdep mod 24°7. Consider the vector e = h'wggp +-wg2p. -
We claim that ¢ acts trivially on e. Now gre = e since
2p,. 2P ep 2p -1 . 2p - 2p
e = g lher T4 = grhemw + g = h T + T
g g+ (how"Haw 7F) = grhem, gy g Ty q

= h-qup + dep. h*e = e because h-e = h'(h-wqep+wqu)

. we, AP .. 2p _ 2p-1, .2p o ep _ . 2p . 2D
= h Ty + h Tq = g L + h Ty =Ty + h Wq .

¢ acts trivially on e implies that e represents the unique
non-zero element of (Zn/?Zﬂ)¢. Since ggp“l is the unique

p-1

i . 2 o e
element of order 2 in ¢ and since g is in the center of

¢, Theorem 3 follows from Lemmas 1 and 3. ©®

d) zg - manifolds

We begin with some terminclogy and some preliminary facts.
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Definition 4. ILet M be a free abelian group. A subgroup

N of M is called a pure subgroup if whenever m-v € N for some
non-zero integer, m, then v € N. If M is a ¢-module for, some
group ¢ and if N is a ¢-submodule then N is called a pure

submodule if N is also a pure subgroup.

Fact'Id; Let Qn be an n-dimensional vector space over'Q.

Suppose that Qn is a Zg-module. Then Qn ig Zk—isomorphic

2
to a direct sum of one dimensional submodules.

.EEQEE' This standard fact is'derived as follows} Since & is
a field of characteristic zero Qn is isomorphic to a direct
sum of irreducible submodules (see Gorenstien pg. 64). Let

S be one of fhese direct summands and let K be the kernel

of the representation of Zg on S. 'Then ZS/K is cyclic (see
Gorenstien pg. 65). Since all cyclic subgroups of Zg are
isomorphic to Z, or 1, ZS]K & 7, or 1. Therefore S is eilther

an irreducible Zg—module or an irreducible trivial module.

In either case, S is one dimensionalil. ®

Fact 2d. Let Z¥ be a faithful Z5-module and suppose that

hddiiael 2

7 is Zg—isomorphic to a direct sum , 4, @...0L

0’ of one

dimensiocnal submodules. Then there exists direct summands
Lil""’ij such that Zg is failthfully represented on the

k-dimensional submodule, Lj£®---®% . HMurthermore, there

Jk
exists generators, ol,"',ok, of Zg such that each g, acts by
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negation on Lji and acts trivially on each of the other

direct summands.

Proocf. We proceed by induction on X. Jf k = 1 and if ¢. € Z

1 2

is the unique non-identity element then there is some le
acts by negation. Thus the lemma is true for

k-1
2

—module. 2Z% faithful

upon which cl

kK = 1. Assume inductively that the lemma is true for Z

and let 2% = £,@...04 be a faitaful zg

implies that there i1s at least one &j upon which Zg acts

non-trivially. Since Lj is one dimensional the kernel, K.,

of the action of Zg on Lj is isomorphic to Zg—l.

inductive hypothesis there exists direct summands le""’ﬁjk_l

1""’0k—l of K such that X is faithfully

represented on £jl®---®&jk_

By the

and generators o

1

acts trivially on each summand except for &ji‘ Set Ly = ij.

and such that Vi = 1, k-1 Ui

k .
Then clearly 22 acts faithfully on le® . ®%jk-1®%jk'
k

g € 22 such that o acts by negation on ij' Tet 1isereniy

be a complete list of indices such that o acts by negation

Let

‘@

‘_h

on each 4.. , p = 1l,m. Then the element Oiss° 200 0
_ i, - Ji
acts trivially on le"..’&jk-l apd by negation upon L

Jim
Jk’

Set 0, = v+ «0,. 0, Then © 20 together with

k = %3i° i 17
the submodule le@"'®%jk satisfy the required conditions. #®

ol vectors,

€ys°""5€ Vo, eees Vn of

PDefinition 5. ILet 7™ ve a Zg—module.A linearlly fndependent set
o

is called a speclal get if

s 8417

k

1) Vo € ZE’

Ore, = £+ e,
Ji €52




22.

2) Vo € Zg,

subgroup of 7" generated over Z by ey,--:,e .

O.v; = = vy o+ Wo,1 where Wo,i € A, the

3) Wo,i# 0% Wo,i €A -2 .

4} TFor each i = s + 1, n 30 ¢ zg.a Wo,i # O.

- - ) i T
5) Each v, is of the form_pi(miXi + 1/ W, where W, € A

g, Oex, = E- Xy and pi, m, € 2,

and Where Vo € Z 5

Lemna 5. Let z” be a Zg-module. Then z” contains a special set.

g-medule, z%8,q. By Fact 1d, z°®,Q is

Zguisomorphic to a direct sum of one dimensicnal submodules.

Proof. Consider the 7

Let D be the collection of all guch direct sunm decompoSitions
of ZH®ZQ. To each element, € = Ll®---®%n of D we assoccilate

a submodule, Ac, of Z" as follows. Start with 4. and let :

1
Ll, Lg,--r,bp be the longest sequence of direct factors in

¢ such that (%l®---®&p) n ozt - (Llnzn)@---®(apnz“). Define

Ac = (4@ @) N z%. Now let © € D be such that the num-

i

ber of direct factors in AC is a maximum. Let s = dimz(AE)

and set AC = A. We have

A

]

(Llﬂzn)®...@(¢sﬂzn) and ' i

T

il

. a4 ,‘)Oil foud n
Ll@ @&s@&s+_¢ @y = 278Q

1

Let = be a Z-generator of Li n z%. Since éi is one

dimensional 1f ¢ is an element of Zg, then o-e, = & éi. Thus,
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el,---,es satisfly l) of Definition B. Note also that A is
the subgroup of A generated over Z by €ys i€y
We next extend STRRRFL- to a get VS+1’ cees Vi sBys i, e

of 2™ satisfying conditions 2), 3), %), and 5) of Definition
5. If~A = Zn, then there is nothing to do since conditions
2), 3), %), and 5) are satisfied vacuously. If A # 7", then
for each 1 > s choose a Z-generator, Xi’ of Li n Zn. Now‘
€yt X,y do not generate a pure subgroup bf 7™ for then
(bi @ (A®ZQ)) n z” would be a Zg—isoﬁorphic to (&iﬂzn) @ A
contradicting the maximality of A. Therefore, there exiéts
vy § (&, 02" ® A and an integer m, # % 1, 0 such that

my Vs e(ainz“) ® A and such that ey, ---,e,, v, 18 a Z-basis

of (4; ®(18,Q)) N z'. Notice that mv, ¥ A because A is a

pure subgroup of Z". Thus, m:V, = Pj

X, + W. for some
i 71 i~

integer, Py and for some Wi € A,

K
. = . = 1 W
Now let ¢ € Z,. If @-x, = x,, then 0.v, = p;/m.x, + 1/m,0-W,
= py/mxy + /MW, + 1/m (W, -W,) = vy o+ L/mi(o-wi;wi). if
"g.X; = -X;, then 0-v, = npi/mixi + l/miﬁ-wi

—pi/mixi - l/mwi + ;/mi(s-wi+wi) = -vy + ;/mi(c-wi+wi).

Therefore 1f we set W& ., = i
s 1

condition 2) of Definition 5 is satisfied since W 5 € A,

since mWs i = c-wi + Wi € A and A is pure. However, it might
3 .
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happen that for some ¢ € Zg, l/mi(c'Wi-wi)(respectively
1/mi(a-wi+wi)) 18 a non-zero element. of 24, so that con-
dition 3) of Definition may not be automatically satisfied.
We show that vy can be adjusted if necessary so that 3) of
Definition 5 is satlefied. Suppose e.g. that G-xi = =Xy and
that 1/mi(c.wi+wi) € 2A. Iet W; be the component of W, with "
respect to ey,-+:,e, which iﬁfixes (rather than negates).

set W, = W, - W,. Then o, 1 . 0. Applying this adjustment
for each element of Zg,
many steps a vector Wi such that Vo € Zg, l/mi(o-wa+W&)

one finally obtains after finitely

(respectively 1/mi(@-w&4wi) € 2A © 1/mi(°'wi+wi) = 0

. 1
- ST T - m. *W
(respectively l/mi(d Wi =W o). vy pi/mixi + 1/ N i

clearly satlsfles condition 3) of Definition 5. For 4)

K -
03 Wc,i = 0 then

Cev, = % V.. Thus, if 4' denotes the one dimensional

of Definition 5 if all o € Z
k
25
sublattice of Z" spanned dver Z by Vi then the group spanned

Vo € 7

over Z by e sty e, v, is Zg—isomorphic'to L' @ A, If

13. L]
we can show that 4' @ A is a pure submodule of Zn, this

SJ

will contradict the maximallty of A. TFor this we must show

that 1if Vi needs to be adjusted to vy then 81558 is
still & Z-basis of (&i ® (HQZZH)) A 7. If for some

= Lk R AU S _ -+ . +
o€ ZE’ Wi = Wi Wi, then vy = vy 1/miwi. Since l/miwl

can be written ag a Z-linear combination of

. . _ , n
€)% % 28 58 5 te s vi is a Z-basis of (4i @ (A@ZQ)) nz

if and only if e;,-*-,e,, v, is a Z-pbasis of (Li @ (H@ZQ)) Nz

n
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Since in general, Wi is constructed from Wi by subtracting
off a finite number of vectors of the form Wi, Wg, a
stralghtforward induction gives that eysttre s V) is a
Z-basis of (L1 @(A®,Q)) N Z". Q of Definition 5 is true

by construction of the vi's. This proves the lemma, 8

Example 1., Tet kK = 1 and n = 2 and let Z, act on Z X Z by

2

o-(1,0) = (0,1}, o-(0,1) = (1,0) 22 ®.Q~ 4, ® 4. where
3 L 3 L] L * 7 1 2]

%, is generated by (1,1) and 1, is generated by (-1,1).

U'X = o= X .

Thus, e, = (1,1), X, = (-1,1) and 0oy = €, 5 o

Note that 4 = %l N 22. Set,v2 = = %XE + %el. Since

vé = (1,0), Vo€ Span 72, Sset W, = e;. Then

Vo= - %xg +- %WE, so p, = -1, m, = 2. Now

gev, = - %cr-x2 + —é«c-wg = - (n-‘a-xz) + %c-wg |

= = (x,) - aW, + 7 (oW iti,) vy + 5(0-W W, ). Since

Wy = (1,1), z(o-wgti,) = &(o-(1,1) + (1,1)) = ¥(2,2) = (1,1).
Thus, %(c-w2+w2) ¢ 2A since A = Ll N Zg. The matrix of g,
with respect to Vos Ty is _i 2 . In general, the matrices

of 0 € Zg wlth respect to a special basis are lower triangular

with entries consisting completely of odd integers.

Example 2, Tef O = Z3 =g~ 22 = 1 be the torsion free

Bieberbach group generated by the standard lattice,'ZB, in
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-1 00

in R3 together with the rigid motion ((0,0,%), 110 .
001

Here e, = (0,0,1) and e, = (0,1,0), Vg = (1,0,0). A is the

intersection of 23 with the y,z-plane. Since 9 acts
trivially on A, the maps X = X + %el, b St %eé, X X +%(el+ep)
X = ze

~are translational involutions of RQ/W. Now + X

2
is fixed point free while x = %el + x fixes ({(mod 23) the
nyperplanes (0,¥,z), (%,¥,Z). Thus, the intersection of

the fixed points sets of these involutions is empty. In

general, the module, A, will determine a Zés action on Rﬁ/w
for an arbitrary Zg - manifold. We will show that this

action never has a statlonary point.

Theorem Y. Every Zg—manifold is a boundary.

Proof. Let O = Zn M Zg < 1 be a torsion free Rierberbach

. . n

gréup. Tet €57 5B VS+1,--°,VH be a special basis of 7.
, ,

Since Vo € ch-ei = + e,, the projection of A to ZD/EZrl is

a subgroup of (Z?/Bzh?g' whose dimension over Z, is s. Thus
the maps from R* into R defined by x = x + %(eij+...+eij)
induce translational involutions of R?/w. I Rn/w is not a
boundary then by Theorem (30.1) of Conner and Floyd these
_translational involutions have a commen fixed point. .If A
denotes the projection of A to 2°/2Z" then by Lemma 1, J(A)

5

is a subgroup of Zg isomorphic to Z, Choose co-ordinates

in R? so that this common fixed point is the origin. Then
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again by Lemma 1, & for each 1 = 1, s, 04 € J{&)} such that
0 + %ei = (Ti,ci)'o for some 1ift, (Tijci), of ¢, to 7.
Multiplying the right hand side of this equation out gives

A 2
+ e, = T, 6.0 = ge, = T,.
‘O FEey Tl + lO "€ Tl

" Using this equation and the fact that A is a Zg-submodule of

7z we see that the subgroup, Wi, of 7 generated by A and the

setb, {(Ti,ci), i= 1,8) satisfies the exact sedquence,

0= A=q" = J(E) » 0. Furthermore since r' is a subgroup

of 7, this sequence is a torsion free extension of A by J(A&).
Since each element of A acts on R by translation, A

is contained in the subgroup of pure translations in Wi.

Note that A may not e@ual the whole group of pure translations

in 7' because if there exists O € J(&) such that ¢ acts

trivially on A, then any 1ift, (T,¢), of 0 to 7' acts by

the pure translation x = x + T. Said another way, J(&)

may not equal the holonomy group of wi. We intend to extend

7' to a larger torsion free Bleberbach group, w”-, whose

holonomy is equal to J(A). This requires some technical

work which we now begin. Note that in the process we will

naturally get the equations below which will play an important

role in the proof of Lemma 6. Suppose that J(B) does not

act faithfuily on A. Decompose J(&) into H X F where H is

the subgroup which acts trivially on A and where F is a

maximal subgroup which acts faithfully on A. Since
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J(B) ~ Zg, H = Zg and B o~ Z;—p for some integer p. From

5} of Definition , we know that each of the vectors, Vi in

the special set €y "€ ooy is of the form

57 Vsl L
vy = py/m X, + l/miwi where W, € A and where

Vo € J(R), o-x; = + X,. If we let L(Xi)(respectively L(ej))

denote the one dimensional subgroup of 7 generated by Xy
(respectively ej) then the subgroup, L, of 7" generated by

€15t rr€ys X 0500 e,%, 18 J(E)-isomorphic to

[ 3 @-}... - . : - -
1)@ ®l(e ) @ 6(xs+l)_ @L(xn) L clearly has finite

index in z™. Thus, since J(&) is Tfaithfully represented on

2™, J(B) is also faithfully represented on L. So by Fact 24

there exists vectors Xil""xip’ ejl""’ejs—p and generators
Tl,---,Tp of B and hl".'hs-p of ¥ such that
" LX.
() Th-xi' = E Xlt Lo t=1,p, Th-e; = e, h,t=1,8-p
g 1 i, t#£n g dg
and
¢ =
N.-X. =X, t= 1,p, n."e. ={¢ h,t = 1,8-p
h 7y iy h "dy lej tAh
K

(We will need these equations in the proof of Proposition 1
below). ZLet w" be the subgroup of 7 generated by w' together
with the lattice points Viattt Vs Note that if M denotes

1 p
the J(&)submodule of 7' generated by A together with
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v, ,-'--V:.L , then J(A) is faithfully represented on M. Thus,
,71 i p

7™ is the subgroup of 7 whose holonomy group is J(A) which

11

we have been seeking. Clearly, T satisfies the exact

sequence,

o= M=qg" = J(R) - 0 .

Remember that #" is a toreion free Bieberbach group because
it is a gubgroup of w. Below we will employ other arguments
to show that 7' is not a torsion free Bieberbach group.

The source of this contradiction is the assumption that the
translational involutions of Rn/w determined by the projection,

k _
Z2 have a common fixed point. Thus, we

K, of A to (z"/2z7)
are forced to conclude that these involutions do not have a
common fixed point. It then follows from Theorem (30.1) of
Conner and Floyd that R?/w(ig a boundary, and the thecrem
is proved.

We begin the final phase of the proof, the arguments
which show that 7  is not s torsion free Bieberbach group.
Thege are contained in Temmas 5 and 6 below. Lemma.5 pro-

vides a purely technical fact needed in the proof of Prop-

osition 1. _ _ |

Lemma 5. Let G be an additive group of homomorphisms from

Zg into Zg with fellowing property: There exists elements

m
hl""’hm‘Ova and a set of generators ysrem 0 of Z2

o«
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m
2

O Then g € G and

such that ¥V, = 1,m, Kernel (hi) is the subgroup of Z
generated by gl""’ci-l’ci+l’

r € ZS‘B glr) = r.

Proof. For gimplicity we co-ordinatize Zg with respect to
the set of generators Gl,--;,ck by k-tuples of elements of
the set {0,1). We define a chain of length s of elements
of ‘the set, {cl,---,ﬁm} to be a sequence, Gji"'fgjs such
that Vi < g hji(oji) has a non-zero co-ordinate in the
ji+i-5t place and zero co-ordinates in each of the
Ji,---,gi-places. For instance, each element Gj € {Ql,---cm}
s a chaln of length one because 1i we write gjl = Gi then
there are no indices j; with 1 < 1, so that the defining
condition of a chain is satisfied wvacuously. Note that in
a general chain no restriction has been placed on the values
of hjs(gjs ji
The set of all chains of all lengths is non-empty

) but only upon the values of h (Gji) for 1 < s.

since each 0 € {cl,...,am} determines a chain of length
one. This set is partially ordered by the relation of left

aubchain i.e. O. 8. S 0.9

1 is i1 Iet

djsgjs+lf"cjs+t'
cjs""’cjs be a maximal chain with respect to this partial
ordering. The condition that cjl"'gjs is maximal implies

that hj“(ojs) has a non-zero co-ordinate in at least one

of the jl---js placgs. Let 4 be the greatest integer such

that hjs(cj) has a non-zero co-ordinate in the j4'th place.




31,

the homomorphism hj%---h Decompose Zg ag H X L where

Js’
ﬁ is the subgroup of Zg generated by Gj&"'gjs and where

I, is the subgroup generated by the set {gl’°"’§k}"{gj&"'gjs}'
Define.the homomorphismg Hjé"';ﬁjs from H into H to be
‘pohja,---,pOhgs where p + H X L = H is the projectiocn homo-
morphism and where hji is the restriction of hji to H. We
claim that there exists a linear combinatlion of the ﬁji's

which sends GJ&+---$GJS to itself., First notice that the

vectors {Eji( }} form a Z,-basis of H. {

944 2

a basis that there is a linear combination of {Eji(c

..
Jji

i
which equals sJL+¥--+GJS. Denote this linear combination by

h . {0 . )+ -+nh_ (0 ).
mitmg g
_ _ | p_
Then hm1+°"+hm~(sjt+"'+gjs).: '% h . (0,,) because
T P D i=1 Tk
mi(cj) £ 0 e G5 = Ty But 131 m§(cm%) = Ot A
Now consider the element y of Zg‘defined by
, | N
y=(2h )0+ - +9:.), Then clearl Sh My) =y =
i=p Myt dt js). T v (1:1 m; ) (v)
Example. Let m = 2. Let hl(cl) = 0y + Oy, hl(GE) = 0
and let hg(ce) = O + O, he(ﬁl) = 0. 0, 1s a maximal

chéin of length one because hl(ﬁl) has a non-zero co-ordinate

in the 9, direction. Thus, Gj% = 0y and H is Jjust the sub-

group<(ﬁl) of Z, X Zp generated by oy El is the map which

¢ . - . A - s o _ 0] / ~,
sends ¢, to itself, Obviously El(dl) is a Z,-basis of {9,




and hl(cl) = 0,. Wowy = hl(ﬁl) = 0, + 0,.
hl(cl+02) = h () + hl(OE) =0, + 09, +0=0, + 0,
SO hl sends Gl -+ 62 to 1tself.

Temma 6. 7" is not a torsion free Bleberbach group.

Proof. We Tirst look at 7" = from the cohomoiogical stand-

point. In particular, we construct a section, s, of T(R)
in 7" and derive from s a cocycle o € ZQ(J(ﬂ);M)'represent-

‘ing the cohomology class of the extension
O—=+M-q" = J(A) - 0. The image of o will actually lie

in A. Set s(id) = ia To each of the generators

12000, of J(E) associate the element s(ﬁl) = (

g

ik

e.,9;:).

i
! ' At C e - 1t 3. < 1.<e..<]
To each element gil Gip of J(A) with i, <1, | ~

Adssociate the element

s(o, + «+«v .0, ) = (be, ++--ge, , O, + -+« -0, ). HNote

1 i, iq 17 iy i

that s(@i Oy ) is not the natural choice of a 1ift of
L p

O v vt to 7' gince in general it is not generated

by products of the S(Gi)‘s.

Since s(id) = idpn, we may compute « € ZQ(J(E)5M) by
o ] -

)

a(0,0) = s(0)° for each ¢ & J(A). If we write ¢ as

o, + +++« «O, this equation becomes

G-(Q:. . LR -o" ’Q. - " s -{ji ):(ﬁei _I_...+_-é:.e

m 1 1m 1 m
= #ley +rvtey ) 40y - oeer c0y (Fey dee-due)
l . m l 11 l
= . Ceede . - N. -e-i her o \ .
ell+ + i Nll q Where Nll i, 18 the sum of those




33.

10 m
O, * -** g, acts by negation. This fact will be needed
11 tm '
iater so we state it as

special basis vectors in the set {ei trisey } dpon which

Fact 3. Let o € J(A), and let s(0) be written as (T,0).

Then a{0,0) = 27" where T is the component of 2T with

respect to the special basis vectors €45 " ,€, upon which
¢ acts trivially.

Recall the eguations above. We use these equations
to compute the actions of Tl,---,Tp, nl,---,ns_p upon the
vectors vil,---,vi 5 ejl""’ejs-p chosen above., We first

1ist these actions and then provide the necessary discussion

immediately afterwards.

(_v1t+w,r ; and W, it;!o,t:hw . €4

, n’"t n’ n’ "t
T 'Vi_ =
nooe o z‘fvit t #£h
" Tn'ejt = ejt and
. . {_e'jt Lo i €
'nh-V1t = v1t + Wﬂk,lt’ ﬂh'ejt = Wn 1t A

k.’

t
€y # h

The equations for the nh's follow directly from
Definition ». o -e.. = e,, 1s true because it is true in

h 7jt jt

* . Th'Vlh = - vi, + WTh,lh also follows directly from
Definition 5, but the claim, W7 ,1i, £ 0, requires some
proof'. By 4) of Definition 5, Hg € Zg such that

g'vy H WS

. 6oty where Wg‘i“ # 0. Suppose “%h’i = 0. Since

> h h
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T, and g commutg, we get Th-g(vih) = g-Th(viB)
= 7 (+v. 4W- . = -V, = F v, + T W . = -glv,
h(—~ lh g"l“h) g( lh) lh' h g)lh g( lh)
= Fv, +W. . =%v, -W_. 2w . =-W con-
lh gslh lh g:lh g’lh lhsg
tradicting W | 0.
_ & gty 7
T v, = v, t3# h also requires some proof. From
h g iy
Definition , we know that T_-v. = v, + W . .« We
I8 lt lt Th’lt.
must show that Wy ;. = 0. Since Ti =1, vi = ey,
h* " lt k ]_t
= vy W, . ) =v. + W s+ T W = v, + 2W. ,it
h 1 Tﬁ,lt i, Tn’lt h Tn , iy Th
because Ty acts trivially on A. Thus, 2W+ ; =0
n’"t

ﬁ'P\?‘r 1 = On
Tn,lt |
We next use the equations M to construct an additive
group, G, of homomorphisms of J(&) into J{E). Now

A/OA ~ Zp 7 J(K). We choose a particular isomorphism, p,

from A/2A to J(&) by sehding each coset e, + 2A to S

e ss T I n
1° ;Vp D to Z /22 .

For each j = 1,p define the homomorphism h; from J(Z) to

Let Vv be the projections of Vi, eee,vi

J(E) by

h{T,) = T. V. . (N ) = VLV L) .
(730 = p(73°V5 + v5) and ny(ng) = o(ny V7 5)

From (¥) we compute hj eXplicitly as

hj(Ti) =0 1 % J
) where'Wj,Ti is the projection of

wj’Ti

' hj(ni) = p(Wj,ﬂi) where'Wj,ni is the projection of W.,".

to A, and i = j. ‘

to A
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Define Vj = p + 1,s the homomorphism 8y J(A) - 3(A) vy

\,
i
o
=
3
@
=
I
o

= p(ei‘) if m,-e; = - e, and where e
J J o J

is the projection of ei to A.

J
Next Qefine'ﬁj : J(E) = J(&) by'Ej(Ti) = hj(Ti) and

hj(ni) = 0. Let G be the group of homomorphisms generated

additively by g --,gsjﬁl,---;ﬁp. G satisfies the con-

p+1’
ditions of Lemma 5 from which it follows that there exists
f €0 and ¢ € J(A) > f(g) = 0. We will show that ¢ cancels
a{0,0). By Lemma 2 this is sufficient to prove Proposition
N

| Since the homomorphiéms'ﬁl,---;ﬁp’ g§+1,-{.,gn_s are
a free ngbasis of G, { can be written uniquely as a sum

(1)  f = h, teeeth, + gi teeetEs
S | Tt J1 Jyp

We may assume that h, (¢) (respectively g5 (6)#£0)Vk=1,t{k=1,r).
k K
Since any of the factors of f which send ¢ to Zero may be

deleted without losing the condition f{o)=0. From this

equation and from the definition of hy,.-.,h, Bhr12 " 28 g

we see that the condition £(9) = ¢ implies that ¢ contains
the factor Til. c e .Tik -njl. - .'r]J-r .
Furthermore, consider the translational component, T, of

2 >
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s{(o). 1In particular, note that the projection of 27 to

‘A is sent to ¢ by the homomorphism, p, i.e. o(P7) = 0.

From this fact and from the equation, £{o) = 0, we get

(3) 27 = (T, v, +v, )+ (T, v, ) + e, 4. 4e, .
: ll 11 :Ll l't l't Jl Jl"
t
Set v = 2 v, 3T = T, seeT, § M= T, *« «¢: M s and
=13 1 g 1 Iy
t
W, =2 1.v1.+vi.)' In this new notation we have

= T™Mand T-v=- v + WT.

Since by construction Vu = 1,r

. V., = v. +W, ce ML V. o= Vv, + W, , .
nau 1 1 ll’ nJu 1t 1 Tt ﬂJu
nev ig of the form n.v = v + Wn . From this we get
OV = T oV = T(v+wn) = - VR W W -V W+ W
(because T acts trivially on A).
Now ¢ acts ftrivially on WT + Wn bécause
2 — . —
v=0"v = G-(mv+WT+Wn) = - Oy G-(WT+Wn) = _v+(wT+wﬂ)
+ U'(WT+wn) = Q = —,KWT+WH) + U'(WT+WH) or c-(wT+wn) = W, +W
Since 7 acte trivially on A, c‘wn = T+«Wn from which
it follows that oWy = - wn because v = ng(V) = n(v+wn)

= vV + Wﬂ + ﬂ-wn. Now if wn has a non-zero component in

n
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one of the e directions in which WT has a zero component,

then WT + W has a non-zero component in this direction as

nl

well. Since O-Wn = = Wy, 1t follows that O (W AW, ) AW+ W

' n'

which contradicts the fact that o acts trivially on W, + Wn,.
Thus , W + Wﬂ' is the component of W,T with respect to the

special basis vectors e "trseg upon which ¢ acts trivially.

l’

Now from equations 3) we have W, o= 2T - (e'j +"°+ej ) mod

' 1 r
2A. Thus, mod 2A W, o+ Wn, is the component of
2T - (ej +---+ej ) upon which ¢ acts trivially. But

1 r
V. = 1l,r,0+e, = -e. because from equation 1), g, (¢) # 0
* Ji i Ji
¥, = l,r. From equation ?2) we know that SFIERRRFLE is
1 r

g complete 1ist of the ei's upon which ¢ both acts by negation,
and in which ¢ has a non-trivial translation component,

Thus by the same type reasoning it follows that the com-
ponent of 27 - (ejl+-.-+ej ) upon which ¢ acts trivially

is equal to the component gf 2T upon which ¢ acts trivially,

But this component is 2T (see Fact 3)., Thus, we have

gy + v = 2T+

By PFact 3, ot a{0,0). Thus, ¢ cancels a(d,d) = by

Lemma 2 that Wh is not a torsion free Bleberbach group. ®
Since " is a subgroup of 7 Proposition 1 implies that

7 18 not a torsion free Bieberbach group. This is a con-

tradiction so we are forced to conclude that 7" doeg not

|
exist. But 7" arose from 7 solely on the assumption that
|




the translational involutions determined by A have a

~from Theorem (30.1) of Conner and Floyd. &
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common fixed point. Thus, we see that these involutions

do not have a common fixed point. Theorem 4 now follows

We give an example of the situation of Proposition 1.

-1 0 0 - 100
Example. Let T = 1160 s M= 0-1 0 s
101 -1 0-1
2T = (0,1,1), vy = (1,0,0), e, = (0,0,1), and e, = (0,1,0).

1 2
Here 6(0,0) = (0,1,0). We have By (7) = H,(0) = (0,1,1).

So £ = h. Thus, W, = (0,1,1). Now
-1 00
=7 = | 110 » 6-(1,0,0) + (1,0,0) = {0,1,0)= 21t
0 0-1
= the component of W, upon which ¢ acts trivially.

Remark. The author feels that these same techniques may

be applicable to the case where g is an arbitrafy abelian
e-group. Proving this would involve the construction of

the group, 7", in this new setting which in turn amounts

to proving the analogue of Lemma 4.




CHAPTER IV
COHOMOLOGICAL TECHNIQUES

In this section we describe a different approach to
the prqblem. Since the classifying map of the tangent
bundle can be factored through B(¢), every Stiefel-Whitney
class of Rn/ﬁ is of the form p%(wi) where p : Rn/ﬁ -~ B(¢)
is the projection map; W, = r*(wi) where r : B(¢) - BO(n)
is induced by the action of ¢ 6n Rn; and where Wy is the
i' th universal Stilefel-Whitney class. One hopes to solve
cobordism problems by showing that if Wilu'--uwiK EAHn(¢;Zg)
is a product of Stlefel-Whitney classes then p*(Wilu---uwiK): 0.

bxample 1, The clasgsifying map of the tangent bundle can

be factored through BU(n).

Here since r factors through BU(n) any class r*(wi) is

the mod 2 reductlon of an element X, € B (¢3;2). Thus if

p* (W, veeeulW, ) is a Stlefel—Whltney number of - o
?Ll li{
RY/w, p*(W, u-«-ull,
iy i |
n k n ‘ |
Since R /r is orientable, H'(m;7) =~ Z. But H(¢;Z) is a |

) is the mod 2 reduction of p* (X.,u-c-uxi ).

l..l
'—.l‘
o

finite abelian group so that p* : H ($32) » H'(7;%) must be
the zero map. Thus, all of the Stiefel-Whitney numbers of

n
R /7 are zero.

Example 2. Abelian 2-groups with no direct factors isomorphic

to Z,.

We begin with some facts about the Steenrod algebra of

39
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Lemma. 6. ILet ¢ be a Tinlte abelian 2-group with no direct

ad

factors isomorphic to 7 Then the maps, Sqo , are all

2'

zero.

Proof. PFirst assume that ¢ is cyclic of order 22+p‘ We

prove Lemma 6 in this case by induction.

Sql: O : Sqlis the mod 2 reduction of 5%, the connecting

homomorphism assoclated to the Bocksteln co-efficient

x2 /2 Odd(

sequence determined by 0~ 2 = Z = Z, ~ O. . Now H $,%) = O;

HEVEM (g 52 = 2/22+pz; and H*(¢322) = Z,. From even to odd
dimensions, Sql= O because HOdd(¢5Z) = 0. TFrom odd to even
dimensions we see thab since 2 Sql(x) = 0 and since ’

HEVED (4:7) = 7/07 Pz, s2(s%(x)) = O.

Sq23+l = 0: Assume inductively for all odd integers, k < 23 tL

that 5¢5 = 0. consider 897971, By the Adem relations

(see Steenrod and Epstein [11])

. . ' Jj - s s
Sq23+l _ SqJSq3+l s {‘_ o Sq23+l sSqB .
ax»0 % d

Since all terms on the right contain an odd sqguare of

dimension strictly less than 23 + 1, sq°9 % = 0. Now let

¢ be the Cartesian product of cyclic 2-groups of order

greater than 2, ¢ = Glx---xGm. One knows from the Kunneth
_ m
formula that H*(¢;zg) zjg H*(GJ;ZE).” Let ij PGy ¢ be

1

the inclusion homomorphism, Then




i

k
G1322)®---®H (G

32,)8+@HO(G 57,) is ndﬁ%%é?§ 
@ i;(x) # 0. Thus 8q

Odd(x) = 0 by the above. Now consider .
mo
( _

3 . jj— . s s +BAT -
an arbitrary element x,u ux, € H (G1,22)® ®H (G357

By the Cartan formula,
23+1

U+ Ux ) = % SqS(X
m
5=0

Sq23+1 23+l~s(

(x u Sq XUt ccux ).

1 1)

If s is odd then 8q°(x,) = 0. If s is even, then 2j+l-s is

1)
odd so that lemma 6 now follows from a straightforward

induction. ®

The odd dimensional case

Tet n be odd. We need two standard fachs. 1) For any

= Sql(W' + W, au WS

23+1 23) 2] 1
2) If M? is a manifold and if Wl is the first Stiefel-Whitney

vector bundle over any space, W

class of the tangent bundle of M" then for ecach x € H“’l(Mn;zg),
Sql(x) = X U W;. (See Spanier [9] pg. 350). Since n ig odd,

any Stiefel-Whitney number must contain an odd Stiefel-Whitney

: * * * )
class as a factor. Thus, p (W) = p (Wu p (w23+1). Since

odd . *o o _ *
Sq = 0 in H (ﬁ,zg), w23+l = ngu W, = (W)
*.

— * * 1, *,.. L .
= p (Wu p (ng)u o (W) =8q (p (W wu ng) = p 8q (W u ng)z 0

by Lemma 6. Thus Rp/# is a boundary.

The even dimensional orientable casge

Let n be even and suppose that R?/w is orientable.

W o

W Wy, ) = W ~ 0 since 8q* = 0 in JJ

21 Y Wy +8q 2441

2itl

and since Wy = O. Thus in order to show that R'/r is a

2)ﬁf ff”"
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boundary it 1Is sufficient to show that p*(xlu---uxu) = 0
where p*(xi) ls an even Stiefel-Whitney clasz. For this we
need to discuss the Wu classes of a manifold (See Spanier
[9] pg. 350). To every n-manifold, M”, there exist classes
v, € Hi(Mn;zg), i= 0, ncalled Wu classes which satisfy
the following two properties; 1) TPor each

x € Hn"i(Mngzg), Sqi(x) = X U vy 2) the total Steenrod
operation applied to the total Wu class is equal to the

total Stiefel-Wnitney class of M- i.e.

oo . jal n
(2 sa))( 2 v) = = W,
J=0 i=0) i=0
Lemma 7 V2j+1_: 0 Vj .

Proof. (By inductiocn on j). v, = W, = O because Rn/ﬁ ig

R o Canli N al234)
orientable. Now Wogg1 = Vogu T 54 (vgj)+ +Sq (v,). A1l
of the terms on the right are zero except possibly V2J.+1

. ,odd _ . X, . . . \
because 3qg =0 in H (ﬁ;Zg) and by the inductive hypothesis.

- _ 1 o
Thus, ng+l = W2j+l' But W23+1 = 8q (Wéj) + Wéj uwW, =0. =

Lemma 8., Tet x € Hgl(ﬁgzp). Then nga(x) = X U ¥y where y

— ¥
is the mod 2 reduction of an element, § € H (B:2) .

Proof. Ir Gi ig any one of the cycliic factors of 4, then

H*(Gigzp) is a polynomial algebra in even dimensions on one
generator, B, € Hg(Gigza) tensored with a truncated poly-

nomial algebra generated by the non-zero element x; € Hl(Gi;Z

5)
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where Xy V% = 0. Therefore by the Kunneth formula, an
*

element of H (#;%,) can be factored as a product of the

Form ﬁi s UX. . The lemma now follows from

UeasUB, U xX. U~

1 Ty 1 dg
2 2

_Sq (Sj) = Bj’ Xj) =

straightforward induction. @

ng( 0, the Cartan formula, and a

Now let p%(w:.L U Ul ) be a Stiefel-Whitney number
1 k
of R#/W. Since all of the odd Whitney classes are zero,

we may assume that the Wi 's are even with ij = i
J
- - * * L]
Consider first p (W,). o (Wg) = v, 80 that if

J+1°

% . * *
p (W; v---uW. ) is of the form p (W,)u p (W) then
i,y Ly 2

P*(Wilu---uwik) = P*(Wg)u o (W) = 8¢°(p (W) = p'Sq

* * * . .
= p (W)u p (y) where p (y) is the mod 2 yeduction of

“(w)

. 3 .
p (y) € U (w32). Assume inductively that if il<...<ij < 2m
¥ . * *
then p (Wi Uereully UW, U -UW, ) = p (Wi Us Ul yu o {y')
1 J o T3+l +k J+1 k
. *
where p*(y') is the mod 2 reduction of p (¥y'). Let ij+l:2m.
¥* : ,
Then p (Wi Us e Ul Ju p*(y“) = p*(wgm)u p*(wi ve ol Ju p (y1.
3+ Kk J+2 X |

Now p*(w ) = v, o+ ng( )+---+Sq2m’2(v

Vom-2 o)
*
= (by Lemma 8) Vou t Vop oy p*(ygmyz)+---+v2u p (y,) where

2m 2n

. - *
Yop-o1 have 1ifts, Jop.pi € H (ﬁaz)- Thus,

Ue U, Ju P (3)

- +*
) (ng)u p (W. i

92

* *
“ s el Ju e (y)u e (¥,.))
1 @8 “i2 Ty 25

5 {p( Ju o (y) (o) 0 (n )
= 2 po{W, UreeuW, Ju o (y') v o ¥y U p {¥yr.) by
-1 Lyee 1x 28 28
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Lemma 8.

Rewriting this last term as
+* ¥
§ . utetuWg Ju o (
342 k gy
induction is complete. We conclude from this that

% * '

p (Wi U-"UWi ) = p {¥) where v is the mod 2 reduction

Sl k . :

of ¥. Thus, ¢ (W, v---ulW, ) = /Ep*(ﬁ). We now use the
11 i

ract that H(#;Z) ~ Z while H (£3Z) is a finite abelian

group to conclude that p*(w.l Us Ul ) = 0. We summarize
' 1 k :

these results as

Theorem 5. If g is a finite abelian 2-group with no direct
factors isomorphic to 22 and if n is odd, or if n is even

and R"/4 isorientable, then R /r is a boundary.

Remark 1. It is typical that these techniques provide
little or no information about the unorientable even dim-
ensional case. More generally, these techniguesg fail because
the Steenrod algebras of arbitrary 2-groups may ﬁot satisfy
relations which permit conclusions about cobordism. TFor
instance, the Steenrod Algebra of Zg satisfies no relations
other than those contained in the axioms for the Steenrod

Algebra itself. So far the author knows of no other theorems

derivable frem this approach.

Remark g. Theorem 5 can be extended slightly to give partial
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information in the unorientable even dimensional case
e.g. since n is even any Whitney number involving one odd
Whitney class must Involve at least two odd Whitney classes,

WE. . Since ng

41 = WQiUW and W

2141 +1 1 2j+1

= W, ,uW

2] W

10 o1 "Woup 23" 1

Other facts derive from relations in the Steenrod Algebra

e.g. suppose n = 8 and consider W6u wz = ng(w6). Now
E(Vu) + qu(v3) :,Sqe(VQ). Thus

5)
Weu W, = Sq28q2(v4) = SqlquSql(vu) = 0, ngng = Sq18q28q1

. ' 1
w6“"—“-V6+SCl(V + 5q

is one of many universal relations between iterated even

sguares and mixed even and odd sguares. The interested

reader should consult Steenrod and Epstein [11].

W, Ul WS = 0 because W- = Sql(w

1)

0.
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iz,

13.

1k,

46,

Bibliography

Cartan, H and Eilenberg, S., Homological Algebra,
Princeton University Press, 1956, " Princeéton, New
Jersey.

Charlap, L., Flat Riemannian Manifolds 1, Annals of
Mathematics (81) 1965, 15-20.

Charlap, L. and Vasquez, A.T., Compact Flat Riemannian
Manifolds II, Amerlcan Journal of Mathematics (87)
1965, 551-563.

Charlap L. and Vasquez, A.T,, The Cohomology of Group
Extensions, Bulletin of the American Mathematical
Society, 1963, pg. 1294,

Curtis C. and Relner, I., Representation Theory of
inite Groups and Associative Algebras, Interscignce,
1962, New York.

Conner, P.E. and Floyd, RE,.E., Differentiable Periodic
Maps, Academic Press, 1964, New York.

Gorenstein D., Finlte Groups, Harper and Row, 1968,
New York. T T

Kobayashi 8. and Nomizu K., Foundations of Differential
Geometry, Interscience, 1969, New Vork. T

Sah, C., Abstract Algebra, Academic Press, 1967, New
York. -

spanier, E.H., Algebraic Topology, McGraw Hill, 1966,
New York.

Steenrod N., The Topology of Fibre Bunhdles, Princeton
University Press, 1951, Prindétcn, Neéw Jersey.

Steenrod N. and Epstein, D., Cohomology Operations,
Annals of Mathematics Studies #50, Princetdn University
Press, 1962, Princeton, New Jersey.

Vasquez, A.T., Flat Riemannian manifolds, Journal of
Differential Geometry (1) 1970 367-382.

Wolf, J. A., Spaces of (Constant Curvature, McGraw Hill,
1967, New York. T




