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Abstract of the Dissertation
AUTOMORPHISHMS OF THE DEFORMATION SPACE OF A KLEINIAN GROUP
: by
James A. Gentilesco
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

May, 1977

One of the main objectives of fhis dlssertation is to
detérmine the biholomorphic automorphisms of the Deformation
space of a (finitely generated) Kleinian group G, dénoted
T(G;Q); It has been proven that the universal holomorphic
covering space of T(G;Q) is a crogs-product of Teichmiller
spaces of Puchsian groups, that is, of the form
T(fl)_x...x T(r,), where the T'y, 1 = i = n, are Fuchsian.
Hence we approach the problem by first detefmining the
piholomorphic automorphisms of cross?products of Teichmiiller
épaces and then to study the covering mapping; It should be
' pointed out here; that under certain conditicns on G: namely
the components of G being simply connected, the covering
mapping is actually biholomorphic so that the Deformation
gpace T(Gk})‘is (viholomorphically equivalent to) a cross-

product of Teichmiiller spaces.

i,




iv.

We approach -the problem of determining the biholomorphic
automorphisms of a cross-product of-Teichmﬂller spaces by
characterizing the mapping induced on the cotangent space by
an arbitrary biholomorphic automorphism of the cross-product
and apply results of Boydén In the process we discover
properties of T(G O) as well as prove theorems interesting in
their own right. 1In particular, we prove that T({G,Q} is not
a homogeneous space in general. .

The other objective is to describe biholomorphic mappings
between Deformation spaces. To bhis end, we study biholomor-
‘phic mappings between cross-products of Teichmiller spaces
where the number of factors in each product 1s possibly
different; Via the cotangent space approach, we prove that
in general there do not exist biholomorphic mappings between
cross-products of Teichmiller spaces with a different number
of factors. As a special casé, it follows that a cross-
product of non-trivial Teichmiller Spaces 1is never a Teichmiiller
space. We conclude from the above that in general a biholomor-
phic mapping between Deformation spaces implies that the
number of inequivalent componenﬁs of each Kleinian group is

in one-to-one correspondence. We‘study properties of these

biholomorphic mappings between Beformation spaces.
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CHAPTER O

INTRODUCTION

Assuming the knowledge of the concept of a Riemann
surface, originally conceived by Riemann as an object on
which multi-valued complex functionsin the complex plane

could be represented as singleﬂvalued,la natural question

to agk ig the following: When are two Riemann surfaces of

the same topological type conformally equivalent? The

answer to the special case where the surface is compact and

of genus one, that is, a torus, is classically known. The

answer to the genceral case is, however, evasive. To study
this question and, in general, a wide variety of questions
relating to the collection of all Riemann surfaces of a

given topological type, the notion of Teichmilller space arose.

A point in Teichmflller space in an equivalence class of

Riemann surfaces, and a remarkable and attractive fact,; among
other things, is that this object is naturally a complex
manifold. Since its conception by 0. Teichmilller, many
prominent mathematicians — including those appearing in the

ackﬁowledgements and bibliography, haﬁe spent years of their

lives developing this and related concepts to its present
beautifui existence.

In recent yéars, a more general object called the
:Deformation space of a Kleinian group was created, in which

the Teichmiller space is a very special case. Loosely




speaking, one may think of the Deformatipn space as the
analogue of the Teichmiiller space of a union of Riemann
gurfaces, once one is familiar with the fact that certain
collections of Riemann surfaces are obtainable via the action
of certain subgroﬁps of the group of conformal automorphisms,
called Kleinian groups, operating on the extended Complex
plane. The Deformation space also has the attractive property
of being naturally a complex manifold.

My objective in this paper is to classify the biholomor-
phic automorphisms of the Deformation space of a Kleinian
group and more generally the biholomorphic mappings between
Deformation spaces. In the process, I havé proven some lemmas
interesting in their own right, as well as discovering proper-
ties of these spaces. I have structured and included those
items in this paper which I felt were needed to unify the
subject as a whole -~ a need, wﬁich I feel, is strongly lacking
at present,

I sincerely hope that this paper stirs up the curiosity

and interest of the reader, as has the entire subject to the

author,




CHAPTER I
THE TEICHMﬁLLER SPACE OF A RIEMANN SURFACE
AND ITS MODULAR GROUP

§1. Riemann surfaces

A Riemann surface S is one complex dimensional complex

analybtic manifold; that is, a connected topological space

which is Hausdorff, togethef with a collection of objects

¢ = {(Ua’za)}aEI’ where the U, are open subsets of § whose
union is § and to each U, is assigned a homeomorphism

Zo 5 Uy = C onto an open subset of the complex plane with

the following property: if U, N UB f ¢ then the function

zsoz;l : za(UaﬂUg) - ZB(UaﬂUB) is'hqlomorphic. More cbrrectly,

the collection C = {(Ua,za)}ael is required to be maximal,
that is, if an arbitrary pair (U,z), U an open subset of S,

z + U- C a homeomorphism, has the property that ZaoZTl and

Zoz;l are holomorphic whenever defined, o« € I, then one
requires that (U,z) € C, However, the existence of a maximal
collection, given any collection with the ébove properties,
folldws-from Zorn's lemma [27]. |

A holomorphic function f on S is a continuous mapping

f ¢+ 3 -~ C such that for each (Uu’za) from S,

flU ozgl : Za(Ua) = G is holomorphic in the usual sense,
Let S' be another Riemann surface with collection

Cr = {(VS’WB)}5€J° More generally, a continuous mapping

f: S5~ 3" between two Riemann surfaces is said to be




be

holomorphic if for (Ua,za) from S, (VB,WB) from 8', the func—
tion wﬁofluaoz;l t 24 (U,Nt7H(Vg)) = s1y(Vy) is holomorphic in

the usual sense. A holomorphic function is said to be

conformal if it is bijective [27].




§2; Covering space theory

Let 8 be a Riemann surface., The Uniformization theorem

for Riemann surfaces states that the holomorphic universal
covéring space of S is eilther the Riemann sphere 8, the
complex plane C, or the upper half plane U [27]. Let X
denote any of these possibilities and X 5 5 the holomorphic
covering mappihg, Let G be the group (perhaps trivial) of
deck transformations, that‘is, the group of conformal homeo-
morphisms h E X ™ X with the property that v°h = 7.% The
general theory of covering spaces then ilmplies that S = X/G
(= conformal equivalence) and the fundamental group T1(S) is

isomorphic to the fixed point free group G [27 ]. The Riemann

A A
surface corresponding to X = C is C, those corresponding to

X = C are ¢, C-{0}, and the tori. All other Riemanu surfaces
“have X = U; It X = U; then G is classically called a Egghéigﬁ
group and will be denobed by T . | | |
7 More generally one can define a Riemann surface S with
distinguished points. This 1s a Riemann surface S in the
‘usual sense in which a discrete set ?; } of points on S has

been distinguished and to each'Pi a number vy, 2 £ vy < o

has been assigned. Analogously, one has a holomorphic branched

3*

universal covering space v ¢ X = 5 of 5, that is, X is simply

’ -- . —1 1 - 3
connected, W]rest. D & (E’{Pi}) S-g'{?i} a holomorphic

* We remark that ¢ is a subgroup of M = {z - 6%$§/a,b,o,d ¢ C,
ad-be = 1}, the group of fractional linear transformations.

** There exist some exceptions; sce [21].

&




covering space of S-Q'EPi}, and over each P, € S the covering
mapping T is locally vy to one; Points P; € 5 with vy = o
correspond to punctures on 5. The group G in general 1s no
longer fixed point free and in fact the fixed points occur
precisely at those Pi for which the corresponding v, is
finite;. As before, we call G a Fuchsian group and denote

it by T if X = U [21].

n

{(P; € 8/vy < w},

Note: U{P;]
1




§3. Quasiconformal mappings

A concept which is weaker than conformal mapping and
hence more flexible is that of a quasiconformal mapping
f 3 8 8' between two Riemann surfaces. A homeomorphism

g: D~ C, Da domain in the complex plane C, is said to be

quagiconformal if g has locally square integrable generali%ed
& |
.2k <1 a.e. for

derivatives and has the property that
: g
some k., A homeomorphism £ : S = St betwaen two Riemann
surfaces is called guasiconformal if locally, that is, for

Ba,8 ™ WBOf]Uaozgl : Za(Uanfgl(Vg)) - Wﬁ(vﬁ)’ it is guasi-~

conformal in the complex plane with globally bounded k.

We remark that every conformal mapping is quasiconformal {2].
In contrast Lo conformal mappings which preserve the complex
structure (that is, the collection C = {wa’za)}aél)’ quasi-
conformal mappings in general do not. Hence, one is led t9

the study of the various complex structures one can put on a

Riemann surface 5 of a given topological type via quasiconformal

mappings.
The Teichmiiller space, denoted by T(S8), of a Riemann
surface S was,specifical}y developed for this study. With

the concepts already defined, we ﬁroceed to define the

Teichmiiller space of a Riemann surface.




$4. Teichmiller spaces
Let S be a fixed Riemann surface. From now one we will

assume that S is of finite type, that is, a compact surface

from which possibly a finite number of poinﬁs have been remoyed
agd that its universal covering-space X = U, We 1o?k at the
collection of'all guasiconformal mapaings (also called
quasiconformal deformations) f : S - St ontQ another Riemann
gurface S', We put an equivalence relationlon this col%ecti?n
‘as follows: f£ : S - S' and g : S = S" will be called equiva—
lent if there exists a conformal mapping h : 3' = 8" such

that the composite mapping g“lohof : S = 5 is homotopic to

the identity self-mapping of 8 (i.e. g Tohofmwid), Each

equivalence class, denoted by (8,£,S'), will be a point in

the Teichmilller gpace of S denoted by T(S)* [6].

One has a rather simple interpretation of the equivalence
relation in terms of the fundamental group of the deformed
surflaces as follows: One selects and fixes a set of generators
for ﬁl(S), the fundamental group of the given Riemann surface
S. DBach quasiconformal deformation f : S - S' induces an
isémorphism £, @ ﬁl(S) = m,(8') thus determining a set of
generators for the fundamental group of S', that is, the
images under f, of the chosen set of generators for ﬁl(S)a

Suppose g ¢ S = S" is another deformation with induced map

*One may analogously define T(S) for an arbitrary Riemann
surface 8, although we do not in this paper.




9.

By ¢ ﬁl(S) - ﬂl(S“) and thus determining a set of generators
for the fundamental group of S"™ in the same manner, Then
(s,f,8') ~ (3,g,38") if there exists a conformal mapping
h : 8' = 3" such that the induced mapping h, : ﬁl(S’) - ﬁl(S")
maps the generators of ﬁl(S’) determined by f, onto the
generators of.ﬂl(S") determined by g.

Tt is well-known that the TeichmBller space T(S) is a
complex analytic manifold and of finite complex dimension
- 3g~3+n, whenever 3 is of finite type, where g is the genus

of 5, the closure of S, and n is the number of deleted points.

T(S) is also contractible, hence simply connected [6].
|
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$5. The Modular group
The Modular group, denoted by Mod(S), acts as a group
of self-mappings of T(S). Each element 8 of Mod(S) is induced

|
|
|
by a quasiconformal self-mapping w : S = S as follows: i

8 1 i

It is.quite clear from the definition of T(8) that if

Wy g Wo 2 3« S are quasiconforqal and Wy is homotopic to Woy

then they'induce the same action on T(S). Hence it is sui?m
able to define Mod(S) as equivalence classes of Quasiconfcfmal
gel”—mapp}ngs of S, the equlvalence being homotopy.

A well-known fact is thﬂt Mod(S) acts as a group of
biholomorphic automorphism of T(S) [11]. Another important
fact which we will now prove is that Mod(S) acts efFectively

on T(S) if 2g+n > 4. Hence Mod(S) is not effective in only

a Tew cases.
Theorem. Mod(S) acts effectively on T(S) if 2g+n > k.

Proofs [11] OSuppose Mod(S) is not effective, that is, there

exists @ 7@2 € Mod(S8) such that el(x) = 85(x) for all

X € T(S)s Let § = 821081, hence 68(x) = x the identity self-
mapping of T(S8), yet ® is not the identity element of Mod(S) .
Hence if w ¢ S — 5 quasiconformal induces 8, we can assums

iy 76 ide

8(x) = x implies (S,fowml,S‘) = (3,f,5') for all points

(8,£,8%) € T(8). 1In particular, for the point (8,id,8) one
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has

(s,w™t,5) = (8,1d,8)

that is, there exists a conformal mapping h : S - 3 such that
. =Ll -1 . :

id Tohew l“ld or hvw. Since homotopic mappingsinduce the
same action on T(8), one can assume w : S ~ S is conformal,

Let (S,g,5") € T(S) be arbitrary. Then as before
(3, g"wm‘lﬁs") = (8,g,5")

Hence there exists a conformal @apping k ¢ S"™ = 5" such that
(gow L) Lokog = wog~tokogvid, Now k # id, for if k = id
then w°g"l°k°g = Wwvid, a cont;adictionu Henée, this implies
that every Riemann surface ofltype 3 has non~trivial conformal
agtomorphiéﬁs, but %f 2gin > Ly it %s.known_that in each
type {gyn) there exists a Riemapn sﬁrface with trivial con-
formal}automorphism.groupy a cohtr%dici%on, hence Mod(S) is
effective if Rg4n > L.

In the next chapter it will become apparent that each

element 8 € Mod(S) is an isometry in the so-called

‘Teichmiiller metric. Mod(S) acts properly disconbinuously

on T(8) [11]; this means that for each point x € T(3),

;ModX(S) the stability subgroup of x, is finite and for each

x € T(S) there exists a neighborhood U of x such that

8(U) = U for, p € Mocggs) and 8(U) NU = ¢ for all 6 € Mo@(S)—-Mo@{(S)@
The Riemann space ®{S) by definition is T(Sl/Mod(S)o Tt is

a complex normal space, but in general, is not a complex
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analytic manifold,

Proposition. [6] Let (S,f,S') and (S,g,5") be two points in

T(S)s Then there exists an element © G.MOd(S) such that
8(S,£,5') = (8,g,S") if and only if S' is conformally equiv-

alent to S99,

Proof, = Let 0 € Mod(S) be such that 8(S,£,5') = (S,g,5").
Let w : S = 5 be a quasiconformal mapping which induces 6,
Then _(S,wi"l,S') = (8,£,8") which by definition implies

the existence of a conformal mapping h : S' ~ 8w,

&Let h : S" = 3* be conformal. We must find
@ : S ~ S quasiconformal suchrthat (S,f°w”l,8') = (8,2,3"),

In other wordsy; we want ®w such that the diagram

S B, ST
S |
fow™™ “\\\\&

_ CH

commubes up to homotopy, that is, (fﬁd})”%h"gwidm Let

wl= fﬂlﬂhog, then @l: S = S and is quasiconformal since the
compos;t%on of‘quasiconformal mappings and their inverses
are quésieonfofmal, ﬁ@en clearly

(foi)Lonog = (for~tohog) Teheg = g lenT ohog = id so that
in particular (fow) LTehogvid,

* ®(8) 1s therefore also called the space of conformal

Cal t?pe Sg !

equivalence classes of Riemann surfaces of the given topologi-
3 !




CHAPTER TT
HE TETCHMULLER AND KOBAYASHI METRICS

'§l. The Teichmilller metric

Along with each Teichmilller space T(8) thére is a rather

natural mgtric T called Teichmfiller's metric. Let g ¢+ D~ C
be a quasiconformal m?p ing of a domain D in the complex

gl 7
plane. Let w(z) = == ' The function i is called

the Beltrami coefficient of g. We define a function K,

called the dilatation, on the set of all such quasiconformal
mappings {g : D - C/D any domain in C} into the real rmmbers

by:

t . |
K(g) = ljylmﬁ% where [ulle = ess sup Ju(z)l.
Tl %ED :

We remark that 0. % |ull, < 1. It is not a difficult computa-—
tion to show that if g is composed with conformal mappings
on either side, the dilatation X is invariant [2].

For quasiconformal mappings £ ¢ 5 — S' between Riemann
surfaces one then has a well-defined meéning of the dilatation
K of £ locally. Since the Beltrami coefficients defined
iocally are required to be globally bounded by a constant
k <] a.e., one definesrﬁ(f) = %%%@ by choosing k as small as
possible. [ ‘

Let x Y, v = (3,g,5") be two points in T(8).
Define 7 by: b ,

(x,y) = inf log K(£og™t).

cx
gey
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It can be shown that the above is well-~defined and a metric

on T(S) [6]. An important and yet very simple result is the
following:

Theorem, [6] Let & € Mod(S). .Then @ is an isometry in the

-

Teichmitller metric T

Proof. Let w : S = § be quasiconformal and induce 8, Let

x = (S,£,3') and v = (S,é,S") be two points in T(S): We

want to show that T(8(x), 0(y)) = "(%,7). Now 6(x) = (8, foui’s ")
cand 8(y) = (S,gOm"l,S") hence; ' |

m(80x),8(y)) = inf log K((rewL)o(genL)-Ly
- rewLles(x)
'g"w"léﬁ(y)

i

inf log K((f°wml)°(g°wml)_1)
fex o
gey _

inf log K (f°g“1) = 1(%,v).
fex _ :

i

gey




§2. The Kobayashi metric.

Let M be any complex analytic manifold. Let A be the
unit disk in the complex plane and p the Poincaré metric on
A. Let p,q € M. We choose points P = PyrecosP = g on M,

points Byyeoesd, bl,,,,,bk'bn A and holomorphic mappings

fiseeeyfy of A into M such that £i(ay) = p;.q and £:(b,) = Py

for i = 1,...,k. We define the Kobayashi metric k as:

i

k(pyq) = inf p(al,bl) Yoot p(ak,bk)

where the infimum is taken over all possible choices of points
and mappings thus made. Tt can be shown that k is in genéral
a pseudo-metric on M, that is, has all the properties of a
metric except that k(p,q) = O need not imply that p = q.

One of the most imporﬁant intrinsic properties-of the
Kobayashi metric is the followings: Let £ : M~ N be holo~
morphic, where M and N are bomplex analytic manifolds., Let
ko and Ky bé the associated Kobayashi metrics., Then
kmgp,q) = kN(f(p),f(q)) for p,q € M, that is, f is distance

decreasing. Hence if £ : M = Y is biholomorphic, f is an

isometry in the respective Kobayashi metries [17].
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§3. Teichmflller metric = Kobayashi metric

An important result of Royden and crucial result to this
paper is that the Teichmﬂller and Kobayashi metrics are the
same for every Teichmflller space T(S), Royden proves that if
x,y € T(8), then T(x,y) = inf p(f”l(x),ffl(y)), where the
infimum is taken over all hglomorphic mappings £ ¢ A - T(8)
with the property that x,y € £(a). -It was shown that the
Kobayashi metric k as defined above for an arbitrary complex

T(S).

M

analytic manifbld M has this more concise form for M
Royden uses the existence of a holomorphic mappiﬁg fz@A- T(S)
such that x;v € £({4A) and isometric with respect to the Poincaré
metric o on A and the Teichmilller metric T on T(S) to-show
that T = inf P In order:to show 7 £ inf p, he shows that
the RKiemannian metric on A induced by thé Teichmﬂilér_metric
is less than or equal to the differential forﬁ of the Poincaré
metric on A [25], | |

It is evident from Royden's result, that every biholo-
-morphic mapping h z T(S) = T(S') is an isometry in the
Teichmﬁller metric T, and if S = 3', then since every element
of Mod(S) is a biholomorphic self-mapping of T(S),twe héve

reproven the fact that Mod(S) acts as a group of isometries

of T(3).




l7n

§4. The Infinitesimal metric
More precise information about the TeichmBiller metric T
is known. It has been shown [227] that there eiisté a Finsler
structure ET(F) on the téﬁgent bundie of the Teichmﬂ}ler
space T(T') such that the Teichmi{ller metric is the integrated
, . , Lo -

form of ET(T)‘

A Pinsler structure FM on a complex manifold M modeled

on a Banach space E with norm ||-|| is a mapping Fy ¢ MXE ~ R

such that for each x € M,

i) FM(X;:) is a norm on B equivalent to the norm |[+{,
ii) there exists a neighborhood 0 of x and a constant
C such that |
,FM(X:L,G) - FM(XE,',G), < CHG” Hxl—lel
if X{9%, € 0 and e € E,

Proposition. T(x,y) = inf [ FT(?)(Y(t),y’(t))dt where the
y ,
infimum is taken over all differentiable curves vy : [0,1] - T(T)

joining x and y.

Proof. See the literature [22].

It follows from the above proposition and the fact that

T is the Kobayashi metric that if h : T(TI,) = T(Fz) is a holo~-

1)
morphic mapping between Teichmliller spaces T(Pl), (T'5), then
FT(TZ)(h(X),h*(g)) s FT(Fl)(x,ﬁ) for all (x,2) belonging to
the tangent bundle of T(?l). If h 3 T(Pl) -+ MT,) is a
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biholomorphic mapping, then Fb(rz)(h(x),h%(g)) = FT(Pl)(X’g)‘

Hence not only is every biholomorphic mapping h : T{Fl) - T(F2)

an isometry in the metric sense, but more importantly, an

isometry in the sense of manifolds., The latter fact is fund-

i

amental to the results in this péper. The Finslér structure

; FT(P) will be discussed more explicitly in Chapter IV,

v




CHAPTER IIT
AUTOMORPHISMS OF THE TEICHMﬁLLEB SPACE

1. The Teichmiiller space of a Fuchsian group

A Fuchsian group T is a properly discontinuous (in U)

subgroup of the group of conformal automorphisms

M= [z ;,%§$§/a;b,c,d € C, ad-bc = 1} of the Riemann sphere
A

C with the property that for each v € T, vy({U) = U. By

proper discontinuity (in U) one means that for each x € U

- there exists a neighborhood N of x such that y(N) = N for

Y el = (v e T/v(x) = x}, T rinite, and y(N) N N = ¢ for

Y € T-T;: It is well-known that such a gfoup I' also acts
properly discontinuously in L (the lower half plane). A PFuchs-

ian group I is said to be of the first kind if it is not discon-

tinuous at each point of %, otherwise of the gecond kind.

An element Yy ¢ U, v # id is called elliptic if y has two fixed
points; one of which is in U, and called parabolic if y has
precisely one fixed point in‘%. A1l other elements of I'~{idj

are called hyperbolic. U/T can be made into a Riemann surface

with distinguished points by requiring that the projection

T : U~ U/ to be holomorphic. The distinguished points

.{Pi} € U/ are precisely the projections of those poinbs

X € U U {parabolic fixed pts. of I'} such that I, # 1d and

the corresponding vy are Lhe orders of the non-conjugate maximal
cyclic subgroups of I’ generated by the elliptic (if vy < )

or parabolic (if v; = ) elements.

19.
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The Teichmiller svace T(I') of a Fuchsian group T 18

defined as followsf One looks at quasiconformal deformations
of 1" onto other Fuchsian groups, that is, quasiconformal
self-mappings w of the upper half plane U such that wiw—d
is again Fuchsian; We require that w fix 0,1, and « and call
w, and wp equiyalent if wl(x) = wy(x) for all x ¢ R. Bach
equivalence class is a point in the Teichmtiller space T(I) [6].
An important result of Bers and Greenberg is that T(l) = T(Ur/?)
(biholomorphically); where T(UP/T) ig the Teichmiller space
of the Riemann surface UT/T; Up obtained by deleting those
points x € U such that T # id [12]. If T is finitely gener-
ated and of the first kind, Ur/f is a compact Riemann surface
punctured at finitely many points; Hence to clasgify the
biholomorphnic automorphisms of T(P); one need only congider
the case where the Riemann surface U/T is of\finite type (g;n);
Furthermore; gsince it is kunown that Biemanﬂ,surfaces of the
same type (g;n) yield biholomorphically equivalent Teichmiiler
Spaoes; one needs to clagsify such mappings of T(I) for only
one surface of a given type [12];

An automorphism 8 : T = I ig called geometric if
B{y) = waow‘l; v ¢ T for some quasiconformal selfl-mapping w
of U, |
The Modular group Modtr) assoclated to the Teichmiller
space T(l') is defined to be the quotient of the group of

geomebric automorphisms by the (normal) subgfoup of inner

automorphisms; that is, 91~82 if there exists a g € T such
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that

05(7) = pooy(v)op™t

for all vy ¢ T [15].
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§2. Tangent and Cotangent space

Let § = U/ry T a finitély generated, fixed point free
Fuchsian group of the first kind. Let ﬁ”(r) denote the
closed subSpace of Lw(U C) coﬁsisting'of all u € Lw(U,G)
such that (ue v(z))¥(3) = u(z), for all Yy € I" and almost all
Z € ., Also denétgfbé?Ll(T) the Banach space of (equlvalence
classes) of measurable functions T on U uatlsfylng 1
(foy){z)(vr(z))? =‘f(z), for all v € T and almost all z € U

with norm
£l = 3 [ 1£(2)] ldzAdz] <=,
/T
There is a natural pairing

(f,0)p = % [[ £(a)ulz) |dsadz],
Q/T : .
£ e L), ue L)
which establishes a norm preserving isomorphism of ﬁm(T)
onto the conjugate space Ll(T)*s Let Q{T") be the space of
integrablé holomorphic quadratic differentials, i.e, the
elements of Ll(F) which aré holomorphié'flEJ.

It has been shown [15] using the above bairing, that the
tangent space at the point (S, f St) € T(S) where S' = Q/F’
is {isomorphic 1 £0) L (P‘)/Q(T )*, where
QT = {u € L) /£, = 0, all £ € Q(I")] and that the
cotangent space at the same point is Q(I'") [15]. Q(T') is

precisely the integrable holomorphic guadratic d}fferentials

v
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Q(S') on the Riemann surface 8! = U/I% The tangent and cotangent

. ' f
spaces are dual with dual norms of the L = and Ll spaces

respectively. The cotangent space will be of special importance

in what follows,.
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§3. Automorphisms of the Teichmifiller space

Let S be a compact Riemann surface of genus g 2 <.
Royden has shown that the biholomérphic seifmmapéings of T(8),
which we denote simply by Aut T(S); ié the éctionlof Mod(8)

on T(8S) whenever S has genus g = 3, i.c.

1

Theorem. (Royden) If g = 3, then Aut T(S) = Mod(S) [257.

We give only a rough outline of the proof to point out
the role played by the cotaﬁgﬁnt space which will be of use
in later results. ‘

First of all, if g 2 3 Mod(S) < Aut T(S); Tﬁis follows
from the fact that Mod(S8) acts as a group of biholomorphic
automorphisms of T(8) and acts effecﬁively (see Chapter I).
We remérk that for g = 2, MOd(S}NdQES not act effectively
on T{8) for in this case S is hyperelliptié and it is not
difficult to show that the %gentity mapping I is not homotopic
to J, the hyperelliptic invoiution, and yet they induce the
same mapping of T(S)s.

To show that Aut T(S) < Mod(S) and hence the theorem,
one first realizes that every h € Aut T(3) is an lsometry
in the sense of manifolds in the Teichmiiller m?tric (see
Chapter II). Hence the induced map h¥ betweenrthe coﬁangent

]

spaces at x and h{x) on T(8) is a complex linear jsometry in

the Ll metric. Royden [25] then proves that every such iso-

metry implies that the underlying Riemann surfaces S' and 5"
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are cenformally equivalent, where x = (8,£,3') and

n(x) = (S,g,5"). This in turn implies the existence of an

‘elﬁgent 6, € Mod(3), depending in general on the point x,

su;ﬁ that Gx(x) = h{x) (see Chapter‘i), Since this is true

for all x € T(8) and Mod(S) is a discontinuous group of

biholomorphic -isometries of T(S), there exists a 6 € Mod(S)

such that 8(x) = h(x) for all x € T(8), hence Aut T(8) < Mod(S).
lEarle and Kra [15] have generalized this theorem to

Riemann surfaces S of finite type (gyn). As before, we assume

that the universal covering space is U, that ig, 2g-2+n > 0, then
Theorem. Aut T(3) :_MQd(S) unless

(gsn) = (0,3),(0,4),(1,1),(1,2) or (2,0)0
Proof. See the literature [15].

It will be useful later to use another result of Farle

and Kra:

Theorem. Let £ ¢ Q(8) = Q(S!) be a com?lex,linear isometry

in the Lt norm, then § and S' are of the same type (gyn) (and

S = 8%) unless
(gfn) = (033)9(Oyllv)?(l;l)s(lsz)y or (230)0

Procf. See the literature [15].

Since every biholomorphic mapping h : T(S) -~ T(S')

between Teichmtiller spaces induces a complex linear isometry
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between cotangent spaces over corresponding points, then
i

&

Corollary. [23] If h : T(S) - T(S') is biholomorphic and
type (S) = (gyn) such that 2g+n > 4 and type (S') = (g';n’)

such that Zg'+n' > L, then g = g* and n = n*, i,e. S and S°'

have the same type.




CHAPTER IV
CROSS—~PRODUCTS OF TEICHMﬁLLER SPACES

'§i. The Finsler structure
~Let I be a Fuchsian group. Let M(T') denote the open
unit ball in L(T). Tt is known [6] that for each u € M(T)

there exists a unique quasiconformal mapping w: U ~ Y

we{ 7))
which fixes 0, 1 and '» and has the property that —2 = u{z)

for almost all z € U, One defines an equivalence relation ~
on M(T") as follows: uysu, € M(T') are called equivalent if

the corre8pondi%g quasicogformal mappings WqyW, have the
property that wi(z) = wz(é) for all z € R, Th@ guotient
space ﬁ%?l is therefore the Teichmliller space gf the Fuchsian

group T’y denoted by T(T). T(T') is given a complex structure

so that the projection mapping & : M(I') - T(I) is holomorphic,
One obtains a Finsler structure'FM(r) on the tangent
bundle of M(T') by defining the %ength of the tangent vector

v € L(T) touw € M(T) as FM(P)(ﬁ,v) = | W&, The Finsler

1-Jul®"
structure F., on the tangent bundle of T(I') is the quotient
| T(T) ° . : |

Finsler structure defined by

FT(F)(Q(u)?é‘(u)V) = iﬁf{FM(r)(u,v+Xl/§'(u)k = 0}, It is

well-defined [16]. It is apparent from the fact that the |

Teichmtitller metric T is the integrated form of FT(F) L1671,

?qd that T is the Kobayashi metric on T(I') [25], that biholo-

morphic mappings between Teichmiiller spaces are isometries

with respect to the corresponding Finsler structures,

1

27
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In a more general context about Fin@l@r gtructures,

~ t

O'Bryne [22] has shown that

T(8(u )y 8(uy)) = inf{dpgeryy(y,0,)/800) = #(uy), 1(0,) = a(uy)],
where dF(M(T)).iS the integrated form of FM(F)’ the induced
Finsler'mgtric on M(I"). In the next section, we will use the
fact thatuthe.infimum is taken on by some'ﬁl,ﬁz € M(r) [157.

Such elements are called extremal.

f
r
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§2. The Cross-product Kobayashi metric
Let Tl""’rn be Fuchsian groupsb One forms the product
T(T ) XeooX T(P ) of Teichmiller spaces. The product is a

L}

complex manlfold with the product complex structure. Hence
we may 1nt;oduce the K;baya§h1 metric k on the product

T(Fl) Xe o8 X T(Pn). If n = 1, we recall that the Kobayashi
and Telfhmﬂller mebrics coincide and thus Lhe Kobayashi
metric is the natural metric to co£51der on the cross—product,
The following result shows the relationship between k:and the

cqrfesponding Teichmiiller metrics T, on T(Fi)q

Theor%Le Let k be the Kobayashl metrlc on T(Fl) Xo o X T(F )
and 7. the Teichm#iller metric on T(T ), 141 £n, Then for
eVery x,y € T(Fl) Xe'eo X T(T ), where x = (xlyn,g,xn), :E
¥ ”’(Ylyooe’y ) one has :

k(XFY) = ma}c[ Tl(Xl’yl) yeeey Tn( anyn) ]e

Proof. We may assume x,= %(0) = (@1(0),n,.,§n(0)) because
we can replace any T(Ti) by some T(%i) by the existence of |

certain biholomorphif magpings Ry : T(T) = T(Tj), called

right translations, ﬁhich are isometries in the Teichmiiller

metric with the pfoperty that R.(k.) = %.(O), where |

%i : NK% ) - T(T ) is the natural pPOJeCthn mapping flb]a
Let k be the Kobayashb metric on T(Fl) XoosX 1(? ) It

is clear that max[ 1(51(0),y1),.;o,T (3 (O),y )] = k(¢(0),y)

becauueofoaholomorphlc progectlons Py : T(Tl) Xo s 0 X T(Pn) - T(I‘i)y
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1= 1y0eeyn, Whlch are distance decreasing with re8pect to

the Kobayashi metrics k on T(T ) x..ox (T,) and Ty on (T, )

To prove the 0pp081te inequality and hence the\resulg one
needs to know the following extremal Telchmﬂller theory:

There ex1st‘elements u; = oy Twa € M(P ) such that y; = éi(ui),
where c, € G,,,cif <1 and o, € Q(Fi) and

Ti(éi(o),yi) = dFM(T )(O,ui) [15]. (Such elements u; are
S i _

called extremal. See §1,) _ |
_ B & :
: . "3 . . .
The mappings ¥, : ¢ 9%T$§T of the unit disk A into o(T;)
are holomorphic and isometric in the respective Kobayashi
metrics on 4 and T(Fi) [25]. We may assume that not all cy |

are zZero, otherwise there is nothing to prove. Let

c, = max(cj,.,.,c ), hence 0 < ]c ] <1 and le,; | = Ic ];

1 =1 = n, Deflne o2 A= T(Tl) Xo a0 X T(T ) by

C.

‘1’3 tw(mtﬁpauay“é“tm,oqa’c tT’"““‘T") Then 1¥i8
holomorphic, ¥ (o) = (2,(0)50..,8,(0)) and Weg) = (ypreeayyy)

Henpe

k( 5(0)’37') 3 P(chj) = TJ(QJ(O);YJ)
< max["rl( @1(0),yl),uaﬁn( §n(o)$yn)]

and thus the result.
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§3, The Cfoss—product Finsler structure

Our next goaL\is to introduce a Fins%er structure FT on
the tangent bundle of T = T(Pl) XeooX T(Pn) éo.that the
quajashi metric k on the cross-product is the. integrated
fﬁrm of Fpe The approach is aﬂélogous to the case n = 1 (see

§1). Qne has.the holomorphic projéction mapping

L

: M(T;) Xeosx M(T_) = T(T1) XoeaX (T, ) s

where § = 3 X.»&X NP PR M(T ) = T(T’) Our objective is
then to 1ntroduce a Finsler structure FW on the tangent
bundle of M = M(Iy) %,..x M(T,) and thus inducing a Fipsler
structure F; on the tangent bungl? of T = T(Tl) Xo 4o X T(Tn)-
via the mapping %, so that k is the integrated form of; Fon

Define: Fylu,v) = max[PM(r )(ul’vl)’“°"*M(T )(un,vn)],
where u = (uyyeceyu ), v = (vl,e..,v ) and u; € M(P Y,
v, € L (P Ye

'Lm;%gﬂuhéhmv)z {I@uv+m/xu(xyou,x)a

: &, (u )k = 0, all i}

be the induced Finsler structure on the tangent bundle of

T = T(rl) Xo oo X T(Tn)a

Tnegron.  Fp(#(w), #1(w)v) = max{Fyqp ) (2 uy), ) Cug)vy), oo

coorFyer y (8l 3 (u)v ) 1.

Proof. By definition
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Fp( #(u), ' (u)v)
= il;klf{ max[FM( I‘l)(ul, V:l_-i-)\.l) gece ,FM( Tn)( W Vn-i-ln) ]/
A = (xl,,a.,xn) ER @i(ui)xi = 0, all i} ;

and for each i,
FT(Fi)(éi(ui),éi(ui)vi) - %ﬁf{Fm(fi)(ui*vi+*il/¢£(ui)li = 0}.
Clearly, FT(Ti)(éi(ui),éi(ui)vi) < F(8(u),3'(u)v) for all i,
Hence
‘max[FT(Tl)(@l(ul),@i(ul)vl),.f,,FT(rn)(én(un);ég(un)vn)]

< Pl #(w), 3'(w)v).

Now strict inequality is not possible since by extremal

Teichmiiller theory there exists (ﬁi,ﬁi) € M(Ti) X Lw(Ti) such

: o | n ¥ f.
that @i(ui) = @i(ui), @'(ui)vi = @i(ui)vi, and , |

Tu(ry )(8,9,) = FT(Ti)(@i(ui),éi(ui)vi), for all i [22].
Thus '

LYY EPY YRR
maXEFM( I»«l)(lll,vl) pee e ,FM( I‘n)(un,,vn)]

= maxl Py (8 0u), 3000w ees Py (80, 80 )v,) T,

If strict inequality held,

max[FM( Tl)(ﬁl’?}l) o0 ’FM( Tn)(ﬁn’n‘;n)] < FT( é(u) ¥ @‘(u)v)

= ir{.f {maX[FN{(Tl) (ul,Vl+7\l) $oee ,FM( Fn)(un’vn')l"‘)\«n)/

#'(u ) = 0, all i},

a contradiction.

Remark. The theorem can be restated as follows:
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1§f{max[ (P )(ul,vl4ll)y.,., (T )(ungvn+ln)]'

k

(S

= max[%?f{ (T, )(ul,vl4kll/§ (ugdry = Olyeee

0} 1.

it

ne‘,inf{FM(T )(un,vn+Rnl/@n(un)Kn
}\‘n n .. [
Theorem. k(x,y) = inf [ FT(Y(t),Y'(t))dt, where the infimum
iAo v .
is taken over all differentiable curves v : [0,1] = T = T(? ) Heos

eesX N(T,) which join x and y in T.

Proof. We.may assume ?hat X = (@1(0),a;g,@n(o)) because of
the existence of right'translations which are isometries in
the Kobayashi metric and Finsler structure [16]. Since

‘k = max[?l,.n.,Tn] and Fop = max[FT(Tl)’”"’FT(Tn)]’ we need

to proveithat

[

max[ Tl( é1_(0) 9Yl) sooey 'fn( @n(o)s’yn)]

. . 1
= dnf [ max[Fpp y(v1(6),v1(¢)),...
Yl?oba’Yn l

cees Py ()5 v (8)) Jas

over all dlfferenplable curves v; : [0,1] » T(r,) which join
.(0) o }. in T(T )’ 1 = 1,»..,n¢ Gléarly,

max[T pooeg Ty ] =inf | maX[PT(F ),aou,FT(r )]dt since
NT) smwi%mr)peﬂFﬂr)]amiT _1M?I (T) and
i,

Now suppose maX[Tl,..»,Tn] < inféf maX[FT(Tl)""’FT(Tn)]dt'

Let uy € M(I‘i) be S}U.Ch that uy o= ciTE)-}T where ¢y € G,
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]c <1and o, € Q(I“ } and &, (u ) = that is, the u; are
1’ ’
extremal elements [157. If all ¢, are zero, 1 £ 1 £ n,

we are done since the above strict inequality cannot

1.

hold.

Let cj = max(cl,.,,ycn), hence 0 < fcj[ < 1 and

,ci] $ ]cjf, l 1 #n, Define

Y= Y] XewoX Y, 2 A T(I‘l) Xa oo X T(Fn)

._..

C

t P (m_ t T““T”"’c t T"“TW”*°’E“ t T""T)
= (vl(t)smwn(t))n
Wg claim FT(Ti)(Yi(t),yi(t)) < FT(Fj)(Yj(t)’Y;(t))’ls i % n,

-q

T(T )(’Y (t’):"f' (t)) = FT(I‘ )(_._._ t T—-—T-,,m:- -]\.E-p_r)

e e fﬁ;f
cj 3] Cj Tfﬂir
T RN U
1 [ci % i [ 1 ]ci t el [
CJ TfPiT CJ - ]C.Dj_r

¢y
Igfl
ess sup-wm4L—uw~- ess supmlmm
1,2 2 162
1 I ] t

—*"T‘"‘lr
l“lmitr~lrl

Fa(e ) (3D v e,
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Hence max[FT(Tl)"°"FT(Fn)] = FT(P.)’ and since these curves
are extremal [25], we would have by the above strict inequality

that

Tj_= max[Tl,.f.,Tn] < inf I maX[FT(Fl)’°f°’FT(Tn)]

< inf [ FT(rj) = T3

and hence a contradiction. ?l

Corollary. If h : T(Ty) xeeox T(T) = T(¥)) xowox 2(F) 15 o
a holomorphic mapping between cross-products of TeichmBller
spaces, then FT(?l)xa.,xT(%nfh(X)?h*(5)) = FT(Fl)x.,.xT(Tn)(X?g)
for all (x,8) belohging to the tangent bundle of

T(Tl) Xo oo X T(?n), "In particular, if h is biholomorphic, then

FT(T(:L) Ko oo XT(%{n)(h(X)ph*( £)) = lFT(-Fl) . XT(FH)(Xy ‘).

Proof. By the existence of right translations which are

isometric ;n the Finsler structure [167], one may assume

!

x = 3(0) and h(x) = %(O), where

22 M(Ty) Xeaox M(T ) = T(Tp) XewaX ™(Ty)

%Y xeeax M(E ) -~ (F) xalx T(?n){
are the natural projections. There exist holomorphic mappings
A«ﬂﬁ)mwxﬂﬁgmm#:AwTWﬂx“mTWQ

defined anaEOgously as in the proof of the above theorem,

- which are isometries in the corresponding Finsler structures
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and v(0) = 8(0), v'(0)e = &, ¥(0) = %(0), Y'(0) = h(8).
Hence FA(O,C) = T(F )x,,‘xT(F )(Q(O), ) and

F(0,¢) = T(‘i“ )x,..xT(i‘ )(%(o) h,(£)). Since the Kobayashi
metric on a crossmproduct T of.Telchmuller spaces 1s the inte-
grated formcﬁTF and h is holomorphlc, h°y(A) < Y(A). Thus

l 1

°h°Y : A~ A, isholomorpic, and ¥ °h°y(0) 0. Since F, |

is known to be the differential form of the Poincaré metric
on the unit disk [161, FA(O,g) < FA(O,C) by Schwarz's Lemma

[1], and hence the result, . ? !
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84 Gross~prodyct tangent and cotangent spaces

From the previous theorem, one hgs tﬁat‘the max norm on
the direct sum of tangent spaces over each point iﬁ the cross-
product of Teichmtiller spaces 1ﬁduces the Kobayashl metric on
the CrOo$mpTOdUCt The folIOW1ng theorem descrzbes the dual
norm on the dlrect sum of coyang@nt spaces over each p01nt
in the CrOngpTOduCt |
Zﬁggggg. Let Bl,;{;,Bn be finite dimensional complex Banach
spaces each with norm P, Let Bﬁ,,a;,B: be the%r du?ls
requctivelya The dual of jgiBj is then j§352° Let -}1* be

B

*
the induced norm on each ng
n

on .®.B. induces the norm
J=173 |

™

*

J=1

Proof. If B is a finjte dimensional complex Banach space
with norm [[+]l, then by the induced n?rmkon‘B* wWe mean
i

lix |

P

= sup |X%(x)| where X% ¢ B, x € B,

JIxll=1
Let (X ,.,...,X ) € Bl ®aoo® B and (Xl,.“.,x ) € Bl @Des® B
Then (%r ,,.n,X )(X seeesX, ) = Xl(Xl) Feoet X o{x ). Hence
I )

i

135 (5, ) .“+X*(x)f&
[y o gl T e

We now remaFk that the sup is unchanged if we restrlct ourselves
to Lhose (xl,,,.,x ) such that max(Hxlﬂyuae,Hx H) 1 and

X (x ) O for 1 £ j €n, This.is true because given an
. L

arbltrary (Xl’°“"xn) € By ®..® B such that o

max(ﬂxl”,.oﬁ,ﬂxn”) = 1, we can find 6 such that e g (x ) = 0,

- . if, % 0.
15 jsn, NowXy(e %) =e 3XJ-(X‘J-) and |le fojll = [Ilel,
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then

!X:ijlz teeutt X (%)) = Jxl(xl)l Foont [X (2 )]
0y ;
= ]el (xl)l toout e HXA(XH)I
« 8 . 1D
- JXl(e1 lxl)l tevet [X (e Tx )]
%, 16 x, 0
= Xl(el lxl) +'f°+ Xn(el nxn).
S0 \

e X = sup ECIIEINE A E ]

max( ”x'[_” 9004y ”Xn” Y=1
g
xj(xj)zo, all j

B majlc(ﬂxlﬁ]:}fa 4.., ”Xl’l” )zlxl(xl) _+n ao;’i" Xn(xn) o

X(x)20, all j

If we fix (xl,eﬁt,xn) such that max(”xlﬂ,».q,”X ) =1,
X, (%) = 0, all j, it is clear that

(%) heenrt T (x) = 1R Xi(xl
% fl=2

X, ()0

Hence

e g ey g ly=1 20 2o Fal)

Xj(xj)205 all j

*
) +.,.+ su X {x)

_x_ '
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but not with strict inequality, ror

sup( l(xl) Fosot X (x )) < sup X

there exigts xj € Bj

l(xl) +¢..+ sup X (x ) implies

such that ijH = 1, X (x ) 20, 1= 3 < n,
such that x l
i

s gl )2 22D oo Kny))

xj(xj)ao, all j

® o, * v
< Xl(Xl) +aaé+ Xn(xn)’

a contradiction. Hence
i

Lol = ] oy BRI LR MEN)

X (x )=0, all J

= ”XSWp Xi(xl) S P suf XZ(Kh)
P :l i X‘ ==
1 n!
* _ *
Xl(xl)RO Xn(xn)ao

I

ey e el

Since the n?rm on the tangent Space over a point in

-Tezchmﬂiler space is the L norm as glvep by the Flnsler

structure, and the cotange?t and tangent spaces are dual, one

has that:

‘COPOllaPXa The dual norm on the direct sum of cotangent

spaces

|

over a point in a cross—product of Telchmuller spaces

is the sum of the Lt norms on each cotangent Space in the

i

direct sum,




CHAPTER V
AUTOMORPHISMS OF CROSS-PRODUCTS OF TEIGHMﬁLLER SPACES

L

§1. Complex linear isometries between cotangent spaces

. n : '
Definition. Let x,x' € igiBi’ where the B; are Banach spaces,

. t R t
X = (xl,...,xh), x! = (xl,,.o,xh), x is said to be perpendi-
- T

cular to x' (written x 1 x') if for each i, either x; or x;

is mero,

Lemma T. Let f : Q(Xl) Peon® Q(Xn) -~ Q(Yi) Beoo® Q(Yn) be a
complex linear isometry between direct sums of the complex
Banach spaces of holomorphic quadratic differentials on

compact Riemann surfaces with (possibly) punctures X,T. in

the norm ”T“ +eoort ”T[

y wh?re ol = % f Jols 0 a holomorphic
quadratic differential, Let x = (xl,...,xn) and

L § .
X':(ﬁ}“nﬂ%)besmhthJXLiﬂo Let

+

(X ,,,ae',Xn) g (Ylyévosyn)

% 1 ' 1
(Xl,,ee,xn) > (ylytuo,yn)-

Then for each i, 1 £ i £ n, one of the following holds.
i) .y- = 0’

0, or

Vs e r, >
TV for som ry O,

It turns out by Lemma II that case (3ii) never oceurs,
i

L0,




hls

Proof. Let x = (x ,;..,xn) and x! = (xi,.a.,xh) be such that

X4 xt, Let
hig

(Xl,.ﬁ..,xn) = (Yl"“}yn)
hig
t } L] 4 ]
(xl,...,xn)lé (Yl""’yn)"
Since f is an. -isometry Hxlﬂ +o 00t Hx I = ”Yl” Fooat ”Y | and
I, I Faeet e 1l = Iy Il e lyglle Since £ is linear,
iy
( +X ’soo;x +X ) & (Yl-!{)’l,.m.yy +Y ) hence
eyt o x4 A = ly g7y Il +eean fy il Now
Hx1+x1H_+~=-+ It [l = el oeet lx Il + BN tovot x|
since x . x', By substltutlon
Iy e Tyl = Tyl s By s Iy I Iy Il

Since |y, 7S N ”y I+ ”y | for nornmg all 1, it follows that
h |

vl =l Bl a1 se tes 3, = 0y, 57 < 1, then
equivalently

Z I !m +n, ] = % Iy_lwil + 3 IY fn, ], a11 1

i B

or IY ]m.] +-[n.{v— [w +1), [_?_Q which implies that
[, ] | = ]m | + [n | aqea; since Lhe 1ntegrand 18 non-negative
by the triangle inequality, Now fw Ty | = [w | + [ﬂ | a,e,
implies that ai ¢an take on a.e, (that isy a.e. in every
parametric dlSi) only values that are non-negative or ‘e,

Now g% ig a meromorphlc funcFlon on a compact Riemann
surface and hence must take on all values in € U {*] unless

. i
it is constant [27]. Tet gy = 5& Y, - C U{®}, and assume
N .




L2,

non—-constant for all i. Since the following argument applies
for any i, we take just gy = f% H Yl =~ C U {«}, Let D be a
dlbk inC U {w} not contalnlng any points of the nonnnegatlve
eal axis or infinity. Let P € gll(D) < Y;. Choose a coor—
dinate neighborhood P € U C\gll(D), then measd # 0 (4 a disk
in G via the local coordinate E) and yvet glog"l(A) takes on
different va%ues than the above, a contradiction, since g1
ma&y take on values different than the above on%y on a set of
measure zero, Therefore g1 is constant which is either 0, =
or ry > 0, Thus we conclude that for each i, one of the
following is true:
i) =0,
ii) = 0, or
iii) ; = T;0; for some r; > 0,
if Yi is compact with punctures, then ®©;s Ty project to
meromorphic quadratic differentials on the compact surface
(by filling in the punctures), then the above.implies the

same conclusion,

Lemma TI. Let f : B, & ce®B - Bi @L..@)B; be a complex

linear isometry {where the B, B£ are complex Banach spaces)
+ll, where I*] is a norm for each

'Banach épace. Let x = (Xl,..,,x ) and x' = (xi,...,x;) be

such that x ﬁ.x’ Let

iy
(Xlr--°sx ) F}(Yljo'\-sy )

(Xl,...,X y B (er--*,y )
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L

?
and suppose that Y; = V5 for some i, then Yi =¥y, =0,
' _ t

I
Proof, Let x = (Xl’ﬂ'°’xn) H—(yl,...,yn)

1 y, I ' '
x! = (xly-n-’xn) B (Yly---;yn)
f

1

be such that x + x' ang suppose Y; = ¥; Tor some i, Since f
is an 1sometry Hle teeF ”X ” ”Yl” o v ot ”Yn” and
lh:” . +-Hx | = HylH + Since f is linear

iy
( ‘“i: s X ) k> (Yl—yl,...,y Vi ) and therefore

Hxl-xl Feont le ~X H = !!Yl~yll| Fo oot an—ynﬂ.‘ The term
"y ¥ ” = 0 by hypothesis, Now ' }
||xl—XlH tovet [l -x = el .+ I I+ HX [ ]Ix I

Since x wx!,
By substitution,

Iy =53l et Ty ! ﬂ+n%ﬂyﬁﬂ+”Awywu

I

by ol ety gl sl oo ly

it

2yl oyl gl o g 0y

+ Hy“lll + ||Yl+ll| ooty 20D,

Since by the trlangle inequality, |ly. —ytH ”y I + Hy l a11 3,

it follows that Hy | = 0, thus ¥y = O. Hence v = yi = O,

T i }

Theorem. Let f Q(Xl) B oo ® Q(X' g (Y ) @y ® Q(Y ) be

a complex linear isometry between direct sums of the complex

1

Banach spaces of holomorphic quadratic dlfferentials on

Compact Riemann surfaces with (possibly) punctures X9 Y;y in



bleo

[l +ewes [+, where loll = # [ lol, © a holomorphic
quadra@ic differential. Then there existg a permutation

o€ 8 (symmetrlc group on n letters), such that

Tlg(x,) * %) 2R, oY

o(i

Proof, The prfof is by induction on n.

1: £ 3 Q(Xl) - Q(Yl)a There is nothing to prove.
Assume’ that the theorem is true for n = k-l. We must prove
that the theorem is true for n = k, that is, for 5

mﬁ)a”@MX)ﬂMY)&“®MQ) Let
0 # (xl,O,.H,O) F_> (yl,“.,yk) be fixed and

(0,x2,..,,xk) (Yl,,a,,yk) be arbitrary. (Note that if

Q(Xl) = {0}, we cannot pick an X # 0. 1In that case, choose

any point (O,..n,x 305c0a,0) € ® Q(X Y, x; # 0, otherw1se

@ Q(X ) = [0} and there is nothlng to prove. Let

(xl,x;,..¢,0 X’+l,..4yxk) be the other arbltrary point., )

Since xy 0 and f is an isometr then there exists a
Vs

y. # 0. By a permubatlon, say yq f 0, then by Lemma I elthev

Yl =0 or yl = ry¥y, Ty P 0. mIf yl = Ty¥qs Ty > Qs then by

linearity,

t ' 1 ’

x £ y y
2 n 2 k
(O’rl"og’rl B(Yl"]ﬂl’°°"1ﬂ )

4

so that by Lenma II, vy = O, which is a contradiction., Hence

= 0. Since (0, xz,,..,x ) is arbitrary, we see that

(0 Xzyaoa’x——h) k> (O,Yzyoce,yk) that lS’
fkest.~ A(x,) @...@ QX)) - Q(Y,) ®...0 (Y, ). We claim this

mapping is onto, for if not, then there exist points
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(xl,xz,...,xk) X # 0, (O’Y2’°‘°9Yk) such that
f(xl,x peeesXy ) = (O,yz,..*,yk), Since f is onto and we
have already assumed Q(Yl) fidl then “there exist points
(Xlsaooyxk) € @Q(X )r (Yls 7"'90) € ®Q(Y ).v Ylﬁ' 0 such
that f(xl,na”xk) (Yl,O’oao’O)G Sll’lce (é,‘y‘z’qsa,y'k) 1
(yl,Og,..,O)9, We can apply Lemma T to 1 and get that
xi = 0 or xl = rl ) Since X3 £ 0O. If Xl = TXyy then

T '

Xz X

"lbum,O,a..,O) (xl, ,koa,Fu) and thus by Lemma IT applied
Ty

to f"l, Xy =0 a contradi?tion, Hence x, = 0 and thus

1 ' ’ '
f(O,Xzyga&,Xk) - (Yl,O,aa;,O)g Since yl % 0 thng hOWeVer,
contradicts the above., Hence fhest is onto. Now by induc- }

tion, there exists a T ¢ Skml such that

le(X.) : Q(X ) ~28to., Q(YT( ))y 2 =i sk, We claim that
i
f[Q(Xl) : Q(Xi) "9££3e>Q(Yl) and hence the theorem, since

there would exist o € Sk such that

onto ,
f,Q(Xi) b Q(Xi) - Q(YU(i))’ l =i= Ke

For let (xl,,;¢;xk) be arbitrary and let Xq vary while

KosuessX, are fixed. By linearity,

f(xlgo-oyxk) = f(xlyogana,O) + f(O,Xann.,Xk) It is clear

that f(O,xz,,..,x ) remains invariant as ¥y 1s allowed to

vary. We will show that £(x1,0540.,0) = (71+054..,0) and

hence it follows that f(xl"‘°’xk) only varies in the first

_compon?nt of the image direct sum < as Xy is allowed to
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to vary which implies the claim. So suppose there exists
some y; # O, 2 i sk, Then since'f& St'is onto, there
exists a point (O,xz,...,xk) such that

f(O,xz,.a.,xk) (O,,g.,y ,0,.,.,0) But then by Lemma IT,
y; = 0, a contradiction. Thus f(xl,O,.a.,O) = (Ylgo,ea¢90)o

gheorem‘- Let 'f Q(Xl) @, 5@ Q(Km) - Q(Yl) B eo® Q(Yn) where

m >n and f and the Q(Xi), Q(Yi) are as in the previous

theorem, Then at least m-n of the Q(Xi) are {0}, and if we
m

el%minate m-n trivial spaces from igiQ(Xi)’ and possibly

renumber the remaining spaces, then

QX)) @..® QX)) __Q.EEP..“> Ty -@,"”@ Q(Y,) and splits

componentwise up to a permutation (as in the previous theorem),

. n
Proof. Add m-n trivial spaces {0} onto, & Q(Yi). Then
£o0(x) .. QX)) -~ 1)) o..@y) e{o} &..0 {03,
Since f is a complex linear and we now have the same number

of components in each direct sum, the previous theorem implies

that there exists a o € Sm_such that

le(K.) : Q(Xi) HEEE£%> Q(YU(.)), 1 i %m Since we have
-added on m-n trivial 8paces, there must ex1st at least m-n
trivial spaces among @lQ(X ), Ellmlnate preC1se1y m-n of
them, Then after a possible renumbering of the remaining
Spaceé, we have £ : Q(X,) &,,.® X, ) - Q(Y ) @,,,@ QY,)

and the previous theorem implies the rest.
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$2.  The Modular group of a cross~product

! .
Let T(IY) XyeoX T(T ) be a cross—product of Teichmiiller
1 P

Spaces of the Fuchsian groups F., 1 % i< n. We define the
4

Modular group of thls cross

uproduct to be Mod(Fl) Xeu e X Mod(r )

where Mod(? ) is the Modular group of T(T )y L =1 = n,

(see Chapter III 81, o Let x = (xl,.,g,xh) € T(T ) XeoaX T(P )
and 8 = (0 Treees B y € Mod(r‘ ) XeuuX Mod(I‘ ). Then

8(x) = (al(xl),”.,e (x }) € T(I“ ) Xe oo X T(I" ).

Proposition,

The Modular group acts on the cross-product
T(Pl) Xe oo X T(Fn):

i) as a group of ‘biholomorphic automorphisms,

ii 45 a group of isometries in the Kobayashi metric,

iid) as a properly discontinuous group,

iv) effectively, if type Ty (gi,ni) satisfies

Zgi+ni > L, all i,
Proof. i)} S8ince Mod(Tl) XeooX Mod(F ) acts componentwise E

on the eross-product, and it is known that MOd(F ) is a

group of blholomorphlc automorphisms of T(Ti) (see Chapter I,

§50) the result follows,

ii) ince the cross-product metric is the Kobayashi.

metric and from i) each element of Mod(Fl) Xo s o X Mod(Fn)

acts biholomorphically, 1t follows that each such element

is an isometry (see Chapter II¢'§?.)

iid)

Since Mod(Ti) acts as a properly discontinuous
group on T(Pi) (see Chapter I,

§5.), it is clear from the
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definition of proper discontinuity and the action of
Mod(Tl) X oo X Mod(Tn) on the crossnprbducﬁrﬁhat
Mod(Tl) Xe o X Mod(Pn) acts properiy discontinﬁously.

iv) If type ry = (gi,ni) satisfies 2g;+n, > L, then
Mod(Fi)'acts effectively on T(Ti) (see Chapter I,'§5.)e If
MOd(Pl) x,..X'Mod(Tn) were not effective; then there would
exist elements 8 = (8150v0s8) € Mod(T)) Xeuux Mod(T,) and
¥ = (’él,.,.,“én) € Mod(Ty) Xeuox Mod(T ), 0 # ¥ such that
8(x) = B(x) for each x = (xl,...,xn) € T(Fl) Xo oo X T(Tn)s
Since the elements of Mod(Fl) Xa oo X Mod(Fn) act component-
Wise, 8 f,% implies there exists an i1 such that ei f %i and
8(x) = B(x) implies ei(xi) = %i(xi) which together contradict
the fact that.Mod(Fi) acts effectively on T(Fi).

Coroilarza If type Tj = (gi,ni) satisfies 2gi+ni > L4y all i,
then statements i) and iv) from the above Proposition implies
‘that

Mod(Pl) XosoX Mbd(Tn) < Aut T(Tl) XesoX T(Tn),

Qéggg. Let M be a complex analytic manifold. Let G be a

( properly) discontinuous group of biholomorphic self-mappings
of M. Assume there exists an Xy € M such that y(xo) = Xy for
éome eleme;t Y € G dmplies that v = id., Let 8 be any biholo—
morphic self-mapping of M. if for each x € M there'exists an
éleﬁent Y, € G such that &(x) = Yx(x)’ then 8 € G.

Proof., [13] Let Xy € M be as in the hypothesis and Y, €C
. 0




49,

such that B(xo) = yxo(xo). Let v = v

» We will show that
%0
f"" '-l

= Y 7°8 = id on M 80 that & = y and hence § € g,

Since f is a biholomorphic self-mapping of M and G is a

(properly) discontinuous group, there exists a neighborhood

U orf xo in M such that y(U) N U = ¢ and y(£(U)) n £(U) = $
for all v € G~{id}. If x € U n (u), then f(x) = x; other—

wise there would exist an element B € G-{id} such that

B(f(x)) = x (by hypothesis). But then B(f£(U)) n £(U) # b,

a contradiction, Hence f[UDf(U) = id and clearly U n f(U) ~ b

since x4 € U N £(U). Since U is an open subset of M, £ = id
on M by the identity theorem for holomorphic functloqs on

i
complex analytic manlfolds, and hence the result, '

t

Corollary I. Let M =

(T), the Teichmtiller space of the

Fuchsian group I', where type I' = (g,n) satisfies Rg4n > 4

(that is, non-exceptional), Let @ = - Mod(T'), the Modular
group,. Then the Lemma applies.

Proof. It is well-known that Mod(T') operates properly

discontinuous on T(T') [11], and that if type T = (g,n)

satisfies Z2g+n > I that there exists a x € T(T') such that

¥Y(x) = x, for a v ¢ Mod(T) implies that vy = id [24].

Corollary IT,

Let M = T(I)) X.oox (), a cross-product
of Teichmliller spaces of Fuchsian groups T L £41 sn,

where type P
G =

(gl,n ) satisfies Rgs-my >k aLl 1. Let
Mod(T ) XeweX Mbd(? )y the Modular group. Then the

Lemma appl%es.
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Proof. We have stated that Mod(?l) Xo s o X Mod(Fn) operates
properly discontinuously on T(Fl) k...x>T(Fn) (see §2.).
Since 2g.+n. > k4, all i, there exists an x; € T(Fi) such

that Yi(xi) = x, for some v, € Méd(ri) implies that v, = id,

all i. 'Hence,cle&ﬁw'x.= (xl,..;,xn) € T(Tl) Koo X T(Fn)

has the property that v(x) = x for some

Y € Mod(l“J) Xe s X Moq(rn) implies that vy = id.
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$3. Automorphism%xof cross-~products

Theorem. Suppose rl,...,Tn are Fuchsian groups which have
no elliptic elements and the type Ti = (gi,ni) satisfies
cgitng > 4, all i (i.e., L, is non-exceptional). Then

Aut T(Tl) XeweX T(rn) is the semidirect product of

Mod(rl) XeooX Mod(?n) by the finite subgroup H, where H is
defined as follows: Let N = {(i,j)/1% i< j 5 n and

type Ti = type Tj]. For each (i,j) €N @efine

-fij : T(Ti) - T(Tj) to be a chosen biholomorphic mapping
(suech mappings exist between Teichmiiller spaces of groups
of the same type [127]). For each (i,J) e, let

Byj= (g,een,ky), where k. = 34 if r # 1,5, k

3 and

i % Tip
kj.= f{%. Then H is the subgroup generated by the elements
hy 5.

iéﬁﬁé. Let the product Mod(rl) XewaX Mod(rn) by H {as above)
be the set of all elements of the form goh, where

g ¢ Mod(ri) XewoX Mod(Pn) and h ¢ H. Then the product
Mod(ri) XeweX Mod(I}g by H is a group under composition
and operates propsrly discontinuously on T(I}) XeowX T(T}Qu=
Furthermore, there exists a point x E§T(IH) XeooX T(I}Q such

that o(x) = x for some element 6 belonging to the product

MOd(Fl) X;;;X Mod(I}g by H implies that g = ig.

Prédf; Clearly the identilty element belongs to the set and
the ‘associative property holds. We need to show that every

element has an inverse and the closure property. We first
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remafk that if g ¢ Mod(Fl) XuooX Mod(rn) and h ¢ H are arbitrary,
then hogoh'le Mod(ri) XeoeX Mod(r ) gince h permutes the
factors of T(Tl) XeosX T(ﬂn), g ¢ Aut T(P ) X...x Aut T(Tn)
hence hogoh % Aut T(T ) X...X Aut T(T ) = Mod(ll) XeeoX Mod(rn)
(since Aut T(T'.) = Mod( (¥;); Royden [25]). Thus if gjoh, and
g,°h, are any two elemgnts, (glohl)o(gzohz) = (hlogB)O(gzth)
(hl gyloh, = (g50h1)°h2 = g50h3; where the g; ¢ Mod(Tl) Xeus
«seX Mod(? ) and the hye H. If goh belongs to the product,
~then let {goh) 2 (hQ%Q%)oHJ; and (Hﬁ%?%)oﬁd'belongs to the
product by the above remark.

By definition; The group H is clearly finite, heﬁce
Mod(Tl) XX Mod(Pn) is of finite index in the product group
Modfrl) X;.;X Mod(rn) by H and since Mod(rl) XooeX Mod(rn)
operates properly discontinuously on.T(rl) Xe4oX T(Fn),
Tollows that the product Modﬁfl) XowoX Mod(Tn) by H operatesg
properly disconbinuously on.T(Fl) KoweX T(Tn).

Next we claim there exists a point x ¢ T(Tl) XoooX T(Tn)
such that 8(x} = x for some element g €Mod (') x...x Mod(r, )
by H implies that & = id, that is, x is not fixed by a non-
trivial element. Suppose not, then let x, € T(F ) Xo.oX T(P )
be arbitrarily chosen. By proper discontinuity, there exists
only a finite number of non~trivial elements el,“a,,en (n=1)
belonglng to the product Mod(Fl) XeooX Mod(T ) by H such that

8, (x ) = ; # id, and a neighborhood x € U c rl) Xa oo

_ *o .
cauX T(Tn) such that 6 (U) U, 1 =1 < n, Since 8, # id,

there must exist a subset Dy € U denge in U guch that el has
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nb fixed points in Dy, otherwise by continuity and the identity
theorem for holomorphic functions on complex manifolds, 01 = id.
Similarly there must exist a subset Dy of Dl which is densge in
U such that 0> has no fixed pbints in Do, Completing the
process; we arrive al D, a dense subset of U such that 8, has

no fixed points in D,. Since Dy D5, 1 i =n, D, # ¢ , any
x €D, has the property that 8;(x) # X all i, and since all

0 € (Mod(rl)nx;.;x Mod(¥ )) H - {015+2+,0,,1d} are such that
8(U) O U = 4, it rollows that x is not fixed by a non-trivial
element; hence a contradiction,

22292: (of Theorem) From the Corollary at the end of the

last section and the definition of H, it is clear that the
product Mod(fl) X;.;X Mod(?n) by H is contained in Aut T{Fl) Xoo
-::;X T(Tn). Hence it suffices to brove containment in the other
direction.

Let h ¢ Aut T(I'y) x...x T(r,). Since the Kobayashi metric
on T(Fl) x;.?x T(T,) is induced by a Fingler structure on the
tangent space invariant under biholomorphic mappings (see
Chapter IV, § 3.), h induces a complex linear igometry between
the tangent spaces (in the max norm given by the Finsler struc-
ture on the c¢rogs~product, see Chapter IV, § 3.) over each pair

of points x and h(x) in T(Tl) XoooX T(I‘n)o Since the cotangent

Space is dual to the tangent space with dual norm, the induced
mapping n* between cotangent spaces over x and h(x) is a complex
linear isometry in the dual norm, which by a brevious theorem is
the sunm of Ll norms (see Chapter V, § 4.). Hehce by a previous

theorem (see Chapter V, § 1.) h™ splits componentwise up to a
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permutation, that is, hZ(x-) : Q(Xi) - Q(Yo(i)) for some g € S
i

Since'Fl,...,Tn are assumed to be of non-exceptional types,

this implies by a theorem of Earle and Kra (see Chapter ITT, §3.)

that Ti and To(i) are of the same type (gi,ni). Hence by

definition of H, there exists an element g ¢ H such that

g|T(P ) : T(Ty). - T(Td(i)) gll i, and hence the induced napping
i . 1 }

g@(Y;(i X QY (1)) - Q(%i) all i. Then one has that

(hogha(xi) P Q{X;) ~ @(X;) 21l i. By the results of Royden,

generalization of Earle and Kra (see Chapter III,§3,), Xy is

1 _ _
conformally eqguivalent to Xi, Tor all i. This implies the o

existence of Y, ¢ Mod(T'; ) such that hog(x) = (Yq(xq),yeee, 7 (x)),

where x = (Xq,...,%,) € T(Tl) XeooX T(Tn) (see Chapter I, §5.), ﬂ
Yog%xh Y € Mod(T

i

or h(x) 1)

Xeoox Mod(T ), gt H, Since C
Since x € T(I';) X...X T(I'y,) is arbitrary, there exists an element |

8 ¢ (Mod(rl) Koo eX Mod(rn)) H such that h(x) = e¢{x) for all x
(see above Lemma and Chapter V, §2.). Hence h € Aut () %o

coox T(T)) implies that h e (Mod(I)) x...x Mod(T )) H. .

l) -
We only have left to show that Mod(l'y) x...x Mod(l'y} is a

normal subgroup of Aut E%Fl) Xe..X T(I',, ). It suffices to show :

-1
f(Modlrl) Xo..x Mod(l ))f 7= Mod(Ty) x...x Mod(r,), because

-1 W
by using inverses, f(Mod(Tl) XosoX Mod(?n))f 2 Mod(fl) Xooa |

eeoX Mod( ) ) as well and hence the claim. Let f € Aut T ) Xo..

, -1
P X T(Tl) and g € Mod(Tl) KeesX Mod(Pn). If f ¢ H, then fog f

maps each component T(I'; ) onto itself, Thus ﬁ>gaf'l ¢ Mod(T'y)x..

eeox Mod(l' ) (since Aut Ty ) = Mod(ry ); Royden [25]). Then if

£ € Aub T ) Xeoux T(C,) is arbitrary, then f‘= foofy where




fl € H, f2 € MOd(I\ ) XeooX MOd_(P ) and fogof"l-‘: f20(floggfl} fzm

f2°g1 lee Mod(T ) X.e.ux Mod(? ) since &1, Tp € Mod(pr,) x...
ce X Mod(Tn).

(Mod{rl) XeaoX Mod(T ))
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By definition of H, clearly

ady .

i1s the semidirect product of Modﬂ‘ ) XewoX Mod(r ) by H.

Theorem.

no elliptic eiements and typelﬂ

Supposelﬁ_,o;.ﬂ}l are Fuchslan groups which have

is not (1,1) or (0,4), all i.

Then Aut TG‘ ) XosoX T@‘ ) 1s the semidirect product of

Aut T(T) x...x Aut Tﬁ‘ ) by the finite subgroup H, where H

is defined as follows:

Foo ot T(Iﬂ)

(kl’oo.’k)
and k. = £7L1.

where kr

Then H ig the subgroup generated by the h.

(1,5)/15 i <j= n ana
) biholomorphic}. For each (i,3) N,

=id if r# 1,3, ky = f

i ije

13-

’.éfééf. Clearly the semidirect product of

Aut T(Tl) X...x Aut T

. for some i,

Aut T(Ty)

If type (Tl) is exceptional, not (0,3),
not (1 1) or (0, @)

_equivalent to T(Ti) f12].

replace the original cross-product (T

biholomorphioally equivalent cross

then T(T3y) = pt.

= {id} and neither effects nor contributes
to the result;

Tn) by H is contalned in

We remark that if type (T;)

since dimCT(Fi) = 0, Thus

i) is biholomorphically

It is then obvious that one can

1) Xeoux T(T))) by the
-product T(Tl) XeooX T(Fn)

Hence Aut T(r ) XeouX T(r )

Hence we need to prove only contain--

. ment in the other direction,

anything

and by hypothesis
then there exists a Fuchsian group f' of

non-exceptional type such that (T

?
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where T, = %i 1f type I; is non-exceptional or (0,3), via a
biholomorphic mapping o T(Tl) Xa oo X T(P ) - T(?l) x,;;ﬁ T(?h)
whlch splits componentwise, that is flT(F y 3 T(Ti) - T(Ti),
1s1isn Leth€Aut T(T]) Xeuux T(rn). Then

= fohor™t T(f ) ewwx (F)) - T(F) xeoux o(E) 1s
biholomorphlc;\and by the previous theorem and the triviality
of type (0,3) (1f it appeays) g splits componentwise up to a
permutation, that is, there exists a o € S, such that
g,T($i) : T(Ti) -+ T(yc(i))‘ Since f sglits copponentwise,
this implies that h[T(Ti) : T(Ti) - T(Td(i))g Since h evidently
permgtes the factoys, énd i by definition is a group of |
trapsPQS%Fions ?f the factors, there exists g € i such that
B =“h°gjl\€ Aut T(Tl) XeooX Aut T(I"n)° Hence h = 8°g where
8 € Aut T(Tl) XeoeX Aut T(Tn) and g € H. |

A?alogous to the previogs theorem,
Aut T(fl) XosoX Aut T(Pn) is normal subgroup of
Aut T(Tp) xewox T(T ). Clearly Aut T(I) X...x Aut T(I) n
= {id}. Hence At T(T) Xeaox T(T,)) is the SGTJleeCt proauct
of Aut T(Ty) *...x Aut T(T) by H. |

Remark. Since Teichmilller spaces of Fuch81an groups of the

same type are blholomorphlcale equivalent, BersmGreenberg [12]

and Telchmﬁller Spaces of Fuch81an groups of dlstlnct types

are blholomorphlcally equlva]qnt if and only if the;r respective
types are (2,0) and (0 )y, (1,2) and (p,5), or (1, 1) and (O0,4),

Patterson [R3], one has that (i,j) € ﬁ implies that either
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typ (F.) = type (Fj) or of types (2,0) and (0,6), or (1,2)

and (0,5)s The remainimg possibility was excluded by hypothegsis.

‘

Conjecture. The above theorem holds 1f one allows type (1,1)

and type (0,4) to occur. (Note: If the theprem holds allowing
one of these types, it also holds for both.)

We combine the above theorem with the following deep

yesult of Royden [25] and gener%ligation by Earle and Kra [14]:

Let T(g,n) = T(T), Mod(g,?) = Mod(T') where type (') = (g,n)
then h

Aut T(gfn) = Mod(%,n) if type (T) = (g{n) is non-
exceptional, that i%, satisfies
2g4n > b, |

Auvt T(2,0) = zvgpd(o,é) == Mod(2,0)/22

Aut T(1,2) = Mod(0,5)

CAut T(1,1) = Aut T(0,4) = M&b, (since T(1,1) and T(0,4)
are conformally equivalent to ﬁﬂ)

Aut T(0,3) = {id} |

(Mo = {z » 2E2DJagbe = 1, a,b,c,d € R} = Aut U.)

Corollary I. If type (Fi) is non-exceptional then
Aut T(T.) = Mod(T.) and H = H (by above remark) Hence the

above Lheorem is a generallzatlon of the correspondlng theorem

v

for non—exceptlonal types.

Corollary II. Using the results of Royden, Earle and Kra, and




L
o0
*

the above theorem; one explicitly knows

Aut T(Pl) x;;;x T(Tn), type (Ty) # (1,1) or (0,4) all i.
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8L, Biholpmorphic meppins between cnose~producte.

Theorem. Let h T(T1) Xeoux T(T,) - T(T ) XeuuX T(% ),

m % n be a blhoJomorphlc mapplng between Cross—products of

Telchmuller Sspaces. Then at least m-n of the T(T ) are |
tr1V1al, and 1f we eliminate m-n trivial spaces and p0551bly

renumber the remaining Spaces, then

: T(T%) Xe s X T(T } - T(?l) xa.ux T($ Yo

Proofe Let h : T(Iy) Xu..x () - T(Tl) XesaX M¥), m = n
be b:l.holomor'phlca Then for each palr of p01nts E
X = (Xygeeepx ) € T(Ty) Xeox T, ) and h(x) € T(1)) xe..x (¥ ) i
,Lhere %o an induced complex linear igometry fi
Q(X ) ®«¢(@ Q(X ) Q(Yi) N Q(Y ) on the corresponding
cotangent Spaces over x and h(x). If m > n, theP,there
exist at least men.Q(Xi) = {0} by a previous theorem (see _f
Chapter V, §1). Since dim T(F.) = dimGQ(X,), the result 5
follows. By eliminatlnv m-n tr1v1al spaces and poes%bly ‘
renumberlng the remalnlng spaces, then
2 T(T]) Xewex T(T,) -~ T(%l) Xe o0 X T(T Jo If m =n, the

statement holdo vacuously,

Corollary I. There does not exiet a bihomeorphic mapping
between an n-fold product of Teichmltller Spaces and an m-fold
product, unless the nuuber of nonmtr1v1al Spaces in each

proquct is tﬁe same. If the number of non~tr1V1al spaces 1s

the same and in aadltmon we assume all nonmtrLVLal types non—
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exceptional in both cross~product§, then a biholomorphic
mapping exists 1f and only if the nonrtr1v1al types in one
product are prec1sely those appearing among the non-trivial

pypes of the other (cognting miltiplicities).

Remark. Exceptional types, if any, must appear %n a prescribed
mEnner, ‘ |

Proof. The first statement follows directly from the theorem. i
t ' i

Assume that the number of nonmtrlj %1 spaces in each product

i
a;e the same and each non—tr1v1a1 type is also nonmexoeptlonal
in both crossmproduct54 If the HO%Muer1al types appearing

in one product are pre01sely those appearlng in the ;ther
(countlng multiplicities), clearly Lhere exists a blhOlOn
morphlc mapping between,products, since Telchmﬁllef spaces

of the same type, are blholomorphlcally equlvalont [12]

Conversely, if h is biholomorphie under the above
aasumptlons, the 1nduced mapplno on cotangent spaces over
correspondlng p01nts Spllts componenLW1se up to. a permutation
(see Chapter vV, §1), and using the result of EarJe and Kra
'(S?e Chapter III, §3), the non~tr1v1al types in one product

of Telchmﬂller spaces are pre01sely those in the other product

(couqtlng multn.pl.;ma.tles)o
|

Corollary II, A CTOSSnp?OduCt of non-trivial Teichmiiller

spdces is never a Teichmtiller space.
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Progg. Follows directly from Thgorem.

Corollary TIT, If h : T(I'y) x...x T(F ) - T(Ti) Xe s o X T(?n)

is biholomorphic and P f are non-exceptlonal then h
splits componentwise up to a permutatlon,-that is,; there

. ont.o
exists a o € S such that h]T(P y T(T)) —— T(?G(i)),
all i,

Proof. By the above theorem, I ¢ € Sn such that
type Fi = type %G(.)ﬁ Since Teichmiller spaces of the same

type are biholomorphically equivalent, there exigts

L

\f : T($lj XowaX T(?n) f T(?l) Xe s o X T(Fn) %

biholpmorphic, T splitting componentW1se up to a permutatlon,
Then foh ¢ T(f‘l) Xo oo X T(l“ } - T(I‘l) Xeo 0 s X T(I" ), $0 that by
a prev1ous theorem (see Chapter v, § 3); feh belongs to the

semidirect product of Mod(Tl) Xoaa X Mod(F ) by H, Therefore,

foh splits componentwise up to a permutation, and hence h

splits componentwise up to a permutation,




CHAPTER VI
THE DETORMATION SPACE OF A KLEINIAN GROUP*

§1. The Deformation space

Let G be a subgroup of M, the group of fract%onal
linear transformations of the Riemann sphere C U {=], that
is, M= {z H-az+g/a,b c,d € G, ad-bc = 1}, Let

G) ccu {m} denote the region of (prOper) dlSCOHtlnultY

(z € 2G) ¢ G is (pPOperly)dlscontlnuous at z; see Chapter III,
$1). Let A(G) = C U [} - a(G), called the Limit set of G.
G is called a Kleinian group if Q(G) # ¢. From now on we
will assume G is a Xleinian group'whi?h is'fipitely generated
and non-elementary, that is, A(G) contains]more than two
points.

Let f be g quasiconformal automorphism of G U Pm}. kil

is said to be éompatible with the group G if 62~ is again

a Kleinian group and f is conformal on A(G). (It is not
known if this latter condition is automaqlcally satisfied

by all flnlteiy generated Kleln}an groups.) f is called

normal;zed if £ fixes 0,1 anci“”,a One defines an equivalence
Felation on the set of norma%ized compatible quasiconformal
ﬁappings as follows: £y is equ?valent to £, 1f fl(?) = fz(z)
for all z € A(G)., It is not difficult to show that fy is
equivalent to f, if and only if le°fl is the identity con-
jugation of G onto itself [19]. | |

¥Remark. This is essentially an exposition of the Deformation

Pl b Ak by

space of a Kleinian group as defined in [19].

62,
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The Deformation space of the Kleinian group G is the
set of equivalence classes of normalized cempatible quasi-
conformal automorphismg of ¢ U o) and will be denoted by
T(G,Q) where 0 = 0(G)., ILet A be g connected component of
the region of digscontinuity g of. the group G. Tet G denote
the stability subgroup of A- that is, ={ge a/glp) = A} .

0 is the union of the commected components A
A-

Two components

and_ anre called equivalent if there ex1sts an element

g EG—suoh that g@x ) = Ay . Let {A }'be 8 maximal collection .

of non-equivalent components of . Since @ is finitely ' !
generated, and. non~elementary, a theorem of Ahlfors B -

implies the collection is flnlte Al,o..ﬂ - Let

GA ,,..,(% be the corresponding stability subgroups By .
1

Ahlforg! theorem each AW/G is a compact Riemenn gurface

with possibly finitely many p01nts deleted,

Analogously, there is defined a Deformation g opace of’
Gh; denoted by T(¢ -A) of equivalence classes of normalized |
compatible qua81conforma1 deformations of GA; except the %
deformations f are required to be conformal on C U {ew]

Let 4 bve a component of Q. Since G is non-elementary, |
there exists a holomorphlo unlversal covering mapping , |

h : U~ A (U the upper half plane) Let I be the group of

conformal automorphigms of U such that v € T if there exists

an element L(Y) € ¢ such that hoy = I(Y)oh; There is an

exact sequence of Kleinian groups




ol ,

where H is the covering group of h : U~ A. ' is Fuchsian

and UL is conformally equivalent to A/G’A . ' is called the

Fuchsian model of G over 4 [19 L Sincel is determined by h,
which is unique up to a fractional linear transformation with

real coefficients, ' is determined uniquely up to conjugation

by a fractional linear transformation with real coefficients.
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82. Isomorphism Theorems

Let G bF a finitely generated non-elementary Kleinian
group. Let Al,..‘,an be a maximal collection of non-equivalent
components of the region of discontinuity Q, Let

GA ,..{,GA be the cbrresponding stability subgroups, Then
1 n : . :

Theorem. (Kra) T(@,q) = 7(q 24) XewaX T(G, ,8 ) (biholomor..
Iheoren 8, 6 7%n

phically),
Proof, See the literature [19].

From the previous Section, there exigt holomorghic
universal covFring mappings hj s U= Aj and Fuchsian models

Iﬂlyen‘egI‘no Th?n

Theorem, (Maskit) T(T ) XeaoX T(T ) is the hOlOmOthlC

'unlverSdl covering ‘space of T(G ) with holomorphlc coverlng

group

quO(Fl) Xe « e X ModO(Pn) < Mod(Fl) x‘T.x Mod(Pn)

for some subgr?ups ModO(P.) o Mod(Fi)o‘ Hence

T(T ) XewoX T(F ) T(F ) T(Tn)
(e, 0) = g g (11) X o Modo(f T = Mod (T’J Xeoo X Mod (T T

Proof. See the literature [20].

Coroliary I, (G, Q) is a complex analytic manifold,

Proof. T(T ) is a complex analytic manifold and ModO(T )

is a UPOpePlY dlSCOHtlnuOuS f%ced p01nL free %roup of




biholomorphic aut omorphisms, al% i.
: ¥

Corollary TT, T(G,0) is simply connected if each component
K t T ’
Ai is simply connec’?ede
i .
Proof., ‘Ai simply connected implies Mady(T.) = {id} (this
I . .
will be proven in the next section) and T(Ti) is simply

connected, all i.
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§3. The Modular group

Lgt G ue é finitelylgeneruted non—glementary Kleinian
group with region of %iscontinuity s Lep Alqaon,An be a
maximal collection lenon—equivalent components of Q. Let
Gﬂl,.oe;GAn be the correspopding stability subgroups. Let
Tiy 151 = n.be the Fuchsian mod%} of G over 4;. From now
on T(G,q), via the isomorphism (see §2), is

(Ty) | (T,)
ﬁBE“TTmT Xo e X MfH"TT"T

For eacgh component 8;s let hi : U~ Ai denote the holo-
morphic uuiversal covering mapping wiﬁh holomorphic coyering
group Hi,l It is clear from the dgfinition of T. that ?. is
a normal. subgroup of I'yu Let Mod I(P ) denote the subgroup
of Mod(T ) 1nduced by all w Uu~u qua81conformal such that

-1

wTiw -1 _ Ti and wHiw = H . ‘Bach such w 1nduces a quasi-

i
conformalaubomorphisnlf : A. " é. such that f°h. = h;ew and
gGA f_l == GA . Further, every guasiconformal automorphlsm
5 1

F o Ay = Ay such that :E'GA L A is so 1nduced (and unique

i
up to an element h € H;). Let Mod (F ) denote the subgroup
H
of Mod (r ) induced by all w : U - U quasiconformal such

that_wfinl = Ty, wHiw""l = H,, and woyow Toy~l ¢ Hy, all
1

l’
vy € TiJ The latter condition is equivalent to f°g°f"l = g
for all g € GA’ where f is the induced quasiconformal mapping
of A%; We remark that Modp(T ) = Mody (T ), all i in the
1

previous theorem (see §?). IfaAi is simply connected, then

H; = {id} since H; = m(4;). Then w induces an element of
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Mod{id}(Ti) if\w?y°w"l°v"l = id, all y € I, ;s that 18,
w°y°w”l = vy all-Y € I'ie Such aw clearly induces the
identity element of Mod(Ti), Hence 4; simply connected
implies Mod{.d}(r.) = {id}. Thus if all components gre simply
connected, T(J,Q) is T(Tl) XewsX T(T_ ).
We deflne the Modular group Mod (G, Q) to be

Hy . i, H,
Mod (1“1) Xeae X Mod (I‘ ) Mod (r ) Mod (T )
Mody (T ) X..<X Mody (1 n) = Mod (r) KeoaX M’H““""("T“‘")"“
1 n

This defiﬁition is consistent with the pr?viously defined
Modular group for a product of Teichmiiller spaces since if
{id} a11 i,
and since Mod{id}(T%) = Mod(r?), Modiid}(r.) = {id} all i,

all components are simply connected,\then Hy

i

the Modular group reduces to Mod(Tl) Xo oo X Mod(T Yo

Mod( G, 0) acgs properly dlscontlnuously on T(G,Q) as a
group of blholomorphlc automorphlums L9 J. Since
Mod( l) Xo aa X Mod(? } acts effectlve]y on T(Tl) Xes X T(T )
if type Iy = (gﬁ,ni) satisfies 2g;+n; > k4, all i, it is
'clearnthat und?r thesé!copdit%ons, Mod(GiQ) acts effectively
éan(G,Q). Inlthe next se?tidﬁ we d?fine the Kobayashi
metr%c on T(G,0) fFom_which it jplloﬁs that Mod(G?Q) acts

as a group of isometries of T(G,0) in this metric,

* Bemark. This is nobt the definition of the Modular group as
defined in [197], but rather that in [20]
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§h. The Kobayashi metric
Slnqe (G, Q) 1§ a complex analytic manifold, we deflne
the metrlc on T(G, Q) to be the Kobayashi metric,. con51stent
7w1th the metrlcs preV1ousLy defined on the Telchmﬂller space
and crossmproduct of Tglchmuller spaces as special cases.
Since T(G, Q) has T(;l) Xo 00X T(Tn) as a holomorphic covering

} .
space (see §2), more precise information about the Kobayashi

metric on T(G,Q) is known from the following general theorem,

Theorem. (Kobayashi.) L%R M be a complex manifold and M a
covering with projection mapging m: M~ M Let pPsq € M and
Psq € M such that m(p) = p and m(q) = go Let kgp and ky be

t

respectively the Kobayashi metrics on ﬁ, M, Then
ky(pya) = ipf ky(p,q)
.. q .
where the infimum iF taken over all q € ¥ such that g =m{q).
Proof. See the literature El?].

If M= T(G,0Q) and ¥ = T(Ty) Xeeax T(T ), we obtain the
]
result that the Kobayashi metric on T(G,Q) is the metric

1nduced from the Kobayashi metric on the covering space

T(Fl) Xe oo X T(P ) via the holomorphic coyering mapping.

i
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§5. Teichmiller metric = Kobayashi metric

Let T(q,n) be ﬁhe Deformation space of the Kleinian
group G withlregion of discontinuity Q. Then a p01nt in
T{G,0) is An equlvalence class, denoted [f], of quas1conformal

deformatlons of @ (s?e §l) The Telchmuller metric T

T(G Q)
on T(G,Q) is defined as follows:

€
g€lg]

(e, 0y (L£1,[8]) = 1n§]10g k(¥

(see Chapter II, §1), If A is a connected componeait of 0

and G, }s the subgroup of G which fixes A, that 15, the

?tab111ty subgroup of A, one has defined analowouqiy a

quohmﬂiler metric TT(G ,0) OB T(G&,A), the Deformation space

of Gps Let kT(G Q) (TGSPECtheLY kT(G A)) denote the

Kobayashi metric on T(G, Q) (resPectlvely '.I‘(GL,S,,!.&)).a We prove

*BE Ta(a,0) = kr(e, g)-

We recall that T(G,0) _.T(GA 189) Xeaax T(GA A ) and
1
81nce T(G A ) T(T. l/Mbd (T ) that

T(Tl) XuweoX T(rn)

Mod,, (I, T X0 oX Mod, TT°)
H1 1 . Hn n

T(G{Q) =

(see §2, [19], and [200).

The isomorphism T{G,Q) = T(GA ,Al) Xeaso X T(GA A ) is
2 1
obtained as follows: Let [£] € T(G Q) and

fz(z) R : f(z), if z € g 1(A ) for sgmg
f( z) = Zlai o Define ui(z) = {O otherW1seo g

l

Le? ? be the corresponding unique normalized Beltrami
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equation solution, that is, %ig = ulle, Thenrthe mapping

P2 £p (%l,ﬁ..,¥ ) whlch progects b s [fj > ([?iﬁ.o,,[f 1)

is the isomorphism (for details, see [18])

Let h1 s U= A be a holomorphlc covering mapping for

the coméonent b« Let M(G ) (respectlvely M(F 1), denote

the unit ball'in L (G ) (réspect%vely I (T)) (see Chapter 1171,
§2) Then there is an %1duced mapping h : M(Ti) -t M(Gai)
deflned by

(h; u;)(h,(2)) = u; (%)

'

by ()

h,(z)
which is a linear, norm preserv1nb, purjective isomorphism.

sLfor z € U

The mapping hi projects to a‘holomofphic surjective mapping
¥* \
h, : ™(T.) = 7(G, ,A,) which is a holomorphic covering with
iy i Ai i .
covering group Mody (T ) © Mod(T }s so that
H;
T(GA y Ay ) _AT(F l/Mod (F ) [20]. Hence if hy = (h ,.na,h ),
then h,, T(Tl) Xo o0 X T(T ) = T(GA ,Al) Xeo oo X T(G ,A ) -T(G Q)
1
is the universal holomorphlc covering space of T(G ) (the
cross—product is simply connected)& with coverlng group

M?dHl(rl) Xo oo X ModHn(Tn) so that

T(Ty) XeuoX (T,)
od (T KT X Mo (Iy «
1, 1 H ''n

T( G, Q) =

Theorems Let [x], [y] € T (GA.’Ai)’ where x,y € T(Fi)(via
' 1 AW

the isomorphism). Then

T ' [x},[y] = ,inf = (%,V), each i.
T(Gdi’ai) ’ xé[x] T(ri) A

Yely]

LN
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Proof. Let h- : M(T,) - M(GA ) be as above. For u; € ML),

let f; be the unlque normallzed solution to £, o= uifi « Then

L\'lll

the mapping hi can be equivalently viewed as a mapping
¥* : .
hi* 2 £ hi*(fi), w@ere hi%(fi? is.tpe unique Qormalized
solution to the Beltrami equatiop g— = h. (u.)g . Let
i 2 41 % 1 7
X, ¥ € T(Ti), and f; € X, g; € yo Then
log K(f,°g;t) = log K(hi*(fi)oh;i(gi)) since

h, = M(T,) - M(G, ) is isometric, Hence
Ly i Ai
Tp(r,)(%¥) = inf log K(f;g}) = ipf log K(n; (f;)°hi*(g;))
i f €x fIEX

giGY g; €y

= Ty (g (D ITD.

The above inequality comes from the fact that

% € [x] ¢ T(GA s As) (respectively y € [y] € T(G& ,A ) need
i

not imply that there exist f, € x € T(P ) (respectlvely

It

g, €7 € T(Pi)) such that hi%(fi)
ns
hi*(gi) = y). Thus

(resPeqtlvely

TT(GAi’Ai)([X]’[Y]) 3 xéﬁij T(P )(x,y)e

yelvl

However, from the ,definition and properties of Mody (T;)
Hy
(see §3), it is not difficult to see that there exists

fi.E Bl(g) € T(Ti) and g, € Bz(y).e T(Pi), where
‘. . nS nt
81,8, € ModH.(P%), if and only ;f hi*(ﬁi) = X and,hi*(gi) = Ve

i
Hence
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x€[x]
vely]

- . Ny '
i .

It follows directly from the isomorphism

T(G,0) = T(GAlaal) x,,gx'T(GAn?An), that

TT(G?Q) = mix‘{TT(Ga.ﬁai)}; SW%th this 1? mind, we define the %
Teichm#ller metric oh T(Pl) Xe'o o X T(Fn) to. be |

TT(I‘l)Xs se-XT(Tn) B m?X {TT(I‘:'})}JnIb Let h* = (hl*’le‘.a.’hnﬁ)‘ Then
I " ) -
hy T(Tl) Xo s o X T(Tn) - T(GAl,Al) Xo o s X T(Gbn,an) = 7(G,0)
is the universal holomorphic covering mapping, and by a
similar argument as above,
T = inf T . = j T
T(G,0) T T(Tl)x..‘kaTn) inf m§X { T(Pi)}’
where the infimum is taken over all elements equivalent undqﬂ

MOdHl( Fl) e oo >$ MOdHn(I‘n) °

LI

Theorem. TT(G,Q) = kT(G,Q)’ where T is the T@iqhmﬂller
metric on T(G,0), k the Kobayashi metric on T(G, Q).

Proof. From above, TT(GﬂQ) = inf ?ix {TT(ri)}, Now from a

previous theorem kT(Ti)x,..XT(Tn) = %ﬁx {TT(ri)} (see

Chapter‘ IV; §2)a' Also kT(G,Q) = inf kT(Fl)X..aXT(Fn) where
the infimum is taken over all elements equivalent under

Mody (T7) Xdeax Mod, (I'') (see Chapter V, §4). Hence

T, = inf max {r ] = inf k ]
7(G,0) = inf max | T, ) T(P,) Xeox BT,

)

= Ky(q,0),




7.ll' a.:
Corollary. Every biholomorphic mapping
h : ¢ ’Ql) ~ T(GZ,QZ).is an isometry in the Teichmilller

metpic, In particular if G. = @ evéry automorphism is an |
’ pa 1 2 p ,

' ]

|

isometry.,




CHAPTER VII o _
AUTOMORPHISMS OF THE DEFORMATION SPACE OF A KLEINTAN GROUP

81 Automorphisms of the Deformation space

' Leth be @ finitely generated non—element ary K%einian
group with region of d%scontinuity {2 Let pl,.og,én be a
maximal collection of non—-equivalent componénts of 0, Let
Gal,‘aQ,GAn be the corresponding stability subgroups. Then
T(g,ﬂ) = T(GAl,Al) Xo o & X T(G&H,Aﬁ) (biholomOﬂphically; see
Chapter VI, ?2)n

Definition. We call a Kleinian group G exceptional if for

its Fuchsian model rl,a,a,rn, some Ti is of exceptional

type °

Theorem, Let G be a finitely generated non-elementary,

non-exceptional Kleinian group. Let h : T(G,0) - T(G, Q)
t

be a biholomorphic self-mapping of T(G,0). Then there

exists a permutation o € Sn_such that

. ont.o .
PlT(c, ,a,) F TGy 284) > (G 48405y) biholomor~

| 1 o(i)
phicaliy, 1 %31 <n. (h acts on the product via .the

isomorphism, )

Proof. The universal covering space of T(G,0) is

T(Tl) Xe oo X T(Tn) for some Fuchsian groups Tlpdne,rn (seeﬁ

Chapter VI, §2). The holomorphic covering mapping is

W= T XeeoX Towhere m ™r,) - T(GAi’Ai) is the holomorphic

75,
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covering mapping for each component, 1 < i % n., Let

h : T(G,0) ~ T(G,Q) be a biholomorphic self-mapping of

7(G,0). Let B ¢ T(Iy) Xeoux T(T)) = T(Ty) xuwex (T ) be

a lifting of h to the universal covering space. Then by

the theorem on cross—products of TeichmMller spaces {see

Chapter V, §3), there exists a permutation ¢ € S, such that

ﬁIT(Fi)  T(T,) B2 I(T4(1)) biholomorphically, 1 < i & n,

Since 7 is of the form m = My XewoX Ty T, 1 T(ri) - T(GAi,Ai)

it follows easily that

h s T(G, ,4,) R0 p(g A_¢<y) biholomorphically.
IT(GAi,Ai) ( A? i) (_Ac(i)v G(l)) morphieally

Let

T(Gy0) = g57 Tgilzieﬁpii(gn)(r )
Hyto1/7ees © H ''n

be the deformation space, via the isomorphism (see §2) of
the finitely generated non~elementary Kleinian group G. Let

oAl ey Mod *(Tq) Xeoax Mod "“(T) L
Modl G, 1) = = - .

be the associated Modular group acting on T(G,N). Then Yﬁ

Theorem. Let G be a finitely generated non-elementary, non-
excep?ional Kleinian group with non-equivalent components r

Aisesssh and Fuchsian model I'j,...,T . Assume, in addition, |

that & does not contain elliptic elements and that A; is

simbly connected for ail i, 1 £ 1 £ n, Then Aut T(G,0) is

the semidirect product of Mod(G,0Q) by the subgroup H, wher?
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H is defined as in Chapter V, §3.

Proof. We have shown before that A. simply connected implies
that H, = {id} which in turn 1mp11es that Mod{ }(F ) = {ia}
for 1 1 s n (sge Chapter VI? §3). Hence

(G, Q) = T(Fl) Xe s e X T(Tn), a cross~product of Teichmitller
spaces, where rl,;,,,rn is the Fuchsian model of G, Since G
does not contain ellip@ic elements, T. has no elliptic
elements, 1 € 1 € n, Also G non~except10na1 by deflnltlon
mFans that each T is of non~exceptional type. ﬁ;nce the

theorem on cross-products of Teichmilller spaces (see Chapter

Vs €3) vields the result.

Remark. The requirement that ¢ not contain elliptic elements
is ﬁecessary¢ %f G contaigs elliptic elements then, in general,
one has Mod(G;Q)HJ;;Aut T(é,ﬂ) ( properly contained) already.

We give a §imple example to illustrate. Let T be a finitely
generated Fuchsian group yith signature (2,2;2,3), that is

U/T is a compact Riemann surface with two distinguished

points py and p, such that if Zl,zz € U are such that

ﬁ(z ) == p;y 1= 1,2, where w ¢ U = U/I" is the projection
mapping, then there are elliptic elements YisYp €T

Yl(zl) = Ay, vq = order<y;> = 2; v,(z,) = doy Vp = order<y,> = 3,
Now Nod(r)J% Aut T(T) because every quﬂsiconformgl self-
mapping £ of U/T which leaves the set {pl,pz} fixed induces

an element of Aut T(T'), but only those f which send every
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p; into a Py with vy

in Mod(T). 0 = C-R, then T(T,0) = T(T') x T(T). Let

= Yy 13 = 1,2 correspond to elements

h € Aut T(T), h ¢ l‘n'iod(l“)n ‘Then the mapping h x h € Aut T(T,Q),
but h x h ¢ Mod(G,Q)H., The same argument applies unchanged
for a whole collection of flnltely generated Fuchsian groups

T with signature (g,n;vl,g;o,v ) such that g 2 2, n 2 24

2 = vy € w‘and vy < Vs < ' for at least two 1pdlces } and Je

|
In the follow1ng theorem we drop the requlrement tha@

\

the components A, of G be simply connected. Then

Theorem, Let G be a finitely generated non—elementary, non--
exceptional Kleinian group. Assume that G does not contdln
!

elliptic elFments; Then Aut T(G, Q) is the semidirect product
of Mod(G,0) by K, where K =fh € Aut T(G,0)/h 1ifts to an

h € H] (H previously defined in Chapter V, §3), fif and only
if the normalizer of MOdHi(I‘i) in Mod(T.) is Mod *(T,),
153 2n, (For notation, see Chapter VI, §3)

H.
Eggﬁggg Since Mody (I'y) is a normal subgroup of Mod l(ri)$

Mod. 1(Ti) is contﬁined in the normalizer of Mody (Fi) in
1

Mod(ri).

Proof, We reca}l that T(Tl) Xs s o X T(Pn) is the universal
covering space Qf T(G,Q) and that

T(Pl) Xo's o X i(?n)

(G, 0) = Mody () ¥een X Mody (1)
. I

(Chapter VI, §2). By general covering space theory, it is not
P ’ g sp i,
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difficult to show that £ € Aut T(G,Q) if and only if a lifting
¥ belongs to the normalizer of Mody (Tl) Xeo oo X ModH (T ) in
Aut T( l) Xeom X T(T )e From a prev1ous theorem,

Aut T(Tl) Xo o s X T(P ) is the semidirect product of

Mod(Tl) Xo o 4 X Mod(P ) by H (Chapber v, §3) From another
result (in this section), every € Aut T(G,0) has the

property that

£ ) T(Fi) onto _ T(FU(i))
lT(PiL/ModH_(Fi) Mo, (T = Mod U(_)(fg(i))
1 1 L

H
biholomorphic%lly for some 0 € 8 . Hence f € Aut T(G,Q)

and ¢ = id, if and only if a 1ift of such an £,

%’T(Pi) : T(Pi) - T(Pi) belongs to ﬁhe normalizer of
ModHi(ri) in Mod(?.), all 1. But f € lMod(G,0) ig and only
if the normalizer Mbd (F ) in Mod(r ) is Mod 1(? Yy all
i. Now if o # id, we agaln 1ift £ to an T and conclude that
# € Hy hence by defin%tion, f € K. Once one reallzes Lh%t
all such f € Aug T(Gyp), o # 1d can arise in this fash;on

1
,only, that is T ¢ Hy the result is proven.

Proposition. Let G be a finitely generated non-elementary,

nonaﬁxceptional Kleinian group. Then T(G, Q) is not homogen-—
Jmeous, that isy ﬁf X7 € T(G,0N) are arbltr'aryy there does not

exist in general an h € Aut T(G,0Q) such that h(x) = vy,

Proof, We remark that if x = (xl,;.,,xn) € T(G,0) then (via

the isomorphism theorem, Chapter VI, §2) each x; is an




equlvalencF cl@ss of points in T(T,) under ModH (T;__é"

Since Mod(r ) 1dent1f1es conformally equlvalent Rlemann_ ¢;.5“_
surfaces (s?e Ghapter I, §5), any two Rlemann surfaces repreéént—
ing x; are conformally equlvalent. Let x = (Xl"°“’xn) € ™G, Q)
be aryltrarlly chosen.

Choose v o= (yl,ggﬁ,yn) € T(G,0) such that a Riemann
surface in the equivalence dlass ¥y 1s not conformally equiv—
alent to a representative Riemann §urface from any of the
%33 1L 1 2 n (this can always be done assuming the hypothesis).
Suppose there exi%ted an h € Aut T(G,Q) such thét h(x) = vy,
Lift h to an N on the universal covering space T(Tl) Xo'ea X T(Fn)¢
By a previous theorem (see Chapter V,7§3)f B is an element
of the semidirect product of Mod(?l) XoooX Mod(T ) by Ha
Since each element of Mod(Ti), each i, identifies conformally
equivalent Riemapn surfaces (Chﬁpte? I, 85), so dges
Mod(Tl) Xo o e X Mod(rn) on T(rl) Xoa'a X T(rn) componentwise,
Similarly, any element of H identifies conformally equivalent
Riemann surfaCﬁs by looking Ft the i?duced mapping on the
cotangent space, using the cbtangegt‘space splitting Rheorgm
(see Chapter V, §1), and applying Roydén's result (and
generalization, see Chapter III, $§3). Hence every element
qf Aut T(rl) Xo's o X T(Fn) identifies conformally equivalent
Riemann surfaces, In particular, R e aus T(P ) XeouwX T(T Yo

But b maps some 1ift of x, wvia the covering mapplng, denoted

= (xl,mac,xn) to a 1ift of y, denoted § = (yl,.ﬁ.,y Do




Then, in particular, a Riemann surface representing yl'must

be conformally equivalent to a Riemann surface representlng

l i
n

%, for some i, However, by the opening remark and the way

y = (yl,;,.,yn)'was chosen, we arrive at a contradiction.




.YZerj_ng space Of T( G:Ly Ql)

since 0,/Gq,

“non-trivial type,

Answer. No

quasiconform



tque for Gy, G, Fuchsian without elllptlc elements (an

non~exceptional).

Example. There exists uncountably many purely Loxodromic
finitely geneyﬁted non~elementary Kleinian groups with
connected and'simply connected region 6? discontinuity having
t?e same Riemann surf?ce and yet the groups are not quasicon-
formally equivalent [9]. Hence if Gl,bz are as above, then
clearly T(Gl,Q ) m~T(G2, 02,) (blholomorphlcally), buR Gyy Gy

are not quasiconformally equ1valent However,

Theorem, Let Gl, G2 be nonMelemePtary finitely generated
non-elementary, non—exception§l Kleinian groups a?d

: T(Gl,ﬂl) ”AT(GB,Qz) biholomorphic. Assume Gy, G, does
no? have elliptic elements, Then there exists a Kleinian
gréup G such that /G and QQ/G2 each represent a finite
number of Riemann surfaces in which the surfaces of (/G are
conformally equlvalent to those of QZ/GZ and
T(Gl, l) ﬁ-T(G%, 0,) _-T(G Q) (blholomorphlcally) and G ig

a quasiconformal deformatlon of Gl

Proof.” First we remaﬁk that from the pﬁevious result,
T(Gy,0)) = T(Gy,0,) implies that G and G, have the same
number of non-equivalent connected compbnent%, Lif't the
mapping h to a biholomorphic mapping

B s T(Tl) Xa o s X T(T ) - T(ﬁl) X.a.x T(f ) on the covering

spaces. Then h induces a complex llgear isometry between




cotangent spaces over each pair of p01nts X and ﬁ(x),

where x € T(Fl) Xe oo X T(F Je By a previous result (Chapter V,
§4), this mapplng splits componentwise up to a permubatlon,
and since the Ti, Tj are assumed nonwexceptio?al, a theorem
of Earle and Kra (Chapter 11T, §3) implies the existence of

a o€ Sn such that Xi = AJ./GlAi has the same type as

Y
Yd(i) 2 Ac(i)/GZA; ; which in turn implies the existence

of ?i PX, Yc(i) quasiconformal mappings, 1 i £ n [6].
Now ofCn = u I;+ 1If we pull back the Beltraml coeff101ents
i=l 3 :
uf_ to l @n& extend,lt to é by defining uf IA = 0, then
there ex1sts a quasiconformal mapplng £ of C and a Kleinian
group G such that G = £G,£%, 0/G = U Y; [6], and then
=1t
obviously T(G,, ) mAT(Gl, 9) = 1(aG, Q) and G is a quas:conformal

deformation of Gl
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