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1977 o 3

If ¥ is the free group genersted by the n-tuple

of symbols Xu(xisoﬁ,ﬁxn)g and‘Wu(wlﬁan,pwt)p Vi(visaasﬁVt)

are two t-tuples of elements of F, then Pix(X;W} and
Po=(X;V} "present” the groups F/{WY respectively AR

where {Wl is the normal closure of W in ¥ and similarly

]

for tvi. If fwl=iVi then Py and P, present the same

group and we have an instance of a pair of isomorphic ' :i
pregsentationg. But W need not equal V for this. If
WAV, then one would need an aigorithm to prove (or
disprove) that P, and Pé are isomorphic,

For technical reasons the first place to look

for such an algorithm is among the mappings Qs {W)—3{Vi

which are reasonable (have an inversge). These are the




“Q-transformations™; they consist of "free isomorphisms"
and "conjugations™ 11, In the present work we prove

algebraically and give some extensions of a topological
result of U73: Namely, there exist t-tuples W and V with
f W) = vy Suéh that no Q~transformation can take W into V.

An important special case is obtained when {Wl=F and V=Y.

The question whether in this case W is a Q-transform of

V has bearing on the Poincaré Conjecture that the 3-sphers
ig characterized by its fundamental group L2}, To
contribute to the solution of this problem we looked at

= 1 = 5 0] ‘
Q-transforms of W. Since the essence of an algorithm is |
) |

Tiniteness, we set out to find and found conditions

under which the conjugations in thransfarmations can be
restricted tc a finlte set {(to certain permutations). It
_is'pbssible - Bome thiﬁk probﬁble [21- that the restricted
r,set.is éll that is ever needed here. However, a decision
in this generality is out of reach at present: it could &
be made only in spselial situations. While proceeding ?4

towards these we extend a theorem of Nielsen and give &

new proof of 1it.
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CHAPTER 1

vt o e e e

INTRODUCTION

BACKGROUND o ‘ | :

Many problems of fopology manifest themselves
ag problems in the theory of groups defined in terms of I
generators and relators. Indeed, the fundamental group

of a CW-complex may be computed in terms of ite genera-

tors and relators., A group that is defined in this way
ié gaid to be presented.,

Let Fn gtand for a free group on n generators,
We write F(aigu,ngan) when the free generators are'ﬁo ' ?
be specified, Let R=(R195035Rt) be a t-tuple of words

in Fo. The Intersection of all normal subgroups

[

g1 B
n

that contain R {(the normal closure of R} will be denoted

by fRY. We say that B normally genervates {R}. A presen-
“tation p:(alfqnamangﬁigaue?Ré> with as generaﬁors_and_ﬁj

relators defines the group F(aigaoaﬁan)/Z(ngaaegRt% ]

If we allow n and ¢ to be possibly infinite then any

group admits a presentation. We will restrict our ate

Ctention to finite presentations, i.e., n,toew,

The presentation of a group is far from uniqgue,

In fact, infinitely many presentations define every

group, Then when two arbitrary presentations are given




~how do we decide whether they define isomorphic groups?
Indeed, for example, the usefulness of the Fundamental

o

Group as a topological invariant often reduces Lo this
issue. Thig 1s Dehn ‘s isomorphism problem whichhe Tor-
mulated in 1911,

This problem hasg proven to be quite difficuls
and in general unsolvable, Even the more restricted
problem of deciding when a presentation defineg the_
trivial group (the group with one element) has been
ghown to be unsolvable hy Rabin 8], |

‘Ho Tietza in 1908 defined four basﬁc tranﬁfor%
mations that could be applied to a presentation to
obtain another isomorphic presentation. He showed that
given any pres entai ion P of a group G—F any other pragen-
tation for G can be obtained by repeated applications
of these transformations on . Then the isomorphisn
problem is reduced o determining'whether two presents-
tions are linked by these transformations. This turns
out to be of 1little practical value.

Since The isomorphism problen is so formidable
it is necessary to examine well chosen restrictions
Yet G and H be defined by {aljgﬁcgangﬁipoe;ﬂR£) and

‘<h1p,sagbngSlps.g@St) respectively. The following prob-

“lem represents one such restriction: If G=H then does

A




the map ajmm}tﬁ define an isomorphism? This problem is
equivalent to the following: Let R, S be t~tuples in Fne

When is {R}={sl?

In 192) Nielsen defined transformations on te
tuples of words in a free group and showed that when R,
S are two tetuples that gen e rate the same subgroup of

" ul ,}.
Pn then

Ly

repeated application of these tranaformations
on R will yield 8. Furthermmfa he found an “effective”
procedure for deing this and therefore solved-the DIODw-
lem of deciding when two t=tuples generate the same
éubgroup of Fna

With this motivation, Andrews and Curtis in £

end Rapapcort in {9) extended the definition of Nielzan

transformation by allowing in addition conjugation,
These transformations, which we call Q-transformations
adopting the convention of [9) . when avplied 4o a t~
tuple R in Fn do not change the normal elusﬁre of R,
Furthernore it is proved in 9] that the'set of all in-
vertible tzansforﬁations of R having this property is
precisely the set of Q-transformations,

The following question then remained opens If

(lefél in an does there always exigt a Q-transformg-

“tion taking R to 8? Metzler in {7] answered thisg

gquestion in the negative using the topology of the




underlying 2-dimensional CW-complexes., We will pro#e
this result algebraically and give some extensions in
Chapter 2, |

When & is the get of generators of Fnr the
above guestion remaing open. Andrews and Curtis in [1
conjectured that in this case a Q would always exist
faking R into the geﬁeraﬁ&rs 5. Furthermore they
proved that if thelr conjecture is %rue and if a COUN-
terexample of the 3-dimensional Poincard conjecture

exists then it must exist in hegpace,

la

Related questions are asked in [2] and [9), In
Chapter 3 we will investigate one of thése;- In pafw
ticular we will show that it is possible in some situa-
tions to work with a subseﬁ of Q-transformations and yet

not lose generality.

DEFINITIONS AND NOTATION

We iz the following notation once for all,

anwF(ajgacu,an) is a free group eon the generators

Bypeoost
A=X is the inverse of an element X,
[xt is the length of the element XeF(ajg,eeﬂan)

defined to he the sum of the absolute values of all +the

exponents of the generators as appearing in X when X is

freely wreduced, (i.e. no segment of the form aig, or




Lo

a.a. appears in X)o
[0 ooco )] is the lengtn of the t-tuple of
elements in Fn defined Lo be the sum of Iwi[ p imlye et
. {(Wlﬁua;wwt)l is the normal closure of the t-
tuple (Wiggup,wt) in F_.
WXxXWX is the conjugate of the element W by the
element X in Fﬁa

We make the following common definitions:

A word Xe Flaj,.copa,) I8 sald to be gyclically

reduced i 1t is freely reduced and it does not begin

£

with ay and end with azéﬁ Eziiu

X . . “
i s81d %o be a short conjugate of W when

W

W" is a cyclic permutation of W.
The exponent sum of X on 2y iz the sum of the
exponents of &y appearing in L when X is freely reduced.
Let W=1T%, I,TeF, . The product IT is reduced asg .
written when no cancellation occurs between T and 7 .

(i.e, lW(ﬂ]I[+]T{), I ig called an initial segment

and T a terminal segment of W.

Finally we define Nielsen and Q-transformations:

Definition Let ﬁ=(wigoa,,wt) be a t-tuple of words in

Fo o & transformation of W is called an elementary ]

Nielsen transformation if it operates on W in one of

the following ways:




1. W is left fixed or any two of the Wi are permuted,
2, Wj is left fixed\fj%f, 1€j4t and W, is sent to W .
Fe Wj is left Ffixed Vifr, 12 }st and for rgs fixed

r#s, lér,s¢t either
a) W . is sent to W_W_ or
) o 1 [ r‘n o
b) Wr is sent to WV

D@iwn tion With W as above, & transformation W is

¢called an elementary Q-transformation if it is an
elementary Nielsen transformation on W or _
2, wj i left fixed Vi, 1¢j4% aﬁd'wv is sent to

WELTHEN R for any KeF

The elementary Nielsen and Q«fran sTormations
generate the group of Nielsen and Q-transformnations
respectively. Multiplication of two Nielgen Nj N,
is defined so: (NINE)(w)zNi(NE(W))p and similarly for
two Q-transformations. Then a Nielsen or a Q= tranfor-
mation is a finite product of elementary Nielsen or
Q-transformations repectively,

A short Q-=transformation will be defined exaém
tly as a Q-transformaiion only in 2’,‘oohjugaﬁions are
limited to short conjugationz. Then there are only

finitely many elsmentary shoert thransform&ilonu on

a fixed t-tuple in F, since there are at most Al short

conjugates of a word AéFno This achieves a substantial
I

|

6




gimplification,

| We say that two t-tuples in Fn'are @-equivalent
or belong to the same Q-class if there is a Q~btransfor-
mdtion from one to the other., Of course, all t-tuples

Jin o fixed Q-class have the same normal closure in an

SUMMARY OF RESULLS

We prove the followimg resulits in the present
woirk s _
1. If ged(res)=ged(t,r)=1, Ozs<ter, and s+ixde then
{(b gmbq msﬁ = {(b ﬂabLQE I in Fla,b) but there is no
thransfarmation taking the first pair to the second
pai?u (Theofems 4 and 5 of Chapter 2) Howaver,

2. If s=t mod r then in F(a,b) the pair (b",ab"ab®)

1356), {Theorem 6 of

belongs to the Q-class of (b*,ah
Chapter 2)

3. Within F(a,b) there exist normal subgfoups rossessing
an arbitrarily large number of Q-classes. (Theorem 7

of Chaﬁter 2) | o

#; Let W, U be t-tuples in Fn’ fu mﬁ~Fn é homomorphism.
If W and U bélong to the same Q-class then f(w) and

£{U) also belong to the same Q-class. (Theorem 8 of
Chapter 2) |

Sa Iiet Yﬁ‘(r:(“?lggop”\‘vt)g ‘Y‘!’ (X. 1 LpnnngLVJ "t) Wi’th

WiEXiGFn' N any Nielsen transformation. Then there




oG

exists a short Q-transformation, QS, such that
lQS(W)l{-}lN(W')‘e (Pheorem 6 of Chapter 3)
We will give several definitions and prove the &

following technical improvement of a theorem of Nielsen,

6, For every t-tuple W in an there exists 8 Nielsen

transformation N=N .u.hlﬁ with Ni elementary Nielsen

~such that N(W) is Nielsen reduced and N is semidirect.

Moreover, if Ni multiplies one element of W by another

then the pair is not isclated. (Theorem 3 of Chapter 3)
We will define "complete” Nielsen transforma-

tione and prove:

7« Foxr every t-tuple W in F ' there exists a éomplete

Nielsen transformation, N®, such that NG(W) is Nielsen

reduced, (Theorem 4 of Chapter 3)

8. Let Ny be complete Nielsen transformations, C; con-
Jugating trans formaulons and Q=C, Ngo o CyNy @ Q-trans-
formation lon a t-tuple W in F o Then there exists

w)l latw)].

E

f =1
8 short thranafqrmatlong Q~, such that f

(Theorem 7 of Chapter 3)




GHAPTER 2
DISTINCT Q-CLASSES

ANTRODUCT TON

In this chapter ﬁe will show that it is possible |
for two t-tuples of words in a free group to have the
same normal closure and vet not he Q-eguivalent. This
result has also been obtained by Metzler in L7] by ap-
pealing to the underlying 2-dimensional CW-complexes
assoclated with the grou@ pregentations with the t-tuples
as relators. We give a combinatorial proof. Also we
show that there are normal subgroqps of & free grau? |
possessing arbitrarily (finitely) many pairwise Q-inegquiv.

alent normal generating t-tuples.. We finally discuss

some extensions and conjectures. ' -

FREE_DIFFERENTIAL CALCULUS

The following section iz due lo Fox [5]and will

provide the tools by which we will approach the problem

of distinguishing Q-ineguivalent t-tuples. A good treat- ?i
ment may also be found in Croweil and Fox [4].
ssoclated with any multiplicative group G
generated by the symbols a3 there las a ring 7AG) called
the integral group ring over ¢. Its elements eonsisf

of all formal finite sums of elements in ¢ expressed




on the genefators a, with coefficients in %, The sum
of.two elements in Z4{G) is defined comjponentqwise°
Multiplication is defined to force the distributive law
to hold, If G=¢ay=7% then Z(G) consists of polynomials
6h indeterninate a with integral exponents and coef.
ficients. A typlical element would be n}dm Fewotn ar
with nigmieﬁa Multiplication and addition would he
performed exacily a8 ovér polynomials, 7' o

The ring Z{G) is generated by the generators
of G. The elements of G are also elements of Z(G) and
are among the units. Also 7Z(GY Is commutative if and
only if G is. | |

if FiG--%H is a group homomorphism fhen £ in-
duces a ring homomorphism of'ZﬂG) to Z(H). The element
e (ﬂ 2 "i'G) of ZXG) is sent to Z:nif(gi) in
ZKH)a In particular for Bt G-yl @(iﬁhigi)wﬁﬁnig

A derivation on a group ring is a map D of Z1G)
into itself satlislying for all u,veZd a): |

1) D{utv Y=DutDv
2) Dluv)=pDu:8{(v)+ubv,
When v is an element of the group, O(v)=1l so

that for gphﬁG we have
2') D{gh)=Dg+zhh,

We derive the following simple consequences of

|
|
1
|
i
i
i
;
;




1) and 2).

3) Dn=0 for neZ
First we see that D1=0 since D1=D{(1.1)=Di+Di. Alsc
DO=0 from the fact that DO=D(0+0)=D0O+D0C, Then for nfo,
ﬁxiilscuii so by 1) the result follows,

4) D(ng)=nbg, geC
By 2) D(ng)anw@(g)+nﬁg, but Dn=0 from 3).

5) D(E)=-EDg |
By 3) and 2") wé have 0=D1=D(zg)=Dg+gzDg.

We will be particularly interested in group rings
over free groups. Let FéF(alg,,e,an). An element of
Z(¥) is sometimes called a free polynomial. To each
generator a; we may define 2 map on the generators,ém

va. : Dai

having the property that,ggi =1 when j=1 and 0 otherwgséc
i

e

This map can be extended to a derivation on ZA{F) by using
1) and 2}. We need only verify that the‘map that results

is well defined on F. For this it suffices to prove that
‘()(gh) P (g&i?if_-ih)

s for g,hélf, Using 2) repeatedly

.‘t)ai _Baj
o (gasa,h) da, 23, ,
S I 1 J . goh D EY the thi
Mo @ 2B geenih o ogg e g By 5) the third
BN oy TRl oay - Toay |
da
term is - 359- s0 the result follows. Similarly it
: .
follows for gﬁjajh.

: £ £, . N
Let gxxl.,nxh?where each X; 1s aj for some ],

£izj1, Define the k’th initial section, S(k), of g to

i1




& €

be %y b gp

. £ '
veeky o Af £k:1 and »xl.,,xﬁ‘ll e .=-1, Also S(1)

k
is either 1 or -%y depending on whether &4 is 1 or -1

respectively, In all cases S(k)¢ZP). Then

n’ ERY
[ = 518§ )k o
day 42 EW

This gives a simple method for computing derivatives
in Z(F). Note that only those x's which are a, con-

tribute terms in the expression of %%_ and that G(wg‘)
gives the exponent sum of g on B * - :
For exzample, consider the free group F(a,b),

We have the derivations %E and-%ﬁe

(el )drararadie”, 2(3%)-ul500 ghal,
L(a%: ----- (ab85)=1-ab%, o-(abiib)=a-abib,

| _Now let Ry,..,R, be words in T, We have the
natural epimorphism f:me§G=<a1§,,asa ;Rlﬁﬁ;ﬂme>ﬂ
and thc induced ring mﬁp £ W(P)wm%&TG) The matrix
Ef'(mww)Tla called the Jacobian matrix fcr the m-tuple
Rﬁ(Rlpneg,Rm} and is denoted by JIR1. It is & matrix
over the group ring Z{G). For example, for the pair

[t
(a”,abdb)we get the.Jacobian matrix
- o i
1+a+a2+a'3+a. Y0
1D a~1] °

ROV EQUIVALENT MATRICES

We now define a notion of equivalence for the

set of n x m matrices over Z(G).




[
el

Definition Let Ml and M? be n ¥ m matrices over AG).

My is sald to be row equivalent to M, denoted by vamp,

when a finite number of applications of the following

o
©

2
1) Permute any two rows,

operations on By yields M

- 2) Add one row to another,
3) Multiply any row on the left by +g, 2¢G.
Note that row equivalence is an equivalence
relation on tﬁé n % m matriees over Z(G). The transite-
ive and reflexive pronecties folloﬁ immediately. The

property of symmetry holds because sanh operation can

be reversed. Note that the combination of 2) and 3)

allows the gubtraction of one row from another. Also, _
3) may be nullified hy mulfiplying the row by the in.- 55
verse of the group element. ' | | |
If R:(Riggc,pRm) is a Q-transform of
Sx(Slsn=¢ﬁSm) then since <a1,nuegan;R)§<a1p,GugangS)mGg
both JIRY and JI{ST are n x n matrices over Z{G)., The

relation between them is given in

dheorem 1 Let R and S be m-tuples in F. with Q(R)=S, 4
Q & Q-transformation. Then JLRI~J[S].
Froof It suffices to consider the case when Q is simply

bt i rermt i

an elementary Q-transformation for then the theoren fol-

lows by induction on the number of elementary components of Q.




If Q permutes Riwith Rj then J{ST is JLRI with
"row 1 and j permuted and so JCRI~ILST,

R; )

) " 3 ’ b=} o _@_M i3 -
Say Q sends Ry 1o Reo  f (Ba; Ri) (~Rax% i

"c} .
. . 3
by property 5) of derivations. But f£' is the ring
homomorphism Z{F)—) Z(G} induced by f:F-> ¢, the natural
homomerphism under which Ry ig sent to 1. So the right

\d Ri)n Then the effect on JLR1is to mul-

side ig -f° (8
tiply the i'th row by mi_which preserves its row
equivalence class,

Now say Q sends to RyRy, 11, By property
2') of derivations,

4 ._E,,.. "] —F .,:Q... "I _,_, ! e —— . UL
£ (RyRy))=t (aajhi%Rl de Ry )=f" ( 3 +F 3a3R1)°
50  the effect on JIRY is to add row 1 to row 1. The

case where Q sends Ry~ Ry Ry is similar.

Finally say Q sends Ri to WRiW for any Wel'.

(2 (i p v (AN T . R, eo¥ 51V
f_(BaD(WRiW))mA ( S AgajR + WR, gaj)u Applying

£ adaitively we find that the Tirst and third terms
cancel leaving £ (W).f' {QL Ri). Also FW) is an
element of G in Z(G). Thegafareﬁ conjugation by W has
the effect of multiplying the i’th row of JL{Rl on the
Left by an element of ¢, which again preserves the row
equlvalence class of JLR1. The proof is now complete.

In order to show that for no Q-transformation

is Q(R)=5 we may pass to the wmatrices J{R)and JrS)




and prove that JIRJ(ST. The following two theorems
provide tools for distinguishing inequivalent matrices
over T(G). |
Theorem 2 Let M, and M, be n x m matrices over Z(G)
With G abelian. If Mivmé then there exists an ¥ n
matrizx L in Z(C¢) such that LM, =M, and det{L)=tg, geG.
case when the matrices are linked by a single row
operation. Assume this much has been established. Now
we have thal a finite number of row operations on My
.yiekhsmgu Then we may proceed by induction dn the num-
ber, p. of these steps that are required. If pwl,'then
there exists a mairix MB such that MfwMjVME and the sum
of the number of row operations reqguired to go from Ml
to MB and from MB to M, ig p. Then by the induection

hypothesis, there exist matrices L and L' with det{L)=t+g,

i 32T
det(L'L)=det{L7 ) det{L' )=tg'g, so the proof is complete,

det(L* }=+g’ and IM zMBQ LM, =11 But then L°LM,=M, and

Then we are lefl with proving the theoxrem when
one row operation o:ﬂ_M:‘L vields ME; Say this operation
ig a permutetion of rows 1 and j of My Let I be the
nxn idenfiﬁy'matriz;- I L is I with columns i

and j permuted, then LM, =M, and det(L)=-1, 1leG.

Next et the operation on My be adding row J

15




to row i and let L be I Dbut with 1 in position (i,3).
Again we have LMlxhz. Furthermore, I may be obtained
from I by adding ite J'th row to its i'th row so
det(L)=det(I)=1. |

Fiﬁally, let the operation on M, be multiplica~
tion of its i'th row by +g, geG, and let L be I with
+g replacing the 1 in its (i,1) position. Then LMy =My

-

and det(L)=+g. The proof is now complete.

fute

If h:G—%H 1s a group homomorphism, then h in-
duces a fing homomorphism Z(G)—3 Z(H) and so ii also
induces a map on the n x m matrices over 7Z4G) to the
n x m matrices over Z(H). We show that the induced map
preserves row equivalenceq
ghgﬂgggwi Let hiG—2>H be a group homomorphism and let
Ml and M2 e n x m matrices over ZG), If Mivmzp then
h(Ml)wh(Mz) in #H).
Proof Again it will suffice to prove the case where
Mivmz by virtue of a single row operation.

Let h*eZ(G)> ZIH) be the induced map. Then by
h(Ml) we mean h' applied to every entry of My Bince h'
is additive, if adding one row to anolher will take'Mi to
M5, the exact same operation will take h(Ml) ﬁo h(Mg)n

Similarly, if M, is obtained from My by multiplying one

row on the left by +g; then since h' is wmultiplicative we

—n




need only multiply the same row of h(Ml) by h'{(+g)=th*(g)
with h'(glH to obtain h(MZ)B Finally, if the row opera-
tion is permutation, the same permutation on h(Ml) yvields

h(Mg). This completes the proof.

DISTINCT Q-CLASSES

In this section we consider the normal subgroup
,generated by (bT,abadb) in F(a,b) which we denote by N,
We have F(a,b}/NPQZKQ i%m The next theorem gives other
normal génerators of Nre
ghgggggm& 1f ged{r,s)=1, r,s>0 then (b",abab) and
(b¥,abSa5") generate the same normal subgroup in F=F(a,b).
Proof TLet N, and N? be the normal gubgroups genersated
by the pairs respectivelyn‘ To show that Nbei we need
ouly prove that ab®ab=1 in F/N.. But in /N, b=abi,
which means bsr(abﬁ)szabsﬁkar ab apS=i .

Next we show that NimNre Con&ider abab in F/Ni?
Now there are Integers p and q’with_pr+QSn o
abséﬁémi =>absézbslﬁ)abqsﬁﬂbqs, Also bPYe1l s0 we have,
ab¥E=p AT P ey o 982G 2 befba < abAbe1,

So we have Nin'r which completes the proof.

The remainder of the sectionAwill he devoted to
proving that within Nr there are distinet Q-classes.,
The main result is contained in

4

Theorem 5 ZIet Ocs<t<r with ged(s,r)=gcd(t,r)=1 and




o
o

.s+t%r. Then there is no Q-transformation taking
(b¥,ab%EB%) to (b7,ab’aBY) in F(a,b).

Let wi and wi be the respective pairs, The proof
will procegd by showing that J{Wika[wgl which yields
the result by Theorem 1. |

Lemma 1

ﬂm'ﬂ—w’mm;m E) 1'&‘})2'}" e 0w '%"‘b]‘n“i - N
Jews] = | . 1 .
' s . 1“bS Ei“f“ab"}“ﬂbz"i”e ] n‘{‘“abmml"'t)s}ml"“'bbma"‘"o 89 “"i

Proof follows by computing the derivatives

T T SRS . & g &
b 2D 2ab ab aah~ah . .
ot el S et S e in 74P and Tthen napnlnge
YA, L :}b g o E, [ T ('E' ) € PRing

1O Z&F/}Wig) by the natural map, This amounts Lo allow-

. - Qe £3 me
ing a and b tocommute, - For example g%(ab ab” )=1.-ab &,
L

. ST 8 -
but under the ring map l-ab™a is sent to 1-b”.  Note
. . 2 B8 i s : cn e e .
that for s=1, gg{ab 2b” )=a-s0ab which 1ls sent to a-l
under the induced ring map.

Since F/{ng = 77 D 7%, by fectoring out the

ok
generator a we get & homomorphism h:F/@W?}wﬁEZrﬂ Using

Theorem 3 and the induced map of the rings | i
ZiZﬁ@Hﬁr)wﬁdZ(%r) it will now suffice to show that | |
(IS en(IEwl1) . Let ¥ =n(srwSy). This yields a

substantial simplification: '

0 14b+bo, ., 4pl T

Furthermore, sgince &, ig abellan, we may apply




Theorem 2. So the problem is reduced to showing that

There exists no 2x2 matrix L with Lii_=M,_ and det(L)=ﬁblﬁ

G
for any i; L’Mﬁ'mt all matrices ovex*z(zr),

Let Lm!é g]. Then the above is shown by proving
the folloﬁing Jemmata.

Lemma 2 TLet Z., be generated by b, If O4seter,

ged(r,s)=gcd(r,t)=1 and s+t7#r then the following systen
of eguations has no solution for ﬁ;BgCeﬁaZﬂ%r) and
Oél‘:rg B(l’“bs):‘m‘Op A(l‘{’“b'*"s [ a'{"blr'ui )xl’g'.‘b"’i"a ;.’ c+brij 3

D(1-b%)=1-b%,  (1evi., 40" )0,  AD-BEebT,

-

We first prove Lemma 3 below which will gain us

-a simplification of Lemma 2,
Notve that iniE(Zr) a typical glement has the for

] ' - r"i oo, -
: Q.Q“’ql bt g, 4P , with q94€ 7

Lemnma 3 Let ged(r,s)=1 and O<ger, In.%(%r), if -

2}3(1“138):0(1'{“1‘)4‘0 ¢ a"}"br“l ):..O then BC=0.

Proof Let Ezq0+q1b+;c,+qrmjbrmly q;€% Then

1 1

B( 1wbs)=~=q0+qib+o L ~-(qobg-s~'qib‘"ﬁ"” s+r-ly

-+ c o +q]?.sib
where the arithmetic in the superscripts and subscripts
is modulo r heye and for the rest of the proof.

Collecting Like terms we get qswqozoe q

R

nq.L'-:Oﬂ
ceeg qs+r”1mqrn1:0, or qs+j:qj for all jeZ., In particu-
lar, qO:qs:q28:°°"mq(rml)S' Now since gcd(ras)xlg these

subseripts modulo r include all integers from 0 to r-1,

mn

;::OB




S_O qol‘:qlz. [ .;Eqr_‘l « Then B:O(l‘f”b-{«‘ . ’+bI‘._.1) and

+b 1) pre 1)“0 which com-

BC=CB=Cq(1+Db+,..+k =qC(L4b+. o o
pletes the proof.

With Lemma 3 the conditions on Lemma 2 can be
reduced to-equations in only A and D. We state this in
Lemme 4 Let O«scter, ged(r,s)=1 and s+t#r. The follow-
ing system of equations has no solutions for AgDéZK%r)g
0ziers  A(l+b...4bt )= =Ltk 4D L p(2-pS)=1-bt,
AD=¢b*

:ggggi Let g, i.e. gxbi for some 0¢idr, Let us .ssﬁme

that there is a solution to the above system, We have

AD=+g, Multiplying both sides by L4bé...+b’" yields

AD(1+b+.o.+brm1)=+g(1+b+gao+br”1), The right side is
#(14bt, 4T Y) and since A(T+b. .. b5 E)m14na, et

we get ﬁ(1+b+,e,+br“1)=i(i+b+uuc%br"1)h Also

+

D{1-0%)=1-D We show that this is impossible,

Lot D=qéq, br.otq, b7
0¥ 1

with Q56 2 Multiplying
by 1%bb.,n+bl -1 and collecting like terms we obtain

D14 b%,‘u+ ) prpb§n=uwpb r-1 with Pty tecotd, 40
Since the right side must be +{l+bt qae+br“L), P must

be +1, so qo+,,,+qrmlai19

Now consider D(1-b°), The result is:

-
i
[y




where all subscripts and superscripts are taken modulo
r, By ﬁypothesis the product above is 1~bt, 50, the
foillowing equations result:

- . - - sy
(1) ag-9,_ g1 (2) qy-q,_.=~1, (3) 937y geyr 3700t mod .

Let u be the smallest non-negative integer such
ﬁhat us=% mod r. Note that u exiéts because ged{sg,r)=1
o 8 is a generator_of the ad@itive £roup %rg Also dau,
since s#t, and t40,r gives ucr. So Lleuer,

At e

Claim 13 qoxqgﬁqZQﬂ.eemq(ugi)Sg which is at least one

equatity and there is no repetition of subscripts in the

list,

;‘:0

Congider
i qn

8

for Hnsu-1. If ns¥0,t mod r, we

have from (3) with j=ns, g Also,

*nsxqr~s+nsxq(nw1)s‘
ns=0 mod r =>r{ns = rin whigh is impossiblie because
néu-lér. And, ns=t mod r is impossible since n<u
violates the definition of u. Therefore, we get
qnsxq(nmi)s fTor lénsu-1, or qozqixo,oq(uul)se Now

this represents at least one equality because url, i.e.
Ap™Uge Finally, assume there is repetition in the sub-
sceripts of this list. Then for some e and d, Ose,deu~l

and say c¢d, cs=ds mod r. Then (d-¢)s=0 mod r 2 ri(d-c),
But this is impossible since d-cir by assumption, and

the claim is proved.

4

Now let v be the smallest non-negative integer




such that va=-1% mod r. Again v must exist, Furthermore,
- v#l since otherwise s=-t mod r = s+t=r which is contrary
to assumption. Finally, vir because ged(r,s)=1 and
-t#r.  Then i<v<¢r.
glm 23 =, o Tee T ich 3 vt least one
Q&gﬂﬂLw_lqt Qg Lpp(v-1)a? which is at least on
“éguality and there is no repetition of subseripts in
the list.
.°. . . ’ [ TR
] - (] ul (;: y ‘.. . e ] wkon F“""O i 4 .
Consider Qpapg 07 lénev-i If t4ne0,t mod 1,
we have as Dbefore using (3) with j=i4ns,
= = o Teng={ A
qt+ns Y stang qt+(nm1)s Now tine=0 mod r =
ns=-t mod r. Bubt since nev this is a violation of the
definition of v. Also, t4ns=t mod r =D ne=0 mnod r which
is again impossible since n<r and ged(r,8)=1. Therefore

we have qt+ns:qt+(nqi)s for iznev-1. %his yields

-t
[ TS

qtzqt+s='°°$qt+(vml)“” Now at-least we have G 70y
‘because v>1l. There is no repetition in the subscriptea
for otherwiseﬂ'for some ¢ and 4 with 14c,dev-1 and say
¢«d we would have t+es=t+ds mod v. Again, this would
mean that (d-c)s=0 mod r and f[(dmc} which is impossible.
Thig cowmpletes claim 2, |
In partiqular from claim 1, qoxq(uml)smqus%sﬂqtms“
Then qO#@t follows from (2). So we see that no q; can

appear on the list of both claim 1 and c¢laim 2. There

are u g¢'s in one list and v on the other. Since

Vi




DNy
s
L)

us+vo=t-1t=0 mod r, rlu+vn From O<¢u,ver we have utv42r
whence utv=r, Then there are r q's on the combined |

lists so every ¢ is on one of the lists., Let x=qq and

From ahove q0+ql+a,u+qrml=ii. Collecting th
terms equalling gy and those equallmhg 9y yields
nxtmy=+1 for some positive integers n and m. Since at
leasﬁ one equality exists in each claim , n,mz2. From
(2) and the fact that 4™ g Ve get gu-gy=-1, Hence
yox==1, nx+m(-L+x)=+1, (n4m)x=+1+m and x=(41+m) /ntm) .
When n,m:2 the denominator is Dbigger than the numerator
S0 X=(, ¢an not.be an integer, This contradicts the
existence of D and so completes the proof of Lemma U,

Now Lemma 2 follows and so Theorem 5 is proven.

For example, for r=11 the following 5 pairs in
Fla,b) represent 5 distinet chlasées, ineo'thére is no
Q-transformation taking any one to another. If Wi is

again the pair of words (bllﬁaL”"B”), then the five

‘ 3 e T e 1 '.2 . 3 -‘) =177 + . r:*.
Palrcs ares wli“ wll, Wll” W,jﬁ W11 The sum of no two su-

. perscripts is 11, Notice, however, that W%j and Wfl g
belong to the same Q-class as Tollows: (bil,a 6ab Jod

(b, apfan5) (b1, 050 5a)— (b1, 59an 5% )—y

(11, 88%p5)—s (b1, aba55),

o8-8y ., .
In general (b”,ab”ab”) is in the same Q-class




as ( br . abS“!“nré‘:b*’S'"nr)

« B0 we getb

Theorem 6 If s=t mod r then in F(aﬁbJ (brpabséﬁs)
belongs to the same Q-class as (b¥,ab ari)

Froof Since s=t4nr for some integer n, the result
follows eésily as in the above @x@mple;

Finallyg as r grows large we find more and more
pairwise distinct Q-classes within the normal aubgiroup
generated by (b, abdbh). We state this as
‘ggggggmmz Within F(a,b) there exists normal subgroups
pogsessing an arbitrarily large (finite) number of
Q-classes.,

Proof Let v be a prime number and u be the largest in-
teger leés than /2. For any pair (e,t) of integers
with O¢seteu, W w(b ,abS5p" 'y and Wt generate différentl
Q~classes within the normal subgroup generated by W;g
since s+tir and gcd(sﬁgQ#ng(tﬁr)ﬂin There are u(u-i)/7
of these palrs so there are at least as Bany pairwiée
distinct Q-clagses, Allowing r to be sufficiently large
and prime results in an arbitrarily large number of-
distincet Q-classes which conpletes the proof,

Note that there may be more Q-clasgses within

this normal subgroup genaraied by pairs not of the form

o3
w;, Many possible examples arise from applications of

Theorem 8 of the next section.




EXTENSIONS AND CONJECTURES

Examples of distinct Q-classes of normai sub-
groups of F(a,b) where the factor group is not abelian
perhaps may be drawn Ffrow the dihedral. groups. Let
RE=(a",b%, (a%0)?). Then D_=F(a,b)/{R.\ is the dihedral
group of the r-gon where a generates the rotations and
_b the reflection. When ged{r,s)=1 then {RiE:{R§§Q The
proof isrmuch like for Theorem Y. The question then is
when Ri and Ri represent distinct chl&sse*n | |

An investigation of J{Rij leads to the problem
of determining whether two 3x2 matrices are row equiva-
lent over ?,.?J(Dr)c Since D, is not abelian, this is a
very complicated matter. Factoring by the generator
a leads to maltrices over ﬂ(%z)g Unfortunately, they are
rou équivalenﬁ 50 nothing‘is g&iined.a In the case where
rAis even, factoring by the gensrator b 1eadé to matriées
6ver'x(%2t§)mz); Here the situation is manageable ut
“tedious., In any case, this leaves the issue open but
leads one to belicve -

Conjecture 1 In P(a,b) 1f O«scicr, ged(s,r)=ged(t,r)=1

-3 - .
and s+t#r then the pairs (aryb“,(a&b)e) and
(arrbg,(atb)z) belong to different Q-classes,

In the previous section we have shown the exis-

tence of arbitrarily large numbers of Q-classes within
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normal subgroups of F(a,b). The obvious question comes
to mind: | |

Does there exist a normal subgroup of a free
group Whioh possesses infinitely many Q-classes?

A-related guestion is:

~Given a tmtupie of words in a free group, is
it ever the case that the normal subgroup it generatles
contains only one Q-class?

When the t-tuple happens to be the generators
of the free group, this question is exaclly the one
posed in (1] and {9]., For example, the pairs

Enz(fnmlﬁanbsﬁn"lﬁbna) generate normally the Tree gr@up. ;
F(a,b). For nwz,rit is unknown whether they are Q-trans- |
forms of the pair (a,b). Notice that computing Jt@ﬁ;
is a futile exercise: Since F(agb)/{Tﬁgml the résulﬁing

matrix is just minus the identity matrix. The only hope

is to map Tn to another pair whose normal closure is notb
F{a,b) and use the following fact. o |
Theorem 8 Let F(alpo,n,an) be a free group, Wz(wyvseows)

and Ux(Ul,,.u,Ut) s and t~tuples in I, and £f:P—F a

homomorphism. If {Wi={Ulthen {f(w)} :{f(Uﬁ . Further-
more, if Q(W)=U for some Q-transformation Q, then there
exists a Q-transformation Q' with Q' (£(W))=£(U).

Proof To show that {f(w)lzlf(Ujl it suffices to display f




for each i, f(wi) as a product of conjugates of thel
members of f£(U) and similarly f(Uj) as a product of con-
jugates of members of f(W). But since [WlmSUE, Tor each
i we,havg Wi exﬁressed as a product of conjugates of el-
ements of U and vice versa, Applying ¥ then yields the
regultu | o |
'wa say Q(W):Un. It.will suffice to prove the
existence of Q‘ when Q is an elementary Q@-transformation.
If Q@ permutes elements or multiplies one element by an-
other then £(Q(K))=a(f(W))=£(U) o dofine g'=q. If Q
conjugates anelement of W by the word X, let Q° conjugate | %
the same indexed element of f(W) by £{X}. So in any case
we have I(U)=£(Q(W))=Q*(f(W)). Then applying an induction
hypothesis on the number of elementary Qs compasing Q

completes the pr@ofe

- As an application, consider Tam(a Bb b Ao 1);
{Tﬁltﬁ(a,b)c Using the endomorphism a—yabdh and ' ‘E:
bw%’b-3 vields the pailr : _
T’* (db:B)mLBB(ab B)Jb*”m”z(dbah) bt (ade)) ‘from

Theoren 8 we have that Té and (abépr-) generate the

same normal subgroup of Fla,bd) and that if these two

pairs represent distinet Q-classes then Ty and {a,b)

‘also belong to distinet Q-clasgses

‘

Unfortunately, analysis of J[Téj vields no




-useful information. The reason for thisg hecomes obvious

when we let R=abab, S=b” and express Té as
. "
(R!SRBSQS4RSBR) Then JETé] , which iz a 2x2 matrix over

%(ﬁs)‘is exactly ~J[{R,S)] namely
. |®a @b

23 28 °
28 @b

it is notdifficultﬁo see that in general, the Jacdbian
will never serve as a useful invariant in situations
of this kind.

Nevertheless, we suspect that pairs of the form
Té“are examples of palirs representing different Q-classes
from (b5§ab8§53) and of a completely different'type from
those discussed in the previous section.

Perhaps the most promising approach to the prob-
lem of finding a Q-class distinct from the generators
of a free group (if it exists) is to look into conditions
which ensure that a t-tuple can not be reduced in length
by a Q-transformation. To this end, we will restrict the

“action of Q-transformations in certain cases., This is

discussed in the next chapter.
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SHORT Q-TRANSFORMAT IONS

INTRODUCT TON

In this chapter we define short Q@-transforma-
tlons on t-tuples of words in a free group and examine
“the relatlenships between short Q and Q-transformatsons
and specifically a conjecture of £21 which is aleo
treated in [91. We will formulate a sufficient condim
tion on Qatransformations for which the conjecture holds,
Also, we define extended short Q-transformations and show
that the essentially same conjecture holds for them.
Along the way, we will Prove a variation of a theoren
of Nielsen which will vield a restricted set of Nie;sen
transformations which suffice to reduce t-tuples of

words in a free group. We end with some conjectures.

L}

DEFINITTONS

A fundamental conplexity that arises ﬁhen study-
ing Q-transformations is that there are infinitely nany
elementary Q-transformations which generate the group of
Q~trang formdtlonv. The reason is that a @~transformation
nay conjugate an element of a t-tuple and there are’
Jinfinitely many choices for conjugators., If the free

group from which the t-tuple comes is finitely generated,
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then we may pass to a finite set of generatows of the

group of Q-transformations by allowing conjugation only

be a generator., Clearly we can generate the entire group

this way. However, very Little insight is gained, |
Another azpproach is to Llimit conjugation to |

"short banjugafion“ in the hope of‘reduéing the problem

to a "locally finite” one, We begin with a |

Definition Let W, XeR o is a short conjugate

of W if X or ¥ is tomélly absorbed when feducing Wy,

This just means that wh i a cyclic permutation

of W. Also IWXIQIWI and if W is cyelically reduced lehJW]n

For example (ab)®=ba is a short conjugate of ab hut

X

(ab)bzﬁabz is not. Note also that if wW* is a short

X

conjugate of W then W is a short conjugzate of W.

Definition Let W:(Wipm‘,gwt) bhe a t-tuple of words in

an A transformation of W will be called an elementary
ghort Q-transformation if it operates on W in one of
the Tollowing ways:
1) W ig left fixed or any two of the Wi are permuted,
2) Wj is left fixed Visr, 1£j4t, and W, is sent to a
shért conjugate of wr or of Wf, |

3) Wj is left fixed Vj#r, 1¢j4t, and for r,s fixed

r#s either

‘a) W, is sent to W W, or b) W, is sent ‘o WL




Elementary short Q-transformations will be mul.
tiplied in exactly the same way as elementary Q-transfor-

mations,

DeTinition Let Q:qk,,nql be a thransformation with
a; elemenfary G's. Q will be called a short @Q-tranzfor-
mation relative to a t-tuple W whén for each j, kej»l,
quis an.elementary short Q-transformation of
qjmi..nql(w), and qi is a short Q-transformation of W.
From a fixed t-tuple W, there are only a Ffinite
number of short Qotransfo:mations since for a word of
length 1 there are at most 1 short conjugates.  Alsoc note
that not all short Q-transformations have ihverses,

zagb) then(a,b) is a short @

For example if Wz(aﬁzab
image of W but the inverse transformation is not a short

Q-transformation of (a,b).

CONJ ECTURES

A natural guestion about short Q-transformations

is contained in the following conjecture of VAR

Conjeéture i Let W be a n-tuple in F(alﬁma.san)g it

)

there exists = Q-transformation § with Q(W)=(a19qeﬁyan

. . . g .
then there exists a short Q-transformation Q" with

QF=(ay,..0z)).

. A gitronger statement is

°

Cohgecture 2 Let W be a n-tuple in'F(alg,”,an)F N2,




~and Q a Q-transformation. Then there ex1sts_a horf Q-

transformation Q° with |gS ()l ¢ latw)|.

These conjectures assert that short Q_t

mations have the same "power"” to reduce t- tunleu oi:

words as do Q- transjormaclonsu. The truth of Gonjecture

1 would open up a new avenue of investigation into:tﬁé;
question left open in the previous chapter of whethér:r
there exists a n- ~tuple which normally generates F but
is not a Q image of the generators of F

Namely, this question S@ems more manageable when asked
aﬁout'shorf thraanormafions but it albo remains: opern.

Finally a conjecture wnﬁch 1nvolve5 only short

@-transformationy ig

Conjecture'B Let W"(w g.n,,w ), W° —(xh X wzfau,gw )
in F(alﬁ,,ﬂga }, and L"ai and Ql any short thransfofu
- mation. Then there exists g short thransformation Q?
such that [Z(w)l ¢ lof(w)l,
We will discuss conjecture 1 léterp but first
'We prove
ggggggﬁmi Conjecture 2 (== Conjecture 3.
Eéggg First we show that Conjecture 2 = Conjécture 3.
Let észm}W'i which is an elementary Q-transforp-
mation. Now given Ql, any short Q-transformation on W;,

let Q(W)th(q(W))=Qi(W’). We must now show that there




exists a short Q-transformation, QS, with IQE(W)léfo(W‘)]a

But Conjecture 2 asserts the existence of a short Q-trans-
formation, Q°, with [Q%(W)l£1Q(w)!. Then we may let
Q=0 obteining |5 (w)lsla(w)=05 (*)|

- Now we show that Conjecture 3 :?Conjectﬁre 2.,
‘Note that by an induction argument we mayrreplace
W' in Conjgcture 3 by (le.,nﬁwiulgfﬁixy,nugwt), where
X is any word in Fo o | ,

Now let Wx(wlﬁeum,wt) aﬁd Q@ any Q-transformsation.
Say qusqsmi‘"°qi with q3 elementary R=transformations.
‘We must show the existence of . ng a short Q-transfor-
mation, such that [Q%(w)lelQ(w)l . Let r be the number
of g's comprising Q which are not elementary short.Q»
ﬁransformationsa Comparing the definitions of elemeri~
tary Q@ and shoxt thransformationsg the only way"giean |
fail -to be short is when it conjugates an element but -
Stfictly increaées the length of that element., If r=0
then Q is already a short thransformation S0 we can
let QSEQ‘ Otherwise, we assume the resull Tor Ny Qe
transformation which is a product of elementary Q-trans-
formatiohs of which fewer than r are,nbt Short,

Let 1 be the largest subscript such that ay is

. not a hort Q-transformation in Q=q_ grerQyeecedqs 8zlzl,

Tet v=(vi,,..,Vt)nqlalﬁn,ql(w), 17#1, and V=W when 1=1.




Then gy sVed (Vy, o0, VE, 0LV )=V0 . Now Led aS=q

s 914

which is a short Q-transformation on V' by assumption on

1. By Conjecture 3, there exists a short Qntransforma¥ i4'
. s - . . s NN - . g o

tion Q5 satisfying [QZ(V)[ﬁlQl(Y yl. Now qulmiaugql

has fewer than r component elementary Q-transformations

that are not short, so by the induction hypofhesis there
exists a short Q-tranasformation stsuch that

S S t L] o .
1 Q (W)Lg[@qu 102204 (W] . So Tfinally we have

g, ‘
Fam(n) ¢ ey g« cony (W)= Q,(V)If Jay (v )=q u_uql(m:c.z(w)l
which conpletes the proof,

Later-in this chapter we will give o restricted

setting in which Conjecture 2 holds.

EXTENDED SHORT Q-TRANSFORMATIONS

We begin with a definition of another transfor-

wation of t-tuples of words in Fn'very similar to short

Q-transformations.

Definition Let ww(wlgnkggwt) be a t-tuple of wofds in

Fn,‘ A transformation of W will be called an elementa ary

extended short Q-transformation (hereafter called an
.elem@ntaéy P-transformation) if it either is an elemen-
tary short Q-tr nuformatlon en W oor it leaves WJ fixed
for j#r, 1ejzt and for r,s fixed, r¥s either

o+
' v 3 e mxa ‘X
a) W. is sent to WoW, or b) W, is sent to W W




ransyor-

tary P tranuf rm tlbn

We prove a ﬁhcorem about PmbrthlOr

elmjlar to C nje

ture i. TFirst, howevergnwe””

folloWLngfg

L@'ﬂlma Le-th<d1 §ieiv o eé ;‘lg:] [ - 9“] ) II 1::. the

~each gonerator there 

;xast an 1 such that the expone
- of Wi on th15 generatbr_ls not O.

Prool  As sumb thlb lb fu1m0 ~ Then there exists a gener

Marcrmars e i,

i WhOSéfeXyﬂnent sum in evary Wy is

G/GY (¢ mod 1fu commutator subgroup) hag a pr@sentatlon

in which a, does not dppear in any relator other than

St

commutators. So. 1n G/G aj%i so G¥1 which ig a contraé__“”*

diction and so completes the proof of the lemmna,

Before we’ ﬂtate the thuor&m let 1 8 give an exam-
ple for it. Cons Jdcr the following Q-transformations

(ab?',aﬁ?’.‘;s;‘\tb’7 )wm«(Bdba,&bab‘a), which is just a conjugation
of the first element by b, Note that the word ba ig a
short conjugate of 5Bab a and gimilarly ab a short con-

jugate of E5%Eba, So the above Q-transformation can be

realived by a P-transformation as Tollows:




-
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(ab”, 85ab"a)—) (abba, GBab%a)—> (aabda, ABab2a )—s
(BabB,éiBabza)a -

Theorem 2 Letgméﬁﬁ‘..ﬁan;wl,,.g}Wﬁ>mlﬂ nx2, and @ any
Q-transformation on Wz(wigeeogwm), Then there exists a
Pmtransforﬁation P such that P(W)=Q(W). |
CProof It Suffiées to prove the theorem in the case that
Q(W)m(wl,gaogwﬁgwi+l?n,.gwn) whera‘W§ ig not a short
conjugate of wi, X.e:Fno This is clear since Q is a
product of elementary Q-transformations each of which is
either a short Q-transformation, and so already a P, or
a éonjugator of an element but not & short conjugator,
And, aﬁ'induction argument on the number of elementary
Q components of @ would yield the result. Furthefm@reF

&1

we ¢HENn assume X:x:ag,, a single generator, for we could

Sm

then proceed Dby induction on the léngth of X. ZILastly,

withoui loss of generality we assume that

QU v e oM )=(WT Wgy e, ), |
Now since G=1, by our previous lemnma theré is

some such that the exponent sum of aj in Wr.is not O.

Let k be the largest such r. —

!

éiaﬁﬂxBU with some of A,.B,U possibly

Case 1: ¥31. Then Wﬁ

1, AxB cyclically reduced and UAxBU reduced as written.
t1

k :
== . ":1 -
EBX a short conjugate of w; s and each 1is reduced as
. 9

Then xBA is a short conjugate of W." and the inverse




written. Also, sinée WT is not a short conjugate of
Wy iwlx is reduced as written and then so is EﬁiwixBA,
Therefore iwlx is a short conjugate of EﬁiwixBA.' Then
finally the following product of elementary P-transfor-
mations on W realize QW)

(W oeoaWpo oo s o> (W XBAL o vu Wy W )

(T.KE%EV}:LXBA? s 80 gl’gkg °ow e p““n)m} (:{‘leg [ .o » gwkp &6 0 gwn) s

Case 2: k=l. Then, in particular W, has O exponent sum |
on aj gsince k was maximal. But then ij? has non-zero
- exponent sum on aj, 30, by Case 1:
- s X

(qu §00cr ,,Wn)'“"“'> (Wl 9‘2’{1"‘!29 ] g“’rl) > (‘l'l'l pwi.i’gzg e e ;Wn)

is realizable by a P-transformation. And, since by

assunption iwlx is reduced as written, Wy is a short

conjugate of Wf s0 we may continue with an elementary

. A i M1 N ‘}: Y - 1 P K h

P-transformation P,(wlpwlwz,aouﬁwn) }(wlgwg?i,ﬁ,wn),
This completes the. proof,

‘Corollary Let w=(wlg,ua9wn) be in F(alg.a,,an}, X=a5
and. Q:me%(wlane,,wisaob,wn) be a Q-transformation with

|W§[>ijio If there exists a k#¥L such that Wy is both

}
cyclically reduced and has non-zero exponent sum on aj

then Q(W) can be effected by a short Q-transformation.
+

Proof As before, WkimAxB with possibly A or B 1 but
otherwise AxB reduced and cyclically reduced by assunp-

tion. Then xBA and AXB are short conjugates of one



another and similarly for BEE and ABX. Wiﬁﬁout loss of
generality we assume that Q(Wlpmo,ywn)z(wf,..n,wn) and
1. So the following short Q-transformations realize Q:
(wl,ﬁ,e,wn)-mé(wlpo,,,xBA,unoewn)mé (wleAu,,n,xBA,,nafwn)
T (A xBAy o BBR, LW )~ (KBRW, xBA, ... AT, ... )=
(iwix,aso,ﬁﬁiﬁoc,ﬁﬁlym%(iwixfeﬁoeAxB,g,.,wn)
=(wf,e.a,wk,.,,pwn). |

In the above, g is a short thransfbrmaiion
because KﬁﬁWIXBA is feduced as wfitten by the assumption
that wahlwil, This completes the proof.

Extending this corollary to a prbof of Conjecture

2 is sadly beyond reach at this point.

A SUFPTCIENT CONDITTION

On cibger examination, we see that any Q-trans-
'formation can be broken down into elemantary Nielsen
transformations and conjugations. Thus a proofrof Cone
Jecture 3 might proceed by induction on the number of
conjugations that make up the short Q-transformation,
Qfg on W*:(Ewlxﬁwzp;eg,wt)k Ir Qf containg no conjuga-
tions then it is simply a Nielsen transformation. One
may hope that in this situation the QS of Conjecture 3
wovld just turn out to be a Nielsen transformation on

Wy oooo W) such that [500[< [P (W), this will

oe too much to hope for as the following example shows,




-y
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Consider the pair (babzabab,ababz) in F(apb)
Whioh will play the role of W. The palir can't be reduced
any further by Nielsen transformations since it is Nielsen
reduced. However, the péir (ababzababﬁpababz)g which
will play the role of W', may be reduced to (a,b) by
Nielsen transformations as follows;
(ababgababﬁﬂababz)—m%(ababﬁgababz)fﬁ>(Eﬁ,ababz)m%
(53,ab°)— (B3, b)~ (&,b)—> (a,b).

So even if Qf ig only a Nieisen transformation,
Qg may need to contain conjugations but, we will show,
short conjugations will suffice. Indeed,; 2 short Q-transg-
formation can reduce the original pair to (a,b) as
Follows: (habzababyababz)wﬁ'(bab?abab,babza}mﬁ-
.(bab,babza)mﬁ-(bab;ba)m% (nga)wm?(b,a)mﬁ‘(a,b),

Later we will be able to generalize this example
to the following, which ig our |
Theorem 6 Tet We(Wyoeee W)y W=(E W X000 KWK,

'Wi,xi&F(alsagagan), and N any Nielsen transformation.

3
Then there exists a short Q-transformation Q° such that

Q¥ (w)|&|N(w)

Theorem 7, which gives restricting conditions
ot @-transformations under which Conjecture 2 holds, will

follow as a generalization of Theorem 6.

We will find 1t necessary to examine a certain




subset of the set of Wielsen transformations which turn

out to have an especially convenient relationship with
short thransformationsn Fortunately, passing'to this
subset wil1 yvield in some senge no loss of generality
(Theorem 4}, The following technical observations on
Nielsen transformations will be neéded to prove this,
We begin with a

Definition Xet WeF  and I an initial segment of Wi thus

 szX reduced as written with possibly X=1. If
W] 12 1I1>4]Wl then I is called a major initial segment,
and if |TI|=3{¥| then I is called the left half of W.
Similarly if W=YT, T a terminal segment of W with possibly
Y=l, then 1f Z|Wi+12{T!> 3| W!] then 7 is called a major
terminal segment and 1iF [T.m%lwlcthen T is called the
right half of W.

0f course, only words of eﬁen length have left

and-right halves. For example if W=a2b£2b, then the
majof initial, major terhinalg left half and right half
of W are azbﬁs bﬁgbg asz an& §2b respectively.

Definition Let A, BeF A will be called lelaL@Q from

B when the following three condlhionq hold:
1) The major initial segment of A is not an initial

segment of either B or B,

2) The major terminal segment of A is not a terminal




segment of either B or E.
3) When A has even length then either
a) The left half of A is not an initial segment of

either B or B, or

b) The right half of A is not a terminal segment of

‘either B or B.

For example ab 1s not isolated from a2b2 since

° -

neither 3a) nor 3b) holds. However, ab is isolated

from azbﬁz.

Definition A pair (A,B) is called isolated when A is

isolated from B and B is isolated from A.

Note that a pair confaining the element 1 is
isolated in avacuoug sense,

The following lemma simplifies the determination
of whether a pailr is isolated. _ | |
Qggﬁi Let A,B#, lAlz|Bl. If.B'iS isolated from A then
A .ls isolated from B and so the pair (A,B) is isolated,
Proof Assume A is not isolated from B. 3Bay S is a major
initial segmeﬁt of A which ils an initial ségment of Bﬁln
Since [S|yZ]A{z%IBl, an initial segment of §, gay R,

.%,
is the major initial segment of B“i, But then R is an

initial segment of A, which means B is not isolated from

A. The above follows similarly for when § is a major

terminal segment of A,-so if A is of odd length we are




done,

Otherwise, A=LR where L is the left half and R
the right half, and neither is isolated from B (i.e. L
and R are respectively initial and terminal segments of
Bil)‘ If B has odd length then |[B|<]A| and so an initiai
‘ségment of It is a major initial segment of Bﬂ9 which 1is
ﬁot ig oJated from A. Then B is not isolated from A,

If B has even length then either B or B has
initial segment I and terminal segment R. (Note that
if 1 lS an initial segment of B and R a terminal SeLg-
ment of B then L=§ so A=1 which we don't allow.) Then
for Bilp itsrleft half is an initial segment of I and
it right half is a terminal segment of R. This means
that B is not isolated from A, which then completes the
proof., | | |

~Befinition A t-tuple W in Fn is called Nielsen reduced

it every pair (wi;w.), i#j, of elements from W is isolated.
Nielsen proved that a Nielsen reduced t-tuple in

Fn Ireely generates a free subgroup of F Also, of

all t-tuples generating a particular subgroup of Fnﬁ

those that are Nielsen reduced have the smallest total

length. TFor example, all the Nielsen reduced n-tuples

1 £l
1 ytsmgarl ).

Finally, Nielsen proved that given any t-tuple W, there

enerating F(a,,...,a_) are permutations of (a
1 n p




1s a "semidirect" Nielsenftransformation taking W to a
Nielsen reduced t~tuple ( which, of course, generates
the same subgroup ss W). Our next theorem givés a
new proof of this last fact (statements 1 and 2 of
Theorem 3)‘and a useful refinement of it (statement 3
“of Theorem 3).

Theorem 3 For every t-tuple W=(W;,...,W )eF , there
exists a Nielsen transformation N:NS,..Nl‘with N, ele-
mentary Nielsen transformations such that 1) N(W) is
Nielsenrreduced and 2) Nlis semidirect (ise; no Ni
increases the length of the t-tuple it acts on).
Moreover, 3) if W%m(w§y,;,,w%)mNi,,,Nl(w) and
Ni+1(W%)=(w§,n,.,wgwiﬁu.e,wi) then the pair (w§9w§)

is not isolated.

Proof Consider the_set-of all t-tuples obtainable as a
Nielsen image of W satisfying 2) and 3); Let U be one
of minimal length chosen from this set. Ih othef words,
no Nielsen transformation satisfying 2) and 3) ecan
further reduce the length of U, |

| First assume t=2, Then if U is an isolated pair

we are done since by definition it is Nielsém reduced
and so satisfies 1). Otherwise, {he smaller element,

say U;, is not isolated from U, (by the previous lemma).

Also, Uy must be of even length: for otherwise it has a




non-isolated major segment which means we can reduce the

length of U. Therefore, either (U # Uy Uki

) or (UlgU 1)
is an isolated pair thus Nielsen leduoed obtained from
U by an elementary Nielsen transrormataon savisfying 2
and 3), So, we are done,

Now assume the result holds for,allrgmtuples
2¢s<t. Let U be a minimal t-tuple defined as shove., By
permuting we may obtain U:(Ui,ncgyUJ)'with
[UilélUgléa.gelU_!u Apply the induction hypothesis to
(Ul,e..pU 1) to obtain V‘-"(Vl;.,”,,vL 1+ Vg ), a t-tuple in
which the first -1 eiemonts are Nielsen redunud Note-
that U~t is st3i1) the longest element since no Nielsenr
‘tranéformation could have increased length, Permuting
.if necessary; we can assume that rvligeo.flvtmﬂ QIUQG
if any'elements of V are 1 we again apply the induction
‘hypﬁthesis to the remaining ones and we are done., So
assume no element is 1. Now, to finish the proof we
must isolate the Vis from Ut with a Nielsen transformns.
tion satisfying 2) and 3) obtaLnJﬁg a Nielsen reduced
t- tupjeﬂ (The lemma eliminates the need to isolate U

& |
from the v's,) ’

3

Let i be the largest subscript such that Vi is

not isolated from Uto As before, Vi is of even length

with major initial and terminal segments isolated from ‘




Ut' Let VizLR with R its right half and L its left half.
+1 *1
t | t
V=(V1,,,0,Vt) is & Nielsen image of V' satisfying 2) and

Then Ul =LXR with X possibly 1. Let Vt:ViU =RXR. Then

3). Finally, we need to¢ show that for all-jaiﬁ Vj is

still isolated from V.. and the process may continue so |

that after at most t-1 steps the t-tuple will be Nielsen

reduced.

Assume Vj ig not isolated from V.. Again, Vj is
of even 1ength with isolated major segments. But
]thglvii s0 1ts left half must be an initial segment
of R and its right half a terminal segment of R. But
‘this means ijl which we ruled out before. This com-
pletes the proof of Theorem 3.

At this point we would like to restrict our |
attention to a certain class of Nielsen transformatiohs
which we will call complete. The need for these trsns-
formations and their connection with short Q-transfor-

mations will become evident in Theorem 5. Using Theorem

3 we will show that complete Nielsen transformations
suffice to Nielsen reduce any t-tuple.

Before giving the definition we note the follow-
ing. Any word V in Fn may be expressed as a conjugate | : |

of a cyclically reduced word W. That is V=W™~. Also, !

W'can be found so that XWX is reduced as written. W will




then simply be a subword of V. We will illustrate this -
.and the definition by an example below.

Definition The Nielsen transformation N will be called

elementary complete with respect to V:(Vlvn.,,Vt)an
U IN(V)I41V] and either
1) N is a permutation of V or takes some Vi to thelir
inversges, or
2).When V is expressed as W=(W ,eo.,WEQ with V.= %%

Ws cyclically reduced and ijixi reduced as written

then either

a) N: (W} T Wi ) (wl,,.‘”,,w;;fil wl,?”gwx*‘c) 171,

1ﬁkglet‘and XP and Xl are absorbed or
b) l\qg(\lflpn vog )"‘“’} (liil,nﬂ ngWill 1 I3 'ik‘fv?fl Vii}gnang“’:‘ét)
¥, 14.:1“1@1:.,

The content of this definition is fhis: When

N is a reduction of length then elther XWX

14—
Klwlx kakxl and the segneni Xlxk is absorbed, or e;se
Xiwlxlwmikalhkxlﬂlxlx kako Foiqfxampleg let
Vizabﬁ'ﬁﬁzcg - and V2=a.bc'5db655:d,bea, g0 W, =8, X,~B3,
rwzzd, Kzzbﬁﬁﬁ. Then (vi,vz)va(vl,vlvz) is not complete.
Even though length is reduced, not all of bcha, the

exponent of V, is absorbed. ilowever, (VlgV?) ~>(V1,V1V2 1)

is complete.

Definition A Nielsen transformation N will be called




complete with respect to Vﬂ(V',,,.,V_) when N=N ..,Nj,
Ni complete elemontary Nielsen transformations with
respect to Niml..,Ni(V). ivl, and N, with respact to '®

| Now we show that for our purposes there is no
loss in power resulting from passing over to complete
Nielsen transformationse _
‘Theorem 4 IfIV#(Vig,MﬁVt)éFns'then there exists a
complete Nielsen transformation N with N(V) Nielsen
reduced. |

First we prove the following

Qg@gg If N:(V,,V )ww%(VlgV v ) does not.inorease
length but is not a comgiefe Nlelsen transformation
then either (Vl,V ) is isolated or there exists a
complete Nielsen transformation N€ with
NV Vo) b (v Vo)l S
Proof Let (Wflpwgz)x(vlgvz) with‘wi cyclically reduced
and E.w.x. reduced as written. Then N bejug not compl@te
means that in the expr95510n hiwixi X W Xg not all of
X and}of X2 is absorbed. But since |N(V) ¢Vl all of
Xl and in fact at least half of Wy must be absorhed.
So not all of Eé is absorhbed, '
Case 1 More than half of V, 1s absorbed. Then we have

|X WX, . X N xzjaliéwzxzi and in fact multiplying V, by

Vl on the left reduces length and is a complete Nielsen




transformation.

.Case 2 Exactly half of Vl 1s absorbed. Then VimLR Qheré;
L is the left and X the right half. Not all of %, is
absorbed so V RYWEYR We see that then the left half
of'Vl is not an initial segment of V2 so neither is its

major initial segment an initial segment of V The

o
major terminal segment of Viris also not a terminal Segw
ment of V., for otherwise more than half of V, would he
absorbed in V,V,. Then V, 1s lisolated from:V2 and since
[Vllalv | we have (JJEV ) an isolated pair by the previous
lcmmae This complete the proof

Note that the Lemma holds JAE N (Vl.V?)m%(V4 ZV Y.

Proof of Theorem 4 From Theoren 3 we know that there

exists g Nilelsen transformation M:MS,u,M1 satisfying
conditions 1) 2) and 3) for V. We now proéeed;by induc-
tion on |V} | ,. | |

If [VI=11(V)] then we claim that M is already
complete, We need only check that those Mi which multiply
.dne element by another are complete, Now M. does not
increase length and no Nielsen transformation can d@u?ﬁaﬁ
the lenghh of M, 1.”M]_(V) gince its length is that of
MV ) Whlch is Nielsen reduced. So, by the previous

lemma, if Mi multiplies two elements it is either complete

or the elements are isolated. But the second case




violates 3) of Theoren 3 so in fact Mi must be complete.
IE §V |>1%(V) | then let 1 be the smallest index
such that My is not complete., Let Uzm. g My (V) or

'Uav if i=1, Then My s(Upyue, U )y (Uy,...,0, Ulgn..pu ).

J
By assumptlon, M does notl; 1ncrease length and the pair
(Uj,Uk)'is not isolated° Then by the previous lemna,
-fhere exists a complete Nielsen transformation N® witlh
lNc(U)k[Ulé!V!u Applying the inductlon hypothesis te

c(U) the reduction can be finishedhby complete Nielsen
“transformations. My RRER (V) is already complete by
_dssumpblon on i, so the theorem is proven.

_The following lemma and Theorem 5 cdnnect short

Q- tranbforlatlons with complete Nielsen transformations.
Lemma Let V and W be t-tuples in F with each W, being
Vi cycllcally reduced, If N, is any elementary completé
‘Nielsen transformnation on V, then thére exists a short
Q-transformation @° with [Q%(W)I¢|N®(V)] and o®(w)
conjugate to N(V), |
Proof There exists Xy,... Xy with (Wi, .. p¥e)=yk
:(Vlﬂ.,f,vt) such that EWiX'are reduced as writhten.
Now if N ig a permutation of V or takes some Vi to
their inverses then let QS do exactly the same to W.
This Q° will satisfy the conditions of the Lemma.

t

If N° is of type 3b) in the definition of




‘complete MNielsen trnasformation it amounts to conjugating 
can element of V. Then we can let QS simply be the iden-
tify on W, for Q°(W) is still conjugate to.Nc(Vj and since
W is cyelically reduced we retain {Q%(w)|4|NC(v)].

Fiﬁallyﬁ we consider the case that NC is of +type

3a) in the definition. Then Ncs(W§j,WXk)-“>(W%5W§K,W§k)
with Xj and Ek absorbed, j#k and N© leaves all other
elements Tixed. (The case NC (wX‘gw‘k) (wxﬂw§n,w§ )

is similar,)
‘7 | It suffices to iind how a short Q-transformation |
taking W to a conjugate of NC(V); havihg that, we can
follow it with the shert'thransformation which cyclically
reduces its argument and define Q° as the product of

these, This will ensure that FQ¥(w)te INC(V)Y].

Case 1: [Xklzlxﬁ Then XRWI k—ijWkZXj with po§81b1yr
Z=1., Now all of ¥ is absorbed so Wj:TZ, Then

D AT ¢
Wj Wy

k
szjmzxj»fjiwkzxj=Yij ZX 5.

Con&sder the following transformations on (W k)e
‘(Té vy ) -m§(ZT W, )wim$ (ZD°Wy,W, ). Since T is
cyclleally reduced by assumption, ZT is also eyclically
\?educed and a short conjugate of Tz, So, qyq ié‘a short
Q-transformation, and clearly so is qZ.. B0, let Qszqquc
Then QS(Wj,Wk)=(ZTWk,Wk) which is conjugate to

(wxwX

';'X"n\ .... F '
wk )m(ijw

X
ZXj,W

k k ).




Case 2: X, [éix.l. Then XJWJX3 XKZW35Xk Again Xj is

absorbed and also at least half of Wy. Then szfT S0

wglwﬁkzikzwjzxk-iiiTxk=E£2ijxk. |
Consider the following transformations on
(wj.wk)¢ ‘(ijET)~3£¢ (wj,Ti)»géar(ijE,TE)h Again
since ZT is cyclically feduced, TZ is also and just a
short conjugate of 7T, so ql is 8 short Q-transformation,
Clearly, 4, is also short, Then let Qsquql giving |
Q® (W W, ) (J 17%,7Z) which is conjugabe to (WXT‘.JXk “L )

]?IJT)C] v Ky

Now we generalize the lemma as

=(X X /Txk), This completes the proof.

Theorem 5 Let V= (Vi,,"qV ) and W= (W pevaplly B conjugate
to V in F If N is any complete Nielsen transformation
on V then there exists a short Qe trdmsfoxnatlon Q with
i Q® (W)] 2IN®(V)| and Q% (w) conjugate to N (V)p
Préof Let N :NraneNl with each N; an elementary complete
Nielsen transformation.  Let ¢ be a short Q~transzforma-
tioh such that C(W) is V cyclically reduced. Tf peti the
previous lemma applied to C(W) yields a short thranén
formation Qf with {QfC(W)!gINC(V)I. So QSEQTC,

Now let N'= r~l;°°N1' By the induction hypotheéis
there ekists a short Q-transformation Q? with Qz(w)

conjugate to N‘(V) Again, let C be a short Q-transfor.

mation such that C(Qg(w)) is N'(V) ecyclically reduced.




We apply the previous lemma to CQE(W) and N'(V) obtaining ”
a short Q-transformation Qg with lQ?CQg(W)iglNSN'(V)i :
and Q5CQ5 (W) conjugate to N N'(V)=NC(V). So Qs_zqicgg,
which completes the proof. '
We.can now pfave

‘Theorem 6 Let W=y ee e W ) W= (T W X e e, T X, )
Vbe in Fn and N be ény Nielsen transformation. Then
~there exists a short Q~transformation Q" such that
j1'QS(w)lsIN(W'){ . | - '- - {
Proof By Theorem 4 there exists a complete Nielsen | .
transformation N witﬁ NE(W*) Nielsen reduced. In par-
ticular INC(ijlﬁlN(W‘)l, Now W is conjugate to W' so
'by Theorem 5 there exists a‘short Q-transformaiion QS with
LQT(WNeIN® (W)l . So we get [Q5(W)le|N(W')| and the proof
is complete. o | |

| A'Q—ﬁransfofmation is an alternating product of
Nielsen tr&nsform&tiéns and conjugatidnS, If we demand
thatrthe Nielseﬂ transformations comprising Q be complete
we can apply Theorem 5 repeatedly to ge£ a reé%ricted

case where Conjecture 3 holds,

Theorem 7 Let Q=C Nyeo.Cy Ny, N; complete Nielsen trans-
formations, Ci conjugating transformations and W a t-tuple

infp Then there exists a short Q-transformation QS

.
with 1Q°(W)jelq(w)] .




—

SOME QUESTIONS

| Theorem 7 leads one 1o make a conjecture that
implies Conjecture 2. To state it call a Q~transforma-
tion complete if if satisfies the hypothesis of‘Theorem 7 e

Conjecture 4 ILet W be a t-tunle in Fn and Q a Q-trans-

formation. Then there exists a complete Q-transformation
€% with [a®(w) ¢ 1Q(w)l .

It seems reasonable to make yet another conjec-

ture related to Conjectﬁne 2. Let us call a Q-transfor.-

mationp'Qzasoo.Ql with Q. elementary, quasidirect if the
Qi which are nom‘conjugators'do not increase length,

Conjecture 5 ILet W be a t-tuple in,Fn and Q a quasidirect

Q-transformation. Then there exists a short Q-transfor-

mation Q° with ]QS(W)IQ[Q(lee

Though not venturing a conjecture, we rdaise the

following question: when a n-tuple is a Q-transforn of

~the generators of Fn’ is it possible to reduce the

n~tuple to the generators using a quasidirect Q-trans-
formation? An affirmative answer would further reduce

the isomorphism problem of presentations of the trivial

group.
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