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Abstract-of the Dissertation
ON SURFACES OBTAINED FROM QUATERNION ALGEBRAS
OVER REAL QUADRATIC FIELDS
by |
Ira H. Shavel
Doctor of Philoséphy
in
Mathematics
State University of New.York at Stony Brook
1976

In this dissertation we investigate a clasé of algebraic
surfaces of general type which afe of the form T\HxH, where
H is the uéual upper half plane, and T is a discontinuoué -
group ébtained from a guatertiion algeﬁra A, with center a
real quadratic number field k = @(/d).

By c?mbining a formula of Matsushima—Shimufa, and the
-Riemaﬁn-Roch and Gauss-Bonnetltheorems, we obtain formulae
for the various numerical invariants bf these»surfaces; il.e.,
the Euler characteristic, geometric genus, plurigenera aﬁd
ci,' Using these invariants, we show that these suffaces are
" of general type. We also give-smbbthneés'criteria For
these surfaces.

As an example, 1f T = T(1) = the group of anits of a
maximal order having reduced norm 1, and if U(l) = T(l)/[il]\HXH

is smooth, then the Euler characteristie ¥ and geometric genus

111




Pg are given by:
T

= s B 1 N, /o P-1
BT IE e PGS(A)( 5/
. _
Pg = I E.l

where S(A) is the set of primes of k at which A is ramified,

and BX 5 is the generalized Bernoulli number of the numerical
2

character modulo d associated to the field k = @Q(/d).

We have found several surfaces with geometric genus O.

These surfaces have ci = 8., All previously known surfaces

of general type with Pg = O had ¢- = 3.
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CHAPTER O

INTRODUCTION

Eicher [ 4], Kuga [11], Shimizu [17], Shimura [18] have
studied algebraic varietlies which are quotients of products
of upper ha1f planeern, by discrete groups T.of holomorphié
automorphisms of g constructed from gquaternion algebraé
6vef number fields. These investigations have been primarily
number theo?etic. More recently, Hirzebruch [ 6 ] considered
Hilbert modular surfaces as both number-thecoretic and |
geometric objects. Hilbert modular surfaces can be viewed
as a particular case of the abb#e constructions they arise
when thé quaternion algébra_is non-division., At the sugges;
ltion_of Pfofeésor Kuga, I investigaﬁed the algebraically more
complicatéd, but géometrically simpler division algebra case.
nUnlike the Hilbert modular casé, the guotient surface is
_autométically'cbmpact. This avoids the necessity to first
cdmpacfiffpand theﬁ résolve the resulting cusp singularity.
~ The ﬁresénf investigation is mainly concerned with quaternion'?
falgebrasrA-over real quadratic number fields, . B
‘ . Under certain conditions, the unit group of a maximal |
~order of A yields 8 discrete subgroup ' of PSLE(R) x_PSLng);
_éuch that the quotient surface‘T\Hg = U is Smodth. These |
_surfaces are of general type. This means that U has a

-

'particular kind of embedding into-prbjective3spacé; it is




embeddable via a pluricanonical system (see-I.l).

Pluriéanonical systems and surfaces of general type
have been studied extensively by Bombieri [ 1], [ 2], and
Kodaira [ 817, [9 le I have found examples of surfaces with
.geometric genus Pg = 0, irregularity q = 0, and ci = 8, It
is known that for general type surfaces with Pg = q = O,
ci £ 9, All other examples of Pg = 0, g = 0 surfaces of
general type have ci = 3, so these surfaces are topologically
new,

Geometric genus O'surfacés of general_ty?e_are-of
particular interest, because the canonical line bundle K
over U is positive definite in the sense of Kodaifa, but
the associated divisor [K] is not é positive diviéof. The

geometric genus is the complex dimension of the space of

hoiomorphic‘sections of the line bundle K. Since this is O,

Athere are no holomorphlc sections, but there 1s always a

meromorphiec section ¥. [X] is then (¢) - (¢) > the dlffer-

‘ence of the zero set of w and the poiar_aet.of V. Slnce ¥

is not holomorphic . (w) is non?empty, and [K].is not a
.pos1t1ve divisor, 1i. e., it is nd:linearly equlvalent to a
'sum of curves with p031tive integral coefflclents.

In Chapter I, we construct the surfaces Whlch are the
objects of this investigation. We also present the_necessary

background material from the theory of algebraic surfaces and

- the number theory of gquaternion algebras.’




3. .

In Chapter I1, we compute the numerical invariants of
U, and we calculate the Euler number of a particular surface
from which, it ﬁurns out, we will be able to determine ﬁhe
invariants.of all the Othef surfaces. |

In Chapter III we glve smoothness conditions, and in

Chapter IV we work out some examples,




CHAPTER I
PRELIMINARTES

§1 Surfaces of General Type

We will be concerned with surfaces U which are quotlents
of the product HxH of the usual uppér half,plane with itself,
by a discrete subgroup of PSLE(R)xPSLE(B) acting on HxH
without fixed points, and with compact quotient. These
groups will be constructed from division quaternion algebras
over totally real number fields.\ These surfaces are projective
algebraié varieties because their universal cofering space

HXH is complex analytically homeomorphic to a bounded domain -

in weu (See Morrow and Kodaira [15].)

Definition I.l.l. A non-singular rational C on U is called

‘an exceptional curve of therfirst kind, if the intersection
multiplicity of C with itself C-C is -1.. | _ |
.Let é; denote thé holomorphic cotangent bundle of U,
" and K.denoté the canonical liné bundlé 1\2'1“"‘F over U. Lét
HP(U,K) denote the p-th cohomology group of U with coeffi-
cients in the sheaf of germs of local holomorphic sections of -_. :M

K.

Definition I.1.2. The m-th plurigenus Pm_of U is the complex

dimension of #°(U,nK), where mK is the sum of the bundle K

wilth itself m times.
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Let ci be the square of the first Chern class evaluated

on the fundamental cycle of U,

Definition I.1.3., A smooth surface U is of general type if

and P.

U has no exceptional curves of the first kind, and 02 o

1
are both positive.

. VWe shall see in II.2 that our surfaces U are of general
type.

We now-givefa more intuitive definition of general type.
Consider a basis {w0,¢2,.,;,wN} erthe;group #°(U,mK). The
®; are global holomorpﬁic sections of thé line bundle mK,
Such a basis is called the m-th pluricanonical system.
Consider the mapping &(z) = (mo(z),wi(z),...,mN(z)) from U
to ¢™.  The points z € U for which ®;(z) = 0, for all 1
0 s 1 £ N, are called base points of &. The set of base
points is'the union of a finite number of points and Curves,
~Let [K] denote the canonical divisor ohrU and let & dépote
the.unidn of all non-singular rationél curves E for‘which
E'-[Kj,= O. The restriction of K to E induce the trivial
bundle on E, and, therefore,'the holomorphic sections of mK
over E are constant and the-map $ sends the curve E to a
point. The number of such curves is finite, in fact, less
than the second Betti number of U, If #(z) has no base |
points, then it provides a biholomorphic embedding of U-£

into some P(¢). In our case £ 1s empty {see the proof of




Corollary II.2.1).

Definition T.1.3'. A smooth surface U is of general type

if it has no exceptional curves of the first kind, and for
sufficiently large m, the m-th pluricanonical system provides
a biholomorphic embedding of U-€ into projective'space.

+

§2  The Groups T'(1), £t ana 3T

Definition I.2.1. A quaternion algebra A with center k is

a central simple algebra of dimension 4 over a number field k.

A central simple algebra always has dimension n2 over
its center. If A is a division algebra, we call n the degree

of A, We denote by @k'the'ring of integers of k,

Definition I.2.2. An order in & in a quaternion algebra A

~is an @k-lattice in A which is also a subring of A, that is,
it is a subring of A and a finitely generated @k-submodﬁle in
A such that k6 = A, A maximal order is.an order not properly '“'.f

éontained in any other order of A.

For a prime divisor P of k we let kp denote the P-adic -: " i§

completion of k, and we let AP'denote A® kP‘-.‘ - B

Definition I.2.3. We say A is split at P 1is Ap 1is isomorphic
to the tdel matrix algebra Mg(kp)’ and we say A is ramified

Fbr

at P if APfis isomorphic to a division algebra over k

P




Te

an extension K of k, we say K splits A if A ®k K is isomorphic

to M,(K).

From now on k is a totally real number field of degree

m over §. If k. = R, then A

P P
or B the Hamiltonian quaternions. We say A is indefinite

is idsomorphic to either ME(B)

if it is splitat at least one infinite prime, and totally

indefinite if it is split at all infinite primes.

Proposition 1.2.1, Tet A be a quaternion algebra with eenter.

k. Let S(A) be the set of primes at which A is ramified.
Then A ig determlned up %o 1somorphlsm by k and S(A), snd

the cardinality of S{A) ]S(A)I is even. Moreover, given any
set S(A) of prlmee with |s(a)| even, ‘there exist up to 1eomor
phism a unlque quaternion algebra A(k S{A)) with center k

which is split at pre01sely the prlmes in S(A).

Proof: Sde Weil'[EO].
The following propositions are fundamental.

Prop081tlon I.2.2. Let K be an extension of a number field.k

For any prlme lelSOT P of k, let ﬁl,o..,ﬁg be the primes of k

lying above P. Then we have an isomorphism of kP-algebras.
K8 ¥p = 48 Ky,

Proof: See Well [20] .
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Proposition 1.2.3.7 K splits A if and only if there is a

k-linear embedding of K into A,

Proof: See Reiner [167.

Proposition I.2.4, A is isomorphic to Mg(k) if and only if

Ap is isomorphic to Me(kP) for all P,

Proof: See Reiner [16].

Qorollary. A is division if and only if 8(A) is non empty.
et P_ 5++.,P  be the real prime divisors of k corres-
_ 1 Som
ponding to m non-conjugate embeddings ®yseeesP of k into R.

‘Tet A be split at P ,...,P  and ramified ‘at P_  ,...,P .
] _ 00 ) T oo 0
: 1 . n n+l m

Proposition i.2.5° v(6X) ='{a € @i]mm {(a) > 0 for ntl ¢ 1 < m},    .‘

Proof: See Reiner [16],

'From,now on A will be assumed to be a diﬁision algebra.
Let v denote the reduced norm map from A to k. For any ring

'R, Rx>wiil denote the units of R, = P '_;f _T;éi¢

Definition I.2.4. For a fixed maximal order & of A, T'(1l) is _ "_'¥f;
‘the group of units in & with reduced mrm 1, i.e.

(1) = v € 6F|u(y) = 1},

Considéring R as a k-algebra via ®; we have

A ®k Bmi &:MQ(R) fgr 1 =1 5 n, and A ®k R@i.g il forAn+l < i s_m_

Fix suech a set of'isomorphisms ki extending the P30 Consider

T A ®Q R. We have:
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: x:(xl,...,xm)
A = hp = A® R=A® (k®eR) = A ® (1@:8, ) =
ME(IR) ®...® Mg(ia) ®H®,..0 H

‘\...__.--\/—-—‘- \“‘V—J

" n-=factors m-n factors
For the'invertible elements of A we have .

x A ' -
AF = GL,(R) Xu.uX GL(R) X H X...x €,

x++

Let A denote those elements of AY with totally positive.

reduced nbrm. Then
(1) AT S GLI(R) xe.ax GLD(R) % BF x...x B

The reduced norm and the determinant are compatible,

that is,'the following diagram commutes (for 1 < i s n):

inclus1on o Xi :
A ————3 A ® > M, (R) |

-_Thus,

I‘(i) _}\qsLe(B) -x...x SL,(R) X H] 5<L..x er

- where Ei are the Hamiltonian quaternioné with reduced norm 1.
Let Y denote the comp081tlon of k with progectlon to the flrst '

«

n factors. B | - ""4

(1) L“SLQ(R) X+ uX SLE([R)_-% ST, (R)"™.
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This map is injective, and the lmage is a discrete subgroup
of SLQ(R)Q.' Identify I'(1) with its image in SLE(Rn).. Let
the map J denote "reduction modulo cehtef". The center of
T(1) is {z1}, and so J(T(1)) = I'(1)/{*x1} is a discrete sub-
group of PSLQ(B)n, and §(T(1)) acts on H X...x H = B via
fractional linear transformation. It is well known that .
since A i1s division, the quotient surface is compact (see
Shimura [19]). |

Let AX++ be those elementé of A% with totally positive
reduced norm, The center of a*Ht is k¥, |
For the remainder of this section, Kldenotés a real

quadratic field.

Definition I.2.5. E++ is the subgroup of 6x consisting of

those elements of &% having totally positive reduced norm,

“fee. BT = AT e¥,

We now compute j(E++)/j(T(l)). The center of E'= is

k
Therefore,

X, Consider the subgroup @kr(l) offE++.-‘J(@§r(l)) = J(T(1)..

JEN/AEW) = 3E/3ET W) = B AT/ (1) 47
| ~ E++/@§r(1).
Consider the'exact'sequences

1~ T(1) -~ E 1

Y
T+ - @X++—o

k




i1.

and

1= T(1) - @EF(l)

where ®§++ aré the totally positi#e units of @k‘ For thé

first sequence, the surjéctivity of v follows from Proposi-

tion I.2.4. o | | |
From the sequences we have E++/T(l) EBGX%+ and

k
6, I (1)/(1) = (6X)2. Finally

J(E“)/a(r(l)) I (1) /0 (1) = 65 /(oF)2

@ﬁ =.{il] X {EE[n € Z} where € is-a fundamental uniﬁ of k.
If ¢ is totally positive then ]@ﬁ : (@ﬁ)g[ = 2; and

l@k': (@i)gl = 1 otherwise. Thusg if e, 18 totally positive
then J(E'')/3(T(1)) = £/22, otherwise j(E') = 3(r(1)).

‘Defipition 1.2.6. BT is the intersection of the normalizer

X++ Iy

of T(1) in A™ with A

"normalizer in A

«Cas B = Nf(l)’ where N denotes
X+ _ _ -

The center of BT is k*, because for x € k%, v(x) = x°

Proposition I.2.6. 6,T'(1) =6.

Proof: See Kudla [10].

Corollary I.2.1. BT = N -

Proof: Suppose B normalizes 6, then BF(l)B"l < &, and for

v € r(1), By'la'l is the inverse (in 6) of ayB;l. Therefore,‘




iz,

(1) co®. (Y™ = v(B)V(YIV(B™Y) = v(y) = 1. Thus,
B normalizes I'(1), Conversely, suppose 8 normalizes I'(1). Then
5@3'1==B®k;(l)5‘lw=@k(ar(l)ﬁfl}=:@K€T(l)==®. Thus, 8 also norm-

alizes 6, PR
Take o € B ', then by the Corollary a® = 6a, i.e., o

geﬁerates a 2—sided principal ®-ideal. The 2-sided 6-ideals
form an abelian group generated ﬁj the E-Sided maximal ¢ ~ideals.
Corresponding to each P of @k, there is a unique'maximal
2-sided 6-~ideal P. If P ¢ S(A), then 6 = P. If P e s(A),

then P2 = P8, Every 2-sided 6 -ideal is uniquely a product

11 oo P;r Dil cer :S

- of the P's, Thus a6 = 6o = P 0
Qi,‘ui_é 7, and the Pi correspond to the P, € S(A), and the

where

2; correspond to the Q; ¢ S(A).

The reduced norm of a 2-sided maximal &-ideal is a

maximal 6, -ideal, that is

Proposition I.2.7. v(Pi) = P,.

Proof: See Reiner [16].

- Now suppose the class number of k is 1, then the class
number of A is also 1, For all P, choose a generator 7 for

P, and for P correspdnding to P € 8(A), choose a generator 0.

Since for P € S(A), Po = P°, 12 = 7¢ where ¢ € 6%, so
o v, VoW : ) Yy V., W M
. i r 1 - 1 r 1 8
Q,FQ “Pl L3 ] Pr Dl -o.. DS "—nl ...—Hr ’H.l -0 'lTS @0\

. " _u
1 r 1 S .
Ty aee #S .Xoﬁ,




v Y
X X . 2 X _ 1
where xo € k™ and ¢ € 67, gince TS and Hi € k7, o = Hl ces Hr
where A € k¥* and 2 € (0,1}, Thus
B = {l, ... T, de]r € k¥, ¢ € 6% ang
_ ll T ,
v(ni eeolly e)'is totally
1 r
positivel.

Let k*+ denote the totally positive elements of k~.

~t and k™ denote the elements of k>

Similarly let X ~, k
whosé image via the first embedding of k into R is positive
and negative image via the second, negative image the first
embedding and positive via the Second, and negative image

via both embeddings, respectively. 'Let'sk'be a fundamental
unit greater than 0. Choose 1 and E of 6% such that vin) = =1
and v(g) = e, If V() € k™7 réplace I by In, and then _
v{ln) E.ki+. £ () € ¥~ (respectively € k1) and gy € k-,
‘replace Il by Nle (respectively me) and then v(le) (respectivdy
‘v(Hne)) is in ¥, 1f &y € k™ and some v(I) € X", we cannot
replace Il by an element having totally positive reduced norm.

2

- Since 1" € k%'we have

3E™ /W) = ((2/22) ISP 4 ¢ gt

(g/2z) ISR 4p e € K and

some v(I) ¢ K" or k .

(z/2z) 1S(A) F1 ¢ e, € K" and

a1l v(n) € kF -

or k .,

e

re




CHAPTER IT

. THE NUMERICAL INVARTANTS

§1  The Geometrie Genus aﬁd‘the Euler Number

Throughout this section T will denote a discrete sub-
group of SLQI(!R) X SLy(R) X...x SL,(R) = SLQ(R)H such that
j(f) = T'/center of T acts on H X H X...Xx H = H* without
fixed points and with compact quotient. H x H will bé
)2

denoted by X, and for T' ¢ SL,(R)” the quotient surface

J(CNX will be denoted by U(T'). ILet U denote an aribitrary
compact complex manifold. The r-th Betti number bY of U is

the complex dimension of H (U,C) and the Euler number E(U)
2n

. rr s
of U is I__Z__O(—:L) b~ where n = dimw(

In this section we find simple relationships between

U).

the Euler number, geometric genus and arithmetic genus of :.f‘
U(T) in the case where T is commensursble with (1), We .f;f*i

begin with-some definitions.

Definition IT.1.1. The sheaf of germs &f holomorphic p-forms- §i
- _ . R

on U is denoted by oP, S SRR - o :;qu

Observe that Q° =6 = the sheaf of germs'of holomorphic . m'?

functions on U,

Definition IT.1.2. The complex dimension of HZ(U,0P) is

denoted by h(p’q)o

[
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Definition IT.1.3. The geometric genus Pg of U is h(o’n).

Definition IT.1l.4. The irregularity q of U is h(o’l).

Definition Il.1l.5. The arithmetic genus Pa of U is

: m M . :
_119R(0:3)

sZo(-1)Int %7

Proposition TI.1.1 (Serre Duality). Iet U be a compact

complex manifold of dimension n. Then H3(U,0P) = g (g, P),
Proof: See Morrow and Kodaira [15].

Corollary TT.1.1. TFor U(r), n(%1) _ p(2:1) ,(1,0) _ (1,2)

. and h(230) — h(O,E). . . B _ ' .

Proof: This follows immediately with n = 2.

Definition IT.1.6. The space of c¥~differential r-forms on

U is denoted by AT(U), and the space of r-forms of bldegree
.(P,Q) is GEnoted by A(P,Q)(U)

'Proposition IT.1.2. Ar(U) = @_ A(p’q)(U) where @ denotes ;
_ ptg=r _ : :

direct sum.

o emEeem e

Proof': Thie is Immediate from the definitions.

A differentlal form can be represented locally in terms

-of local coordlnates. Let w € A(p’Q)(U) be given locally by

W =Ff . o dz. A...Adz. AdZ. A...AdD. .
G.B aleu.apﬁlnooﬁq CI.l o B

P By “q
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Definition II.1.,7. The operators o : A(p’q)(U) - A(p+l’Q)(U)

and o : A(p’Q)(U) - A(p’q+l)(U) are defined by

a”_ 1 a(faalc--apslooosq) A A
= .Z dZ /\dZ A-.. dz
oB i=1 aza_ o | Qy ap
dzg A...AdZ
By Ty,
and '
of
' n G. ...G. B .iOB . -
5“@3 = 423 S A 9 dzg Adz, Aeewhdz, Adzs AvooAdz
B .aZBi _ R | D 1

Clearly o3 = d is the ordinary exterior differentialr

operator,

n _
2 B L= ey .
Let ds” = 2&,3=lga5dza dzg (gas) = (gas) be a Hermitian

metric on U,

Definition II.1.8, A compact complex manifold U is called

Kdhler if there exists a Hermitian metric ds® on U such that
n
the assoclated 2-form Q = /=1 &, B lgasdz Adzb is closed, i.e.,

-

daa = o, Such a metric is called a Kéhler metrie.

PropoSition'II.l.3. A projective algebraic manifold is

K4hler.
“ Proof: See Morrow and Kodaira [ 15].

Thus U(I') is Kihler and we can apply the followihg to
U(T): | | o |

Proposition IT.1.4. If U is a Kihler manifold, then

G




1

ca)  HY(u,0P) = BP(u,0).
) E(u,e) = @ #P(u,0%).
Proof': See Morrow and Kodaira'[l5],

Corollary ITI.1.2. TFor a Kéhler manifold U
a) nPsq) _ (ap)

b) br - p_}.ézrh(p’q)

c) Pg = h(n’o) = dimensibn of the'space of all holo-
morphic n-forms on U, _ |

d) q = h(l’o) = dimengion of the space of all holo-
~morphic 1-forms on U. . |

(_l)jh(j}o).

e) Pa = jéo

_ For a cbmplex 2~diﬁeﬁsional Kihler manifoid we have
q = w0 _p(3,0) _p(1,2) | (2,1) g g 2 p(002) _ (20,
Let ﬁ be a c@mplek manifoldrwith universal covering

space X; G.= wl(U) be the groﬁp of covering transformation

and 7 : X - U = G\X the natural covering map. For g € G andl
n € AT(X) let gn be meg and For w.E_Ar(U) let 70w = Wer be

the pullback of w via m. Since 7 is surjective 7% is

injeétive, and we can_identify an r-form w € AT(U) with.iﬁs

image 7*w in AT(X). With this identification we have

Proposition IT.1.5. AT(U) = {n € A"(X)|gn = n for all g € a}. |

Proof: gy = g¥(r*y) because wey = goreg.. Thus the image of

AT (U) in AY(X) are T—invarianﬁ forms on X.




18.

Conversely, let n be a T'-invariant form on X. For p €U
choose a neighborhood V of p small enough so that.v_l(v) is a
disjqint union of open sets Vi’ i=1,2,00u,n 0f X. 7T
restricted to Vi is a diffeomorphism of Vi onto Vv, Let gij
be the covering transformation taking Vj.to Vi. Then
restricting wag£§ = 7 to Vj and taking inverses we have 3 N
) = gy gelrly )7

(WIVJ_ .

and so

1%, -1, *

Since n is I'-invariant, this is equal to (wlv.)—l*(n),..Thué
the induced r-form on V is independent of tﬁ; choice of Vg
and we have a unique r—form_nV defined on Vv, | o

Now suppose W is another neighbérhood of p which is agah
small enough so that W_l(W) is a disjoint union of Wy s
i'=l;2,..:;n. Let V. and W; have the common point P

contained in the fiber over p. Then

ty = (7ly ) ) = metrly )7 a
’ 1 . : Co-l
and _ ' _ o : "Q
N -1y -1 - o
) (Tl) = T]°(7T,Wi) . , . E

:
s
§
i
i
g

Il
T
=

i

From this, it follows that_nvlvnw = nWlVﬂW' Thus we can
‘define a global r~form (w“l)*n on U and the proposition

follows. B
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In the éése where J(T') acts properly discontinuously:and
without fixed points on X, X is the universal cover of U(T)
and wl(U(P)) is isomorphic to j(I'). The proposition theh
allows us .to apply a theofem of Matsushima and Shimura [14]

to U(T); because the forms AT(X,T,p) defined in [14] with p

the trivial representation are nothing but I'-invariant forms

on X, i.e. AY(U). We use their theorem to compute the

irregularity q of U(T) and h(l’l).

Definition I17.1.9. Let Gi’ 1 =1,2,...,n be copies of a

connected, non-compact, simple Lie group, and let

G = Gl X G2 x...x.Gn. ‘We call a discrete sgbgroup T of G
irreducible if the projection of T towany-partial factor of
G different from G.itself 1s not discrgte in the partial

factor.

If T" is irreducible and Tl is commensurable with T’ then

r'y is aléofirreducible.

In the case where G; is elther SLE(R) or PSLQ(B) the

following criterion is useful.

Lemma TT.1.1 (Shimizu). T is irreducible in G = PSL,(R)™ if

and only if T contains no element vy = (y(l),y(g),...,v(n)) such
that y(l) = 1 and y(j) # 1 for some J.

Proof: See Shimizu [17], Corollary, page 404
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Lemma IT.1.2. A discrete subgroup I’ SLQ(R)n is irreducible

in ST,(R)" if and only if j(T) is irreducible in PSL, (R)".

Proof: ILet GO be a topological group, ¥ a finite normal

- subgroup and let j denote the natural projection of Go onto
GO/F. Let T be a-subg;oup of G,. Then T, is discrete in
G, if and only if j(TO) is discrete in G,/F. Applying this
to the case where G, 1s a partial product of SLE([R)n and F

is 1ts center, the lemma follows at once, -

Lemma IT.1.3. Let I' be commensurable with I'(1). Then T is
irreducible in SLg(R)e.

Proof: By Lemma IT,1.2, it suffices.to show that J(r(1)) is
irreducible in PSLQ(R)Q; Consider R as a k-algebra in two |
ways-via mml'and Py that is via two non-conjugate eﬁbeddings
¢ml and o_, Ofkk into R. Extend these embeddings to isomor-
phisms A @ R = Mj(R), 1 = 1,2, The Aj> 1= 1,2 restricted
| to T'(1) are injective maps of T'(1) into SL,(R). Thus if “
xl(y) = 1, Then vy = 1 and kg(y) = 1., 8o for y = (Y(l),y(g))
if_y(l)r= 1 then y(e) = 1 and the same holds for j(I'(1)).
Thus ‘using Shimizu's criterion j(?(l))'is irreducible in

PSL,(R)® and the lemma follows.

Proposition IT.1.6. TIet T be a disérete irreducible subgroup

of SLQ(B)H such that J(TI') acts on H without fixed points.

Then for (T )\g"
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a) (p,q) =0 for p # q and p + q ¥ n,

b) h(n Q:q) ( )[6 + h(n,O)]

n=-g.dq

where_éi j is the Kronecker delta symbol.
>

Proof: See Matsushima and Shimura [14],

Corollary TT.1.3. Let I' be commensurable with I'(1) ana J.(T)

act on X without fixed points. Thenq = h(l’O) = h(o’l) = h(gl)

(1,2)

h 0 and n{1*1) = opg 4 o,

Proposition IT.1.7. ILet T be commensurable with I'{(1) and

act on X without fixed points. Then for U(T) b0 = blL = 1.

-

Proof: U is a connected compact 4~ dlmen81onal real manlfold.

Since 1t admlts a complex structure 1t 1s orlentable.

Therefor@‘b = b4 = 0.

Theorem IT.1.1. TLet I' be commensurable with I'(1) and act

on X without fixed points. Then E(U(T)) = 4(pg + 1) = 4Pa,

Proof: bl = b° = Q and b° = 4Pg + 2 by Corollary II.1.3,

Thus E(U(T)) = 4(Pg + 1). Pa = Pg + 1 follows from the
def'inition of Pa,

- §2  The Plurigenera and.cf.

In this section we calculate cf and the m-th plurigenus

of U(T') = J(T)\X where T is commensurable with T'(1l), and as

a Corollar& we show that U(T) is of general type.
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Lét F be a complex analytiec line bundle over U a compact
complex manifold, and.let c(F) denote the Gern class of F.
Let T* denote the hoiomorphic cotangent bundle of U and K
denote the canonical line bundle A T* over U. Let c; denote
the i-th Cern classes of U, Cl = -¢(K) and for an n-dimen-
sional complex manifold U n is the Euler number of U. The
p-th cohomology group of U with coefficients in the sheaf of
germs of local holomorphic sections of F will be denoted by
H(U,F). The m-th plurigenus Pm of U is dimyH°(U,uK).

| The Riemann~Roch~Hirzebruch Theorem can be formulated

as follows:

Theorem TII.2,1.

h(U,F) - nh(U,F) + hg(U F) = (c( )¥ + e (F)e;)

2(01+C )

where 0P (U,F) 1s the complex dimension of P (u,F).

-

Proof: See Hirzebruch [5 1. S , I - . u- 5f5j

We now compute cf of u{r).

—

(1) 20,8 - w0 + 020,10 = 3e (02 + e(x)e)
| T
12Y" 1

+ +Qc2).

Since ¢ (K) = H:l and ¢, = E(U), then (1) becomes

(2) 2200 - bHu,0) + 0200 = Lo L+ E(U))
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- - |
P (u,k) = Hg"p(U,QO) therefore (2) becomes ‘ ‘ E

1,2
(3) Pg ~ q+1=p5lcs + E(U))
and finally we have
. _
(4) c] = 12Pa - E(U)

which for U(I') becomes

(5) ci = 8Pa,

To determine Pm we apply the Riemann-~Roch-~Hirzebruch
‘Theorem to the line bundle mK. The sum of the line bundle

K with itself m-times. We have: ’

0O (u(r) ,mk) -.hl(ﬁ(ri,mKﬁ%_he(U(r),mK)

Lo (mk)?

+e(mK)ecy) + f%(cf +e,)

%(mgc(K)2 + mc(K)-cl) + Pa

%(mg-m)cjz_ -+ Pa

- 4(m2-m)Pa + Pa

'Pa(em-l)?.

For the quotient V of a bounded domain in mg by a dis-

continuous group of automorphiéms acting without fixed points

h(V,mK) = ne(

V,mK) = 0 for m =2 2, (See:Hirzebruch [51.)

Thus we have
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Theorem I11.2.2. For U(') we have

(1) 2 - 8pa
(2) | - Pm = Pa(Em—l)2

Corollary IT.2,1. U(T) is of general type.

Proof: By the Theorem ci and P2 are both positive., We nmust
show that U{T') has no exceptional curves of the first kind.
Suppose D is an exceptional curve of the first kind, Then
there is a rational map f of P*(¢) into U(I') with image D.
This map 1ifts to a holomorphlc map ¥ of P'(G) into X = Hx H
& bounded domain in @ By Llouv1lle‘s Theorem ¥ must be
constant but then D must be a p01nt This contradiction

- completes the proof.

§3 .Coﬁpufation of the Euler-number.of'U(P(l))
In this section we determine the Euler number of
U(l) J(T(1)N\X, This will also enable us to determine
the Euler numbers of surfaces obtained from certain subgroups
of T(1) and certain subgroups of the normallzer of T(l)_in A*

Recall that the measure

dxlAdyl dxgl\dy2 dxn/\d‘yn
dz = 5 A 5 A 5
Y1 Io In

is (PSLER)n-invariant.on "
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Definition 17.3.1. For measurable set F E.Hn the volume of

E Vol(E) is the number f-dz.
. E

Let T be a discrete subgroup of PSI, (R) acting on H"
Wlthout fixed points and with compact quotient. Then the

Gauss-Bonnet Theorem gives the Fuler number E(T\E") of

"\,

(1) E(M\E") = (-é';rl-)nVol(F) - 5
{

'where F is a fundamental domaln,for the action T on H" In _ %

the case where X = H X X this gives

Proposition I1.3.,1. If T < PSL, (R) x PSLQCR) is discrete

acting on X without fixed points and with compact quotlent,

then

(2) E(T\X) = L5 Vol(F).
: - L

Let k be a totally real algebraic number field of degree
m over §. | Let Eml,Pme,...,P n be the m real Places of k
. corresponding to the m non-conjugate embeddings ml,wg,...,$
of k/§ into R. Let A be a quaternion algebra with center k

which is unramified at the first n infinite places and ramified

at the next m-n infinite places. Recall (Chapter TI) that

this gives an isomorphism

n-copies ‘m-n copies
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and that via this isomorphism

(3) T(1) & ST,(R) X...x SLy(R) X Hy X...X tHj_c -
o \
n-copies m-n copies

where H? denotes the multiplicative group of elements of H
with norm 1. Consider the projection of (3) onto the first
n-factors. We then have injective maps

r(1) & s5,(R) 'X...XVSLg(iRl

n-copies
Jan.)Cl_;-PSLQ(R) X.ooX PSL,(R)
\___-——\/\——_/

n-copies.

The imagés'are-discrete ahd the quotient J(I')\H" has finite
volume. Moreover, if A is a lelSlon algebra, then J(F(l))\H
is compact. |

Shimizu (171 glves a formula for the volume of a fundamental
domaln F for the action of J(T'(1)) on H™:
n-~m+1 3/2h(k)§k(2)

7 I . L
:(S‘*f{c ]h(A) _PESI(A)(NK/Q. | .

2
Tr2m n[®X

) vdl(F)_ =

where A = A(k, S@ )» 8'(A) is the subset of all finite primes
© in S(A)}, 4 is the diseriminant of k/B, ;k(2) is the value of
the Dedekind zeta function ;k(S) at 2, h(k) is the class number
~of k, h{A) is the élass number of a maximal'order of ‘A, @k is

the group of units of k, and @X' are those units ¢ of k such
k .

that o (e) > 0 for i = n+l,n+2,,..,m.
1

kel
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The following relationship between the clags numbers of
k and A greatly simplifies (L4),

2111—1'1

Lemma II.3.1. h(A) = h(k) —=——7
_ : [@k : @ ]

Proof: The ideal class group of & ig isomorphic to the ray

class group of k and P_ P cuu P (see Reiner [16]).

1 “nip “m

Thus h(a) = ho(k) = the order of the ray class group

mod P P «s« P . The order of the ray class group
oo o0 cQ
n+l n+2 m .
mod P_ P see P_ 13 given by
n+l nt+2 m
h(x)o™™
T
[6 : 6% ]
1
where ®§ are those elements a of @k for whlch @ (a) > O
_ o J :
for ntl < J < m (see Lang [12]) Thus
__h(k)e®R
h(A) __ X Xf‘ .
| - [@k : @k ]
Equation {4) now becomes
5 e = 2 ) )
5 : Vol(F) = — e P-1)
20,2 =21 PES'( ) k/Q

We now specialize to the case k = @{J/m), m a square free

positive integer, and 4 is the discrimant of K.

Definition IT.3.2, The generalized Bernoulli numbers B

X’
4 = 0,1,2,... and the coefficients of the Maclaurin expansion
d-1
nt
nZ1x(n)te
9ty
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where ¥ is the numerical character modulo d associated to

the field k = §(J/%). That is

a-1
t
¢ nfy x(n)te”

t .
edt-l

B
A
0 4l

o
P
The character y(r) is given by

(6)  x(r) - 1 (moa 4)

[
h
=]
il

if m 3 (mod 4)

if m = 2m!

if.rld

where (~) is the Kronecker symbol (see Borevich-Shafarevich

[31).

Lemma IT.3.2. Qk(s) = ((s) L(s,y) where { is the Riemann

zeta function and L(s,x) is the L-function with character X

mod d aésociated td k.

Proof: See Hecke [7 ] for the lemma in this form, or. Weil [201 ...,N

for the corresponding result for any abelian extension.

Proposition IT.3.2. TLet k = Q{J/m), m > 0 and let d be the

discriminant of k., Then the value of the L-function L{2n,y)

forn =1 1is given by

M e - S
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. d=- l'
where T(x) is the Gauss sum 21 x(r)e&m‘r/d

Proof: See Leopoldt [137.

Gorollary IT.3.1. Let k = q(/f), m > O and let d be the
discrimant of k. Then the value of the zets function Qk(s)

at 2 is
8 | ! |
(8) Cx(?) =z T(_X)BX,Q‘

Proof: gk(e) = ¢(2) L(2,X) by Lemma TI.2,2. Evaluating (7)

at n = 1 and noting that ((2) = w2/6 gives the desired result

Lemma IT.3.3. [7(x)] = /3.

Proof: See Lang [12].
Going back to (5) we have

f V{;l__(F) - -F}_ T(x)B, ,

-

and using (2) we have

-B
E(T(1)) =—-—X—LT(x) ( - 1)
12/d Pes (4) k/Q :
Since the Euler characteristic is positive this becomes

B, Sl

.- = __X;h_. -
E(T(1)) o ITOT PES( ).(NK/QP 1)
IB 2]. -‘ ‘ -
) .X HA)(NK_/QP_.:L_)-
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Theorem TI.3,1. For j(T'(1)) acting on X without fixed points

and with compact quotient we have

- B, |
(9) B(1) = == 1 (w e - 1)
12 peg(a)
Prop081tion IT.3.3. BX;Q =3 21 rx(r).
Proof: By definition
: d~1 rt
120 L1 i |

Expanding the right hand side we have
d 1 -
=1 x(r)t(l+rt+(rt) /24 L..)

it 'B%za L B
tZo . - . gt+(dt) /2:+(dt)‘/31+,..
rél.x(r)(l+rt+(rt)2/2l+ oo

d(1+dt/21+(dt )" /314, .., )

d-1 d-1 d-1 . 5 :
L =1 x(r)+r§l rtx(r)+r§l (et /20 )y (r)+ ...
L . d(l+dt/21+(dt)2/3£+ ced)
| d-1

Since x ‘is not the trivial character Zl x(r) = 0. Reindexing

the sum we have - . | : . o LTy
T d-1 d=-1 ' '
Z, tx(r) = 21 (d-r)tx(d-r)

- d-1 d-1 :
= dt 21 x(d-r) - t,.2, rx{d-r)

- d-1 | d-1
= ~t 3 ry{d-r) (since r§1X(d‘r) = 0)
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d-1
= -trgl rx(~r)

d-1
6,27 rx(-1)x(r)

By (6) x(~1) = 1. Therefore

d-1 a-1
62y mx(r) = -t 2, rx(r)

and hence

: a-1

rt 2, x(r) = o.

Thus , d-1 5 , d-1 3
; B, , t& _or rél(rt) v(r) + T rél(rt) x(r) +...
120 v d(L+dt/2L + dt/3% +...)

Comparing coefficients we have o
| a-1
By,2 =T &1 rxlr).
With the aid of a computer, James Maiorana has determined
.BXQE for real quadratic Ffields with discriminant less than
750. For the purpose of finding all surfaces with small

geometric genus this is more than sufflcient. . Table II.2.1

give all d such that BX 2.is less than 200,
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Table T1.3.1
BX,Q for d < 750 <f-;1,nd,l-3x’2 = 200
a B, d B, o ;
5 0.8 88 . 92 - g
-8 2 89 104 R
12 4 92 . 80
13 4 93 72
17 8 97 136
21 8 101 76
24 12 - 104 100
28 16 _ 105 144
29 12 | 109. 108
33 oy ' 113 o1y
37 | 20 120 136
ho 28 , - 124 160
n1 32 | 129 . 200
4l : 28 ' 133 , 136
53 28 j 136 184
L ho ' 137 ' 192
57 56 140 152
60 ou8 B 7 R T IV 1
61 ' hh 149 140 | o
65 64 - 152 164 | {
69 48 157 172 b
73 38 165 176
76 . 76 173 186
77 48 197 196 e
85 2 - . ol |
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The following inequality is useful:

| 372 3/2
Lemma TT.3.4. 55— < lBX’zl < S

2
Proof: L(2,x) < ¢(2) =7%r. Therefore, by (7)
2
T(x) 2 T
P T Bx,2 <%
' 3/2
d
I8y ,2l < S5

¢(2) + L(2,x) > 2

therefore

2-4(2) < L(2,%)




CHAPTER IIT
- SMOOTHNESS CONDITIONS

§1 A Smoothness Condition for U(T(1))

X+t

First we recall some notation. TILet A be those elements

of A% with totally poSitive reduéed norm, and let B++ denote

** yith the normalizer of T(1) in a%.

the intersection of A
In this chapter we give conditions for a subgroup I' of j(B++)
to yield a quotient space which is a smooth aigebraic surfaca
Such a surface ig smooth if and only if j(T') acts on X without
fixed points.

For v € A% - ¥*, x(v) is a maximal subfield of A,
therefdre k(vy) is a quadratic extension of k. Moreover, if

v € 857", then j(v) acts on X and j(y) is the identl ty

- automorphism. if and only if vy € k%

Proposition ITT.1.1. Zet K be a totally imaginary quadratic

‘extension of k, and let ® be a k-linear isomorphism of k
into A (an embedding of k in'A). Then for a € Kx—kx

o(a) = v is an element of A~¥ , and il(y) has a unique fixed

~point on X which is the same for all s € K -kX, Conversely,

if jly) € J(AX++), J(y) # 1, has a fixed point on X, then
(Y) is- isomorphic to a totally 1maginary quadratlc exten-

slon of k.

- Proof: See Shimura [19].

34,
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Suppose Y € A3++ and j(y) is an element of a discontinuous
group I'. If j(v) has a fixed point on X, then Jy)T = 1 for
some r > O and so Yr € k¥,

Let K be a Galols extensioﬁ of k of degree n. Then all
primes ﬁi of X lying above P of k have the same ramification
index e(K/k,P) and residue class degree f(K/k,P). Further-
moré, for an arbitrary extension K of k ' |

.z e(K/k,8, ) (K/k,8,) = n. ',f_

ailP

Thus, in the Galois case

o (5/%,2)2 (K/k, P)g(K/k,7) =

v

where g(K/k,P) is the number of primes of ¥ lying above P.
We need a lemma about embedded subfields of division

algebras over local fields.

Lemma TTT.l.l., Let D be a division algebra over a local

field F with degreer. Then a finite extension L of F splits | [

D if and only if r divides [L : F|.

Proof: See Reiner [16]. o _ f

Proposition ITT.1.2. A quadratic extension X of k 1s embedd-

able in A if and only iflK ®k kP 1s embeddable in A ®, k

k 7P

for all P.

Proof: If X is embeddable in A theh K ®, k; is embeddable
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in Ap = A @ kP for all.P. Now consider the converse. By
Proposition I.2.3 K is emwbeddable in A if and only 1f K splits
A, that is A @k K =M, (K). Let B denote A® K, and let B lie
above P. By Proposition I.2.4 B = MB‘K) if and only if
Bg = B ® ky =M (K,) for all B, o

For a central'simple algebra C over a local field F, let
inv(C) denote the Hasse invariant of ¢, inv(C) is an element
of §/Z, and in the quaternion case, inv(C) (as an element of
Q/Z) is 1/2 if ¢ is a division algebra and 0 otherwise, In
addition inv(BP) = IKP : kP]'inv(AP). Congider the following

three cases:

1) P ¢.5(a), then inv(a 0 which implies that

p)
inv(Bg) = 0 and so Bg is isomorphic to M, (Kg) .
ii) P € S(A) and P does not split in K/k, that is
[Kﬁ r kp | = 2. In this case 1nv(B ) = 0 and so
TBﬁ is 1somorph1c to M,(Kg). -

111) P € S(A) and P splits in K/k, that is %5 ¢ kpl = 1.
inv(Bﬁ) = inv(AP) ='L/2 and so By is a division
algebra. |

K@ kp=k,o kp (see Proposition I.2.2) and thus has zero
divisors. Therefore K ®k kP is not embeddable in Bg which
is contrary to hypothesis and so . does not oeccur.

Thus for all P, By is 1somorph1c to M (K ) and so K is

embeddable in A.




37.

Proposition ITT.1.3. A Quadratic extension ¥ of k is embedd-

able in A = A(k,s(4)) 1f and only if for all finite P € S(A)
g(K/k,P) = 1, and for all infinite P € S(A) there exists g

unique extension of P to K,

Proof:. By the last Proposition, K is embeddable in A if andg
only if X ®k kP is embeddable in A ®k kP for all P.

‘For P finite or infinite, Proposition I.2.o gives: i

kP'® kP if there are two brimes in K

lying above P.

K ®k kP e ,
Kﬁ 1f there is only one prime in

K 1ying above P.

First consider P Q S(A). In this case A ® ky =N (kP).
If two distinct Primes lle above P then X ®k kP = K @ kP

and ky @ kp 1s embeddable in M, (k ) by (a,b) - (O g)'where
‘a,b € ky. “If one prime B lies above P then X 8 kp =Ky is
- & gquadratic extension of kP. Let [61362}“be a basis for Coauy

Kﬁ/kP. Then the map v - M(y) € Mé(kp) given by the regular

representation
. 811 8o
Ylepse,) = (e e)( )
| 801 Bpp

is an embedding of K over k into A. 8o for P ¢ S(A) we have
Shown that K ®k'kP over kP is always embeddable in A ®k k

Thus, K over k embeddable in A if ang only if K ® kP aer k

k P
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is embeddable in A ® kp for all P € g(a).

For P € s(A), A ®, kp = Dp 1s a division algebra and
thus has no zero divisors. By Lemma IIT.1.4 with r — 2,

any quadratic extension of kP splits DP' In particular, if

there exists only one prime & lying above P, Kp splits DP

and by Proposition I.2.3 Kﬁ is embeddable in DP‘ In the

case where there are two primes lying above P,

KZ@k kP = kP @ kP has zero divisors and cannot be embedded

in DP' Thus we finally have:

K. is embeddable in A if and only if for all finite
P € 5(A), g(K/k,P) = 1 and for all infinite P € s(4),

there exists a unique extension of P to XK.

We now apply the above discussion to T'(1). The center

of T(1) is {#1}. Thus, for Y €T(1) j{v) has finite order

-

(i.e. has a fixed point on X) if and only if y¥ = +1 for

some r > O, and so we have

Proposition III.1.4, Assume h(k) = class number of k = 1.

Then J(T'(1)) has a fixed point on X if and only if there
exists N > 2 such that Q(egv;/N) is embeddable in A.

Proof: If J(T(1)) has a fixed point on X, then v¥ = £1 for
some v € I'(1), v ¥ 1, and so there exists Yy € T(1) and ¥ > 2
such that y' = 1 with N minimal. Then o(y) = (2™ Ny 44

embeddable in A.

To show the necessity, recall that hik) = 1
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implies that h(A) = 1 (see Lemma II_E;l). Thus all maximal
orders of A are conjugate., If Q(eEWi/N) is embeddable in 4,
then there exists vy € & , for some maximal order &', such
that v" = 1. There existe 8 € A¥ such that BO'8-1 — 6. Thus
8v8 ™1 € 6 also has order N. Since vCLByB:%)N) = v(ByNB"l)
= v(¥") "

ratic field, v(y) = 1, and hence elther v or y2 is in T(1).

]

v(y)" = 1, and v(y) is an element of a real quad-

This completes the proof.

Remark. Without the restriction h(k) = 1, the condition is

still sufficient,.

Now let k = Q(/d), 4 > 0, and let A be totally indefinite.
If Q(egvl/N) is embeddable in A4, then‘[Q(eQ#I/N) :.Q] divides
4. Then o(¥) divides k, where o(N) is the order of (z,/mz)%.
An easy calculation shows that N is one of the integers: 2, 3,
4, 5, 6, 8, 10, or 12, _

. s s e . 2ri /N

Let gN denote the primitive N-th root of unity e .

Considering the eight cases above, we have:

N=2,09(2) =1, a(¢,) = ¢

N =3, 0(3) = 2, &) = a(y/T)

i

W=k, 0(k) - 2, 8(c,) = a(/T) - a(4)

N

i

Il
g
-

5, 9(5) 8(¢5) > a(VB). since Gal(a(t)/n) is
cyeclic of degree\& and therefore has a unique subgroup of

index 2, Q(CB) contains a unique quadratic subfield whose
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. e s - 3
discriminant divides -,

2, Qllg) = a(/73).
N =8, o(8) = 4, a(cg) = @02 + 1£2) = q/Z,1) 5 g(/8)

N =6, @(6)

0(¢5) .2 a(/5).

=
i

10, ©(10) = 4, @(¢,,)
N=12, 0(12) = 4, Q(C5) = @(/T + 1) o @(/3).

Consider the cases N = 5, 8, 10 and 12, Por these cases
'Jk(gN) : k| = 2, since k(¢y) is embeddable in A ang k(¢ ¥ < R
and therefore k(¢y) # k. k(/F) = k(Gy). Therefore k() = k,

thus we have

Lemma ITT.1.2. Tet N =5, 8, 10 or 12. Tf I'(1) contains an

element of order N, then k = Q(/T) if N=25,8, 12 ang
= 0(/F0) if ¥ = 10, | -

Proposition ITT.1.5. Assume h(k) = 1. Tor d # 5 or 10,

Jr(y)) acts on X without fixed points if and only if there
exists P € S(A) such that g(k(J/=3)/k,P) =2 and there exists
Q € 5(A) such that g(k( -I)/k,Q) = 2 (P and Q may colncide),

Proof: By Lemma III.1.5 the only 90551b111t1es are elements
of orders 3, 4, 6, 8 or 12,
If there is an element v of order 3, then -y is of order

- 6. On the other hand, if v is of order 6, then Y2 is of

order 3. Thus I'(1) contains an element of order 6 if and only

Cif it contains an element of order 3, By Proposition ITI.1.L
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this is so if and only if Q(g3) is embeddable in 4. Q(QS)

contains /-3 and [k(/=3) : k| = 2, Thus, Q(QB) is embeddable
in A if and only if k(J/=3) is. By Proposition IIT.1.3, this
1s the case if and only if for all P € S(A), g(k(/=3)/k,P) = 1.
T'(1) contains an element of order 4 if and only if Q(GAJ”‘-
is embeddable in A, (Qh) contains i and [k(i k] =2
Thus. Q(Qu) 1s embeddable in A if and only if k(i) 1is, and
again by Proposition III.l. 3 this is the case if and only if
for all P € S(A) g(x(i)/k,P) = 1. '
If F(l) contains an. element of order 8 (then d-= 8) it
contalns an element of order 4 (its square). F(l)_contains
an element'oflorder 8 if and only if Q(QB)'is embeddable in
A. Q(CB) contains i and [k(i) : kl'= 2. Thus I'(1) contains
an element of order 8 if and only if ﬁ(i) is embeddable in
‘A,  But this 1is exactly the condition for T'(1) to contain an
element of order 4. )
- Finally, if T(l) contains an element of order 12 (then

d = 12) i1t also contains elements of orders 3 and LL'(Y4 and ~c

Ya_respectively).i Thus, k(/=3) and k(i) are embeddable in
A, but since k = Q{/IZ), k(J=3) = k(i). Thus, I'(1) contains
an element of order 12 if and only 1f I'(1) contains an |
element of order 4 and this 1s so if and only 1f

(k(l)/k P) = 1 for all P € S(A) ;'

Thus, for d # 5 or 10, T'{1) contains no element of finite

order (# +1) if and only if there exists P € S(A) such that




Lo,

g(k(V=3)/k,P) = 2, and there exists Q € S(A) such that
g(k(1)/k,q) = 2,

Proposition ITT.1.6. For 4 = 5 or 10, T'(1) contains an

element of order 5 or 10 if and only if for all P € S(a)
g(k(ga/k:P) = 1.

Proof: This follows immediately from Proposition ITT.1.4,

Lemma TIT.1.2. Gal(k(/=3)/®) = z/2% x Z/2Z and we have the

following diagram of fields:

W) W@ ex e

-

where D = 3d, if 3 + d
D

I

d/3 if 3)d.

Proof: k(v/-3) = Q(/d,/=3) is a biquadratic extension of @,
so Gal(k(J/=3)/g) = Z/2% % Z/2L. The subgroup diagram is an

easy computation.

Lemma ITT.1.3. Gal(k(/=I)/k) = 2/2Z x 7/2Z and we have the

following diagram of fields:




L = k(/-T)

(V/7T) k = o(y3) & (/T)

1
where A = 449 if d = 1 (mod 4)
A=m 1f d = 4m and m = 3 (mod:&)
A = l4m if d = im and w = 2 (mog 3), i.e, A = 4.

Proof: See Lemma IIT.1.2.

Lemma TTI.1.4. For k = §(J/5) we have the following diagram

of fields: _
0 = k(¢g) = a(¢y)
.- 0k = (/5
|

Q | S

Proof: Q(/5) 1s the unique quadratic subfield of Q(CS).

Using the diagrams in Lemmas ITI.1.2 and IIT.1.3, we
wish to determine what relationship the three quadratic
extenslons of @ must satisfy in order for g(¥/k,P) = 2 (or

g(L/k,P) = 2). There are only three possibilities for a

Prime in a quadratic extension, that is, it either splits,
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ramifies, or remains prime, We denote these three possibili-~
ties by g, e and f respectively.
For a quadratic extension §(/%) of ®, the Kronecker

symbol (%) determines the splitting of (p). Using the

(gﬁu we

complle the following tables which give all the possibilities

multiplicative property of (-), that is (i)(g) =

for the three quadratlc extensions § for the diagram 1n

Lemma IIT.1.2.

Table IIT,l1l.1

Q{/d) Q{/=3) @(v/-D) | Remarks
g g g ’
g £ £
T g f
£ f g
e g e
e c-f e
g e e Can occur only for 3+d and (p) = (3)
£ e e Can occur only for 3+d and (p ) = (3) ;
e e Can occur only for 3|/d and )= (3) _?
e e f Can occur only for 3|d and (p) = (3)
e e e Can oceur only for 3ld and (p) = (3)-

For the three quadratic extensions in Lemma I1T.1.3, we

have the following table:




Table ITI.1l.2
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(va) | (/) | @(J=F) | Remarks
g g g
8 F g
T g
f f g
e g e
7 -e. ) | T e
g e e | can occur only for (p) = (2) and d = 1
] (mod 4)
£ | e e Can occur only for {p) = (2) and d = 1
(mod 4)
e e 7 g Can occur only for (p) = (2) and d = 4m,
m = -3(mod 4) _
e e f Can occur only for {p) = (2) and d = 4m,
m = 3(mod 4) |
e e e = | Can occur only for (p) = 2 and d = 4m,
m = 2(mod 4)

Representing the subgroup diagrams for both K.and L by -,ﬂ

K
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we have the following

Table ITT.1.3

T IT 11T | IV | v [ vI | vIT § vITr | =x | x | xI
kE/Q g g £ f | g £ e e e | e e
k/® g £ fi.e e f g e | e e
klﬁQ, g g £ g | e @ e e S - e

Consider the possibility described by column IT for

some prime (p)

-

- A1l of the extensions are abelian. 'Ghoose'primes Py,
P, P, and B in k,, k, k, and X respectively lying above (p).hm
B lies above P;, P, and P,. The integers e, f and g are
multiplicative in towers, that is e(K/Q,(p)) =_e(K/k?P)e(k/Q;p))
with analogous relations for f and g. Moreover, e(K/Q,(p))

f(K/Q,(p)) and g(K/q,(p)) are independent of the intermediate
extension. Thus, for this example g(K/Q,(p)) = 2, £(K/®,(p)) = 2

and g{kK/k,P) = 2.




€

.Similaf arguments allow us to determine'e, f and g for . ..
all the extensions iﬁ the diagrams for the situations deécribed
by columns IIT through X.
To complete the table (columns I and XI), we consider
the decomposition and inertié group'of“the'extensioh K/Q. TLet
‘G be fhe galois group of K/Q, Gp decomposition groupﬁofTﬁ and‘
Tg the inertia group of 8. ,G 2 Gg 2 Tp. Let KG03 and K © be
‘the fixed fields of Gg and Tgs» respectively. K B s the |
largest subfield of K in which (p) splits completely. Con- = |

sidering the situatioh of column T

K

a | .
K © must be K since it must contain k;, k and k

g(K/k:P)_ = 2. 7 T

oe Thus,
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The last case to be congidered is the following:

K

' T
K is a totally ramified extension of K © (relative to B, Py |
T i G N
P and P2) and K © is an unramified extension of ¥ @. The
T G ‘
~only possibility is that K B _ K® = €, and therefore, all

extensions are ramified, that isg

K

Finally we have

IT | I | Iv | Vv ) v } viT | viTT | X | X | XT

e e e
e e e
f g e
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Consider the situation in Lemma III.l.A, that is

= Q(C5)

!

0
|
k = @(J/5)
|
®

g(0/k,P) can be 2 only if g(Q/Q,(p)) = #“for Pl(p). It is

known that (p) splits complétely in Q(§5)/Q if and only if

P =1_(mod 5). Thus g(Q/k,P) 2 if and only if p = 1 (mod 5).1w

Summarizing we have

Theorem ITT.1.1. Assume h(k) = 1. Tet A = Alk,s(a)),

k =@(/d), a > 0. J((1)) acts on X without fixed points

if and only if all of the following hold:

1) %g) = 1 or (%?) = 1 for some P € S(A), where
PZ = P N Z and -D is the discriminant of §(/=3d). o

2) (%% =1 or (E?) = 1 for some P €-5(A) where | 2w
PZ = P N Z and ~A is the discriminant of the

field Q(/-d).

3) If d =15, there exists P € S(A) such that

PEZ=PNZandp=1 (mod 5).
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§2  The Groups BT ang gt | o
Throughout thisAsection-the class number of k is assumed

to be l,'and & is a fixed maximal order of A, Recall that

E'T ig 0% n p¥tt and j(T'(1)) is an index 2 subgroup of j(E++)

1f a fundamental unit of k is totally positive, and j(I'(1))

coincides with j(E++) otherwise,

Theorem IIT.2.l. Assume €. 1s totally positive. Then j(E++)

acts on X without fixed points- if and only if both of the
following hold: |
1)  j(r(1)) nas no fixed points on X.
2)  There exists P € S(A) such that P splits in
k(7o) k. | |

Proof: E'' contains I'(1), and the center of ' is @ﬁ.
Suppose J(v}, 1 # jly) ¢ j(E++) has a fixed point on X. By

Pfoposition ITI.xl.2, k(v) is a totally imaginary quadratic
extension‘gf k, and there exists a positive integer r with
Iv)Y € ¥*. Choose r to be minimal. Since y € E++ and €, .
' .is totally positive, v(y) = SE. In addition, we may assume iw
m.ié non-negative. (If this is not the case, replace £y by

%E). We can find y, € E™ such that j(yl) = J(Y) and v(v) is

either 1 or €+ -TO see this suppose m = 24 (respectively

' 4 24 ~D
S 24+1). Let Y1 = Y& « Then v(yl) = v(y)v(ek g ) =1
s 24+1 =24 . . :
(respectively = g & = ak). Since vy and v, differ by a 5
) ||

multiple of elements of k™, k(y) = k(yl). If m is even,
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Yy € T(1) and j(I'(1)) has a fixed point on X. If m is odd,

yi € ¥ (again r is minimal). Actually, y{ € @i and so -
Yi = % eﬁ. Taking redﬁced norms of both sldes gives:

_uioly _ 2t _ Y
g = v(yl) = & . Therefore, r = 2t, Let Yo = Yi-

Jlv,) = 3(v). By the minimality of r, Yo § k and k(v,) = k(y) ;

is a -totally imaglnary quadratic extension of k. Since

yg = % EE € ¥* and J—EE is totally imaginary, k(yg) must be

\
et

isomorphic to k(J-eE). If t is even, then K(J—eé) = k{(J/-1)

is embeddable in A and jJ(T'(1)) has a fixed point on X. TIf

t is odd, say t = 2s+1, then k(J-EE) = k(J:EE) is embeddable

in A. Thus, if j{v) has a fixed point on X implies elther

J(r(1)) has a fixed point on X or k(J:E;)_ié embeddable in A.
Conversely, suppose -either j(I'(1)) has a fixed point on

X or k(/=§,) is embeddable in A. In the first case, J(E™)

s

has a fixed point on X because J(I'(1)) « j(E"'). Suppose @
Vis an embedding of k(J:?g) in A and let v; derote the image
of J:EE in A, J:E; is integral over &, and is therefore con~
2"tained-ih_some maximal order &' of A, - Since-the class number Fi:i. -
of.A is i, the fixed maximal order 6 1is éonjuga@e to &', i,e..

6 = a8'aL for some a € A%, v o= ayla—l = am(J-ek)a_l_is a

unit of 6, and since it is the image of a totally imaginary

++

element, vy € 2 ne* - 57 ang jly) has a fixed point on X.

This completes the proof,
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Lemma IIT.2.1. k(J-ek) is an abelian extension of § with

Galois group isomorphic to Z/2Z X Z/2Z. Moreover we have

the following diagram of subfields:

-

L ST k= q(J3) Q/~ET, e 7)

K(/7E)

Q

¥

Proof: Let & denote J-ek and B denote Jisk where prime is
Galols conjugation in k and the square roofs are chosen sud

that Im ¢ > 0 and Im(B) > 0. (ctB)2 = 1, therefore a8 = 1,

but a and B are purely imaginary, and‘Im o and Im B are both

%%.‘ Let & denote a+B

positive. Therefore aB = -1 and

and n denote 0-8. Then we have

-

(2) - ég = (0.+B)2 = -8, - e£ + 2g8 z—ft?k/Qekfg.E k(J:?E
(3) n2 = (a—B)2 = ~g - s; - 208 ='—trk/Qek+2-€ k(J:EE).'

Adjoining & and 1 to § give two distinet intermediate

quadratic extensions of § neither of which is‘K; The composi-

tion of Q(J—trk/Qek+2) and Q(J-trkﬁaek~2) coincides with

k(J—ek). Therefore, k(J—ek) is a biquadratic extension of @

and the lemma follows.
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Let Pi be a maximal 2-sided 6-ideal. . To study B++, for
P. € 8(A) we fix a generator T3 > O of P, and a generator o
for the ideal P; such that P; = P,6. By Proposition I.2.7

v(Pi) = P, and therefore

(1) . v(1,) = Ty

where €; € @g. Recall that a typical element vy of B++ is of

the form Hi oo Hi el where ¢ € @X, A € k* and v(y) is a

1 )
totally positive element of kX,

Theorem TII.2.2. . Let_ek > 0 be a fundamental unit of k.

Then j(B'') acts on X without fixed points-if and only if
all of the following hold: _

1) j(E++) acts on X without fixed points.

2) - For all totally positive Ty oo WiL,_there

2
exists P € S(A) such that P splits in the exten-

’Sion k(.\/-‘ﬂ'. eee T, ) Of k-
1, :

i
£, _ .
.3)~ For all totally positive T Tl L Wlde Ty €, there
_ 1,71, i, k N
exists P € S(A) such that P splits in the exten- B

+

Proof: Suppose vy € B+ s Jly) # 1 has.a fixed point on X. v

'is of the form Hi |1 IIi ek where e € @X; A€ kx; I

1 *e L 1
generates P, and v(II, ... 1, eX) is a totally positive |
: i _ 1, i& |
element of k. We can replace vy by yl =N, ... 0. ¢ since
11 1L

jly) = j(yi). By Proposition ITT.1.1, k(yl) is a totally
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imaginary quadratic extension of k., Tet r be the least
positive integer such that Yi ¢ x*. Consider the 2-sided

G—ldeals yl® = P P v Pi “and y§© = Py ; Since
: +1 Lo 4

Y{ is integral over Z and Yi €6

>

N VoW v
Y. _ iy — 1 m "1
YJ_@ - (Y:f_@kb Pl LI Pm Q,l LI Q,nn@

vy ' ngm My My

=P 17 e Dn

1

where P, € S(A) and P& = P?, and Q 4 S(A) and Q 6 = ﬂi.
-Since a 2—81ded ideal has a unlque expresszon as a product
of maximal 2~ 31ded ideals
Y§©:= ,i. ;= F - . Din

implies r = zvj, 1< J st and My = 0y 1 =Xk = n, Therefore,
r is even, say r = 28. Put vy, = Yl' & d k¥ because of the
minimality of r. 3Since k g k(Ye) c k(yl) and lk(yl) : k| =2
we must have k(Ye) = k(yl) and therefore J(Yl) and J(YE) have
the same flxed point. (See Proposition III.l.l.)’
| If s is even, say s = 2t, then Yy = aes where

(n% )(n )t cen (12 )t K*. Therefore j(v,) = j(e°)
and v(as) is totally p051t1ve. So in this cage if j(B++)‘has'
a fixed point then j(E++) has a fixed point. ‘

If s is odd, say, s = 2t+1, then
2t+l n2t+l D1
1 14,

26+1

Yo = H Hi ‘ € a where

. t .
(Hil)t .o (nib) € kx.: Thus,'g(yg)




= yg since yg € k¥, Therefore,

2 2t+1 2
VL, ) ..o v(O, Ja“v(e ) =Ty ... 7. a%e
1l l& 1l 1& 0

- aX . S ¢ | s s
where £, € 6. Since ey = & (the Ty and g are positive),

k(yg) == k(diwil .o wiL(EKITQ where e, appea?s if q is odd
and does not appear if g is even. . ... 7. (e, ) is

i, 1, k
totally positive and k(yg) is a totally imaginary extension

of k. Therefore we must choose the minus sign, i.e.

k(yg) e k(J—ri vee m; (6. So in this case, if j(y) has
1 4

a fixed point, then k(y) = R(J—wi eeo m; (€.)) is embeddable

1
in A. By Proposition III.1.3, if J(v) has no fixed point,
~then there 1s a P € S(A) such that P splits in the extension

.k(J—vil ces WiL(EKTJ.Of k.

Conversely, suppose that either j(E'') has a fixed

point, or k{J/-r., ... 1. {e_)) is.embeddable in A where
g i,k _

wil cew Ty (ek) 1s totally positive. 1In the first case

J ++) has a fixed point since j(E++) c j(B++). In the

~ second case let © be an embedding of k(J/=r; - ... 7. (z.7)
1l lL k

into A, and let o(J-m, ... 7. (&.7) = v: v 1is totally
. ll 1'L k :

positive since it is the image of a totally Imaginary element.

Consider the ideals v6 and y26. O(-my wuury (g)) =
1 L

= -T: eesTs; (€_) since @ is k-linear., Therefore
1, i, k

(v0)(v6) = v%o
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Thus y8 = Pi iee Pi 1s a 2-sided ideal., Therefore, v6 = Gy
1 &
and vy normalizes 6. By Corollary I.2.1, v also normalizes

T(1). Thus y is in B'' and has a fixed point on X. This

completes the proof.

There is no simple way of determining whether a prime P

of k splits in k(J-qril Trir(eKT)/k. The difficulty is that
these extensions are not necessarily Galois., This will
become apparent in Chapter IV.

For groups T with j(E+%) cT c j(B++)‘the theorem can be

used to determine if T hasg elements of finite order. This

will be done in Chapter ¥V. ~— - . .,




CHAPTER IV
EXAMPLES

Let A be a totally indefinite quaternion algebra over a
real quadratic field k = @(/@), and let 6 be a Fixed maximal
order of A, Assume further that k has c¢class number 1,

In Chapter ITI we have given conditions for the smooth-
ness of U(T') = j(I')\X, where r(l) er E_B++. The conditions
for U(T(1)) and U(E++) are given in theorems ITT.1.1 and
ITTI.2.1. 1In practice, these conditions are eas& to verify.

Let T be a subgroup of Bt properly-containing'E++. The

-condition given_ianheorem_III.Q.E can easily be extended to
T.~-Ohoose a complete set of coset fepresentatives for
j(P)/ﬁ(E++). These representatives are products

Hl...ﬂr(e) wherev(Hl...Hr(e)) are totally positive. (For
‘notation see I.2 and I1I.2) The condition for T to give a
'smooth surface is the same as tﬁat given in Theorem IIT.2.2,

except that it is only necessary to'consider those

k(J_Wl.,.wr(sk)) that arise from the coset.representatives.

Lemma IV,1.1, P, = 7,6, ramifies in k(J—vl...ﬁr(ek))/k for

ls1i=< p,

Proof: TLet ¢ = J-wl...WTKEET} Consider kPi, the Pi-adic
completion of k. There exists a unique extension ﬁi of the

P;-adic valuation on ky  to kp (@) = Kg given by
- i i i

7.
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1X'ﬁi = J,NK@i/kP,(x)’Pi.

1

Consider [al, = J(a&)P. where " denotes Galois conjuga-
i i
~tion.

Ja,ﬁi = '\/(Q&)P = '\/((x‘)P_ = '\/,W‘l,Pi-" ,WilPi”' I?TI'IPi'(_Ek) ’Pi

il

'\/ITTiIP_ = &/N'Pi
. 1

denote the value groups of kP and K

3.
i i

: i i
'respectively. B, " "is a subgroup of B > -and since B,  is
k K k
b, , _ B, L P,
i . i | i
generated by NP, and By  1s generated by JNPi, the index of

Y

B, in B is 2, Thus, e(K/k,Pi) = 2 and P; ramifies,

Corollary “Tv.1.1. If e is not totally positive, then U(B++)

is never smooth.

Proof: By the lemma, all P € S{A) remify in k(J-wl...wS(SKTJ

where S(A) = {Wl@k,WEGK,;..,WS®k}5 since Tpesam (e) is




a coset representative for j(B++)/j(T(l)), u(z*™™) cannot'bé  o

smooth,

Lemma IV,1.2. Let K be an algebraic number field of degree n

over €, with minimal polynomial f(x) € Z[x]. Then the dis-~
criminant d(f) of f divides the discriminant d of K over @ = . .
and the quotient is the square of an integer, i.e.,

a(r) = n°d. Moreover, 1f p does not divide m the number of
distinct irreducible factors of f(x) in Z/pZ[x] is the same

a8 the number of primes lying above (p).
Proof: See Borevich-Shafarevich [ 3].

If U(T) is smooth, then E(1) = E(T I I(T)/3(T (1))
because U(T(1)) ig a ij(F)/j(F(l)){—fold"covering of U(r),

For simplicity we denote A(Q(Jﬁ),'fPl,...,Pr}) by |
A(d;Pl,Pe,...,Pr), and B, , by By., ' ‘ '
group I' between E++ and_B++ by a complete set of cosget
representa%ives-for j(P)/j(E++). For an element & € K,

a >> 0 denotes that a is totally positive, - - o o TR

For simplicity we write A(d;Pl,...,Pr) instead of |

A(Q(Jﬁj,{Pl,...,Pr}),.and Bq in place of B For a € Kk,

Xs2°

a >> 0 denotes that a is totally positive, and for notation-
al purposes, we identify a group I' between gt and BTt by'a

complete set of coset representatives for j(T)/ﬁ(E++).

Example 1. A(lE;Pg,Pl3 where P, 1s a prime of §(/I3 lying {

above (2), and P,3 18 a prime of §(/IZ) lying above (13).
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By, = 4, and therefore, E(I'(1)) = E(1) = fQ(NP -1) (NP 13—1).'
Since (2) ramifies, NP, = 2. Thus, E(I'(1)) = 3-(2-1)(13-1) =
and U(1) is a candidate for a Pg = 0 surface.

Let us check the smoothness conditions.
13-1
(5%) = (-1) 2 =1
13
and 13-1 _3-1

() = ( E=FEE T T oG-
Therefore, A(l2;P2,P13).gives a smooth Pg = O surface U(l).

Example 22. A(8;P’2,P5). Bg = 2. NP2 = 2 and NP5 = 25,
E(1) = 35(2-1)(25-1) = 4. o
o Let us now check the smoothness condition. (——) =
and ( ) = 1, therefore A(8 PE’P ) ylelds 5 smooth Pg = OV
surface U(1).
Similarly
Example 3. A(B;PS,PBl) gives a smooth Pg = 0 surface U{l).
There are no other Pg = 0 U{l) surfaces with k a real

quadratic field.
. 4+
Now let us consider U(E' ') surfaces.

Example 4, A(EM;Ps,P5) gives a smooth Pg = 1 surface, and

= 5+2J6'>? 0. We must investigate the splitting of Py and
: P5 in k(erk)/k.
By Lemma IIT.2.1 we have the following diagram:




k(J/~(5+2/5)

a(/B) k = o(/2%)

]

(3) splits in Q(/=8)/®, and ramifies in Q(/=8)/&4 and in
Q(/28)/6. By the same reasoning as in the proof of Theorem

IIT.1.1 (see Table ITI.1.4), Py splits in k(/-(5+2/6)/k and

[

o A ' ++
U(E" ") is smooth. E(U(E ")) = %-E(l) = 4, and therefore,

U(E_H‘)_ is a Pg = O surface.

Example 5. A(12;P, P5). &, = 2+ J3 >> 0. U(1l) is smooth

and has Pg = 1. Consider U(EH').
k(J-(2+/3)) _
T 8(/-2) k = (/I2) &(/=F)
Q

(5) splits in Q(J/=B)/4, and,.i»emains prime in ®(/~2)/® and in
@(J/12)/8. Therefore, P5 splits in k{(J/-(2+/3) )/k.a_nd U(’E++)

is smooth with Pg = O.

Similarly, we have




Example 6, .A(12;P3,Pl3) vields a smooth Pg = O suffacé
u(E"™),
and -
Example 7. A(Ql;P3,P5) yields a smooth Pg = 0 surface
o). o
These four examples are all of the smooth Pg = 0 U(E++)

surfaces. | |
| We now give an exanple where the group-r broperly contains
E++ and yields a smooth Pg = Ovsurface.
Exemple 8. A[8;Py,P;). Bg = 2. NPy = 9 and NE, = 7.
g = 1+ N2 and e, 1s not totally positives ”
(1) = f%(9'1)(7-1) = 8 and U(1) is sﬁooth. Since e, is not
totally positive, U(1) = U(E''). To find a Pg = 0 surface,
we look for T 'such that [J(T)/3(I(1))] = 2. Ty = 3, and
AvT =3 + J2 >> 0. -

A) <onsider T such that j(I)/if(1))= (I4). We must
investigate whether elther P, or P7
this is exactly one of the conditlons for U(1l) to be smooth.

Therefore, J(I')\X is smooth and has Buler characteristic L,

i.e. Pg = 0.

]

B) Consider T Quch that J(I')/3(T(1)) '{HT}.
k() = k(VBATB) = 0(/3472) = q(®). o = -34/7,

a2+3 = =/2, d4+6“2+9 = 2, and therefore the minimal polynomial

for k(J—WT)/QViS f{x) = x&-+ 6x° + 7. The roots of this

splits_in k(/-3)/k. But, ..
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polynomial are a, LJB%JE Ay = -1J3%J2, ay = lJBﬁJE and

oy = -1/3-/2. N
d(f) = (.031"'032)(31“33)(0-1'3'4)(0‘42'&3)(&2"&4)(@3”a‘4) = 2107-

By Lemma IV,1.2, since ?3, the reduction of f modulo 3, is

| 4-2 Py does not split in k(J-r ) /8. .Now, by Lemma IV,1,1
PT ='W7Gk ramifies in KCJ:F;j/k. Then heither Py no? P7
spli# in k(J:?;)/k and j{(I') does not yield a smooth surface.
| C) Consider T such that j(I')/j(I'(1)) = {HBHT} By
Lemma IV.1.1 both P, and P7 famify in'k(J—W3v7)/k and-sp

5(T) does not vield a smooth surface.
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