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Abstract of the Dissertation
ONE CONSERVATION LAW IN ONE SPACE VARIABLE
oy _ _
Henry Nehemiah Friedel
Doctor of Philoscphy
in
Mathematics
State University of New York at Stony Brook

May, 1977

Shock solutions are constructed for a conservation-
law partial differential equation, given initial data
satisfying mild conditions; stronger conditions guarantee
finite-shock solutions. Shock structure is described,
and the number 6f shocks is estimated in terms of the

~initial data. The solution and its shock structure are

proven stable in varilious ways.
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1. Introduction

(1.1) Motivation

The mass of a fluid, viewed as a density-function depen-
ding on space and time, represeﬁts a type of physical entity
which obeys a "conservation law"; this asserts that any change
of the amount within an arbitrary region of space depends
solely on the net inflow (including outflow) through the
boundary of that region. In particular, if the inflow were
zero, the quantity inside would remain constant,-i.e., be
"conserved".

The conservation law is expressed as an IDEl

1. e 3 = ' '3+ .
(1.11) % j’nu(x t)dx jm@ >

Here I is any open subset of R (x-space), whose boundary

30 has inward unit normal'%; u{x,t) is density and.F(x,t)

is flux. {(Flux is a vector indicating the direction of

flow and 1ts rate: approximately the amount passing'through

a small area orthogonal to the direction of flow in a short
time, divided by the product of the area and the btime intervél,)
The left gide of 1.11 is the rate-of-change of the amount of

the conserved gquantity in 0, while the right side gives the

1

IDE = integro-~differential equation, PDE = partial differen-
tial equation. .




rate at which it enters Q.
If w and F are oF on 0 x {t}, then bring the derivative on
the left inside the integral and apply the divergence theorem

on the right to get

(1.12) u dx = - div(F)dx
IQ 6 jQ x

Thus, for (x,t) € O x {t} we have
(1.13) u, + div(F) = 0
X

because 1.12 holds when O is replaced by any small neighbor-
hood of x.
In some physical processes® several quantities {with

2,...,um) = ) are conserved and it may be

densities (ul,u
possible to replace the unknown flux-~functions Fi(x,t)

by known functions fi(x,t;ﬁ). (Here flux fi(x,t;ﬁ(x,t))
makes no sense if W is discontinuous at (x,t).) The con-

servation law becomes a system of IDE's

(1.14) Ay Jutax =0 <R (1= 1,.00m)
s 7 20

which U must satisfy whenever continuous on 90 x (t,)

minus a set of Rn"l-measure zero (so the integral over 30

makes sense). Where Cl,'ﬁ solves

pa] . A . . L R
The basic example 1s isentropic fluid flow, in which mass
and momentum are conserved.




(1.15) u% +oaiv(e(x, bu(x,t))) = 0 (4= 1,....m).

An initial-value problem (IVP) for a nonlinear PDE
such as 1.15 need not have a differentiable solution for
all time t = 0. But because physical processes continue
indefinitely, we would like some sort of global golution
to an IVP for: the conservation law 1.14%. vVarious types
of solution have been defined, the most desirable being

the "shock solution",

(1.2) Results

We study the simplest nonlinear case: a single con-
servation law (i.e., u(x,t) is scalarwvalued) in one space-
variable, with f(x,t,u) = f(u) not explicitly dependent
on (x,t). Probably such an oversimplification cannot
accurately represent any physical procéss (it is unlikely
for flux to depend only on density) but it 38 a model for
generalization. o _ R

We give an algorithm (3.42) for constructing shock
sqlutions using the method of characteristics. To each PDE-
IVP there corresponds an "integral gurface" in (x,t,u)-
space, formed frqmmthése charactéristics (integral curves to
a certain vector field) which pass through the graph of the
initial data. TLocally this surface is the graph of a

solution to the PDE, but globally it may not represent a

single-valued function u(x,t). The Rankine~-Hugoniot Jjump




b,

condition for shocks (discontinuity—paths) is an ordinary
differential equation for which a sequence of initial-

value problems tells how to carve the graph of a global shock-
solution out of the integral surface.

Assﬁming f' increasing, we show existence of shock
solutions (3.43) for a class of initial data residual in
03 modulo mild conditions at infinity (5.1),With finite-
shock solutioné for a large subclass. 7

Following Lax [2], Schaeffer [3] used the theory of
singularities to prove a similar result for rapidly-
decaying €* initial data assuming f" > ¢ > 0. We use oniy
baslc analysis.

Our construction yields a description of the solution's
discontinuities (4) and an estimate of their number (4.1).
As initial data is perturbed in 03 the shocks maintain
ihéir mutual intersection-relationships; they. vary contin-
uogsly, as does the solution locally in measure and in
' (6.1). Golubitsky and Schaeffer [4] proved a different

form of shock stability.

2.‘ Definition of Shock Solution

We establish notation, cf. Tax [2].

(2.1) vVarious types of solution

Consider a single conservation law in one space variable

with flux f(u) depending (Cl) only on the unknown variable




u(x,t). The IDE 1.14 here becomes
a Xo >
(2.11) TT) [~ ulx,t)ax = | {Fou,m
tO Xl a(lexg
if u is ¢° at {Xl’XE} X {to}. The inward normal % is +1
at Xy and -1 at X, €0
(Xlsto) U—(ngto)

T{2.12) CFou, R = foul = - £
oy 70) it T Tulgty)

Set f* = a. Then 2.12 changes 2.11 to

X ul(x.,t )

(2.13) 4 (Puax+] 2 Ca=o0 |
dtlt X w(x,,t )

‘ o 71 1°70 /

|

. 1
g0 where u is C7,

(2.14) + a(u)uX = 0.

Y
Note: The IDE form of the conservation law, 2.13, may be

recovered from the simpler form 2.14. Thus we regard the

PDE 2.14 as the central object of study, for which we seek
globallgeneralized solutiong. Any definition of "solution" | -
onght not to depend on the particular antiderivative of .
(2) that f happens to be, because 2.14 (also 2.13) involves

only f' = a, not f.

Notation: (1) H = RXR,, = space-time (x,t). A function
u(x,t) is "global" iff its domain is H.

(i1) ¥ denotes the set of Cl test-functions © : H - R

which vanish outside a bounded subset of RxR>O < H.




]—ll'

(i11) u : H-= R is "piece-wise ¢ " iff for each bounded
subset B < H we have u(B) is bounded, and u restricted to
B is Cl on the complement of a finite union of graphs of

Cl paths.

(2.15) Definition. TLet {§ € Cl(R). "IVP{V)" denotes the

problem of finding u : H - R such that u(x,0) = {(x) and

u is a "generalized solution" of 2.14 in one of these four
ways: u 1s a |

(1) "(global) ¢! solution" iff u is ¢! and solves 2.14.
(i1) ™MIDE solution" iff. u solves 2;i3. |

(1ii) "weak solution"

iff [f (mtuA+ wxfou)dxdt = 0 for
H .
all ¢ € J.

(iv) "piece-wise ¢! solution" iff u is piece-wise ot and,

where Cl, solves 2.14.

(2.2) Relative status of definitions

Notation: TLet u{x,t) be piece-wise Cl, with a discontinuity-

path y. (i) ILet g be a function of u : g=f or g = or

a
g = identity. Define the "jump function" [g] on graph(y)

u(ygtg+o,t)

88 8ly{y(t)-0ot)

(i1) The average of a function a(u) for u between u, and
u, is

3Integra.te by parts m(ut+(f0u)x) = 0. "Weak soclution"is

independent of the particular antiderivative f since
[ @X(X,t)dx = 0.
R ‘




u
[ e a{uldu
u;
U, - if u, # u,
cal o= 2 71
!
a(ul) = a(ug) if vy = u,
. . 1u(Y(t)+o’t)
efine a] alon as a
&Y Tu(y(t)-0,t)
(11i) The "Rankine-Iugoniot condition" is y' = al at

interior points of y, for all discontinuity paths y.

Note: al] = %%% .

(2.21) Proposition

(2.211) A ¢! solution is a solution in all 4 ways 2.15.
(2.212) A solution in any of the U4 ways 2.15 satisfies
the PDE 2.14 on any open set on which it is oV,

(2.213) TLet u be a piece-wise CT solution. Then the
following 3 statements are equivalent:

(1) u obeys the Rankine-Hugoniot condition.

(ii) u is an IDE solution.

(iii) w is a weak solution.

Proof. See Appendix.

(2.3) The Shock Solution

Definition. A plece-wise Cl solution obeys the "shock

condition"” iff [al] < O on the interior of each discontinuity-
1

path {"shock"). A "shock solution" is a pilece-wise C

solution which obeys both the Rankine-Hugoniot condition and




the shock condition.

(2.31) Note. If (a) is increasing, then the shock condition
is equivalent to [u] < 0.
| Recalling that for the PDE 2.14 the characteristic

speed 1s %% = aou{x,t), we see the shock condition says
every shock 15 forced by the intersection of characteristics
emanating from either side, carrying conflicting values for
the solution. |

A shock golution (if it exists) seems the best altefna—
tive to a global Cl golution. Tt is a generalized golution
in all senses except ot (by 2.213). The discontinuities are
simple (paths) and minimal ("forced"). Oleinik [1] proved

that a shock solution is unique among weak solubtions up to

redefinition on a set of measure zero.

3. Constructlion of Solution

(3.1) The integral surface

Assume hence a{u) is ¢'. The method of characteristics
tries to build the graph of a ¢t solution to IVP(§) out of
integral curves to. the characteristic vector field

(x,t,u) » (a(u),1,0) in H x R which pass through graph (V).
u

Thus we seek functions (s,7) -» (x,E,u) solving

ET = a(u) , x(s,0) = s
(3.11) £ =1 s E(8,0) = 0
U_ = 0 » uls,0) = ¥(s) ,
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Here s parametrizes the x-axis and T parametrizes each

characteristic curve, i.e., T = (i,f,ﬁ)l gives the
' (8,7

characteristic through (s,0,y(s)).

ET = 1 and t(s,0) = 0 imply E(s,T) = 7, so we identify

T with "time" t. Then 3.11 simplifies to

- au

{x% = a(u) , =x(s,0) i, s

4, = 0 > ufs,0) = y(s)

il

which has solution
w(s,t) = ¥(s), x(s,t) = t-aey(s) + s.
(3.12) ©Note: GS = §'(s), is = t-(ac))! (s)+1l =

tra'(y(s))-¢' (s)+1, and Et = alu) = aey(s), i, = 0.

Definition. P = {(s,t) € RXRzo}’ parameter-space.
? : Po xR, 8(s,t) = (X,t,u); P = &(P) (parametrized integral
surface).

(3.13) Proposition. & is a proper embédding.11L Thus P is

a surface in HxR for which the relative topology from R3

equals the topology induced via & from P; 37l P P s

conbtinuous.

s

i.e., & is Cl, injective, has injective differential, and the
pre~image of compact sets ig compact. Fact: A proper embedding
maps 1ts domain diffeomorphically onto its image, which is

a submanifold of the range space.
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Proof. & is injectlive because integral curves of a Cl

vector field do not intersect. 3.12 gives & is C', with

trat (Y(s)) ¥ (s)+1 aoy(s)
ag = | 0 | 1
yr(s) 0

d® has rank 2, because the first 2 or the last 2 rows are

.independent (corresponding to ¢'(s) = 0 or #0).

.We show é—l(K) is compact for compact K.c HxR. K is
closed and & is ¢°, =o é—l(K) igs closed. K is bounded, so
the last 2 slots (t,¥(s)) are bounded, implying t-aey(s)

H

is bounded for (s,t) € & ~(X); but the first slot

(t-ae)(s)+s) also is bounded, so that s is bounded in

8" L

K). Thus & (K) is bounded and closed, hence compact.

QED 3.13.

Definition. Vv = {peP : (0,0,1) is tangent to P at pl,

V = @’l(u), "vertical sets" in ® and in P.

(3.14) Lemma. V= ((s,t)€P : X (s,t) = 0} =

{(S,6)€P ¢ t = —— ) =

~ (ae¥)' (s)
= {{s,t) : (0,0,1) is tangent to curve § (Rx{t}) at &(s,t)}.

Proof. The tangent plane to P at &(s,t) is spanned by o

(tangent to &¥{(Rx{t})) and ., so (s,t) € V iff
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Xg X 0

0 1 0 = 0

ﬁs u, 1
iff 0 = ES = t+(aoy) (g)+1. QED 3.14.
Definition. # : ® » H, n(x,t,u) = {x,t). A subset 8 c p

ls "l-valued" irf 7| is injective, 1.e., 8 ig the graph
8 .

8

of a function uv° : (&) » R,
(3.15) Proposition.
(3.151) Let p € P. P contains a 1-valued neighborhood of

p iff p € P - v.

(3.152) ILet & ¢ P be l-valued and open. Then u® is a o*

solution of 2.14 with open domain 7(6).

(3.153) 7TVP(¥) has a global ¢t solution iff v = g, iff

(acy) = 0.
Proof. Suppose no neighborhood of p in ¥ is l-valued. Then
write @Hl(p) = (so,to) and use 3.13 to ensure sequences
o A oo . . .

[(Sn’tn)]l 5 {(sn,%n)}l in P converging to (So’to)’ with

(s ,t ) (s 5t )
m#] " =0 forslln. thent, =%, ana 7,7 =

(5. _,t ) n n (s £t ).

n’*’n n? “n

80 the mean value theorem guarantees %n € (sn,%n) such that

v
8

-

xS( = 0.

S

Ly I A
Now lim 8 o (because lim 5,=8,~lim & )

t )
n’*’n 1 o0

2
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. v -
so. lim (Sn’tn) = (so,to). Thus xs(so,to) = 0, and
.3.14 gives p € v.

Now let p € P - k. Jacobian (re@) = X_, nonzero

SJ

at @ﬂl(p) (by 3.14), so the inverse~function theorem promises
a neighborhood N, of Q_l(p) in P, which 7o& maps diffeomor-

phically onto 7ed(N_).

[
In particular, v is injective on @(Nb), a neighborhocd
of p (by 3.13).
QED 3.151,
For p € &, let Nb as above; we may assume Np - @ﬂl(G)

since é-l(Q) is open in P-V. Then Wo@(Nb) is open, 80O

T{6) = W°§(@—l(®)) =qged( UN_ )= Umwod(N_ ) is open.
, pEG P b

Let Ep : WOQ(NP) - Nb denote the inverse function such

that mo® (¥(x,t),8) = (x,t)5 then B is ol since so is wod.

Note u®(x,8) = G(8, (x,t),t) for (x,8) € moa(N)), so u® is
¢t near T{(p).
6 has normal vector field (ui, u%,—l). But P is

tangent to the vector field {a{u),1,0). © = <{tangent, normal}

= <(a(u),l,0),(ux,ut,~l)> = ut+a(u)ux. (Standard proof.)

QED 3.16h2,

3.14 shows v = ¢ iff (acy)}' = O.

If a global Cl solution exists, then its graph is ®.

Suppose (s,t) € V # #. Then O = is(s,t) = t-a' (V(s))-§' (s)+1
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(by 3.14), and 0 # ﬁs(s,t) = §'(g) (else is(s,t) =1), so

(8,8) = #, contradicting u is ot

Plres(s,t)) =

Mwmi

s ,
Finally, suppose ¥ = ¢. @ is l-valued {else the

mean-value theorem yields a zero for is, contradicting V = ¢)
and a ol solution where defined (by 3.152). But u = ¢
implies (aey)' = 0 so t-{aey)' (s)+1l = is > 1, so that
{x(s,t) : s € R} = R for each t = 0; thus 70&(P) = H,

P

and v is defined on all H.

QED 3.15.

(3.2) BSheets

We divide the integrallsurface into 1~valued subsets.

I

‘Definition. T : {s:{acy)'{s) < 0} » R, T(s) = —

Note. V = graph (%) (vy 3.14).

Definition. P’ = {(s,t) € P : t < E(s)}. ¢ = &(p").

Note. P* = {(s,t) : % (s,t) > 0} (by 3.14).

Assume hence a, § € a2, {8 : (aey)! (e)<0,(aoy)"(s) = 0}

is the critical set of T3 assume here it is Ffinite.

Definiticn. Suppose the local minima of T occur at

. <‘32 <...< g% with t7 = (s1). call each t! a

"pifurcation-time", and (s',t%) a "pifurcation-point". Write

+ min{s : s>s7,%(s) = t'), if this set is honemp ty

1 { 7
-+ %0 s Otherwise




14,
i tmax[s : s<s”,¥(s) = t1}, if this set 1s nonempty
5. = -0 s Ootherwise ¢
Define the "base" Bi = (sl,si) x {t"} and the base

BL = (s%,8%) x {t1). Aleo view the s-axis R x {%}
. S

as a base, BC.

A point p = (s,t) € P' is said to "lie over" a

base (sL,sR) x [t } iff s < 5 <5

L R

and t_ < t. Among _ |
|
the bases over which P lies, there is one base B with

largest t-coordinate and we say p "lies just over" B. ,
' |

Define the "sheet" over the base Bi as

Si = {p ¢ p" : p lies just over Bi}.

Order the sheets (except S°) by SE < Si

Extend this terminology to ¥ and to H via & and 7. é

n n
<... .
< S_ < S+

A

V= 3\:‘0‘?»\ (%‘)




Notation. Fix sheets 8, 8 Write &8 = §(3),

1
o = 7(8) and 8, = 8(8,), o, = w(sl).
(3.21) Lemma. (Sheet structure in P).

(3.211) There exist toaty (0 = ty < By € )} such that

1
[to,tl) is domain for ¢® paths sL(t) < SR(t) (except we

allow 8, = == Or 8_ = +w)} with

8= {{s,t) : t, st < £y sL(t) <5 < SR(t)}.

Call s, the "left side" of s, and s, the "right side".

R

(3.212) If sy (or s.) is finite-valued, then it is ¢

on the complement of a finite set, with graph in V.

(3.213) t_ is the bifurcation-time of S. Suppose

§) < S share a bifurcation-point (s_,t_), and 8 [t

R o0?

. . . : )
is the right side of 8y; then SL(to) = 8, = SR(tD) and

R(ap(6),6) < R(BL(6),t) for t, < t < min(ty,t,).
(3.214) ¢, is a bifurcation-time, or tl.= ®, Or
SL(tl“O) = SR(tl-O).
Proof. If 8 = s° then t_ = 0, t; = min{t"}}, and

1, s SR = +wo, Hence, assume S = Si for some 1 > O

(similar proof for 8 = 87). Recall Bi = (sl,si) x [t%),
and set t, = t* (bifurcation-time).

Set o = supls > s* : T increasing on (87,s))

i
+
o0 : s if s

{inf{s<s : T decreasing on (S,Si)}, if 8, < ®

=

+ et

5)
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if  domain(T) N [a,B] # 4

otherwige

a8 < B},

inf{ ¥(s)

3

if ¢

b

inf{s : 8™ < s < «, E(s) = ty), if £ <

o

{

o =

g8 8
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T is monotone on [s",a), hence has a ¢° inverse,
i
+3
and T is monotone on (5,5?], with a ¢° inverse SR(t)

sr(t) for t = t < t;. If 7 < =, then also § < s

- +
for t_ s_t < 13 if 8] = =, set sR(t) = w (to £t < tl).

If s (or SR) is finite-valued, then its graph is part
of graph(%) = v. Tt is Cl except possibly at critical

values of T (a finite set) by the inverse -function theoremn,
QED 3.212.
‘Define 3 regions
Q) = {(s,8) : 8" <5 <d, t 5t <%s))

{(s,t) : @ <5 s §, ty £ &< ty)

0
]

Oy = {(8,t) : B <8 < Si, bty § t < %(S)}.

It is easy to check (k = 1,2,3) that p e'ak implies
p € P+ and p lies just over Bi; thus, g Qk < 8. Also

note we may rewrite the gets Q) as

'Ql = {(s,t) : b £ b < by, 5.(8) <5 < @)
Uy = {(s,t) : t, st <ty, a<s < f)
Qg = {(s,t) : by £ 6 < by, B < s <:sR(t)},

which shows that our advertised deScription of S is equivalent

1" _ 1 i
to 'S = R Qk s 80 we prove S C % Qk' L

Let p

I

(%,%) € P+, p lies just over Bi (i.e., p € S);

we suppose pAﬁ U Q. and derive a contradiction. "p lies
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i: 2 £ (s7,d), since otherwise

t, = } < %(%) (which follows from p € P" ang p lying over

iy . . i A
over B+” implies st <8 < s

Bi) contradicts p & Q,. Similarly i & (E,Si), 50 we

1
=8) %

) = t, <%

must have 5 ¢ [a,8]. Then p & W, implies t

t; < w. Also note a # B; otherwise (g =

B
(s

achieves a logal maximum (t.) at 8, and T

1)
contradicts (Q’%) ¢ ph.

Thus we are left with a < 8 and t, < ». One may

check that ?l o assumes the minimum t, at an interior
[a,B - '

point s € (a,8), and (Sm’tl) is a bifurcation-point
generating 2 bases. p must lie over 1 of these bases,
contradicting "p lies just over Bi".

QED 3.211,

If ¢ < 8 and t, < =, then we just saw t, is a bi-

furcation-time. If § = then sL(ti—O) = s_(t,-0) (if

i R\
T continuous at a = ) or t; = » (if T discontinuous

there).
) QED  3.21h.

Y

1

Recall S = S7. Suppose now 8, = S_. (We have

n

written the bifurcation~point (s™,t') as (so,to).) A

ﬁirrorwimage of the previbus development for 8 applies to
A

S1, 80 Sy is the inverse of T on an interval

(&,Sl] = (&,so] where T is decreasing. Thus

rR? 57, both exist at

A . ca N
S(to) = 8 =_SL(tO). Also, if s
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A
by > tgs then T is decreasing on [SR(tB),sO], increasing
on [s,, SL(tB)],-so

p - (P'U V) =

I

(/E\;R(t3)’SL(t3)) X [t3] < {(S,t) € P : t2T(s)}

f(s,t) : Es(s,t) < 0}, implying
K(8,(tg)stg) > K(s (£4),065).

QED 3.213, 3.21.

(3.22) Lemma. & is l-valued.

5 _
Proof. Otherwise w9¢%] = O for some p,q € S, p ¥ d.
q

wod preserves the t-coordinate, so p = (Sl’tl)’

q = (sg,tl) with s, # S, (say 5, < 8,). 3.211 shows

V[él,sg] X {tl}.C-S c P = {{s,t) : is > 0}, so

- - 81,6
X(Sl’tl) < X(Sz’tl)’ conbradicting ﬁaé]( 1s6) = Q.

QED  3.22,

(3.23) TLemma. ({Sheet Structure in H).

(3.231) There exist ooty (0 = by < ) w) such that

1

[to,tl) is domain for CT paths XL(t) < x_{t) (except

R

we allow x; = -w or Xp = Jew) with

o = {x,t) : t, £t < £y, xL(t) < x < XR(t)].

Call xy the "left side" of o, and Xy the "right side".

(3.232) Extend u° by continuity to graph(xL) U graph(xR).
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Then x;' (6) = aou®(x;(t),5) and x.' (8) = acu® (x(8),¢).

(3.233) t, is the bifurcation-time of ¢. Suppose v, <0

b >

share a bifurcation-point (xo,t , and

R °
- - L] A
ts the right side of o0,; then x;(t. ) = x_ = xp(t.)

o)

A .
and xL(t) < xR(t) for t <t < mln{tl,tg]-

(3.234) 6 is a bifurcation-time, or ty = =, or

xL(tlno) = xR(tlmo).

Proof. Use notation of 3.21. Define x. = -» if

L
[, ¥ ~®s and Xp = o if sp = =3 otherwise XL(t) = i(sL(t),t)
and xR(t) = i(sR(t),t). Note for tq € (tO,tl] that
i({(s,ts),: SL(tS) < s < SR(t3)})= {(X,tB):XL(t3)< X < XR(tS)}'

since ES > O here. Thus

o =wod(g) = Wo@(t3€?tostl){(sjt3) tosp (tg)<s<sp(t5)]) =
%SW°§([(S’t3) tosp(tg) < s < sp(t3))) =
%3(§({(Sbt3):SL(t3)<5<SR(t3ﬂ),t3) =_;;(X,t3):XL(t3)<X<XR(t3)]

Cf{(x,t) by St < b, XL(t) < x < XR(t)}, as promised.

Except for a finite set {Ti}¥ where s

L(t) 1s'not

differentiable, the chain fule gives

xpt(8) = F (e (t),t) s, (4) + %y (s (t),t).

Xg(sp(6),8) = 0 (by 3.212 and 3.14), and 3.12 implies
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%y (s,(6)58) = 20fi(s(),t) = aou®(X(s (t),6),t) -

abug(xL(t),t). Thus

xp (6) = asu®(xp(6),8) for € [t,t) - (r)) .

But XL(t) is ¢° (being composed of ¢° functions) and

. ' g ‘

t . . 1

ti?. X1, (t) = g% (XL(Ti),ﬂi) for each Tis 8O that X1,
i

exists and 1s continuous at Ti.

QED 3.231, 3.232,

3.213 implies 3.233, and 3.214 implies 3.23/k.

QED  3.23.

(3.24) TLemma. Assume (a) increasing. 8, <8 iff
gl g |
U © > u wherever both defined, except a common bifurcation-

point. If Gi15 © share a bifurcation-point p, then
s 81
w(p) = u “(p).

Proof. TLet X1s Xp be the left and right sides of o, and

analogously %L’ %R for Oq- Recall

domain(ug) =g U graph(xL) U graph(xR), and similarly for
Sl. .
Claim 1: Let p € ¢, N ¢. Then 8, <8 iff u l(p) > ug(p).

Proof. Let q € S, qq € Sl be the uniQue points such that

Tod(q) = p = Wo@(ql). These have the same t-coordinate:

q = (so,to),,ql = (sl,to). Note S, < § iff s

< ; a
1 8.3 lso
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8

S -~ 1 - .
u(p) = ula) = y(s,) and u “(p) = A(q,) = ¥(sy). Thus, it
S
suffices to show 8, < s  iff ¥ ] 1, 0.
. O s
: . o
a _.a
o] . 0, so x] Lo O, s0 t « aey(s,) + s, =
1 1
q q
51
to‘a°¢(30) + 8, 80 to‘a0¢]so = 8,78). Thus s; < s_ iff
Sy 5, .
toraet] © > 0, iff §¥]_ " > 0 (use t_ > 0 and (a) increasing).
o 6 g : o

S
Claim 2: Suppose §, < 8. Then u l(p) = ug(p) iff p is

the bifurcation point of both 0,50

Proof. TIf p € H is a common bifurcation-point, then

(letting P, be the corresponding bifurcation-point in P)
g - S
u”(p) = d(p,) = u

s

with u l(p) = ug(p) = u,. Then

p). Conversely, suppose p = (Xo,to)

-1 A A
2 (x .t su) € (graph(s;) U graph(s;)) n (graph(8.) U graph(sp)),

which is possible only if é“l(xo,to,uo) iz a common bifurca-
tion-point (in P) for 818,
QED 3,24,

(3.3) Shocks

The Rankine-Hugoniot condition will choose the discontin-
uity-path to mark off Separate domains for 2 sheets which

: disagfee about u(x,t).

Definition. Suppose (xo,to) =P €0, N o, orp is the

common bifurcation-point (in H) of 0,,0. Let v(t) be the
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unigue maximal path solving

8
vH(t) = a1 (v(£),t) and y(t ) = x_
1

u

We say v 'solves (Sl,S,p)".

(3.31) Lemma. Use above notation. Assume (a) increasing
and Sl < 8. Write X Xp a8 left and right sides of g,
andg &L’ % for o

R 1

(3.311)  vy(t) exists for small t~t, > 0.
(3.322)  =x(t) < y(t) < %R(t) for t > t_ when y(t) exists.
(3.313) Suppose also 8 < 8,5 Y solves (8,82,(xl,to)),

and x, < x;. If y(t,) = XR(tl) or ¥(t;) = XL(tl) for

ty > t_, then Y(tg) = ?(tg) for some t, € (to,tl).
Proof. TLet domain(xR) = {a,p) and domain(&L) = [a587).
Note tO € [G'}B) N [U-lJBl) = [max(cz,oal),min(s,ﬁl)) = [0456)-

Claim 1: oy No = {(x,t) : a <t < g,

QL(t) < x < QR(t),XL(t)ﬁ X < XR(t)}.

Proof. 3.231.

Claim 2: 1If p € 0, N g, then 3.311 holds.

Proof. The vector (dx,dt) = (al,1) at p points into
¢, N o (by Claim 1) so the vector field (al,1) has an

integral curve through p which runs for some time past to.

Proof. Define W = ((,t) : by € 6% b5, x () < x < QR(t)J.




ek,

Claim 2 shows X < %R on (to,tg]; Claims 2 and 3 give

Wcoy No,. Forn € Z,s 0> tgito’ define
1 A 1
x. (t + =)+ R (t + =)
_ L' o' n R0 n 1 .
p, = 5 > b, + =) € W. Claim 5 shows
lim p_ = p.
e

(Sl,s,gglhas a solution vy in W, which (by claim 2)
runs for some t > t_ + %, until it intersects the boundary,
oW < graph(XL) U graph(%R) UR X (t,}. Claim 4 shows Y
intersects neither Xy, nor %R’ hence must exist until t2‘
Now define vy : [to:tg] -+ R by

X, if t =t
v(t) = { ° °

lim y (t), if t < t < t.
S ¢! 4 0 2

Tt i1s easy to prove vy is Cl, solves (Sl,s,p), and
A _
xL(t) < v(t) < XR(t).

We show XL(t) < y(t) < %R(t) for t <t st Suppose

X
not, say xL(t3) = y(ts); b, < bty s 6, Then Claim I
implies XL(t) = v{t) for all t € [t ,t5], sO
Y'(ts)-: XL'(tS) = aoug(xL(tS),t3) < a] = Y'(t?))-:
contradiction.

QED  3.311, 3.312.

Apply the intermediate-value theorem to y - ¥ on
[6,5t57. (YA?)(tO) < 0 since x, < x,. In case
v(ty) = xp(t), then (vF) (b)) = (x,7)(t;) > 0 by 3.312
applied to (8,32,(xl,to)).

QED 3.31.
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s s .
Claim 3: asu 1 > a]ugl > anug, except equality holds at
u .

a common bifurcation-point.

Proof: 3.24 and (a) increasing.

Claim 4: If p ¢ 0, N o, then 3.312 holds.

Proof. We show %1, < vy (y < QR is similar). Juppose nct ;

let t; = min{t = £, ¢ XL(t) = y(t)} » t,. Note

XL(t) < yv(t) for t, £ t < t;, by Claim 1. Thus

v(ty)-y(t) xp (6 ) ~x7 ()
v (t;) = lim = s 1im DD
98,0 b=t ty=t
g .
: g u
xp,! (B)) = aeu” (xp (8),8,) < alusl(xL(tl),tl) = v'(t;),

contradiction! (We used 3.232 and Claim 3.)

Claim 5: Suppose p is a bifurcation-point for both Gis O
_ A . ,
Then XL(tO) = x, = XR(tO). Also there exists &, > ty such
AA .
that on [to,tg] all [XL,XR,XL,XR} are defined and on

. A A
(tostg] they satisfy X, < Xp < Xp < xp.

o . . _ _ A . .

Proof. 3.233 gives XL(tO) = X, = XR(LO), and 3.231 gives
A AL A A

Xy, € Xps Xy < Xp3 thus xL(tO) < xL(to), XR(tO) < xR(tO).

By continuity-these inequalities pergist for small time

X . A
past t_ . Filnally, 3.233 gives Xp < Xp-

Claim 6: Suppose P is a bifurcation-point for both SELE

Let t, as in Claim 5. Then (Sl,s,p) has a solution vy

2
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2 t) for

with [ty5t,] = domain(y) ang XL(t) < y(t) < XR(
to <t = te.
(3.4) Algorithm for Constructing Solution
aty(s) 2
(3.41) Lemma. Ilim-inr =2 0 implies 70§ : P~ [

g8 ’-"3’00

is onto and proper.

Proof. x(s,t) = s(t- §£§L§1-+ 1}, so for t fixed

lim x(8,t) = », 1im x(8,t) = -o. Thus Ted(P) = H.
83w 8 —c0

ShoWing 728 proper reduces to broving that forVM >0
there exists M such that if t < M ang [s| > ™, then
[x(s,t)] > um. Indeed, choose M > 2M such that [g] > M

~implies Eﬁ%ﬁﬁl > %ﬁ - If & <M and |s| > W, then
%& > %%, S0 53%i§1(> %%, and t§£§i§l-+ 1 > %g thus
%(ss6)] = fol o 22(8) 4 q) g . 1oy
QED 3.41,

Fix a € 02, increasging.

Definition. 3, (respectively, 3) is the set of | € c?

stich that limTinf Ei%iil 2 0 and
8 |-

SGiven ¢ > O, there exists M such that |s| > M implies

acy(s)
s

> -,
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{s : (2 4)'(s) <0, (acy)"(s)

discrete).

0} 1is finlte (resp.,

(3.42) Theorem. TVP(§) has a finite-shock solution fop
v € 30, generated in finitely many steps by the following

algorithm.

Define inductively a sequence (n = 0,1,...) of pairs

T, € [0,=]
& finite-shock solution u(x,t) for t < T, (for t < T,

if T, < ») with graph in Pt

Ty = 05 u(x,0) = §(x). Given the n™® pair with T < o,

construct the (n+l)St as follows:

Let x; < x, <...<x, be the points at which u(',in)
discontinuous or uX(-,Tn) = % oo} (Xi’Tn) belongs to one
or more previous shocks, or is a bifurcation-point in H.

For each 1 ¢ {0,1,...,k}, the restriction u(-,Tn)'
- Xgo%yp1)
has graph belonging to a unique sheet S5 (we used -

X = 7@y X9 = w). Let the path y; solve

(sihl,si,(xi,mn)), for 1 < i < k., Set

{t » Tn:Yi(t) = Yiul(t)} U {bifurcation-times > Tn})

k
min{ U
i 1=1

w0, 1if above set ig #.

nt+12 S€b

] i

Take u(x,t) as defined for t « Tpe For T, <t <1
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u O(x,t), if x < yl(t)

a(x.t) = u “(x,t), if Yl(t) < x < ngt) ﬁ

X,t), if yk(t) < X

finitely many x where this limit or u (x,T ;) doesn't

exist.

Proof. Suppose given the nth solution-pair with Tn <

2 -
"xl < %y <...< xﬁ is really defined since u : R X [O,Tn] - R

1s a finite-shock solution so only finitely many shocks

hit g x {T,}. Also, because graph(u) c P+, by 3.24

see (xi’Tn) 1s a bifurcation-point if not part of a shock.

Claims 1 - 7 show the algorithm does produce the

(n+1)St solution-pair.

k
Claim 1: [Si}l are well-defined.

Proof. Let ¢ = graph(ul ). G is connected, and so
‘ Xy 3%547)
is @_l(G), by 3.13. Note §'1(G) c R % {Tn]. A connected
S

subset of R X [Tﬁ} is an interval:

Q_I(G) =TI x {Tn]. G cp (use 3.14) so0 T x {Tn} c ph

and belongs to a single sheet (use 3.21).

Claim 2: gifl < Si :
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Proof. The shock condition 2.31 holds for u : R x [O,Tn]-a R,

implying u(x-O,Tn) = u(x+O,Tn) for all x, in particular

8

u l"']_(

8 Si-1 81
x;,T,) = u (xi,Tn). If u (Xi’Tn) > u (xi,Tn),

then 3.24 gives 8,1 < 8;.

. 8i-1 84 A
There remains u (Xi,Tn) =u “(x;,T,) =U. Then
‘ A .
ux(xi,Tn) = o, S0 (xi,Tn,u) € . Write
A -1 A : -+
(S,Tn) = § (xi,Tn,u) € V. Because 8; ;,58; € P’ =

{(s,t) :'is(s,t) > 0}, we see for small ¢ > O that

A A
(s~e,Tn) € 8;.s (Ste,T ) € 8,. Thus 5;.1,8; are

distinct sheets (use 3.211 and (Q,Tn) € V). (%,Tn) ig

the bifurcation-point of both 85 _155; (by 3.24); . L

1

S are respectively the minus-sheet and plus-gheet

i-1254
attached to this bifurcation-point, so Siml < Si‘

QED Claim 2.

sup(domain(yl)). Use 3.23 to write

{(x,t) : b, 6 < b, XL(t) < x < XR(t)]

x,t) : & <t <

. 1 X (t) < x < R(6))

1~l)

= () o<t o< Bux, (£) < x < XR(t),&L(t) < x <%

B A . A
= max(to,to), B mln(tl,tl). Note o, ,No, # 4,

since (Xj,Tn)-E ¢;_ 1005, or is a bifurcation-point for

both 0412 O4-
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Claim 3: If T < w, then o;_1No; N R x [TH,T) 1s bounded.
Proof. Otherwise both {XL’QL} or both [XR,&R} are unbounded

on [Tn,T). Suppose XL’%L unbounded on [Tn,w)g at least

one is finite-valued, say x Recall XL(t) = E(SL(t),t),

L
where Sy Is invise to a monotone portion of %o' SL([Tn,T))

is an unbounded interval T. ¥ is monotone on I and

'E(I-) = [T ,7)5 but then

T x {7} c {(s,t):t > E(s)) = {(s,t):is(s,t) < 0},
violating 3.2,

Claim 4: 7 < T,

nt+l
Proof. True if T = «, hence assume 71 < o, Claim 4 shows
(Yi(T~O),T) € boundary(gi“lﬂgi), 8o three cases arise.
C 1: = £ %
Casg 1: 1 = t, or %, .
Use 3.234. If 7 ig g bifurcation-time, then Top1 <7
Else XL(T—O) - yi(T-O) = XR(T~O), or
Rp(1-0) = v, (7-0) = & (-0); Dbut x (1-0) < (r-0) < & (7-0)
L Y1 R > L Yy R
by the same proof as for 3.312 (use Claim 3).
B A
Case 2: yi(T) = XL(T) or XR(T).
Tmpossible by 3.312.

Case 3: yi(T) = XR(T) or XL(T).
3.313 shows Y intersects Yi-1 OF ¥;,q at some.tlme before .

Claim 5: wu is defined on R x (T

n’Th+l)'
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Proof. 3.22 and Claim 4 show u defined on

{{x,t) : T, <t <T_ ., yl(t) < x < v (%)} 3.41 shows
§,s8, cover (x,t) for |x| large. |

Claim 6: Suppose Ty < . ﬁ(x,Tn+l) is defined and
(X’Tn+l’u(X’Tn+l)) € P+, for all but finitely many x.
Proof. u(x,Tn;l~O) exists for x € R =~ {Yi(Tn+l—O)}§u

P+ 18 open in P with boundary U, and

graph(u : R x [0,T,) » R) ¢ ", so that (if defineq)
+ ' : -

(x,Tn+l,u(x,Tn+l—O)) € P UvVv. 3.24 shows that, this

mit is in v (L.e., u, = *e) iff it is & bifurcation- o

point in P; there are only finitely many such points.

Claim 7: u is a Ffinite-shock solution for t < Tn+l

(for t = T . if T . < ) with graph in P,

Proof. Each sheet 8; © P+, and Claim 6, give .

graph(u) < p'. graph(u) was constructed as an open

subset of P+, S0 use 3.152 off the discontinulty set

(a finite union of graphs of paths) to see u is a piece-

wise‘Cl solution. By construction, each discontinuity

path obeys the Rankine-Hugoniot condition (vt = al). The

shock condition 2.31 holds, by Claim 2 and 3.24,

Claim 8: Algorithm ends (TN = = for some N € Z, ) yielding

a global, finite-shock solution.
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Proof. The number of bifurcation points (and bifurcation-
times) is finite, by 3.411. A shock may start only at a
bifurcation—point, or at the intersection of 2 shocks. Mo

shocks exist before the first (smallest) bifurcation-time

and only finitely many appear at the first such time.
Between one bifurcation-time and the next, only finitely
many shocks arise by intersection because only 1 shock
emerges from the intersection of several. Similarly,

only finitely many arise after the last bifurcation-time.
QED  3.42.

(3.43) corollary. IVP({¥) has a shock solution for
y € 5.

Proof. We define the solution on each compact subset

K, = ({xs8) ¢ |x] = n,t £ n} H, n > 0. By 3.11
(wo@)"l(Kn) 1s compact; the algorithm 3.42 may be
modified to apply only to this set, producing a solution

over Kn with only finitely many shocks there.

4. Shock Structure

Let u solve IVP(y), § € 3.

By construction, u is as smooth off shocks as aoi;
shocks are also this smooth. All directional derivatives

exist at each p € H, except possibly in the diyection

ar = Y' if p belongs to a shock ¥. The solution and its
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derivatives are bounded on bounded sets, except u, = oo  at

isolated bifurcation points.

A shock begins at a bifurcation point or at the inter-
section of 2 previous shocks. When 2 or more shocks meet,
Just 1 new shock emerges. Thus a shock may be identified

by its first‘endpoint.

Definition. "Shock structure" is the partially ordered

-.collection of shocks: y < Q if there 1s a sequence of shocks
Y = YysYoseeesY, = Q such that the last endpoint of Yi is
the first endpoint of Yigd (1 < i <n). Shock structure

is "normal " if no 3 shocks share a last endpoint.
(4.1) Theorem. Irf § € ¥, define

a(t) = y{x : u(-,t) or ux(',t) discontinuoug at xJ

b(£) = (s : (aoy)'(s) = 3L, (ao9)"(s) = 0 ((0) = 0), ana

b= ¢#ls : (as¥)'(s) <0, (aey)"(s) = 0}. Then

d{t) = v(t) = b, with d(t) eventually constant. The total

number of shocks is < 2b.

23992, b(t) counts the bifurcation-points occuring before

t, eventually congtant at b, the total number of such points.
By induction on n we show d(t) < b(t) for 0 < ¢ < T,

(notation of 3.42). True for n = 0. Assume it for n, we

prove it for n+l. d{t), b(t) both constant for

Trl s t <« Tn+l’ by our algorithm. Tn+l'ls a bifurcat ion-
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time or the intersection-time of 2 shocks. For each
bifurcation-point appearing then, b(t) grows by 1 while
a(t) grows by 1 or 0. Each shock-intersection doesn't
change b(t) but decreases d(t) by 1. | |

d(tj becomes constant after all bifurcation-times
and shock intersections.

The minimal elements of the shock structure are
those shocks emerging from bilfurcation-pointe. Each shock
determines a set of minimal elements = that shock; distinct
shocks determine distinct sets of minimal elements. There

are £ b minimal elements, hence 52b posgible sets, which

is a gross upper bound on the number of shocks.

QED 4.1,

H. Genericity

Notation. (i) A subset of a topological space is "generic"
if it contains a dense open set; it is "resgidual" if it is

a countable intersection of generic sets,

(ii) C3 is topologized by uniform convergence on compacta
of the functlon and 3 derivatives. Cg (compact support )

and C° (support in [a,B]) are subspaces.
[a,B]

Note. Residual subsets of such function-spaces are dense,

by Baire's theorem.

(5.1) Theorem. Tet a € 03,‘increasing. IVP(V) has a
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(5.11) finite-shock solution Ffor generic | € G[OL sE
2

wlth normal shock—structure for a residual subset.

3
(5.12) normal, finite-shock solution for residual | € Ca-
(5.13) normal, shock solution for residual

v € [V e @3 : lim-inf ﬂfgiﬁl-z 0}.

a8 ,-—)oo

Proof. n = {§ € ¥ : the solution to TVP()) is ndrmal}
is residual in ¥, Proof: n = n n., where hj =
J=1

generates normal shock structure},

{v e 5. ¢l[ .
~dsd

generic in F.

The map A, A(Y) = ael, is a homeomorphism onto its
image, if ddmain(A) is any subspace of G,
broof! A is continuous. So is A-l, because if {¢H}T
ig such that aoy ~ approaches acy in a? (or 03), then ¥
approaches in 02 (or CB); use a' positive almost every-

where, and (a°¢n)'(s) = a'vwn(s)-vn'(s) and similarly

for (aoy,)", (aoy,)™.

S = {g:(g")-l(o) N [a,B] is Ffinite} is generic in

3 -1 : c a3 L3
C”, hence A7 (S) is generic in ¢°, and in ¢ . But
[a,8]
A" Hg) 3.
QED 5,11,
S, = {g:(g”)"l(o) N [-ns,n] is finite} is generic in

- ' oo -
03, hence A 1(S ) is generic in CS, and N A l(S )
n S e el n
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residual in Cg. But A'l(Sn) c F_, all n.

QED 5.12,

Similarly, A'1($n) is generic in 03, and
o0

n A-l(S ) residual; but _ {
1 n

{v € A”l(sn)': lim-inf ﬂigiil z 0} c 7,

,S,—)m

QED 5.13.

6. Stability

(6.1) Theorem. Let a € 03, increasing. ILet [¢n}§,
¥ € %0 ¢ with solutions u_, u to IVP(wn), TVP(y).
Suppose wn approaches ¥ uniformly, with derivativesg
converging uniformiy on compacta, Fix compact _ ;!

K= [-k,k] x [0,k] < H. | | | n ﬁ

(6.11) ILet ¢ > 0. For large n, shock structures of .

,u, restricted to K are isomorphic, i.e., shocks of !

U, Uy, intersecting XK correspond one-to-one {Yi} <> {Yg},
and Yy % Yj iff Y? < y?. Also corresponding shock- !

endpoints are less than e distance apart in K, and |

[yi(t) - y?(t)l < ¢ where defined.

(6.12) 1im (measure{(x,t) € K : ](u—un)(x,t)] >el) = 0.
Mo

(6.13) 1lim ij[u—unldxdt = 0.

Proof. Because $n = § uniformly, there exists M such that




for large n, we have u, depending only on

> Y

K K

wn, s ¢, : (recall characteristic speed is
("MsM) ("M: )

acy, , aol). TList

[Si}i = (s : [a] <M, (avy)r(s) <o, (aey)"(s) = o)

. . 3
with s < 6™ gimitarty 1164 (8,30 rory . 4=

i=1

n

for n large, and the relevant bifurcation points
i -1 J
{(s ,~—————~—r)}l

(ao})r (sh)

do their sheets (which covep K). Corresponding sheets

s> for § correspond to those for ¢n, as

cover aimost the same subget of K, and give almost equal
u-values where both defined, The algorithm 3.42 for
IVP(&H), IVP({) gives nitial-value problems for ordinary
differential equations which (over K) Correspond, with
initial data ang equation coefficients almost equal. 6.11,
6.12 follow from stability of ODE's. 6.13 follows from
6.12 and [un}, U being uniformly bounded on K (since

[wn], ¥ uniformly bounded on (-M,M))}.

QED 6.1,
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Appendix: Proof of 2.21

2.211 and 2.212 are easy. We prove 2.213. Hence,
let u denote a piece-~wise C1 solution,
The discontinuity-set of u is a countable union of

graphs of discontinuity paths and their endpoints:

D= (U graph(yi)) U (U{endpoints of vi1).
i 1
For each Yis let

W o= {(Yi(t),t) : sign (y') is not constant in any neighbor-
hood of t}.
Define

E

I

(Y Wi) U {endpoints)}. ©Note E is countable.
i A

Temporarlly we say a set of the form
B = (xl,xg) X (tlstg) c H is a "l-box" if at mogt one
discontinulty path (y) intersects B, with vy defined on
all (tl,tg), sign{y') constant on (tl’te)’ and
Y((tl:tg)) = (xl,xg) unless y' = 0 on (tl’tE)‘ Note
every point in H - E has a l-box containing it.

Claim 1: let B as above and ¢ € 7.

IIB(@tu + wxfou)dxdt =

Xo o (x,t,)
f cp([U.]dX -~ [fldt) + I (1] Ydx +
Y Xy (x,tl)
tg (ngt)

+
t
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Proof. Assume y' > 0, the other cases are similar. Note

Yy has a local inverse y © : (xl,xg) - (tl,tg). Tf

(x,6) = (4(£),8) = (x,y"H(x)), then uly(t) & 0.5) o ulx,y " (x) § o).

We caleulate
X t2

2
[T pu dxdt = [ ({ pu dt)dx =
B S Xy t1
Xl
X2 v T (x) to
( pu dt + [ ou,dt)dx =
LUy eI o,
2 Gy HE)-0) yx) (% 85)
I (oul - | e udt + pu] ~1 -
X ,(x,tl) ty (x,vy (x)+0)
P
- N mtudt)dx =
Y (%)
| - Xp (X,tz)
[ ofulax - I poudxdt + [ opu] dx. Also
¥y B X (%t
J'J' ( ) J" ] ‘]" : t2 ' ].(ngt)
fo dxdt = ~p[fldt - foudxdt + fo dt.
B H ¥ ol IB@X e Itlw : (Xl,t)

Add these two equations and recall u, o+ (fﬂu)x = 0, to get

Claim 1. An immediate consequence is

Claim 2: If u obeys the Rankine-Hugoniot condition, then

(x,t,) ty (x,5t)
II (wtu 3 w fou)dxdt = I wu] ’ve ax + f pfou] 2 dat.




Claim 3: If u obeys the Rankine-Hugoniot condition, then

u is a weak solution.
Proof. Pix ¢ € 9. There exists o > O such that
support(y) < [-a,a] x [0,a] = K. We show
[ (o0 + wmtou) = o,
K i
Choose ¢ > 0., Write E N K = {(si,ti) r 1€z},

For i € Z+ let

€ e e
+—T)X(ti'-~f, ti'l"“-:-).

B; = (8, - £, s.
15 oo o o

i
For p € K ~ E, let BP be a 1-box with p € B°.

The open sets {Bi : i€ Z+} U (B” : p € K-E} cover
the compact set K, so there exist finite gets Fl cz,
end ¥, ¢ K-E such that {B; : 1 € ¥, U (8" : p € F,) cover
K. Tt is easy to see that there is a Tinite sequence of
‘ £ N} and a set z of measure

disjoint l-boxesg {Rj 1<

J
zero such that U RJ Uz=K~UB Thus

J F. -

ij(¢tu + o fou) = [+ [[ .

Set M = sup([mtu + mxfou[ + |eul + |efeou|) < w. Thus
. K

dlff (mtu + mxfoufi < M ; area(Bi) = 0(e). Also

1
Fy

40.
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IT (mtu + o feu) = 3 [l may be evaluated by Claim 2;
UR. J R,
3 J RJ

cancellation occurs except along the boundary of LJBi,
: i3

_ i
& rectilinear curve with length 0(e), 8o that the
integral along thlS curve of a functlon, whose absolute

value is less than M, is ofe).
Thus [[ (mtu + o feu) = 0(e). Since we can choose ¢
K * o

‘arbitrarily small,'Claim 3 hblds.

Claim 4: If u ig a weak solution, then u obeys the

Rankine-Hugoniot condition.

Proof. let p = (xO,tO) be an interior point of a dis-
continuity path y. |

Assume first that p € D-E. Tet B (Xi,xg) x (ty5t,)
be a l-box containing p. For any v € 3 with support in
B, apply Claim 1 to get
0= o([ulax - [£ldt) J o([ulyt - [£])at

Tis. s ‘1

1’ 2)

arbitrariness of ¢ gives ([u]y' - [f])] = 0.
t=t

Because v' is ¢° and E is only countable, we see

y! o= [£] at all interior points of Y.
[ul

Claim 5: If u obeys the Rankine-Iugoniot condition, then
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u is an IDE solution.

Proof. ILet (xl,xg) X [to} = I be given. Finitely many
discontinuity-paths intersect I3 let {y; : 1 21is M)
(respectively, [61 21 1< N'}) parametrize those
defined for some t > t (resp., t < to) and assume that

for small e > O (resp. ¢ < 0) the paths are ordered at

et (3 f+

(t0+e) by v, < Yyl (resp. 8, < 8 RER

i+l)'

(resp., (é%) ) denote the right (resp., left) derivative.

Then
q.F X g vi(e) v, *2
() fx u(x,t)dx = (%) ([ + [+ )=
™ R
(s,)
fli © u (x,t Jax + yi(to)u(yl(to)mo,to) +
vo(t,)

J7 Pugax v (s) (ro(t,) =05t ) -v! (6 July, (£,)+0,6,) +
Yl(to) 2, , S ‘ L ’

Xo. : 1

e dx - y' (t_July, (t )+0,t ) = %

J.‘(1\7“30)% : YN ol F Vi Yo © : |

t v X J

IYl( O)-a(u)uxdx + fyg( D)—auxdx ool [ 2 -au dx - i

Xl Yl(to) YN(tO) :1

N : (t_)+0,t

-2 Yit(to)u](Yl( O)+ O) = |
1=1

(v;(£,)-0,t,) |
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]u(Yl(to)_Osto) u(YE(tO)"OstO) f]u(XQ’to)

alxy,t,) uly, (£,)40,t,) uly, (6,)+0,¢,)

g‘ f]u(vi(to)w,to)

+ =
i=1 u(yi(to)—o,to)
]u(xz,to) u(gg,to)
- = - a
u(xi,to) u(xl,to)

1
A similar calculation with the paths {éi} gives
1

a," X, . . u(xg,to)
(dt),tofxlu( o = Iu(xl,to) .

Thus (2.13) holds, S0 u is an IDE solution.

Claim 6: TIf u is an IDE solutlon, then u satisfies the

Rankine-Hugoniot condition.

Proof., ILet (xo,to) be an interiocr point of the discontinuity-

path y. TFor small ¢ > O we have

u(x +e,t ) X _+e Cov(t) X +e
I o “*Vp a = - é%] & u(x,t)dx = - é%w (I + I O ) =
u(xo—s,to) ty Xo-€ by X e v{t)

xo+e Q
Y (8,) Tul = [ 9w (x,t )ax. 5
XO—G ‘

Let e approach 0 to get [f] = y'-[uj.

QED 221,
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