A STUDY OF RATiONAL fOEPLITZ OPERATORS
A Dissertation presented
by
Leonard Charles Gambler
to
The Graduate School
in partial fuifillment Qf the reguirements
for the degree of
Doctor of Pﬁilosophy

in

Mathematics

State University of New York

at

Stony Brook

August, 1977




STATE UNIVERSITY OF NEW YORK

AT STONY BROOK

Leonard Charles Gambler

We, the dissertation committee for the above candidate for the Ph.D.

degree, héreby recommend acceptance of the dissertation.

(Y La

Chih~han Sah, Professor
Committee Chalrman

Ronald deglas, Professor
Thesis Advisor

/Jf ", %%A

Henyy Lahfer, PY¥ofessor

j:. ((,3‘\; h b-ﬂ'r") CQ‘H

Israel Gohberg, Professor

Il e

Barry McCoy, Profes or

The dissertation is accepted by the Graduate School.

ISy

Herbert Weisinger, Dean

August, 1977

ii




Abstract of the Dissertation
A Study of Rational Toeplitz Operstors
by
Leonard Charles Gambler
Doctor of Philosophy
in
Mathematics |
State University of New York at Stony Brook

1977

We show that for ¢ in L7(7), ¢ analytic in a neigh-
borhood of T (the unit circle), for which neither the
Toeplitz operator Ty nor its adjoint Tg has an eigen- j
space, Ty is strongly decompossble, Ag g corollery,
we show that for ¢ in LI”(T?), ¢ non-constant and aral-
Ytic in a neighborhood of 7T, T¢ has a non-trivial
hyperinvariant subspaqe. The decomposability result

1s obtained by first using analytic~coanalytic factor-

ing of invertible rational ¢ in conjunction with anal-

ytic-cognalytic factoring of invertible @ with abso-

lutly convergent Fourier series to show the growth
condition: || Tgp Ml < K( dist(n,(Tg) ) )72 for
A not iner(TQ), K a positive constant where ¢ is anal-
vytic in a neighborhood of T with neither Ty nor Ty
having an eigenspace. Then by arguments close to those

in (M. Radjabalipour, "Growth conditions and decomposable
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operators”, Canad. J. Math. 26 (197L), 1372-1379),

we estgblish the desired result.

Included here are a few techniques used in the study
of rational Toeplitz operators. Many known results
are reproved for the rational case using these techni-
gues. Also included is a progress report on the prob-
lem of determining the span of the eigenfunctions of

Ty and Ty where ¢ in L™(T) is rational.
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CHAPTER 0: INTRODUCTION

The original problem for this thesis was the svanning
characteristics of the eigengunctions of the Toeplitz op-
erators Ty and T@, for ¢ rational. Whether or not these
eigengunctions span depends on the characteristics of ¢,
€.8., if ¢{(T) is a subset of R, or any straight line, then
there are no eigengunctions at s11. So part of the problem
was to find appropriate conditions on ¢ which would guar-
antee spanning of the eigenfunctions. Since it is not hard
to prove that the eigenfunctions of a non-trivial coanal-
ytic Toeplitz operator do span HE(Tj; it had been speculated
that the same thing should be true for those ¢ which sat-
1sfy some ressonable hypotheses( e.g., the greph, ¢(T), has
a finite number of self-intersection'péints), and would
not be too hard to prove, at least in fhe case where ¢ was
retional. This problem has turned out fé be very trucu-
lant and the speculation is false in géneral, both for the
spanning and the difficulty.

Partial results in this ares have been attained by Prof.
D, Clark and his student J. Morrel. They were able to show
in (4) that for F(z), a rational function such that t-+F(eit)
is a simple closed positively oriented curve and F is cne-
to-one in some annulus s |z < 1, the eigenfunctions of Tﬁ
span sll of HE(T). Clark, in personal communications with
Prof. Douglas, has given results which indicates this prob-
lem's depth: he has found examples of Toeplitz operators

whose eigenfunctions do not span. In these eXamples the

symbols are rational with the property that they map the

cirele, T, into T. Further progress awaits new idess.




The study of this problem, es in the case of many diff-
icult research problems, alfﬁéugh not sclved, has led us to i
other significant discoverieét;_ln this case the discover-
ies gre in the area of the S£fﬁéture of Toeplitz operators
with rational symbols. Namely;ﬁwe found thst rational
Toeplitz operators have non-tfiﬁial hyperinvariant sub-
spaces and, in fact, the ones Wﬁere neither Tp nor Tg have
eigenspaces are strongly decompbééble. This fact was an-~
nounced in the Notices (11). SﬁbﬁéQﬁently, we generalized
these results to the case where tﬁé §ymbol is anslytic in
some neighborgood of the unit circl$; T.

There has been much interest aﬁd a§tivity in the grea
of invarisnt and hyperinvariant subSpéégs for bounded
linear operators on separasble Hilbeft*é?éces. This thesis
answers a question in a recent articlefaf'Halmos (1)
he asks whether or not Toeplitz operaﬁofs with polynomial
symbols have non~trivial invariant subspaces.“

In Chapter I, we give basic definitions, set most of the
notation and state the known results which are used in later
proofs. The main references are Halmos(1l3) for basic op-
erator theory on separsble Hilbert space and Douglas(6, Chap.
6) for Hardy space theory and (6, Chap. 7) for Toeplitz |
operator theory.

Chapter II is concerned with the developement of tech-




nigues used in the study of how the properties of rational
functions affect the properties of the corresponding Toe-
plitz operastors. Several well knoﬁn resulis are reproved
using a minimum of machinery.

Chapter III contains the main results of this thesis,
We show that the resclvents of rational Toeplitz operators,
for which neither T¢ nor T@ possesses elgenspaces, possess
certein growth restrictions nezr their spectrums. As a
consequence we get that Toeplitz opérators with symbol
analytic in a neighborhood of T, for which neither T, nor
T possesé eigenspaces, have the same growth restrictions
and thus by arguments close to (16) sre strongly decompos-
able. Then as a corollary, we get that the Toeplitz op-
egrators with symbol anslytic near T have non-triviasl hyper-
invariant subspaces,

Chapter IV consists of a short report on the progress
and techniques used in the study of the spanning charact-
eristics of the eigenfunctions of Ty and Tp, where ¢ is
‘rational. Using our technigues, the problem reduces to one
dealing with functional relations. Also, in the course

of study, certain connections with Carléeson measures and

compact composition operators were observed.




CHAPTER I: BASICS

We Dbegin by letting T denote the unit circle in the
complex plane and # the Lebesgue measure on T normalized
so that #(T)=1. We can define the Lebesgue spaces Lp(T)
with respect to/v. The Hardy spaces Hp(T) are defined as
closed subspaces of LP(T). Using the standard symbol Z
for the integers, let, for n in 2, X be the function on
? defined by xn(eit)::eint. For p=2 ores, we define the
Hardy space

Hp==Hp(T)=rff in TP(T) : Sg?(eit)xn(eit) dt=0 for n>-0}.

For a little insight into these definitions we first
look closer at the definition for p=2. By elementary
calculus the functions X form an orthonormal set in LE(T)
and it is an easy consequence of standard spproximation
theorems (e.g., the Welerstrass theorem on approximstion
by polynomials) that the Xn's form an orthonormal basis
for LE(T). (Finite linear combinations of the X 's are
called trigonometric polynomials.) The space H%is then
the subspace of L2(T) spanned by the in's with n=0; eguiv-
slently, (this is the above definition) H is the orthog-
onal complement in LZ(T) of {x 1, X_o5 wee} o

Fourier expansions with respect to the orthonormal

basis {xn: n=0, 41, +2, ...} are formally similar to the

Laurent expansions that occur in analytic function theory.
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The analogy moativates calling the functions in H® the anal-

ytic elements of LE(T); the functions in LE(T) whose com-

plex conjugates are in H2 gre called coanalytic,

The subset, H”, is the linesr manifold (not a subspace)
of r? which consists of the bounded functions in H2 ; eguiv-
alently, HY consists of all those functions in L”(T) for

which all the negative Fourier coefficients vanish.
o

If £ is in B, with Fourier expansion f= P
e

then %S%}anlc<oo, and therefore the radius of convergence
2 n

n? is greater than or equal to 1.

oo

of ﬁhe power series %%% -3
It.followé from the usual expansion for the radius of con-
vergence in terms of the coefficients that the power series

o0

= anzn defines an anslytic function ? in the open unit
disc D. In fact, one way to look at H2 is 88 gnalytic fun-
ctions in the unit disc with sguare-summahle Taylor series.
For further properties see(6, Chap. 6).

The main objects of scrutiny here are the so called

2 2

Toeplitz operators from H- to H-. Let P be the projection

of LZ(T) onto H°., TFor ¢ in L”(T) the Toeplitz .operator
Ty on H is defined by Tyf=P(9f) for £ in HZ,
The original context in which Toeplitz operators were

studied was not that of the Hardy spaces but rather as

operators on 12(Z+). Consider the orthonormal basis

{xn: n in Z+} for Ha, and the matrix for a Toeplit=z




operator with respect to iﬁ;gjlffm is & function in L7 (7F) |
with Fourier coefficients'$(ﬁjﬁf%ﬁ gggx_ndt, then the matrix

{am,n}m,n in Z_ for T, Wlth P§§P9Ct to fx : nin Z.} is

myn -

- -1 ow i _h A
8, (T?xn’ K) = 2T 50 ¢Xn5mQFf'¢(m“n)'
Thus the matrix for Ty is cdﬁéﬁéﬁﬁ on diagonals., Such a

matrix is called a Toeplitz maﬁfik, and it can be shown

that if the matrix defines = bbﬁﬁded operator, then its
diagonal entries are the Foufief coefficients of a function
in L7(T), G

Our basic desire in this thesis is to look closely at
the Toeplitz operators for whioh £h¢ symbol, i.e., function
¢, in (%) is tsken to be ratiéﬁaiﬁ? But we first look ot
some general elementary propertiééabf Toep1itz operators
and the mapping ¥ from L™(T) tolﬁ(ﬁaj (the space of bounded
%)

linear operators on H defined by53(¢)='T¢. N

Proposition 1.1: The mapping ¥ is a contractive #-linear

mepping from L¥(T) into Q(Hg).
Proof': (6)///

The mapping % is in general not multiplicative, and
hence ¥ is not a homomorphism. In special cases though,
¥ 1s multiplicative, and this will be important in what

follows.

Proposition 1.2: If ¢ is in L™(F) and ¥ and & are functions




in E7, then TpT, =Ty and TyTp= Toq-

Proof: (6)///

The converse of this préﬁdéiﬁion is also true (3) but

will not be needed in what follows.

The next result is used tﬁjéhﬁw that ¥ is an isometry.

Proposition 1.3: If ¢ is a fﬁﬁg?iéﬁ_in I”(T) such that Ty

is invertible, then ¢ is inveftiﬁiéﬁih L=(T).

Proof: see (6)//

4s a corollary one can obtain the spectral inclusion

theorem, where R(f) is the essential range of £ and Myf = ¢f.

Corollary(Hsrtman-Wintner) 3.l 'Iff¢fi§ﬁiﬁ L7(T), then

R(e)=o(Mg) Co(Ty).
Proof: see (6)///

This result enables one to completé'fhe elementary

properties of %.

Corollsary 1.5: The mapping ¥ is an isometry from L=(T)

into K(HE).

Proof: see (6}///




CHAPTER II: RATIONAL SYMBOL THCHNIGUES

Although most of what fBiiSwS'is known, there does not

seem to be sny one place where 1t all can be found.

(Duren has done work with Toeplltz operators with rationsl
symbol, (7), (8), (9), as have Clark and Morrel, (4).)
Also, the discussions yield 1n81ght into some techniaues
snd ideas which mey be used in the study of Toeplitz
operators with rationsl symbol.:; Effi

We begin our study with:

Theorem 2.1: If ¢ in L™(7T) is ratibﬁaifand I is in Ker(Ty),

then £ is also rational.

Proof: The function ¥ is in Ker (Tp) 1ff P@f O iff ¢f =g

2 -

is in the orthogonal complement of HY in L (T) ice., glz)

is analytic with g(0)= 0 or in other words'g&n)==O.
- If we take ¢(z)==%%§% where p(z) ané'q(z) are poly-
nomials with no common factor, we get %%%%f::g or ﬁf::gq.
Since p is s polynomial snd £ is in H®, pf has a valid
power series expansion in the closed unit disec. Since o
is a polynomisl and g is coanalytic, gq has s valid power

series expansion outside the closed unit disc. Putting

these together we have that pf=ga has s power series

valid in the whole plane, i.e., pf is an entire function.




Further, since ~%£—::g is gzero at infinity and pf is

entire, pf must be a polynomial and have degree less than

#

the degree of q. So if we put pf=p', we have f:mg—, a

rational function.///

This proof yields quite a lot of information concern-

ing the Ker(T¢) where ¢ is rational:

1) If ¢= ~§~ has no poles(i.e., g has no zeros) in the

open disc, then ¢ is in H® and Ker(T¢) is trivial.

2) With ¢= ~%— and = wg— es in the above proof, we have
degree p#: deg pﬁﬂcdeg g. In order for f to be in Hg,

every zero of p in the closed disc must also be a zero of

p#(

since they must cancel). Hence if the number of zeros
of p in the closed disc 1s greater than or equal to the

number of zeros of ¢ in the open disc, then Ker(Ts) will
be trivial. (The Argument Principle translates this into

¢ has positive winding number and hence Ker(Ty) is trivial.)
3) Since ﬂ#z;gq for some g coanalytic with glee) = 0, the
Z8roS of g{ i.e., poles of 9 ) outside the closed disc
become zeros of f::—%— (unless, of course, they are already
zeros of p of the same or higher order).
| L} Since f:-g*, the poies of f are among the zeros of p
(i.e., zeros of ¢) which lie outside the closed disc.

5) Since deg p" <deg q, the zeros of I can not include

gll the poles of ¢.




6} The dimension of the sﬁﬁgpaq_:generated by the functions

f corresponding to a given’@é_ the dimension of Ker(Tg),

is the number of poles of éf;n he closed disc minus the

number of zeros of ¢ which i_ n;”he closed disc( agsin

the Argument Principle couldfﬁe }eé-to phrase this as:

"dim Ker(Ts) is the negative 5£ th fﬁinding number of ¢
about the origin"}.

We now use these obserVatiq_'; }study the spectrum of

Ty where agalin ¢ 1is rational. 

8]

b .

Using the notation from théj;@””“ 2

we have ¢{z)-»= —%%%% -nz _Raﬁg_H

M be the number of zeros of qfi

3

N, be the number of zeros of p#ﬁin

disc). It is clear, but we note Mliéﬁihe number of poles

of ¢~} in D.

FEE ) M- |
£ M+ Ayo1ZH +8,% :

P-)xa
are arbltrary constants.

i:l, 2’ ...,M

(#) If N,2 M, observation 2) says: i;};g_g;r_f;-g_;ﬁ'_('_%_a) is trivial.

If M>N,, we may write  as

Al(Z“'f'\g)o * -(Z"'AM)

oo-(Z-B

f-

(Z-Bl)(Z—BZ)

)(z—BN>+1){E;(g?Bn)

N




P————
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where IBﬂ £1, i=1, 2, vy N) and n is the degree of

p-ng. N, of the arbitrary constants in the numeragtor

hgd to be chosen in such g way;_hat they cancelled the

N, zercs of p-ag which lay in D 1 e., these N, zeros }

become removable 51ngular1tles rather than poles., Further-

more, by expressing the f in thls manner we see that
M-N, is the number of generators of Ker(TQ )

We could have used the Argument Principle to get N, -M
to be the winding number of ¢ about A and hence by (6, 7.24
and 7.26, where 7.26 states: If ¢ is a continuous function
on T, then the operator T¢ is a Fredholm operator iff ¢
does not vanish and in this case the index is equal to minus
the winding number of the curve tféééd out by ¢ with respect
to the origin.) M-N, is the dimenSién of Ker(T 4.5 ). But
we would not have seen the structuré of the functions mak-
ing up Ker (T, , ).

We continue using these technigues of rational.functions
to show that if the winding number N, -M is positive, we
get N, ~M as the dimension of Ker(Tgw ). This is again,

of course, (6, 7.2L znd 7.26).

p-ag _ clz-o ) (z-«;) . (2= )

If we write ¢-xr= 3 =

(z-Fl)(z-Pg)...(z-ﬂn)

where n is deg(p-iq) and m is deg q, then




i

Zn(l-Elz)(l ﬁzz)...(l p z)
since we are working on lz[-i' wher z= =,
From this we observe that’ 1f $ A had a zero at «, g -
has a zero at %. If #-3 had a pole at g -2 has a pole

at =. In other words the zeros and poles that were in D

=}

for ¢ - correspond to zeros and poles, respectively, that
are outside D for 9-3 and the zeros and poles of ¢~ that
were outside D corrrspond to ones ;n51de D for #-». The
zeros and poles for §-x which 1a§ bﬁ T correspond to zeros
and poles, respectively, of ¢-x Wﬁiéh lie on T. Also g
zero or a pole at the origin is introduced for #-% sccord-
ing to the relative sizes of m and-n.

Now let M be the number of poles of ¢-» in D and N,
be the number of zeros of g-» in D. As in the case of @-x,

we have (3=:): If NA M, then Ker(Tﬁjz) is trivisl. Also

if M>7N,, then M-N, is the number of generators of Ker(TE:;).

We use our observetions on the shifting of zeros and
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and poles under complex chjdgatibn to get: if deg(p~nq)= n
n <deg g=m, then M= m-M and ‘m-N, and if nzm, then

M=n-M and —N-A: n-N,. In elthepcase we have 1‘71-—‘15%: N)\ ~M

(clearly we are assuming thati; isfnot in the image of T
under ¢). So if N,-M is posiﬁi&@_iit is the dimension of
Ber(T;—). We note here that we have N,= M iff both Ker(To—)

and Ker(T@ ) are trivial.

Y S
Although ¢ has no winding humbéf'about any A in the

image of T under ¢, the eXpT6881oanA-M is still defined.

N, -M can be viewed ss a generallzatlon of the winding number,

since it is the w1nd1ng numberﬁqﬁﬁmgabout any » which is

not in ¢(7).

Definition 2.2: For every X, Wé d§fihe the genersglized
winding number of ¢ about A %o bé}ﬁXfM.
Using the generalized w1nd1ng number, we can generalize

the ususl statements concerning w1nd1ng numbers to include

the points on the graph of = ratlonal functlon.

Theorem 2.3: Let ¢ in L”(7) be rational snd w, be the

generalized winding number of ¢ about x. If w, > 0, then
» is an eigenvalue of Ta'and Ker(Ta:K) has dimension w,.
If w,¢<0, then » is an eigenvalue of T? and Ker(T@_k) has

dimension -w,. If w,= 0, then » is not an eigenvalue for

Tp nor is 3 gn eigenvalue of I5.
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Proof: The result for a not on the graph of ¢(T) was shown
above, so we gssumé » is on the gravh of ¢(?). The cases
of w, > 0 and w, <0 are aslso contained in the discussions
of ¢-a and ¢-a above. We are left only with w, = O.

Put K, = card(Q—l(%)A T)., So A is on the graph of @(7)
iff Ky> 0. To say w, = 0 means N, -M=0, i.e., N,=M, and

so from (#), Ker(T ) is triviagl. If degl(p-»q)

M

PIN n<deg a
-m, we get M=m-M and N, = m-N, +K,. This last equality
follows since the K, zeros of ¢-)» on T remain K, zeros

of ¥=x on T. So we have N, = M+ K, » ¥ and hence, from (%),

Ker(Tm)' is trivial. Now if nZm we have M= n-M and

N, = n-N, + XK,. So again N, > ¥ and Ker(?ajx) is trivial.///

This theorem is known, e.g., (i), but, as beforé, we
are not aware of 2 proof which relies solely on rational
functional argrments. This concept of generalized winding .
number can, of course, only be used with rational functions.
We continue and see what other results can be proven
with rational argrments. This first lemms is well known

and we do not prove it here.

Lemma 2.li: Let 2¢D be any set with an gccumulstion point
in B, Then H2 ig generated by functions in the form

where % 1s tgken from(i.

S
1-iz
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Lemna 2.5: Tet ¢ in I°(T) be rational. Theng=-Z is

coanalytic iff deg q-= ddzfd 'egfp and all the zeros of g

are in Bb.

Proof: The function ¢ is.déanalytié iff ¢ is analytic iff

¢ has no poles in D. |

If dq( dp, ¢ would havgiér lgfét zero. 1f one zero
of g was outside D, then E'w@ﬁi@;ﬂé#g a2 pole in B, 1In
elther case ¢ would not be'éﬂéiﬁﬁi;;;

If d > d  and all the zeros of g are in D, then g has

no poles in D and hence ¢ isjcdéﬁé}jﬁic;///

The functions lEAZ can eéSiijﬁbéEShown to be eigen-

functions of Ty where ¢ is coéﬁéiﬁt;qfand so we would have

the next theorem by Lemma Z.a.'léuﬁfﬁé“prove a little more,
This exercise demonstrates rationéi?ﬁébhniques which may N

find other uses.

Theorem 2.6: Let ¢ in I7(7T) be rational and coanalytic.

The span of {f in Ker(T@_h

) : A in €f is all HO,

Proof: Ve may take (p:-gw where p and q are monic poly- |
nomials with no common factor. Put d, = deg{p-xrgq). Using
the notation of Lemma 2.5, it follows from Lemms 2.5 that

dq: dyexcept for %= 1. But we may safely ignore this one

point and take dq=-d;, i.,e., d, is conatant.
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From the discussions above, Ker(T@_k) is generated by

functions of the form

Aﬂz%zh.iz%d)
q

{z-B )...(z-Bd )
g

1

whare the Ai are arbitrary constants and the Bi are the

zeros of p-xg.

If we could guasrantee 1B1]> 1, we could choose Aersz,
A3: BB’ ceey Ag = Bd to get a generator in the form A1 .
K a a z-B

1
Then we could use a result of Ostrowski(l5, Appendix 4)

which states that the zeros of a polynomial are continuous
functions of the coefficients. The coefficients of our
polynomial p-jxq aré continuous functions of A. So putting
these together we have that Bl is continucus in A. So if
B1 is not constant we could use Lemms 2.l to get the result.
LIn fact Blis not constant, for suppose Bl is constant for
A end Ay, A # A5, then (Z-Bl) divides (p—Alq) and (z-Bl)
divides (p-kgq) which implies (szl) divides (kg—}l)q which
implies (z-Bl) divides g which implies (szl) divides

(p->g+*jq) which implies (z-B;) divides p( a contradic-

tion to the fact that p and q have no common divisors).

we now show that iBll may be taken grester then 1.
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d d -1
Take plz) = 2 P, 842 2 cast By and
D
a d -1
q(Z):‘Z B blZ - -+ .oo+bd .

Gase I) 4 =z d_= d.
q P

Since p#q, there exists sn 1 such that ai# bi'
Mpke p-ao monic by dividing by 1-i. (Recsll we are

d- ai“)\bi
The coefficient of =z is then . By proper
o 1-A

/ can be made arbitrarily large.

et

8. -ib.
choice of i, ! L =
1- A

But this coefficient is sn elementary §ymmetric polynomial
in the roots of —%E%?“’ i.e., it is the sum of products

of the roots taken i at a time. So one such product czn
be made to have modulus greafer than one. Hence one zZero
can be taken to have modulus greater than one. Since Al
is arbitrary we lose nothing by dividing the top and

A1 by a constant S - and hence we have

1-A

P=AQ 0

bottom of

what we want.

Case II) dq‘>dp.

Choose a,* 0. Then 8;=4P: | may be mede arbitrarily
-A

large and the argument of Case I) applies.///
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CHAPTER TII: DECOMPOSABILITY AND HYPERINVARIANT SUBSPACES

In this chapter, we show the main results of this thesis.
For ¢ in L™(T), ¢ anslytic in some neighborhood of T, we
show that if neither T¢ nor T¢ has gn eigenspace then Te
is strongly decomposable. As a result of this, for @ anal-
ytic in some neighborhood of T, Ty has non-trivial hyper-
invariant subspsces., Recall: The subspace M is invsriant

for the operator T iff Thné?n. The subspace? is a hyper-

invariant subspace for T if W is gn invarisnt subspace
for esch operstor which commutes with T. For more infor-
mation on invariant and hyperinvariant subspaces, see (17).
The fact that functions can be factored into'analytic
and cosnalytic parts is known for g broader class of func-
tions than we are concerned with here, e.g., see (12). 4also,
the relation between such factorizations and invertibility
explored in Propositions 3.1 and 3.2 are kﬂown, S€e, €.8.,
(19) and (20), but as in the previous chapter, the following
proposition is written and proved entirely in terms of

rational functions. Also, the proof yields insight into the

desired results for ¢ analytic in a neighborhood of 7.

Proposition 3.1: Let ¢ in L™(T) be a rational function.

Ty is invertible iff there exists a factorization @= g ¢*

with ¢', %fanalytic while ¢7, %_are coanalytic.

Proof: Suppose ¢°¢*=¢ 1is such a factorization. Using
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Proposition 1.2, it is an easy calculation to see

-1 .
T(S" :Tl TJ—_ :
¢ 9"
(Tl Tl )(TQ)::(TL T; )( Q“@f)::(Tl Tl)(T@*TQf)
cp'* a ot 7" o ¢
Ty (Ty TPT, = T) Too= T, =1 ‘
@* ¢‘ ¢
To(Ty Ty ) =TTy Ty )= (T g0 ) (1) Ty )
@t g A ot ¢ |
(TﬁTTl )T:L:-T@_T1 rTl =I.

I T -
Gonversely, let T, be invertible. Put ¢= E, where p

and q are ‘polynomials with no common factors. Theﬂ Bj
Proposition 1.3, we have that ¢ has no zeros or poles?q
T and from observation 6), page 10, we have that the ﬁﬁ@ber
of zeros of ¢ in D is equal to the number of poles of: é;

in D. So ¢ msy be written:

o = g::a(z-al)...(z-an)(z-bl)...(z-bm) !{
(Z“Cl)-vt(z-cn)(z-dl)o.O(Z“dk) E
where a is a constant; a3t « 1, egp <1 for i=1, ..., n;gﬁ; é

bl » 1, 51, ouy mp fagf> 1, 121, ..., k.

Put (ﬁ(z): a(z~b1)...(z—bm) and

(z-d ...(z~dk)

1)
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@%Z): (z—al)...(Z~an)

(z—cl)...(z~cn)

Clearly g¢' and %,are analytic. That 4 ana %}

are coanalytic follows from Lemma 2.5.///

For notational convenience, we put ¢(z)-a= @

{(z}, » in €,

+ -
Por @, €,(z), and ¢.(z) defined according to the con-

structions in the above proof, we have the following obser-

vations. By the Ostrowski result, (15), we know the zeros
of a polynomial are continuous functions of the coefficients
and so the zeros of our rational @,(z) are continucus in A.
Since the zeros of ¢,(2z) and ¢ (z) are the zeros of p.(z),
they are continuous in 2. 1In particulsr, if L is a line
segment which meets ¢(T) only in {h;}, and @,(z) is invert-
ible for every X on L, 2+ Ny then hoth tﬁhand ¢ have one
sided limits at Ao elong L. We can speak only of one sided
limits even if L passes through >b’ for the internal make- .
up of ¢, and @ may be entirely different on the two sides
- of Ao+ But we can see that both )¢§(zﬂ and ]@;(ZH
are bounded above as ANy along L, for every z in 1, and
these bounds may be taken independent of A on L~{}é}.
The following proposition is again well known but we
include a proof both for completeness and our lster

convenience.

Proposition 3.2: Let ¢ in L”(T) have an absolutely con-

vergent rourier series. T¢ is invertible iff there exists
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i

a factorization g¢= ¢ ¢ with @Z %;analytic while ¢,

are cocanalytic.

Proof: If @ ¢-¢ is such a factorization then as in the

proof of Proposition 3.1, T¢_l: T, T. .

=

iR
¢ :

So suppose Ty is invertible. Then (6, Chap. 7) ¢ does
not vanish and the winding number of ¢ is zero. Hence ¢ (7T)
can be continuously deformed to a point without crossing
the origin.

Let J be the commutative Banach Algebra of C-valued
functions on T which have absolutely convergent Fourier
series. Then (6, 2.15) exp(W)= G,, where G is the group
of invertible elements in W and GO is the connscted com-
ponent in G which contains the identity. The above para-
graph says that ¢ is in GO; and so can be expressed as

¢ = ew where ¥ has an absolutely convergent Fourier series,
J

o 1t o=,
i.e., w-= ZZ, anzn, where 7= e~ s, and ZE: janléoa.
: oo n=-o
o -1
We take ¥, = Zf anzn and ¥ = Z anzn and define
n-=2o0 e

¥ )
g = e and @ =e¢ .

Since &% is entire, it i1s clear that @+and %+ are anal-

ytic while ¢ and i_ are coanalytic.///
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For ¢ with absolutely convergent Fourier series,

Y(z,») . . .
(z,2) is continuous in N at each Ny e

0r(2)= 9 (2)-n= e
would like both @; and cﬁ‘also to be continuous in » ab
each N This 1s the case and is not too difficult to see
since we arse assured that ¢ is non-zero for all A involved:

v says that y(a)=log(®,) and log can be

Since ¢, = e
taken to be a well-defined continuous function in a neigh- ‘
borhood of @, , we have that ¥(a) is continuous in » af Mg
we then note that Y, (%) and Y ()) are projections of ¢ (x)
into the analytic and coanalytic subalgebras of the Wiener
algebra and so are also continuous in A, Putting these
together, we have it. (This could also have been argued
using (12, Lemma 5.1.)

We note here that in these factorizations @ is one
at infinity. Ffrom this we get uniggenes;_of the factor-

1 2

- 4 - :
ization: if §= @; @l =¢E ¢E then rE = a:— which must
F 2 1 -

is an entire function which

be constantly one since @E
;s one at infinity. That is ®1= @; and @ia:@; .

| To get our main results, we use certain growth condi-
tions (16), (17}, on the resolvents near the spectra of
our operators. In order to get these conditions we nesd
to know certain geometric properties of the spectrum.

One involves the next definition.

Definition 3.3: A smooth Jordan arc is a one-to-one func-
2
d

tion z{t)= x{(t) + iy{t) from (0,1) into € such that __._.2.
dt




exists everywhere in (0,1). If T is a bounded linear

operator, then ¢{T) contains an exposed arc J if there
exists an open disc M with MAT(T)= J is a smooth Jordan 3

arc.

For ¢ analytic in some neighborhocd of 7, for which
neither Ty nor Ty have eigenspaces, we need not only that
fhe graph of ¢, i.e., @(T),'contains such an exposed arc
but also that i1t have only a finite number of isolated
points of self-intersection (i.e., points where the grasph
actually crosses itself of crossing points). Non-trivial i
arcs of the graph which are traced several times are not
included in- this set, of course.

We show that the graph, ¢ (T), has only a finite number
of loops, twists and turns by looking at the points where
the graph changes concavity. Changes in concavity occur
only when E%%% attains a local maximum or minimum (infin-

+ 1ty and minus infinity are included in this set of maxima

and minima, i.e., the zero-points of u(t)), where

@'(eit): —%% = u{t) +iv{t). Since the functions u and v

are real analytic, neither can be zero more than a finite
number of times unless the graph, @(T), consists of a hor-
izontal or verticai line segment or a point. Avoiding these
trivial ¢, we may assume that the number of zeros of u(t)

is finite, Similarly, for non-trivial ¢, the zero sets "
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of v'(t) and u'(t) are also finite. Hence, by elementary

. ‘. v{t)
calculus, we see that the local maxima and minima of wET

occur only when uv'!=u'tv, i.e., by avoiding the finite

vit) _v'(t)
ult) “ur(t)

! H
equality means that the functions %~ and j%l are real
@ -

This last

sets of zeros of these functions,

L)

at the points corresponding to the local maxima and minims

of T (@1 (®)=w rivizut(laiZ) = w11 D)s Bu + 1))
i |

1

¢

can be defined as an analytic function in a closed neigh-

_‘uY(t) ' . . !
= o) ¢ (¢)). Since one of the functions ﬁ%T or

borhcod of each point, neither function can be real for

an infinity of points without being real for all.t. Further,

t

@
is 2 straight line on this segment. From all this, we

t 1t
if ﬁTT or £~ is real for s segment, then the graph of

conclude that there can be only a finite number of changes
in the concavity of the graph, @(7). - N
For ¢ analytic in a neighborhood of ¥, the graph, ¢(7),
is well behaved: it has only a finite number of crossing
peints and, of course, has exposed arcs.
Ae now use the factors obtained in the proof of Prop-

osition 3.2 to get growth conditions on the resolvent of

T? in the case where neither T? nor T@ has eigenspaces, i.e.,
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where E{T¢) consists precisely of the set ¢(T).

Lemma 3.L: Let T¢ be such that neither Ty nor T¢ has an
eigenspace, ¢ in >(n), analytic in a nelghborhood of T,
For each point ) of v{Ty) which is not a cusp point (a

point where the derivative of ¢ vanishes) or an isolated

point of self-intersection of the graph {(i.e., a point

that has a neighboritood which intersects T(T?) in an ex-
posed arc C) and each closed line segment L which meets
o(Ty) only in{ )} and which is not tangent to o(Ty) at

No? there exists a constant K such that
-1 -2
for all » on L other than Mo *
Proof: Take » in L with x#xo, so that Tq\ is invertible .
{ here as before @,(z)=@(z)-2). Since ¢ is analytic in

a neighborhood of T, ¢ has an absolutely convergent Fourier

: f
series and so from Proposition 3.2, ¢, can be factored |
! 1‘

into analytic and ccanalytic parts:




1 1
_ = 1= =X
= = s Q\I wl[ @.ILO
NN @ ,
The next step is to show || anallX |
CP) oo Cﬂl e

”6h§fant multiple of }|

1
ol

where the constant is indépenden_fbf M. VWe begin by

] ] e . 1
noting for each flxed.h,_gg f ?pg functions LﬂKETI’

¢.(z)

, and l ! is continuous in z on the compact

1
O (=)

} @;?23)/ :” :;TH&

We assume, for the time be{ng; ﬁhat there are positive

constants %;and %, such that fQ;(g)Id %+ and

| @;(z)léi L ror a1l ain L-fA&}-éﬁd'z in . In other

m-
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words,
1 X !zm'*?omdi |y m> 0 for all » in L-{) 1, ﬁ
+ - O 1
¢, (z) ¢, (z)
|
z in 7.

Given these constants, we continue

‘m-, 1,. = m” +1 £ _l {_1 - 1 4
I % ”’“’ ‘Px(zz)f ’ @’,\(22), | ‘P,x(zz)! l fp.\(z?_)}

12l teo ] 2ol ]| or o, 1o
A\ pS A

In g similar manner we get

1 1 | ,

el 11 e s
Putting these last two inequalities together
1 1] 1 1

““C‘P?”“' ” _Ep?”wé memt 1 0,

From here the proof follows egsily:

| 2

for all )V#xb in L.

Let the line segment L make the non-zero angle o with
the tangent at Ao'

If o= %m, put J(x) = | _@jz}” - [}\'_]_;\ 1 J () is
Q

continuous in » on L-{AS} and from elementary calculus

J(x)—=0 as A= along L. 8o J is bounded on L—f%o} while




|
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We can surely

i l has a minimum at one end of L.
A =X\
e
find some constant K, with Kl\ z 1 \+ T =
NE AR
” 1 “m for all » on L-fhcgi . Hence
¢ (z) X
.2 2 2 -2 K
L ” L ” . | = K[n-n| with K= — .
mmt Q, Voo™ -t A =N mm

if o+ W, we may take o acube and

1
6" ,
— - lcsc 5 3 a‘l())l or
N-ng |
e
1 2 |
\\ "(5‘(\- m:. csce + 31(3\)\ [,\—}\O] where 51(7\)—?0 as a2,

along L. We may take 51(7\) conbinucus on L-f,\o’f , so we have
a constant Kl with

it bounded on L, and hance We can find

x in L.

)
K, 2 |esc% +51(7\),




1

m

Note that if @ were rational, the discussion follo

Proposition 3.1 would insure the existence of such bo

We use the bounds for rational @ to guarantee such
for p analytic in a neighborhood N of T.

Without loss of generality, we may take Qul(xo\
@dl(xo)/\T. We note, this set must necessarily be fini;g

since the Ao—points of a non-constant analytic function

may not cluster and any infinite subset of a compact setffﬁ;t

always clusters, Hence, we may put ¢-1(RO)H ?:—{al, a

s s 03 am'}.

From well known properties of analytic functions, e.g.,
n

) 1

2’

(1), ¢ can be expressed in the form pl{z)= (z-a

LI A ]

1

n
(z-am) m@l(z)+ A, for some n

17 Do eesy O where @l(z) is




analytic and non-zero in N,

Choose Rl’ a positive constant, small enough to assure
. n n
I(z~a ) 1...(2*3 ) m]R L légl for each z in T, This can
1 sl 1 o
n n,

be done since (z~a1) 1...(z—am) M 55 continuous and its

image of T is aubsequently compact { in particular, bounded).
n

-
43(2)

winding number about the origin. That such an integer exists

Also choose n, an integer, such that hés Zero

follows from the fact that the winding number of a product

is the sum of the winding numbers of the factors, i.e.,

we put n equal to the negative of the winding number of (% .
1
By I n
Put R(z) = (z—al) ...(z~am) Rlz 4 ko'
n n
1 m n
Then R(Z)"%o - (Z-al) -..(Z—am) RlZ and a0 has

h n
@ (z)=xg (z-ay) 1...(Z—am)nm@1(2)

removable singularities at the points Byseees 8. Hence,

n
we may take RAO(Z) RlZ . Hence, Rko is non-

@ﬁo(z) 4&(2) @ko

zero with zero Winding number about the origin, so it can

be factored into analytic and coanalytic parts.
R, (z)

The quotient
¢(z)

is continuous in » gt ko’ Z‘?&l,

a sees B From the uniqueness of the factorization, we

2’




1 ) ~ ] o
have ( R“) = —B% and. ( R“):- Ri . From the disecus- -
4. 4, N d;
+ -
sion on the continuity of factors, we have ﬂf and (?f
A A

are continuous in » at P s i.e.,

Ry(z)  Ra (2)

{ non-zero, well defined for ZF8ys seey 8 )

= m
9.} *

» (2z) 0?7\ (z)

O -
Ri(z) (%)

and — —- ( non-zero, well defined for ay ay,
Q;\(Z) (ﬁ)\ (Z)
o

855 sues am). Note, these factors are continuous zs
quotients even though the individual functions R: (z),
Ry (z),fp;(z), and ¢, (z) may not even be defined at Mot
Ry

¢y

from zero and infinity for A in L, i.e., there are, in

+
iy
Hence,/ N /and ;

are both uniformly bounded away

+
partlcular, constants k, and k_ with ‘ Ry L3k+‘70 and
N 4
A L s 1 & i +
. Yk_>0 for arin L, Hence, = {R’'| 2z | ¢ and
‘@{} ? kJ L! I » \

%JR;] 2 ]@;-‘ for » in L. 3ince iR;] and |R, | are

uniformly bounded on L, it is now clear that [t&*] and

| &;) are also uniformly bounded on L.///

We now follow a geries of arguments close to those in

(16). Ve begin by defining, for a closed subset F of the




XS(F): {X inY : (Z-S)_lx has aﬁ”éng

bo the complement of F in the comple

The operator 5 is said to haﬁé t@ﬂ
tension property if xz{z) is an anaiét
open subset of the plane into Y_with?(z S
x{z)=0. It is shown in (5) that if S:ﬁé
ued extension property and XS(F) is cloég
a maximal spectral subspace of 5, i.e., Xg(F

jant subspace of S and if M is another invap;g“

of S with the property that «(3{M) < w(slxs(F)
Moreover, Xg(F) is a hyperinvariant subspaceaéf:
A(51%,(F)) S~ (S)NF.

Tn the following, J is a piecewise smooth 61§s

ifiable curve with at most a finite number of isolabe

intersections, T is a bounded linear operator on the

_Banach space %, and ~(T) < J.

Lemma 3.5: Let KT(F) pe closed for any closed connecﬁéd:
subset F of J. Let F; and F, be two disjoint closed sub¥;7
sets of the plane. Then XT(FI), XT(Fg) are closed and

KT(FlanE): XT(FI)Q.XT(FZ),

Proof: Since every closed subset of J is the intersection

of a countable set of closed connected subsets of J, it
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follows that KT(F): KT(F/\J) is closed for =21l closed sub-
sets F of the plane. Therefore KT(FluZF2) is closed and
thus by (2, Prop. 1.2.3) we have

Kn(FyV Fo) = X (F )@ X (F) L ///

Lemma 3.6: Let T be a bounded linear operator defined on
some Banach spacedx.' Let I be a closed subset of €. Assume
T has the single wvalued éxtension property and Kg(F) is
closed. Thencr(T)?c?(Tle(F))L)?(%F) where TF denotes the
operator induced on the quotient‘Z/Xw(F) by T. Moreover,
¢(TF) cannot be the disjoint union of two non-empty sets

E. and E

1 with B

2 .

<
1<
Proof: This is (16, Lemma 2).///

Provosition 3,7: Assume that for any closed connected sub-

set ¥ of J

1.) KT(F) is closed and

2.) v(wa < J-F where TF denotes the operator induced
on K/XT(F) by T.

Let Fl and F2 be two closed connected subsets of J
with the property that Fllee contains no isolated point.

F,).

Then KT(FlLJF )= KT(Fl)i'KT( 5

2

Proof: This is (16, Prop. 1) with closed subarcs replaced

by c¢losed connected subsets and J a smooth Jordan curve

replaced with our definition of J. The proof of (16, Prop. 1)




still holds.///
Now by induction we have:

Corollary 3.8: Let T be an in Proposition 3.7. Let P.,

[

j=1, 2, ««+, n , be n closed connected subsets of J with
the property that Fif\Fj contains no isolated point for all

i, j. Then XT(L}Fj)::E:XT(Fj).

Definition 3.9: An operator T is called decompozable irf,

for every finite open covering Gi( i=1, 2, +i., n) of (7},
there exists a set of maximal spectral subspaces Yi of T
such that

(1) V(Tiyi)s @i, i=1, 2, ..., n, and

(2) K=Y, + ¥ +...+Y .

Moreover, T 1s called strongly decomposable. if its

restriction to an arbitrary maximal spectral subspace is

again decomposable.

Theorem 3.10: Let T be as in Proposition 3.7. Then T is

decomposable.

Proof: The proof is the same as the proof of {16, Thm. 1)

with the obvious changes that take place when arc is re-

placed with connected subset.///




The proof of the foiléw 7 emma ig a reworking of the

proof of {17, Thm. 6.3).

Lemma 3.11: Let T, be the Toeplitz operator with symbol

¢ in I (T), ¢ analytic in é;ﬁéighborhéd&fof T where neither

T, nor Ty has an eigenspace, i.,e

closed connected subset 7

1.) X, (F) is closed, anf -
¢ Ll e
2.) XA, (¥F)#{0}, where T is such that

(F contains more than one point.)

Proof: We first show that X, (F):iﬁididsed
¢ bt

Let {x_{ in X

(F) be such that'xf;;
B Rn(“) denote the analytic continuatidnfof cT;
gl Bl

the complement of F. To prove that RX(R)= (T

analytic continuation to the complement of F;'iﬁ?sﬁﬁfiéégfff

to show that R, has an analytic continuation to tﬂéféam} ¥ﬁf{r
plement of G for each oven connected subset G of J sucﬁiﬁ;
that G 2 F. We may take without loss of generszlity that

none of the endpoints of G are cusps or isolated points of

self-intersection ( there are only a finite number of such

points).
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The number of lines intersecting at any one point is
finite and the number of isolated self-intersections is

finite, so G will have a finite number of endpoints. Sup-

I~ -

pose G has endpoints z;, 2z,, ..., 2z, where Re(zl}ffRe(z2)

£ ...fﬁBe(zn), we construct a simple closed Jordan polygon
ri(G) intersecting J only at Zas TBos weey Zy by beginning
with the angles at Zj determined by the rays through Zj

T

making angles of 6 with the tangent at Zj in the direc-

tion of F, 3=1, ..., n. Then connect these angles by
line segments not intersecting G, getting a polygon as

was done in the figure,

Let fé(G) be the union of f:(G) end any fired circle I
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containing J and FE(G) in its interior. Let K be the open

annuluz-like region whose boundary is r;(G).

Define the funection m by

) Abll i ubgl Iy hbnl =L
eXp| -€e B=Zq -e z2-7, —eee=6 (z~2z_)
- n
m(z) =
0
for z % Z1s Zos vess 2y and for Z = %9y Bny eses 2,y TESpEC-

tively, where bi is the angle the tangent at Zs s in the
direction of F, makes with the positinve real axes,

It follows from the choice of angles of fi(G) at =z 7

12 72’

»ees 2z, that m(z) is continuous on X. Thus m(z)Rn(z) is
analytic on K and continuous on K. We show that the sequence
ﬁn(z)ﬁn(z)} converges to an analytic function on K. For z

in K,

m(z)R_ (2)-m(2)R_(z)] ¢ 3232(G)Ilm(w)(Rn(W)-Rm(W))”.

pj the maximum modulus principle. Let L denote one of the
line segments of f;(G) with z, ag an endpoint. Then, by
the growth conditions on the resolvent of T , for w in L,
WF 2y, WE have

Hm(w) (B_(0)-B_(u))lf = [ m(w) 752 (x x )

b -l bt L
v ll(w-zl) 4-...—e nl(w-z )+

¢ = - }exp{;e 0

-2
k iw—-zl] } l
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~lyp i Ay -2
£ f|x =x || N exp{Re(ne Clw-zg) 4 k[w*zll )z,
-Ub 1 -l Lo i -l
where N = sup lexp{-e g(w—zz) o= Muw-z_) }/.
w in L n
-iby1 it
Since w and z, are on L, e (w-zl)tzlw—zlle , where
: . s T -bo,1 -4
.t is either 15 °F Tig* It follows that exp{Re(—e (w-zl) +

-2
k{w-zl{ )} igs bounded on L. Thus for w in L

lm{w) (R o) =R GOIL 2 My 1= -x b

for some constant Ml'

In exactly the same manner it can be shown that there

.

g 17575

for all w on the line segments of r;(G} through 255 g2,

exist constants Mj such that Hm(w)(Rn(w)—Rm(w))Hé M

3, «.., n, respectively. Since a similar assertion is :
cbviously true for the line segments of IE(G) wnich do nég
meet any of Zys Zos eees By it follows that the sequendéi
gm(z)Rn(zg is a uniform Czuchy sequence on K. AHence,ﬁtHii

sequence converges uniformly to some function s(z) anaiﬁ

on K and continuous on XK.

For each z in p(Ty), (m(2)) " m(2)R (z)= 11 x and
, -1 p—1 . s{z)
thus (m{z)) S(Z)‘tT@—zX' Hence, the function ala7y 1

1

an analytic continuation of T .~ x to the complement of G.

For each G, then, T;

complement of G, and it follows that T;EZX has an analytic -

continuation to the complement of F,  Thus x is in X

EZX can be anslybically continued tofﬁhéﬁfl:::

T




It remains to show that XT (F)#:{O}.
@

It is an easy result (5, 1-1.2) that Fl_ F2‘>XT(F1)_.AT(?21 -

We may take a closed connected subset F

, of F which is

a 02~Jordan arc, then use the proof of (17, Thm. 6.3) %o

get X, (F.)# {0} and hence e (F)# {0}. Or we could rollow
?

T 1
q ,
the last part of the proof of (16, Lemma 3).///

Now the main theorem,

Theorem 3,12: Let ¢ in L*¥(7?) be analytic in a neighborhood

of T, where neither Tq nor T@ has an eigenspace. Then T,

is strongly decomposable.

Proof: In view of Lemmas 3,5 and 3.10, XT (F) is a closed
¢
invariant subsapace of T¢ for all closed subsets P of €.

Therefore v(T[XT (F))= J and thus TIXT (F) also satisfies

the growth condizions of Lemma 3.l.. Hjnce, it suffices to
show that such an operator is decomposable,

We observe that in the previous lemma the spectrum
did not have to fill all of J, it had only %o be contained
in it., In light of this, Theorem 3.11 and Lemms 3.12,
)

we need only show that T(TQ £ J-F for all closed connected

subsets F of J, whers Tq,F denotes the operator induced

on H2/KT (F) by TQ. To do this we follow the proof of
¢
(16, Thm., 2).///
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Now we hsave another msin result.

Corollary 3.13: For ¢ in L7(%), ¢ snalytic in a neigh-

borhood of T, ¢ non-constant, Ty has a non-trivisl hyper-

invariant subspace.

Proof: 1If either Ty or Ty has an eigenvalue, we are
finighed since én eilgenspace for either of these operators
ia such a hyperinvariant subspace.

If neither T, nor Ty has an eigenvalue, then Ty is

strongly decomposable. Hence, by (5, 1-3.2), T, has many

hyperinvariant subspaces.///




CEAPTER IV: PROGRESS REPORT

To demonstrate the ideaéféndffébhniques involved we

discuss examples. The orlglnal 1dea was to solve the
problem of spanning of elgenfunctlons for a specific
example, then expand this solutlon 1nto one which would
be valid for all raitional functlons or at least the quad-

ratic ones.

We start by looking at @(Z);

coanalytlc by Lemma 2.5, so its elgenfunctlons Span all H2

In particular, Ker(T@_\) is generated by functlons in the
form &EJEE———q s Where A and B are arbltrary constants.
~AZ 3 Z-=A

The graph, ¢ (T), looks like

where the arrow indicates the natural ordering induced

by that of T. We look closeilyat the geometry, the posi-
tion of the roots of -xz2+ z-4y, Lo see its relation to

the Ker(T¢_x) and its generators. Area 1 consists of those

N for which both roots of —xz2+ z-% lie outside D, Hence,

Ker(Tw_x) has two generators here., Area 2 consists of

those N for which one root of —Ang 7z=-¢ lieg in D and the
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otherroutside P, Hers one afbitrary cohstant is used to
compensate for the inside root and there is only one gen-
erator of Ker(Tw_x). Apea 3 consists of thogse » for which
both roots of -xza+ -4 lie in D. Here, of coursée,

Ker (T

$ -
_one root 13 on T.

) is trivisl. If > is on the graph, then at least

In general, if 4 = Eiél, the position of the roots

alz)
of p-\q ia related to ™ and the number of generators of
Ker(T, ) in a similar way. We would 1ike to somehow
take advantage of this knowledge to find thé spanning
characteristics of eigenfunctions for those ¢ which are
not analytic nor coanalytic. Techniques derived from these
type of observations, helped Clark and Morrel (L) show
the spanning of éigenfunctions for certsain rational ¢
which have for grapns, simple closed curves. |

we now look at ¢ = z - % , and note that if we could .

z- f

solve the problem for this function, wWe would be able to

solve it for all quadratic rational functions. We have

¢ (z)n=2 LR LA Ker(TQ_}) ig generated by funcbions

z- ¢
Cq ¢
of the form 5 - 1 with a1, |8l > 1,
252z -ka (z-8)(z-B)
G. an erbitrary constant.

1

Tt turns out that functions which are nerpendiculal ke,
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S or by renaming

(1.) zf{z) = _; = ' { 1 ﬁ_;fWith

l—éz

both lzf and /
f -2

}less thenﬂdﬁé;
the intersection of D with the interio

xf- ¢ with radius J%=€!

tered at —m—— —5
RIc-ipl 2 L

¢

and it consists of the intersection dfﬂﬁf.

of the above civele if [« 7181, :
pl1-gz)

l-iz +(A?ff§}

We have Ker(TET;) generasted by

Cz(l—ﬁz)

with J¢f, Dl <1 and C

, an arbitrary const
(1-Cz)(1-Dz) - fone

Functions which are perpendicular to Ker{(T—r) for'éVefﬁfT"

P~
are of the form (Go-x)£{T) = (D°-4)£(D) or by renaming
(02-)1(C) = (D2-w)f(D) with B=%.f op DB 5.6,
C+D c- f

(2.)  (z2-0)r(z)= ( ( £225)2 0p( £222)
z- f 7z - f

——:—} less than one.

on the set of z with both (z{ and }
Z-




Ly

This set consists of the intersection of P with the ex-

terior of the circle centered at E:Jiig with radius
: 1- /]

; ,'3_!

[ -6

1- jpic

If the above circles intersect T, they intersect it
2t the same points., They seem to intersect T iff the graph
of 4 is a figure eight. If (®1=1 and Re(f)= Re(«f), then
both circles coincide with T,. indicating that no A has a
non~zero winding number., Further, it seems that the g
which have stréight line segments as graphs are of the form
gf(z) = z-az where (A= 1.

' The most promising fact is that 211 the functions in
the orthogonal complement of the span of the eigenfunctions
of T, and Tz must satisfy both functionsl relations (1.)
and (2.}, If we could show that ¢ =0 was the only function
in HZ which could satisfy both (1.) and (2.), we, of
course, would be finished. Although we can not yet do this,
we can show that no rational function can satisfy both
and , in fact, no non-zerc function which is in 7 and
continuous oh T can satisfy both conditions simultaneously.

We look in debail at the slightly less general ¢ = — ,
7-f
i.e., we ave setbing 4=0. For this case, if [f|< 5 ,

the graph is a simple closed curve, while if ’s <[fl«1,

the graph is a figure eight. Also, the functional relations
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(1.) and (2.) become, respectively,

(1) zela): 22fze( 22f2 ) on mnfa {?‘72/5 1 f

i

fz

2

fz

i l}o
z2-

If [fl<), then the set on which (1!) is defined is

f
(21) 2°r(z) = { EE? )21 ( ) on Df\fz:r
-

empty and (2') is defined in the exterior of EE;JT inter-
z-f

sected with D{ see figure)

T
f}\
c T
We define - .
(2): 21 (z) - lzt« 1
TET) (222 L2 2] 2 1.
z-f - f

Since fz is analytic outside D and .f is analytic im B,
7, -

w(z) is a well defined entire function. Further w{z) is
bounded at infinity, and so by Liouville's Theorem, w(z)
is constant. But w(0) =0, hence, w(z) £ 0, hence, f(z)Z 0.
From here we conclude that for 6] < 3, the eigenfunctions

of T, and TQ span all of Hg, since the orthogonal comple-

ment of the svan consists of the zero function alone.




Although at present we do not know what happeﬁé Wh
!ﬁ/> 33, several interesting questions arise from knoﬁing

what occurs when /Mz ., One of the more interesating oﬁég_

is: 1f H2 is generated by functions of the form -
1-2z fgr g

for A in some domain and {#/< %, why is H® not generated
by the same type of functions for [/ 7> %? The case where
g1 = *% leads to even more guestions.

Let's look still closer at (1') and (2'). If we define

Alz) = fz and B(z) -~ l%jﬁ
z-f ¢

, then A and B are Mobius trans-

formations which are both inverses for themselves, i.e.,
AeA{z) = z and BeB(z)=z. For % <[f/< 1, we look at the

image of T under A and B.

T LR

= A (T

put {7z in D: 2z in B ARUB(DNG, Let 4 be the
Carleson measure( for definition and properties see (10))
induced on D by arclength measure onl . Further, let I,
be the mapping of HZ(T) into LZ(B,q) defined by I,f=f, i.e.,

simply ildentifying the elements of 7e ag elements of Lz(m,q).

A very interesting property of this Iq is that it is isometric




functions.




(3)

(L)

(%)

: L8
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