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. . sl L
s dissertaticn we prove that if M is a
complete, open nocanegatively curved manlfcld, and if for
some D oin M there exists a real number TO\ 0 such that

rd

Y

R 4 2 X - " P — P — -
K(X}I>(ﬁ/ﬁrg) for each x in M with d{x,p)<r , AZ 2,08,

©

then M ig dif f&Dmul“th to BR™, Here K{x) denctes the
infimum of all sectional curvatures at the fdoint x.

To achieve this result, we (1) characherize the cut
locus on complete open surfaces of revolullion whose curva-

ture ig & monotone nonincreasing function of the distance

from the vertex, and (2) prove a generalized verasion of

Toponogov's comparison thecerem in which the comparison auir-
face ig a surface of revoluition ag in {1) above,
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INTRODUCTLON

Conjecture (Cheeger and Gromoll): If MY is a complete

open nonnegatlvely curved manifold, and if 21l sectional
curvatures abt some polnt x € M are positive, then M is
diffeomorphic to R,

This conjecture 1s known to be true if n = 2
(Cohn-vVossen [1530]), if n = 3 (Cheeger and Gromoll [1972]),

or 1f n = 4 (Cheeger and CGromoll, unpublished). I the

I i L

words "some polnt" are replacea by "every point," the con-
Jecture follews from Gromoll and Meyer [1969] or from

Cheeger and Gromoll [1972].

This thesis grew oubt of an attempt to prove the
above conjecturs in its entirety. I have had to settle
for legs. The maln result, theorem 5.2, is the proof of
a version of this conjecture with curvature conditilons
stronger than those stated in the above, bub weaker thén
those 1n Gromell and Meyver. On the way to this result
I characterize the cut locug on cartain surfaces of revo-

iution and prove a generallzed versgion of Toponogov?

mn

theorem.
I think that the ftechnigues used in this thesis
can be inproved Gto achileve stronger partial results than

are pregented here, but thabt the return will not Justify

the invegtment. These techniques are not up to the task




of proving the full conjecture. Known "global" comparison

theorems are still too local, i.e., local irregularities

in curvature can affect the entire comparison surface.




1. PRELIMINARIES

This section summarizes those elemantary aspects
of differential geometry which aré cited iIn the body of
this thesis, and establishes notétion to be used through-
out. A proof will be given only for corollary 1.4.2 which,
to the bést of my knowledge, is not standard. AllL proofs *
and definitions which are omitted from this section arse

mogt easily found in Cheeger and Ebin [1975].

1.1 Notation

Mn willl always denote a complete n-dimensional
Riemannian manifold with metric <,> and Levi-~-Cilvita
connection V. TUnless otherwise specified, all gecodegics
v : [(O,b] ™ M will be assumed to be normal: vl = 2,
where v'(t) denotes the tangent vector to vy at y{(t). If x
and v are points in M, then Cur(x,y), Geo(x,y) and Geom(x,y)
will denobe respectively those curves, geodeslics and
globally minimal geodesics which begln at x and end at y.
Elements of Cur(x,y) are reguired to be at least plecewise
smooth, Thus if v € Cur(x,y) is paremeterized on [O,bl],
then v{0) = x and v(b) = y. Similariy, if N ¢ M, then
Cur(N), Geo(N) and Geom(N) will denote respectively those
curves, geodesics and globally minimal geodesics which

have images contained in N. Again, elements of Cur(N)

are required to be at least piecewilse smooth, I the




parameter range of any curve 1s nobt specified, it 1s

understood to be [C,b]. Finally, if v € Geo{x,y} and
n € Geo(x,z); we leb $(v,m)(x) := arccos<y'(0),n'{0)>,
0 = ¥{y,n) = . |
Tf v : [0,b] » M, define -y : [0,b] = M by
-v{(t) = y(b-t}., If Yy € Cur(x,y) and Yo E'Cur(y,z)
are parameterized on [O,bi} and [O,bg] respectively, define ' |
AP [O,b1+b2] ~ M by

Yl(t) if t € Loyle

Y1V

- é: -
Yg(tubl) if t € [b,,b,tb

1771 2]°
Thus ylVYE € Cur(x,z).
And sometimes we shall, without further warning,

let the same symbol denobte both a curve and 1ts image.

If N € M is any subset and r € R is any positive
real number, TT(N) = {x € M | d(x,N) < r} is an (open)
tubular neighborhood of N. Here, of course, d denotes
digtance in the metric gpace structure Induced by the

connection.

1.2 IMrst Variation Formula

If ¢ : [a,b] @ M iz a smooth curve in M, then
Ife] will denote the lengbh of ¢, Lle] := [° et (6)] at.
Thie applies as well if ¢ 1s only piecewlse smooth by

omitting the singular polints of HC'H from the range of

integration.




If ¢ : (-e,e)x[0,b] ™ M is a smooth variation
of ¢, so a|({0}x[0,b]) = ¢, then we let c (t) = a(s,t)

and speak of the variation [cs]. If ¢, is paraneterized

0
proportional to arclength, so that HCO'H is constant, and

if § = da(d/%s) and T := da{d/3t), then the first variation

formuls is

-1 b b
1.2.1 == Tle o = et (s, - [ <89, at ),

If ¢ € Geo(M), then this becomes

_ . ﬂ
1.2.2 g ble Il = <8,

oy

0

1.3 Curvature and Conjugate Points

If x € M and 0 ig a plane in M, then K(¢) will
denote the sectional curvature of M at x determined by
any two vectors spanning ¢. The notation K(x) will occure
only in conjunction with an inegualiiy sign, and will denote
either Inf{K{(o)} or sup{K(o)} over all planes ¢ in M.X
according as we have K(x) 2 or K(x) =,

if vy & Geo(x,y), we will say that y is free of

conjugate points when we mean that v(t) is not conjugate

Lo x along v for any t in the domain of vy.

. . n n-+k . . .
1.3.0  Lemma: Tet M and M_ — be Riemennian manifolds,
let v : [O,b] = M and AP [O,p] Mo be normal geodegics,

and suppose that K(Yo(t)) = K(vy(t)) for all t € [O,b].

Then if yo is free of conjugate pointsg, so is v.




Proof: Bee elther Gromoll, Klingenberg and Meyer

[1975] pp 174-6, or Cheeger and Ebin [1975] p 30. This is
proved in the first reference without use of; and in the
second reference as a corollary of the Rauch comparison

theorem, &

Remark: If M and MO are both 2-dimengional this
lemma Lollows immediately from the Sturm comparison theorem
for second order ordinary differential equations. Thus,
despite the application of this relatively modern resulh
[cl95@} to surfaces in sectlion 2, the techniaues there

should be considered entirely classical.

L.4  Rauch-Berger Comparison Theorem
ouppose that x and y are points in Mn. Ir

Yy &€ Geo(x,y), we will say that y is free of focal points

when we mean that v(t) is not a focal point of the
(n-1)-dimensional embedded submanifold defined by restrict-
ing exp to a sufficiently small neighborhood of

. s
0 € yi(0)” e .

1.4.1  Theorem (Berger): Iet M and Mg+k be Riemannian
manifolds, Tet v : [C,b]* M and Yo : [0,b] = MD be normal
geodesics with Yo free of focal polnts. Assume for each

€ h .he n
& [C,b], each v MY(t) DYD(b)
sectlonal curvatures of the sections ¢ spanned by (vt {t),v)

and each v €M that the

and 0_ spanned by (yé(t),vo) satisfly K(oo) = K(c). 1ILet




T(t) := y'(t) and T_(t) := YO'(t), and let J and J be
o

Jacobl filelds along vy and Yo regpectively satisfying

(1) (VTJ)(O) and (VTOJOj(O) are tangent to vy and Y,

respectlvely,

(2)  Jvpahi(o) HVTOJOH(O),

(3) <T,5>{0) = <1_,J >(0), and

@) alio) = I lio).

Then for each t € [0,b], |\Jli(s) = HJOH(t)-

il

fi

Proof: See Cheeger and Ebin {1975], theorem 1.29,

B

The following corollary 1is a slight generalization

-of that presented in Cheegef and Ebin,

14,2 ggggilggii Let v : [0,b] » M and y_ : [0,b] > M§+K
- be normal geodeslcs, and let E and ED be parallel unit
vector filelds along v and Y, respectively with <E,vy'> =
' <Eo,yo'>. Suppose that c : [O,bj - M and e, {O,b) = MO
are defined by

c(t) := expy(t)(f(t)E(t)) and

Co(t) = expyo(t)(f(t)ED(t))

where £ : [0,b] » B is smooth., Let n, [0,1] » M and
. . ¥ ) s Pined
Mot [0,1] » JD be defined by

N (s) = expy(t)(Sf(t)E(t)) and

7 t(s) = epro(t)(Sf(t)E (t)).

o]

-~




Assume that for each (t,s) € [0,blx[0,1], K(nt(s)) P
K(ﬂot(s)), and that for each £ € [O,b],nDt is free of focal

points. Then Lic] = Lic_J.

Proof': BSince ¢ and ¢, are both parameterized on
[O,b] it suffices to compare the lengths of their tangent
vectors. 7

If &, € [0,b] is fixed, and if o : (-¢,e)x[0,1] = M

is a variatlon given by a(t,s) then

V(s) = 3a/0t(0,s) is a Jacobi field along n, with end
1

values V(0) = Y*(tl)

§14 1), Note further that since vy E = 0 and

!
' (0) = £(6)E(t),

and V(1) = c'(tl) (cf. Milnor [1963],

(T VI0) = [y () £0)8(6) 1 ()
. = [V(€(6) R (6)+(6)v, ,B(6) ] (8;)
= £1 (6, )B(t,)
Similerly, we find that (v%{j VD)(O) = f‘(tl)EO(tl}.

1
This shows that V and V_ satlefy condition (1) of 1.h.1.
Evidently they satisfy the other conditions, and thus

vl (1) = HVOH(l). Hence Hc'( = lic, (% )H for any

€ [0,b], and thus Lic] = LLCD]. u

Remark: Note that <E,vy'> and <EO,YO’> were nots

required to be zervo In this coroliary.




1.5 Cut Points and the Cut Locus

Let x € M' and v € Ceo(M) with v(C) = x. We will
call y := y(to) the cut point of x (along y) if vy is

minimal between x and v{(t) for all t = t, and for no t > 6
L.

-+

The triangle inequality iwplies that such a y, il i

C

; exlsis,
is unique. C{x) will denote the cut locus of x, the set

of all cﬁt points of x. Observe that for any x € M, M

may be viewed as C(x) with the proper boundary points

identified. The following lemma characterizes cutb points.

1.5.1  Iemma: Tet v € Geo(M). Then y(to) is the cut
point of x = y(0) along Yy 1f and only if cne’ of the follow-
ing holds for t = to and neilther holds for any smaller
value of t¢:

(1) Y(to) is conjugate to x along v, or

(2) there is a geodesic m # y from x to y(t ) such

o
that Lln] = Livy].

Proof: See Cheeger and Ebin [1975], lemma 5.2.

We also have

L.5.,2 lemma: The distance to the cut locus is a conbinu-

ous function defined on an open. subset of the unit sphere

bundle of M. In particular, C(x) is a closed set.

Froof: Ses Cheeger and Ebin [1975], prop. 5.4,



10O

And finally

1.5.3 Lemma: The element of C{x) which is nearest to x
1s either a conjugate point or lies on a nontrivial elemenk

of Geo(x,x).

Proof: BSee Cheasger and Ebin {1975], lemma 5.6,

@ |




2., THE CUT LOCUS ON NICE SURFACES OF REVOLUTION

Interest In the cut locus on surfaces dabtes back
to Poincaré [1905] and Myers [1935],[1936]. They both
proved that the cutbt locus of a point x on a surface & can
contain no closed curve, and that the end points of the
cub locus of x are conjugate to x. In addition, Myers
proved that on an analytic surface the cut locus of any
point is a tree with finitely many'nodes in any compact
subset of S,

To illustrate the notion of the cut locus, Myers
describes the cut locus on gseveral standard surfaces such
as the plane, the sphere and the ellipsoid, and then stabes
that "examples of well known simply connected surfaces on
which the (cut) locus assumes a complicated, but deteirminable,
form are naturally hard to give." Indeed. It ig in fach
extremely difficult to calculate the cut locus on a specific
surface unless the surface is quite nice. ¢luck and Singer
[1976] have shown that any smooth manifold of dimension
Z 2 can be given a Riemannian metric with a non-triangulable
cﬁt locus, and they consbtruct such a metric on the 2-sphere.

Previously, "quite nice" has commonly meant a quadric
surface, or perhaps a cylinder or torus. FEven in the case
of a surface of revolution, where geodesics can be explicit-

ly exhibited in integral form, the cut locus is not generally

11




known. Thig problem was, however, solved for paraboloids
and hyperboloids in a beautiful paper by von'Mangoldt [18817].
In this paper he sidesteps the task of calculating the
elliptic integrals defining geodesics on thege surfaces,
and computes the conjugate locus directly. The culbt locus
is then lmmediately apparent.

Iﬁ this secbion I will éxtend the notion of a nice’
surface of revolution, and in fact generaliize the results

of von Mangoldt. The techniques will not be hisg; but, a:

o5l

{

mentioned in section 1, the techniques are essentially
classical,

Darboux [1895] and Forsyth [1920], both of whom
derive 2,2.1 and 2.2.2 below, are good .general references
for this section. Aithough Spivak {19751 only derives
2.2.2, his plctures are very nice and his discussiom falriy

complete.

2.1 Surfacesg of Revolution

For the moment, let (x,y,z) denote the standard
coordinate axes in RS,

Suppose £: [C,«) » R is a smooth function, with
£{0) = £'(0) = 0, which is viewed as mapping the positive
y-axls to the z-axis. Thus the graph of £ is smoothly
embedded in Ghe (y,z)~p1aﬁe. By revolving the graph of f

about the z-axlis we get a surface of revoluition

5 1 [0,0)x[0,2r) R defined by

7
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2.1.1 S{r,8) := {r cosb,r sinb,f{(r)),

and we call p := 5{0,+) the vertex of 5. Representing RE

in polar coordinates, define (r,0) : 8 ~ R® by

2.0.2  (r,9){r cosb,r sind,f{r)) := (r,0).
Finally, define p : S5 7 R by

. - f"}
.1.3 o(r cos®,r sinb,f(r)) := [ (1_+f_'r2)l/a dz,

o

which parameterizes the graph of £ € 5 by arc length,

»

Notice that (r,8) is orthogonal projection of & into the
(x,v)-plane while (p,8) is a non-orthogonal projection,
This sald, we abandon the use of %,y and 7z asg

coordinate lables and Instead allow them to represent

=

points on the surface S.

2.2 Geodesics on Surfaces of Revolution

With reference to the surface S defined in 2.1.1,
the curves r = consbtant are called paraillels and the curves
é = constant are called meridians. On such a surface every
meridian is a geodesic and no parallel is a geodeslic, If
v € Geo{(S) and x € ¥, then YY(X) will denote the acute

angle which v makes with the meridian through x. I v is

7]

iteelf o meridisn of course YY = 0, and conversely.

If ¢ : [0,b] = 8\{p} 18 a smooth curve, we define

8. [0,b] = R in the following manner: ec(t) is the




absolute value of the tolal angle (in polar coordinates)
traced out by the curve (r,8).c C E° a8 the parameter
Value'increaSQs from © to L. In compubting the tobal angie,
clockwise travel is negative and counberclockwise Lravel
is positivé,

A brief examiriation of the metric on such a sur-
face S yiélds firstly the following integral expregsion

for a geocdasic v on S

T(Y{tl))

2,1/2
2 = s 5 Me " l == (llhfr ) A
w2.l 6y(t1) Y(LO), FY 2(72MT eyl
TN v
r(yit, ))

where TY is a non-negative constant of (& previous) integra-

ticon; and secondly Clairaut's theorem:

2.2.2 o rogin¥ =71 ,
Y Y

Using these two equations we are able to give a fairly
complete gualitative description of the behavior of

geodesics on S.

2.2.3 fet P be any paraliel on S and let v : [C,») = 8

be o normali geodssic with v(C) € Pand y'(0) tangent Lo P.

Tt fellows that »{(®) = 7 and that Yy never enters inbto the

i

L. . =L . . . .
bounded region v ([u,wy}) which lies below P, Since r is

1-1 on the set of parallels of 5, v can be tangent to no

other parallel., Thus, for y(to) £ P,

Leb




T

ot

d(rey) d{roy) - - i
~a5~n~|t:t0 £ 0. 1In fact =T O for all t > 0, so

that the distance of y(t) from the axis of revolution, and
7hence from the vertex of S, increases monotonically with t.

This implies that furthermore

r{v(t)) (
e ()] =7 (1+£r2 ;/irq dz ‘
/ V) a(zor S)ye
T Y
'\I

2.2, 4  Claim: v leaves every compatt set (p : S - [0,x)
is onto).

Proof: Suppose y is condemnad to revolve about the verbtex

in a compact reglon of radius less than T Since £ is

smooth, there exists a constant k& » TY such that

-
= ko 1 d
INOTESIEN 2
z{z -7 _)1/2
.

v

-

which is finite. Since the length of y(=t) can increase
by no more than EWrO in a given revolution, we see that the
length of v must be finite. This is absurd, so y must

leave every compact set.

Now let v, as defined in 2.2.3, be extended +o0 all R.

Since the foregoing applies egually well to v|(-,0], and
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since S is rotationally symmetric, we see Cthat v is symmetric
about the polnt v{0}. Furthermure, v is, up to rotation,
the unique géodesic tangent to P.
Finally, if n : R =+ 5 1s any geodesic, let P be
the parallel with r(P) = 71 _. Constructing vy as above,

n
tangent to P, we see that v and 1 are determined by the

M
colncidence via a rotation, Thus every geodegic is of the

same constant T = Ty, and so we may bring n and v into

type dlscussed in the previous paragraphs.
We summarize these maunderings in the following

description,

2.2.5 Description: On each geodesic vy :.R < 5 there is

a unique point, denoted Gy, which 1s nearest to the vertex
of 5, about which v is symme tiric, and at which v is tangent
to a paraliel of 5. The two branches of vy proceed in
either direction from this point and spiral in opposite
senses arcund the axils of 8 heading monotonically towards

infinity, so that pey satisfies a maximum principle.

Ling [1946] provides a more detailed discussion of
geodesics on a slightly more restricted class of surfaces,
and in fact shows that their self intersectiong can be

used to naturally partition the surface,

2,3 HNice Surfaces of Revelution




Definition: A surface of revolution

S{xr,08) = (r cosb,r sinb,f(r))

will be called nice if

(l)lS is smooth,

(2) £(0) = £1(0) = 0

(3) dx/dp = O,
where X dehotes the Gauss curvature of 5 and p was defined
in 2.1.3.

This definition adds to our previous notlon of a

surface of revolution the requirement that the curvabure

decreaseg ag distance from the vertex increases.

2. Notation
The following summary of notatiocn on surfaces of
revolutlon is collected here for later convenience.
(1) 8 = a nice surface of revolutlon,

S [0,0)x[0,27) » R (2.1.1};

(2) S, =80 (O,0)xRxR, the front half of §;
(3) p := the vertex of S (2,1.1);

(4) (r,8) := 87T (2.1.2);

{5

P+ 8 = [0,0) measures distance from the vertex
(2,1.3):
(6) P, = the parallel through a point x € 53

;= the meridian through x with pX(O) = P3;

Hy
(8) g% := the meridian opposite x with ﬁi(o) = P,




I~
o

(9) T = inf r(y(t)), t € R (2.2,1,2.2.2);

(10) GY = that unique point in 8 on y for which

T(UY = TY (2.2.4)3
(11) QY : domain(y) = R is defined by
| r(v(t) ’
0, (6) = (pov)1(b)r, (Lug 1?1/ i
2y A17e A5
L z (2"
Y

12) F, ot I i i = poyeq "7
(12) v ImeY = p(y) is defined by N puveD,

so that y can be viewed as the graph of FY
CIf y,m € GGD(S+),

(13) we say that m lies below (above) y if

) 8(y) < 8(n), and (ii) for each t € domain(y),
ﬂﬂHY(t))'S () p(v(t)). The same terminology
will be used if vy is simply a point. Note that
if m lies below v, 1t is not necessarily the case

that v lies above 1.

2.5 Geodesics Reviagliied - Some Lemmas

This first lemma 1s dmplicit in Myers [1936], and

is proved here primarily for the sake of completeness,

2.5.1 Lemma :  Suppose M2 1s a smooth complete surface, and

x € M, y € M, Given goé Geom(x,y), hOE GeDm(X,y)‘Wiﬁlgotjho
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the boundary of a simply connascted reglon DOJ then there
exists 7z €& Cl(DO) such that x and =z are conjugate along

a geodesic g € Geo(Cl(DO)).

Proof: If x and y are not themselves conjugate,

we may assume that h, has been chosen so thatri(go,ho)(x) <

%(go,h)(xl for all h € Geom(x,y)\{go}. Let the geodesic
&, be chosen so that gl'(O) bisects‘#(go,ho)(x). Then there
exista Zq € DO such that 81 minimizes to, but not beyond,

z;. It is clear that 7y 4 (go U ho) since: (i) both &5
and h, minimize to y, and (ii) 2, # y since %(go,gl}(x) <
?(go,ho)(x); and thus z, € Int(DO).

If x and z, are not conjugate, we may choose
n, € Geom(xszl)\{gl] 80 that 7_‘$(gl,hl)(2<) = ¥(g),h)(x)
for all nh € Geom(x,zl)\[gl}e D silmply connected and
go,ho both minimal imply that hl < DO’ g0 that g U hl

bounds a simply connected regiocn D. C DO' By induction,

1
barring the appearance of some Zg conjugate to x, which
would complete the proof anyway, we may generate gseguences
[zi}, {gi}. Letting z = 1im 755 {gi] clearly converges
to a geodesic g € Geom(x,z).

Furthermore, x and z are conjugate along g since:
(i) C{x=) is closed implies that z € C{x), and (i1} if
h € Geom(x,z), then h < ﬂ(Cl(Di)) = g3 and now apply

lemma 1.5.2.

B
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2.5.2 Situation: TIn the three remalining lemmas we

assume the following data:

(1) & : 8, (O,7) ;3

(2) x € 28, with §(x) = 0;

(3) vy €8, with p(x) = o(y);

() y € Geo (x,¥);

(5) z € PyﬂS+ is such that 6(z) > 8(y) (S+ is open); !
(6) n € Geom(x,z); See fig 2.1 on p 23.

2.5.3 Lemma: n < S+ and n lies below v.

Proof: The first claim follows immediately upon
observing that (i) S is symmetric With respect to reflection
“through the plane determined by 35, and (ii) 71 is minimal.
Thus if h is any geodesic from x to z, we may reflect all
portions of h not in S+ through the plane determined by
o8 _ - If h ¢ C}(S+), the result is a non-smooth curve from
X to z of the same length as h, and hence h could not have
been minimal. (This shows that S+ is convex).

Since 6(z) » 6(y), n < S, implies that &(y) € 8(n).
Since both v and 7 are minimal, nNy = {x}. Thus 1 lies
elther above y or below v. TLet H(t) := -ﬂ(t+%n(o)) and
lies above v,

G{t) =¥ t+9\(0)) map 68(vy) to R. If 7

r

X
H > ¢, and in particular H(8(y)) > G{9(y)). Combining bthis

with informabion from 2.4 yieids H(0) < H(9(z)) < H{s8(y)),




21

while O < 8(y) < 0(z). This is of course impossible since

H cannot achieve a maximum at an interior point (ef. 2.2,5). o

2.5.4  Temma: Lly] < L[qn].

Proof: Suppose that Py is parameterized, not by
arc length, but such that 8(2)~6(Py(s)) = g, and let
. ; t ! < -
z, = Py(s). From n'(6) > 0, Py (8) 0 and Py’(p) 0,
it follows that <ﬂ’,Py‘>(z) < 0. DNow choose a smocoth
variation {QS} : (-e,e)x[0,b] » 8 of.n with CS(O) = X

and cs(b) =z Then <a/as{cs},co'>f830 = <Py',ﬂ'>(z) < 0,
' t=b

and so the first variation formula implies that

d/dS|S:OL[cS] < 0,

since both lemma 2.5.3 and the argument of the
preceeding paragraph apply zs well to each Mg € Geom(x,zs)
for all relevant s, i.e., when 8(y) < zS = 8{z), it follows
that L[ns] decreases monotohicaliy a8 & increases. Thus

Livl < Lini. 4

2.5.5 Temma: p(y(t)) > p(n(t)) for each t in the domain
of wv. |

Proof: Let P be any parallel with Ty < o(P) = ply).

let t, be such that y(tl) € P and FY'(t > 0, and thus for.

1 " l)

all t > ty,0(v(t)) > p(P). (That such a t. exists is clear

i
from the data in 2.5.2 and the descripbtion 2,2.5). ILet s

1




be similarly defined in terms of n. The argument given in
2.5.4 applies, mutatis mubtandis, to show that By < 8.

if P.ﬂ v is but a single point, P N 1 will likewlsge
be a single point, and necessarlly these intersections will
be the y(tl) and ﬂ(sl) described ih the previous paragraph
(p(y) = p(z) > p(x)). Thus, since P lies above n|[o,sl},
p(n(ty)) < pln(sy)) = plv(ty)). |

If PN vy is two points (the only other case),
P 0 n will algo be two points, and it must be that FY’(O)'< 0,
Define t_ so that y(to) € P and Fyf(to) < 0, and let s_ be
similarly defined in terms of 1. Thus if to <t < tl’
p(v(t)) < p(P);while if 5, <t <8, p(n(t)) < p(P). Tet
Wi y(to) and Jet P be parameterized so that Q(W)me(PW(S))
= 8. Lebt w, := PW(S) and let v, € Geom(x,ws) for 0 £ g <
8(w). It is easily seen that Fy'(%(ws)) < 0: Rotate vy so
that y(to) passes through w,; ii is then clear that vy, 1s

trapped above this rotated version of vy, and thus

1 < hus t ! - ) 49 rLg
FY;(Q(WS)) < FY (to) < 0. Thus <y ',P >WS < 0, and using

a first variation argument as in 2.5.4 we gee that 5, < tD
(the geodeslcs are parameterized by arc length).
Now, gilven any t € domain{(y) we construct P

y(t)”

with 5, Bys to and tl as above. The foregoing argument
<

ot
A

o
A
2

implies that s < b ; 1

pln(t)) < plnaley)) = ply(ty)) = plv(6)).

B and thus that
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2.6 The Cut Locug on a Nice Surface

E@eorem: Let S be a nice gsurface of revolution and

x € 8. Then C{x) < Qk.

Proof: Without loss of generality we may suppose
that x € as_k, e(s+) = (0,7), and 8(x) = 0. If C(x) n S, £ By

then the convexity of S+ (shown in 2.5.3), 1.5.1 and 2.5.1

together imply that there exists a y € S+ such that x and

y are conjugate along a geodesic in S+.- By relabeling,

1f necessary, we may suppose that p(x) < p(y). We will row
see that such a situation, i.e., x conjugate to such a ¥y in
is not possible, and thus that C(x) N 8, = g.

S0, suppose we are given situation 2.5.2 on S,
Then, since S is nice, p(n(t)) < p{y(t)) for t € domain(y)
lmplies that K(n(t)) = K(y(t)). Moreover, since n is
minimal, X can have no conjugate points along m for a dis-
tance equal to L[n] > L{y]. Thus lemma 1.3.1 shows that v

is not conjugate to x along ¥y, and we are done. -

2.7 Example

This example shows that 2.6 is sharp in the follow-
ing sense: Given & > 0, there exists a surface of revolution
S such that (1) dK/dp < 0 except on a set B g, and (ii)

m(E) < € , where n denotes Lebesgue measure. Fguivalently,

by multiplying the metric by a constant, we can replace
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(11) by (iit) dK/ap!E < e,

We will construcﬁ a suriace which is only piecewice
smooth, and in fact does not satisfy our definition of a
surface of revolution. But standard approximation theorems,
see, z.b., Aleksandrov and Zalgaller [1967], imply that this

ig sufficient.

2.7 .1 Iet £ ¢ [Q,0) = Rg be the curve
(t,0) 0=t =1
f{t) :=
(1,t-1) 1 st A

and let S be the surface generated by raevolving £ about
the vertical axis. Iet v : R - & be a geodesic with
0 <, <1, and o, = (TY,O,O). Then for some & > O,
' | 2.1/2
— Y * - \ -6 . +
all s byl © 8., where b, = (2 ) 1+, and both y(uo)
and y(—to) are in the cylindrical part of 8. Thus there

is another geodesic nré'Geo(y(—tO),y(tb)) N Geo(8+) which

is distinet from v, and so C(y(to)) ns,#~4#.

7 in eylindrical part of S

it
_,.a""'_-—
£ ﬁyﬁﬁhﬂ—mh\__ -t

Figure 2.2




Now we can find an approximation to S for which (i) and (ii),

or (i) and (ii') hold.

2.7.2 With a little more care, (i), (ii) and {(ii') can
all be made to hold simultaneously. Here we let
P [0,e) = R be the curve

(L-cos(t),sin(%)) 0 st =€ sq/2

fe(t) 1= - -
(1-cos(8),t-8+sin(8)) & s ¢t ,
, ,
A
1K
‘/é'}\\
~
~
N
=0
O S .
Figure 2,3

and let Se be the surface generated by revolving £ about
the vertical axis. Just as in 2.7.1 we find, for a given
8 < 7w/2, that there is an x € S, with C{x) 0 8. # 0.

If we now approximate S8 by a smooth surface of
revolution T, which satifies (1)} and (ii1") (Te may differ
from SB by a conformal factor), then by increasing 9§ we

can make Tp satisfy (ii) while continuing to satisfy (i)

and (ii'),




3. HINGES, TRIANGIES AND BRANCHED COVERINGS

If we were Lo try to prove theorem 4.2 at this

stage, we would encounter difficuliies due to the fact that

geodeslcs may wind around the axis of a surface of revolu-

tion more than once. We will resolve this potential problem

in a standard fashion by use of an appropriate branched ‘

covering space (cf. Springer [1957]) with the induced geome-

try. |
This sectlon defiﬂeé hinges agd geodeglc trlangles

in manifolds, and then examines hinges more closgsely on

nice surfaces of revolution and their branched coverings.

This examination 1s rather brief., But 1t provides the

technical lemmas, of themselﬁes falrly trivial and unimpor-

tant, which will be needed in section 4.

3.1 DNotatlon and Definitions

Throughout this section, any gecdeslc written Vi is

agssumed to be parameterized on [O’bi]’ and ey = yi(bi),
Furthermore, if {yia} is a family of geodesics which ig
parameterized by o with each Yia parameterized on [O,bil,
then ei& = yia(bi}.

If (M,d) is any mebtric space with A € M, B C M,
let dA(B) ;= supf{d(A,x) | x € B}, and define the hausdor£f

distance between A and b by

hd (&£,B) := max {d fB),dB(A)}.

A N
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This 18 clearly a metric on the power set of M.

3.2 Hinges and Triangles

Let M be a Riemannian manifold.

3.2.1 .Definition: A hinge in M is a triple (yl,yg,a)
with

(1) vy € Geo(m),

(2) €, = Yl(o) = 'YQ(O): and

(3) 'a/:('Yl:Yg)(eD) = Q.

By a family of hinges {(yla,yp,a)} we mean that for each

o in some interval, (vla,yg,a)_is a hinge in M with each
yla parameterized on [O,bl]. Note that ela o= Yla(

a continuous function of «.

Some times, given a hinge (yl,yg,ao), we will spesak
of lncreasing or decreasing oy by moving, say, R This
proceedure may be vieﬁed formally by constructing the Tarplly

of hinges {(yla,yg,a)}, a € [a,b], with o, € [a,b]. Then,

1

if o, € [a,q to "decrease o means to consider
1 2

o Lo ul'

a
1
Y1 to be the geodesic resulting from this "movement'.

3.2.2 Definition: A triple of geodesics on M, (YO,Yl,yg),

is a geodesic triangle (on M) ir yi(bi) :'Yi+1(0)’ i€ 7.

Note that 1f each Yy is minimal, then it is apparent that

the Yy satisfy the triangle inequality, i.e.,

Livipls 1 €2,

Llvy L+ Elvy 4]




3.3 Hinges in 8

Throughout S.SJR is a fixed positive real number,
and attention 1s restricted to the compact ball Cl(TQR(p)) -
S wlth center at the vertex of S, S a nice surface of

revolution.

The following lemma is a bit unwieldy, but not
without purpose. In this lemma we define a number of
constants 61,...,65 asgociated to a glven nice surface of
revolution., Having five instead of just one allows us to
more easily point out exactly what hypotheses are needed

in later propositions.

3.3.1 Iemma: Ilet S bera nice surface of revolution and
fix R € R. |
(1) There exists 6, > © so that if y € Geo(Typ(p))
with L{vy] < d(vy(0),p) + 28, then vy is free of
conjugate points.
(2) There exists 5, > 0 so that if vy € Geo(Tshp(p))
with Llvy] < o5, then y is free of focal points.
Iet G denote the set of geodesics in TR(p) which
are parameterized on [O,b] such that if v € ¢, then Liy] <
d(v(0),p) + 8.

(3) There exists 6, > O such thal if v € G and if m is

(98]

any geodesic with hd (v,n) < b4, ther n is unique

between its end point

mong all those geodesics

L

n
4]




whose hd distance from Y 18 less than 63.
(%) There exists 8, > O such that if v € G and ir

z € Téj(Y(O}), then there exists n € Geo(y(b),z)
i

with hd(n,v) < 55 and Lin] < Liy] + 8.+ Ve may
furthermore require that F{v,m)(n(0)) < T unless
YV o€ Geom(y(o),z) (this is used only in 3.3.3).,
(5) Given ¢ > 0 and ¢ € (0,7/2], there exists a

65 € (0,64) such that the following holds: ILet

(yl,yg,a) be a hinge with Y1 € G, Llyo] < 8; and

5
a € [w,7-9]. Let n be the unigque geodesic from
g to e2 whose hd distance from Yq is less than 63,
Recall that €; was defined In 3.1. Then, up to

reparameterization, n(t) = exp, (t)f(t)E(t), where

1
E 1s the parallel unif vector Field arrived at by
rarallel translating YE' along yl,and

T :[{0,b] = [0,¢) .is smooth.

Proof: In each cage we shall produce the & for an
arbitrary geodesic. Then a uniform & can be found using
continuilty and compactness arguments.

(1) Supposé Yy € Geo(x,y), and let i be the meridian
segment from x to p. Since x and P are not conjugate along
B> W can be extended a small smount beyond p and still be

free of conjugate points (C(x) is closed). Thus, assuming

that L has been so extended, Liy) > d(x,p) and b containg




(%)
s

the meridian segment from X top. If p € vy, we are evidently

done. Otherwise, sirce W is minimal from x to p, d(pu(t),p)

<d(y(t),p) for 0 < t = d{x,p), and thus d(lit),p) <

d{y(t),p) holds for 0 < t < d(x,p) + 26, for some 5, > 0,

Since S 1s nice K{(p(t)) > K(y(t)), and the proof is comple ted |
by applying lemma 1.3.1.

(2) This 1s clearly true on any compact manifold.

(3)-(5) These all follow easily from the facts that
Y 1s free of conjugate points and that exp,v 18 a continuous

function of both x € S and v € See g

Remark: Any 5i appearing in the remainder of this

thesis will be assumed to have been chosen in accordance

with the above lemma,

3.2 Lemma: Let {(yl&,yg,a)}, «a € [a,b], be a family of

3,
hinges in S, . Then d/da(d(e,”,e,)) > 0 for all o € [a,b].

Proof: This is a stralghtforward analogue to step

(1) in the proof of theorem 2.2 in Cheeger and Ebin.[1975].

Here it is important to observe that if x € 01(s+),

c(x) n 5. = 7.

n

3.3.3 Lemma: Ilet {(Yl&,vg,a)}, a € [0,1], be a family of |
hinges in TP(p} < 8. Suppose that

o : .
(1) L[Yl I < d(eo,p) + 5, and




[¥%]
o

(2) Llvy] < 8.

Tet Ya denote the unique geodesic from €5 to el& whose

hd distance from Yla is less than 65. Then d/da L[ya] > 0O

for aill a € [OQ,7].

Proof: This is slso analogous to stép (1) of
theorem 2.2 in Cheeger and Ebin, but is not guite as easy
as 3.3.2. It is proved here primarily for completeness

gake.

Figure 3.1

Since Yl& is free of conjugate points for o € [O,r],
A = {ela} is a smooth submanifold (with boundary). Clearly,

by choice of &)y 5 Ya is also free of conjugate points for

@ |
each a. This, using the fact that T, (Yl ) (in the hd metric
3 -

on Geo{S)) is open, implies that L[v¥] is a smooth function
of a. It is therefore reasonable to compute d/da L[+v%].
The varlation vector fileld for the variation {v%)

zero ab e, and tangent to A at ela. Since yla'(ela) is




orthogonal to A and %(Yl&:YQ)(elQJ <7 for « € (0,7) (by

choice of 54), Ya is never orthogonal to A for o € (0,7)

Thus, using the first variation formula, we see that

d/da LIy*] # 0. But it is quite clear that

LIv?T = | Llyg] - Llv,] |
< L['Yl] + LPYQ]
=Ly

so that d/da L{y*] > 0. _

3.4  Branched Coverings

If 5 is a nice surface of revolution with vertex joF
5% will denote the infinite-sheeted branched covering space
of 85, branched over p, with the induced geometry. For com-
putational purposes we may view S¥ in the following manner:
sSuppose Bg is represented 1n polar coordinates {(r,8),
and let H := [0,0)xR. Define w_ : H » B° by
T {x,y) = (x,y mod 27)

and -topoliogize H so that T is continuous. Now consider

the diagram

|
where $* is the (p,8)-pullback of H. Tet the geometry of |
|

S* be the w-pullback of the geometry on 5, and p* := v"l(p).




It is clear that the topology on S* which is irduced by the
geometry is the same as the fLopology which S% inherits asg

a pullback of H. Note that S* is not geodesically.gomplete
at p*, but that otherwise geodesics are simply 1ifts.5f
geodesics in S. Nobte also that minimal paths in S* are
either 1ifts of minimal geodesics in S, or else can be
written aé M,V where b and By are meridian segments in S*,
by ending and ko Deglnning at p¥*.

If p*

Il

(p,8)* followed by projection into the
first factor of U and 8% := (p,8)* followed by projection

into the second factor of H, then Toep¥ = por and WDDG* =

Oow. TFinally, 1f v € Geo(S*), let Gy* 1= B(Woy)

3.5 Technical lemmas and Hinges in §¥*

3.5.1  Iemma: On S*¥\[p*}
(L) (p*,0%) is one to one, and hence a home omorphism
between S*\{p*} and I\({0O}xR),
(2) each simple closed path determines a bounded and

an unbounded component in S*, p* € bounded component
and

(3) there are no closed geodesics.

Proof: (1) Since (p,8) is one to one, so is (p*,8%),

Since 7w and (p,8) are open maps, so is (p*,8%),

(2) This is standard, using the homeomorphism of (1)

3




(o)
n

(3) Suppose vy : [0,b] - 5%, Yy € Geo(x,x). 'Then
using (2) it is clear that ey%(o,} = BY*(bJ, which is impos-

sible since 0.,% (= %( ) 1s one %to one by 2.2.3.

Tovy) E

Tet Si denote some connecied component of W_l(8+)
The following lemms, along with 3.5.5 provide the primary
motivation for working in 8% rather than in 8. This will

be discussed further in section 4,

3.5.2 Iemma: If x € Si and y € Si, then Geo(x,y) contains

preclsely one element, and Geo(x,y) C:Geo(8+).

Proof: That there is some v € Geo(x,y), v C 8¥, is
clear since the geometry on S* ig the T-pullback of the
geometyry on S, and the minimal geodeslc between 7(x) and
7(y)} remains in S,. That Geo{x,y) n Geo(si) contains
only one element follows immediately from theorem 2.6,
which describes the cut locus on S. If n € Geo(x,y), n # v,
then 1t must leave 8¥. But 3.5.1(2) then implies that en*

is not one to one, -

Much of the technical difficulty which we will
encounter throughout the remainder of this thesis 1s due

to the fact that 5% is not complete. This rext lemma,

provides us with the degree of cocmpleteness needed however.

VNote that we Continue to apply the notation of 2.4 to gx
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whenever the meaning is clear.

3.5.3 Lemma: If x € 8%, y € 5%, v € Geo(x,y), and v lies
below 2z € 8%, then Geo(x,z) £ . If v is also a minimal curve ,
50 that L{y] = d(x,y), then there exists s minimal geodesic

from x to =z,

Proof: Suppose z # y and vy is nob contained in a

meridian (in either case the lemma is obvious),

Let 4 denote the meridian through =z, and v the

meridian through x with v(0) = p*, ILet @ o= ${v,v)(x),

Define a family of geodesics {ya}, a € [O,9], each geodesic

of which begins at x, lies above v in some neighborhood of

x, and such that #(YJYG)(K) = a. Since for a # g Y, is not

a meridian, each can be extended indefinitely and in par-
Yo ¥ P

ticular, at least for small o, unbil ya crogges p. Hurther-

more, it 18 clear that Yo N u depends continuoﬁsly on o.

And thus A ;= {vg N | ¢ € [0,0]} is a connected set,

p%

Figure 3.2
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It ig clear that «(QP N g ds empty and, by the con-
tinuous depeﬁdence of y, on o, that C := {a | Yo N1 = 7]
is closed. ILet a, be the smallest element in C, and Jet

{e.} be a sequence of real numbers, 0 < q. < g

L
i i+l Poo
which converge to a,. Let Mgy, Y 4, and we claim that
i
p*(mi) = e 1 if not, m, < m € Y 3 but agaln by continuous

dependence of y_ on o, we sec that v_ N = M, a contra-
o ) a b

0
diction.

Thus, since p*{y N w) < p*(z) and A is connected,
Ny =2z for some ¢ € [O,8].

If v d1g a minimal geodesic, let c be any minimal
path from x to z, If c passes through p*; then, since vy
iiles below z and meridians are the shortest paths from p*;
¢ will cross y. ESince z £y, either ¢ or v, or both, must
contilnue to minimizerbeyond ¢ N y. Bubt it is a standard
fact that this cannot happen.

Thus the minimal path from x to z cannot pass

through p*, and so it must be a geodegic. That v lies

below this minimal geodesic is alsoc quite easy to see,

X min “
\
. \_4
N -~ —— Y
-
. . .
p ¢ H Vi,

Figure 3.3




For example, iet S be a semi-infinite cylinder capbéu_v
a hemisphere (example 2.7.2 with & = 7/2) take out%ﬁhé’
vertex, and let x lie in the interior of the hemispﬁéfé.
Then C(x) = {p} U g%](a,m) » where a #£ 0, E%(a) 4 C(ﬁ)¢
since x and Qg(a) are conjugate on 5 only along a geodééiq

through p. See figure 3.4. The same problem arrises in‘S*"

Figure 3.4

The following lemmpa 1s the natural extension of 1.5.1

3.5.4 Iemma: Iet v € Geo(8%). Then v(t ) is a cut point
— 0
of x := v(0) if and only if one of the following holds for

to, and none holde for any smaller'value of t:



(1) v(t,) = _
(2) x and y(t,) are conjugate along v, or
(3) there exists n € Cur(x,v(t )), n 4 v, with I[n]

T{v].

Proof: Since, if v is nob a meridian nearby gé 
degics are also not meridians, the standaxrd proof (Cf_'l:é;i){j;
applies, The only difference being that perhaps n passes:. s

through p¥*, and is thus only necessarily piccewise geodegic.

3.5.5 Lemma: Let x € 8% and y € C(x)\{p*}. Then
dx,y) = d(x,p*)+251, where &, is chosen for the surface ¢

ht

with 8% = 7*(8) and R >> d(x,y).

Proof: Iet y € Geom(x,y). If x and y are conjugate :
along v, then w(x) and w(y) are conjugate aloag T(v). Thus, i
by 3.3.1, Llw(y)] = d(v(x),p)+2615 and so Liv] = d(x,p*)+26l.
Otherwise there exists 1 € Cur(x,y), L{n] = L[y].
But then w(n) and r(y) are distinct elements of Car (7 (x),7(y))
of the same length, and thus #w(v) has quit minimizing prior 1
to w(y). Thus, by 1.5.3 and 3.3.1, we once again see that

Llv] = d{x,p*)+28, .

¥

3.5.6  Remark: Note that 3.2.2 parts (1), (2) and (3),
with obvious minor modifications, apply to 8% as well as.

to 8. The incompleteness of 5* prevents (5) from being

used in S*. Likewise 3.3.,2 applies to hinges in some Si,




but 3.3.3 does not apply to S%. Thus we néedgﬁhe-féilowing

lemma on 8%,

3.5.7 Lénuna: Let {(Yla:‘(gza‘)}: a & [a--bL be a.fam]_
of hinges in S*. Suppose |

(1) Lly 1 s ale_,p*),

(Q)ng © 8}, S some given component of W”l(s+)j'ahdf¢

(3) for each & € [a,b] and each % € [O,bl] there
exists a geodesgic from Yla(t) to €n without cut
points,

Then d/da (d(ela, eg)) >0 for o € (a,b).

Proof: 'This proof is quite like the proof of 3.3.3,
but 1t is included since some of the debails are different,
For further comment see the reumarks which Follow this proocf

Iet ya’t denote the unique minimal geocdesic from

a | _
Y1 (t) to €n whose existence is assumed. From supposition

(1) and 3.5.5 it follows thab Ay = {y;%(6)}, « € [a,b],
is a smooth submanifold for each t € [O,bl]. Since Yo 1s

in S¥ and hence unique between its end points (lemma 3.5.2},

(ya’b)'(O) is not orthogonal to A, lest ylaf[o,t] v ya’t
be another geodesic from e, to €,. Furthermore, since ey
has no cut points in [At}, t € [O,bl}, except perhaps p¥,

it follows that Lfya’t] 1s a smooth function of both o and

t. Thus, applying the first variation formula as in 3.3.3,

a/30 T y™ "] £ o.




1t is easy to see that sgn(3/da L[yu’t]) is indepen-
dent of %, and thus it suffices to prove the lemma for t small,
But 1f & is sufficiently small the entire family {yl&},
a € [0,7r], is contained in 8%, in which case the lemnma is

apparent (cf..3.3.2)._E

3.5.8 Rémarks: (1) The geodesics reguired in supposition
(3) will always exist if Yla € S¥ or if yia lies below e,
(3.5.2 and 3.5.3). The uniqueness is insured if [yla} (o

S¥ U Td(eg,p*)+6j(82) (3.5.2 and 3.5.5),

(2) Note that in 3.5.7 Yo Was allowed to be fairly
long while in 3.3.3 Yo Was required to be very short, Note
however that in 3.3.3 we need not be as restrictive as in

3.5.7 to insure the existence of the yq




L, GLOBAL COMPARISON THEOREMS

Toponogov's theorem {(Toponogov [1959]; see Cheeger
and Ebin for proof in English) is a beautiful ang powerful
global generalizatlon of the Rauch comparison theorem. i
1t gives distance estimates on a Riemannian manifold M
by comparison with a surface of constant curvature. Spe-

cifically,

Theorem (Toponogov): Let M be a complete manifold with
K{x) = H € R for each x € M. TIet (yl,vg,a) be a hinge
in M with v, minimal and, if H > O, L[yg] s w/NH . Iet

(?i{Vé,a) be a hinge in the simply connected surface of

[}

congtant curvature H with L[?i} = L[yi], and ?j € Gzole ,&,).

Then d(el,eg) < d(El,ga).

This theorem has provided estimates adeguate for
d

many important applications. It doeg, however, appear to

be unnecessarily restrictive in the case of an open non-
negatively curved manifold, Since on any such manifold

the curvature must come arbitrarily near zero (Bonnet's
theorem), the comparison surface must be flat or negatively
cuarved. If, for example, M,ié & parabolold and the hinge
(YIJYE,Q) has its vertex, €49 alb the vertex of M, it is
obvious that distance egstimates on R2 Wwill not be very

gceurate.,

A natursl guestion is: Can we improve the estimates

Lo



on such a manifold? In the foliowing we will show Ghat we
can, and that in fact, instead of a surface of cdnstant
curvature, an appropriate nice surface of revolution may
be used for the comparison surface. We actually prove

two very similar such generalizations, the first serving

as a lemma for the second,

L,1 Definitions and Notation

Notaetional conventions established here will be

used throughout this section without further comment.

4.1.1 Tet M" denote a complete, open, nonnegatively
curved manifold, let &6 = O and p € M. Let M denocte a
nice surface of revolution with vertex p. We say that

M and M are b-correspondent at p if, whenever d(p,x)+& =

d(p,x), then K(X) = K(x), where x € M and X € M. That is,
the curvature in M falls off with respect (o distance from
D fagter than the curvature in M falls off with regpect to
distance from p. We will simply say that M and M are

corregspondent at p when we mean that & = Q.

h.1.2 If M and W are 6-correspondent at p and (V15 ¥psat)

=P , where ?l € Geo(e

X o’ei) and

43




?é € Geo(-e—o,_'g)J

is said to corresvpond to (yl,y2,a). Since ?l is a segment

of a meridian in M which includes as one end.point the ver-
bex p of M, this correspondence is uniquely determined up

to rotation and reflection of M.

4.1,3 Given a hinge (yl,yg,a), we call a hinge (gl,ggga)
a subhinge if g5 < Yoo We say that the subhinge faces

inward (outward) if d(eg,eo) < (>) d(eg,eg) , where

g; € Geo(eo,ei).

P

Inward Facing Subhinge - Outward Facing Subhings

Figure 4.1

For the remainder of this section, a hinge (yl,yg,a)
in M will be assumed to have either &, =P or e, = p and
Y1 minimal. A subhinge will always be a subhinge of such
a binge, with p not necessarily an end point of one of

the two geodeslcs making up the subhinge.

Let h := (ylﬁyg,a) and R ;= (?i,?é,a) be correspond -

ing hinges in M and M respectively. We gsay that the sub-

hinges (gi,gg,a) of h and (éﬁ,éé,a) of I are corresponding




subhinges if:
(1) Lle;) = T[E, ),
(2) both face in the same direction, and

(3) d(en,EO) = d(EO,?D),where ¢,18 as above.

4,14 1et h := (Yl,ye,a) be a hinge in M and leg
A = (gl,gg,g3) be a geodesic triangle in M with g € Yoo

If (?1,?é,u) is a hinge in M which corresponds to h, we

say that a geodesic triangle ( Ei,éé,§3) in M corresnonds
to A 1f:

f o —

(1) Llg;) = Llg, 1,

(2) Eé c ?é and

(3) d(eo,gg(t)) = d(EO,Eé(t)) as measured along v, and

?é respectively.

Finally, note that all of the above notions still
make gense if we are Working in M* instead of M. The only
situation which demands any care occurs when (yl,yg,a) is
a hinge in M* with e, = p*¥. Then one must be sure that

Y, end v, lie on the same branch of Mx,

In the following lemma we assume that M and M are

Y

b-correspondent at p € M, and that (Y?,Y?,a) and (¥ o

a
1’ )

are hinges (or subhlnges) in M and M respectively with

Llvg] = L[?i]. In this instance we do not assume that

ei = p for i = 0 or 1.




4.1.3  Lemma: Suppose that (Yl,ye,a) and (71,?é,a) are
as above with 0 < 6, <a < W—%O . Choose 65 with © = 8§

and & < min{é/?,ég}, and suppose that L[Yg] < 65 . Furthoer

suppose thab d(yl(t),p} < d(?i(t),p) and let ¥ dencte the

unique geodesic from Eé to Ei whose hd distance from ?i

is less than 65, Then L{vy] = d(eg,el).

Proof: It 1s quite straightforward to check that

the hypotheses of corollary 1.4.2 are satisfied.

Remarks : .(l) Notice that if e, = p and d(EO,ﬁj =
d(eo,p), then the hypotheses of the lemma are satisfied.
(2) This of course works as well in M* ag long as the
necesgsary geodesics exist., Rather than check this, we

occaslonally make the measurement in M and then pull back

up to M¥,

4,2 Two Global Comparison Theorems

In both 4.2.1 and 4.2,2, M” will denote an open
nonnegatively curved m-dimensional Riemannian manifold,

and M will denote a nice surface of revolution such that

M and M correspond at p € M,

Theorem: Iet (yl,yg,ua and (?i*,? *,a ) be corre-

sponding hinges in M and M¥ respectively with Y minimal,

e; = p and y,¥ © M *. We of course assume that

V¥ € Geo(eo*,ei*). Let vy, € erm(ez,el). Then :




(&) d(eqsen) = d{Ei%,Eé*)J and
(B) There exists a triangle (cl,§é*,03) in M* which
corresponds to (—Yl,yg,YB), with both
F(-e1,7,%) (B%) = $(v,v,)(e,) and

{(?2*303)(€é*) = #(YQ:YB)(eQ)-

4.2.2  Theorem: Iet (Yl,yg,ao) and (?i,?é,ao) be corre-
sponding hinges In M and M respectively with Yq. minimal
and e = p. Let yg € Geom(eg,el). Then :
(8) d(ej,ey) = d(€],8,), and
(B) There exists a unique triangle (cl,Qé,c3) in M
which cerresponds to (~y1,yg,y3), with beth
'§{'Cl3§é)(€5) = i(Yl’YE)(eO) and

%(?é,CS)(Eé) s #(YQ:YS)(GQ)'

Figure 4.2

Proof: The proofs of these two theorems are guite
similar, and will be given simultaneously. The proof is

divided into a number of steps each of which is Further

broken down into discussions of the difficulties particular




to either 4,2.1 or 4.2.2.

FPix R € R, R > 2(L[y1}+L[Y2]).

(1) We willl make several simplifying assumptions, and
then later show that the theorems as stated are correct,
Assume that for some & > 0, M and M are S-correspond-
ent. If x € y, and If Y, € Geom(x,p), assume that
<yx1,Y2’>(x) € (-1,1). ©Note that, among other things, we

have assumed that o € (0,r).

(2) Notation: As usual, notation established either in
M or M* will actually apply to both by insertion or deletion
of a gtar (*),

Let A := {arceos(<y2',yx'>(x)){ X E_yé and

'YX € Geom(p,x)}.

Tet SS = gup A, and Bi = inT A, as x an Y, vary over all

possibilities. Let 8 := min(® T-0_), and note that

:'L}
%m € (0,7/2] by the assumptionsg of (1) and the compactness

.

of y,. Now choose 65 with ¢ < min{é/g,ég} and ¢ = 9,

Iet {oneo,xl,...,Xn_l,xn:eg} partition Vo, Xy = y(ti),

such that t. < t. . and d(xi,xi+l) < %

1 1+1
Geom(xi,el) with o

. Chooge ¢, €
5 i
o =Yq2 and assume that 0; is parameterized
Lat {Ei*} be a corresponding partition of ?2*,
X oY — ] . o .
(ts). For i < j define Tg y2|[ti,tj],
* denocte the corresponding pieces of ?é* .

Call a geodegic o in M*, with ¢(0) = Ei*, interior

L8




if for all t sufficiently small the unique geodesic

v € Geom(eojg(t)) has %:(Yl,\()(eo) < o Tet [Elw} be a

e _—__“*"*‘—»—-—.e '
o} a Yl 1
\/ i
ot /// T~ interior geodesic
interior

2 .
Figure 4.3
family of geodesics in M* so that (i) Ei*(o) = X%, (i1)
the subhinge (To,i’oi’ﬁi) of (Y1?Y2’uo) and the subhinge

—

(To,i* ,Ei* ,B,) of (?i* ,?é* ,0.,) are corresponding sub-

hinges (note that this implicitly defines B;), and (iii)

2

so that each Ei* 1s an interior geodesic. Iet @, = W—Bi
Finally, without loss of generality, assume in

) Tk E AT % and V¥ € W % Pl 4 s

2.1 that v * € oM * and Y,* € M * , and in 4.2f2 that

?é € aﬁ; and ?l € E; - See flgure 4.4 on the following page

(3) In addition to the assumptions made in (1), also
assume for 4.2.2 that the entire construction of part (2)

is contalned 1In ﬁ;. This is of course another simplifying
agsumptilion which must be dealt with later, Furthermofe,

we will postpone the proof of the uniqueness of the triangle

in B of 4.2.2 until step (11).

The proof will now proceed by induction,







(i) Let éb be the unique geodesic from Ei to Ei with

hd(éb,ﬁb) < 85+ It foliows from 4.1.3 that L[Eb] 2
d(el,xl); and thus, in 4.2.1 since Eb is a meridian and in

4.2.2 since gb c M, , that d(gi,xl) 2 d(el,xl). In 4.2.1

this estimate obviously applies on M* as well. Hence (A}

is true for the hinge (y,,T 504) An both 4.2.1 and 4.2.0.
! 1°70,1 *%

Figure 4.5

(5) Tet Eb be the unique geodesic from Eb to Ei(kl)

with hd(ﬁb,Ei) < 3;. We would now like to apply lemma 4,1.3

to conclude that L[Eb] z d(el,xo). To this end, note that:

.

(i) for 4.2.1, the results of part (4) insure that the

hypotheses of 4.1.3 are met; and (ii) for 4.2.2, the tech-

niques of part (4) of 4.,2.1 can be used to show that

d(ﬁ,Ei(t)) > d(p,ci(t)) for t € [o,xl]. Thus L[Eb] = L[Ei]

and L[Hb] 2 L[Eb] in both 4.2,1 and 4.2.2.

Now, using lemma 3.3.3, decrease o, by moving 36




until d(Eb(KO),E-), as measured along the unique nearby

geodegic, is L["i]. Let Hl denote the geodesgic resuiting
from this movement. Let éi be the unique nearby geodesic

from z, to Ei(KO). We claim that the triangle(—hl,?b’l ,éi)

corresponding to (—OO,TO 1 »91) is the one required in part (B)
5]

See figure 4.5,

Since %(hl,?bjl)(xoj = a5 by construction, the only
thing left to check is that §(§1’"?b,1)(ii) = B,. But it

is quite easy to see that irf Bl 1s decreased by moving o

until d(Ei(kl),xO), as measured along the nearby geodesic, !

is L[Eb], then the resulting geodesic must be %i.- Since p

4]

not in the interior of the bounded region determined by

i b

(“Ei’?b,l ,Ei), the triangle, in the case of 4.2.1, can

be 1ifted to M*, ' , |
Hence (B} is true for the triangle (—@OjTG’l »261)

in both 4.2.1 and 4.2.2. f

Remark: In this step of 4.2.1 we had to work on

M since there was no a prilori guarantee that HO could be

1ifted to M*,

(6) Now suppose that d(eD,xk) < d(EE,Eg) and that (B)
is true for the triangle (-o, ., 7T 20,0+ In the following |
07 0,k k

two parts several families of hinges shall be used. To

avold a surfelt of subscripted superscripts, we introduce

the following notation.




O (¥)
Further, let

GO(@)(KO)’ eK(X) = OK(X)(K

CrralY) = o () ()
We consider ?é, and thus ?ﬁ j for 0 =1 < jJ =n, to
2

be flxed; so that increasing or decreasing angles ©, ¥, or
¥ will be by moving the_oi. Let (—oo(@l),wosk ’Uk(xl)) he
the triangle in M which corresppnds to K—GO,TOJK',GR).
Observe that 94 < @o and X1 > g by the induction hypothesis.,
It may help to refer to figure 4.6 on page 54.

Note that in 4.2.2 ("OO{@l)fTO,k’Gk(Xl)) is contained

in 4.2.1 we have no such assurance. This is

Since 4.2.1 will be used as a lemma for 4,2,2, it
is necessary to first finish 4.2.1, and then come back to

h,e,2, Sections (7) and (8) refer only to 4.2.1.

(7) We wlll first show that as ® is decreased from 94




Figure 4.6




Eo o, the distahce from GO(@) to X, % is decreased, Speci-

K-+ 1.

fically, since UO(@O) - M;* U p* , 3.5.7 implies that

d/de d(eo(@),§£+l*) |m=$o = 0. This remains true, as & is

YR )
r

decreased, so lon S O M * - . = X
~reased, so g as o4(9) MU . ,p*)+6l(yk+l

- - .-_'* RS
and 00(@) is either in M * or below X . * .

conditlon clearly remains in force as @ is decreased. To

The latter

see that the former does also, suppose that

w5 6 T ny .’ . X, L f '.--—- s_.
eo(@) Cl( d(xk+l* ,p*)(xk+l )) or some &. Bubt since the

hypotheses of 3.5.7 are satisfied, we see that d(eo(@),§£+l*)
continue to decrease, which forces eo(¢) to remain in

T,o/= & = (x, % N, .

d(xk+1* ,p*)+61 k1 ) . This of course applleg as well

to each point on UO(Q), go that

dleqg (e ), %) = dlegley), T %) =d(e* T %) .

This same argument applied to'ok(x) implies that

—- _ oy = *
Now just as in part (4) we conclude that
X, o * = \
dley (Kol 1) > Loy 5] = dlegx ) .

Combining all inequalities yields

d(el* ,Ek_!_l*) 2 d(el,xk+l) 3

which is {A).

0270, k+1° Ox41) -

(8) We will now show that (B) holds for (o

et
[

L




The technlques of part (5) show that (B) is true for

the trlangle (—ijTk,k+l :0K+1)- Let (OK(X3)’TK,K+l% Jok+l(w3

dencte the corresponding triangle in M*, Note that ?3> ?O,

and that increasing Yo will bring ek+l(Y) still closer to

X, *
k

Decrease %, to 9,, so that d(eo(@Q)’E£+l*) = Llo 1.

Clearly 3.5.7 continues to apply during this movement. Tet
Y5 be the angle determined by the (unique) geodesic
Nep1(¥p) € Ceoli 1% Le ().

As noted above, %, < %, <%, - To see that Yg > TO’

observe that d(eO(@E)’Ek*) < Llo ], and thus (working in M

if needed) YS must be increased to bring ek+l(Y) nearer to

%, ¥ 3 l.e., s0 that d(ek+l(?2),§£*) < Llo. ] .

Hence B is true for (GO,TOJK+1 50 1), and the

proof of 4.,2.1 is complete.

We now repeat steps (7) and (8) for theorem 4.2,2,

using 4.2.1 as needed.

(9) Since ("UO(@l)’TO,k :Uk(xl)) C M+ by the induction

hypothesis, it is clear that d( z d(e

el,Xk+l) k(Xl);Xk+l)~

( X 2’--—- K3 1 d t ..
d(ek\xo),xk+l). Theorem *.2.1, applied to the hinge

(TO,k > 02 Py ) implies that d(o‘k(t),p) =< d(Ek(t),p).

i i i@ . pry
Thus 4,1.3 implies that d(ek(xo),xk+l) = d(el’xk+l)‘ Hence

—

4




(e %,y

a(

€ Fpqa) s

(10)  We agaln apply 4.2.2, this time to the hinge !
- ! . ..i.

(T, k41 * %41 2Pre1)o and conclude that d(o, ,(t),p) = i

d(o 1 (t),5). Thus 4.1.3 implies that A (e, (¥5),5 ) 2

L[Gk]. (B) now follows for the triangle (MGOJTOJK+1,QK+1)

in a manner analogous to thdat in part (8). Uniqueness is

digcussed in (11).

(11)  Loose ends:

First, the uniqueness of the triangle in (B) of
}.,2,2 is clear since the triangle is contalned in M, and

hag one vertex at p.

For the assumption in part (3), note that any nice
. - . . - . 2 .
surface of revolutlon is a deformation of R through nice

surfaces, Suppose that {St] is such a deformation with

2 -
s® =R and st = M, and let yg and UE denote the geodesics

& |

on St resulting from the construction in part 2. Iet B

denote the region of SE which is bounded by gt and pt :
°1 2

T

Figure 4.7




Steps (4)-(10) show that if GE is in Si » 1t is actually

restricted to Bt. Since the GE are continuous with respect
to t, since no UE passes through p, and since the Gg are
clearly in 53 , it follows that the o are in sl - M,

Here we are also using the fact that &g < w..

For the assumption in part (1) concerning é-corre-
spondence, construct M corresponding to M, Since the theorem
holds if the metric of M ig multiplied by any consbant
greater than 1, 1t must, by continuity, hold on M itself.

If for any x, <Yy, ,Y2'>(X) = -1 (see step (1)),
then Qo =T and the theorem holds by continuity.

Agaln referring to the assumptions in step (1),
suppose that T € [0;b,] 1s the emallest number such that
<yy’ 2Yo'>(y) = +L , where y = YE(E). Then, by continuiby,
the theorem holds for the hinge (yl,y2|[o,EJ,aD) . Since

y2|[f;b2] is contained in the minimal geodesic from y to

e, the theorem clearly holds for (Yl,ye,uo). . (whew!)




5. MANIFOLDS DIFFEOMORPHIC 70 EUCLIDEAN SPACE

ol

Finally, we are in a position to brove the main
result of this thesis. We begin by recalling several facts
from the paper of Cheeger and Gromoll [1972].

no. . ] , ] )
M will continue to denote a complete open noti-

negatively curved manifold.

5.1 The Soul of a Manifold

5.4.1 Definition: A set ¢ € M is called Gotally convex

if for any x,y € C, Geo(x,y) C Geo(C),

5.1.2 Theorem(Cheeger and Gromcil): M contains a compact
totally geodesic submanifold © without boundary which is

totally convex, O £ dim & < ¢im M.

Proof: We merely outline part of the construction
of the set 8. For further details see Cheeger and Cromoll

11972]), or Cheeger and Ebin [1975].

+

et x € M and le

;v :[0,e) » M be any geodesic ray

o
0]
b}
].—'
a1
i
Y
o
i3
o
pire
k.
r
e
"
0]

¥ 1s a globally minimal geodesic.

Let BX(YJ = {y €8 | d{v(),y)<t, t € [0,w)), and set
Hy(y) t M\BX(Y), We call Hx(y) a complementary half space.

Define C_ := ﬂ(HX(y))Vas Y ranges over all rays

beglnning at x. It is not difficult to show that CX is

compact. & 1s now consbtructed as a certain subset of CX

R




5.1.3 Definitioq: The set & < M constructed in 5,1 .0 ig

called a soul of M.

5.1.4 Theorem{Cheeger and Gromoll): Iet S be a soul of
M. Then M is diffeomorphic to the normal bundle V(S) of g
in M. TFurthermore, ir K(x) > 0 for each x ¢ Sy then 8 is

a point and hence M ig diffeomorphic to R™.

Proof: See Cheeger and Gromoll [1972], and either

Poor [1974] or Sararutdinoy f1lorh 7, “

5.2 Compact Half spaces and Shriveled Souls

Theorem: Tet M? pe a complete, open, nonnegatively
curved manifold, Suppose p € M and Y 18 a ray Starting ab p.
5.2.1 If there is an r; € R such that for each x € Tq(p)’
K(x) > (w/3n)2 » then HX(Y) is compact.
5.2.2 If there is an r, € R such that for each x € Tsfp),
K(x) > (1/25)% | vhere A = 2.46057, then M ig

diffeomorphic to RD,

Proof’: This is an easy application of H.2.2 to the
construction outlined in 5.1.2. We first need to construct
appropriate comparison surfaces.

Tet CE denobe a cone with spherical cap of curvature

4 _

H and radius r. That is, Cf is the surface of revolution

generated by the curve £ - Ry~ E;, T defined by




A H Vit

(ﬁiﬁiﬁl + (t-r)sin(e) | ;:E§§i§1-+ (t-r)eos(9)) %
NI VI

where 6 := r/I. gee figure 5.1(a).
If x € CE and y € E% , let g denote a minimal

geodesic from x to y. Let P denote the paraliel through
the point (H"l/

E'Sin(e) s H"l/e'(l—cos(e)) € f <8, and

let p = d(x,P), q := d(y,P). Zet s and ® be ag indicated
in figure 5.1 (b).
We will now find éﬁnditions on 8 which allow us to
chooge x € C? 50 that Llg] = p+tr in the cases
(1) g minimal between x and Q% ,and

(2) g =0 .

Cage (1) Ligl = (pt+s)sin(s)
We neéd conditions go that
{(p+s)ein(y) < (ptr) , or equivalently,
p(i-sin(®)) + (r-s<+sin{g)) > 0.
Hence if sin(w) # 1, we may choose p large enough to insure
that the inequality holds. Thus we need § < y/2 | or

T/3 < 6 < 7/2 ; which is to say

TT<T&:1T

/I o

(sn.nit)_ , l-COS(t)) 0=t s 6

>




Gzr,\/ﬁ

radius = /O

Figure 5.1

conic portion of CH
unrolled




2
case (2) Ligl = 52 + (p+s)2 ~ 2s(p+s)-cos ()

We need condltlons so that

82 + (p%s)g,» 2s(p+s)-cos(y) < (p+r)2

3

-
i.e., s° + p° + 2ps + 8" - Ppsecos(s) - 2s%cos(p) <
7

p2 + 2pr + r

. : . 2 2 2
i.e., 2plsrcos(®) + v - 8] + [r° + 25%cos(p) -~ 25°] >
Hence if S.cos($) + r - s > 0, we may choose p large
enough so that the inequality holds.
Thus the condition is
tan(8) cos () + % _rtan(e) >0
VE VH NE |
i.e., £{8) := [tan(8)]-[cos(rcos(8))] + & - tan(d) > 0

This is true for w/A < 8 £ v/2, where X\ = 2,46057. Thus

we need

.._T_r__<rs-—lr——
WEH 2H

Despite the fact that CE is not smooth, we may

use it as a comparison surface by virtue of the previously

mentioned approximation theorems. (cf. 2.7)

For 5,2.,1, choose Hl € R such that

(71‘/31'1)2 < H1 < K(x) ¥ x € T, (p) ,
- 1

and for 5.2.2 choose HQ_E B such that

L




(w/Krg)g < H2 = K{x) V x & TrE(P)-

Let M be any minimal geodesic in M which starts at .

Hl
2
ri

t, > 0 such that n(t) € Bp(y) for t > t 3 and thus

oy (v) = Tto(p)-

" In 5.2.1, by comparison with ¢ there is some

?1, n(t) € B, (y)

2,
for t > r,. Thus 5 < Hp(y) c Tr_(p). But K{x) > 0

In 5.2.2, by comparison with C

N2

for all x in T, (p). Hence by 5.1.h, M is diffeomorphic
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