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Let G be a finitely generated Fuchsian group.of the
 first kind without parabolic elements. so that S = U/G is
& compact Rieménn surface furnished with the Poinearé-metrict
Let d be the diameter of 5 and 1etrm be the length of the
shortest closed geodesic on.S. We have the Tollowing

| ineqﬁalities:
sinh(m/4)d £ (1/2)area(U/G) = msinh(d).

We alSo'realize the diameter of S in some Poincaré polygon
as the'distance from the origin to the farthest.vertex.' |
Now let G be a finifely generated Fuchsian group of
the second kind with no paraboiic éléments. Then S = U/Q
1s a compact Riemann Surface of genus g with n disjoint
closed discs removed. Leb {Tl’TZ’f"’Tn} be the hyperbolic
transformations corresponding to the closed discs, where |

iii.




each T. is conjugate to 7 = Xiz, A; > 1. TUnder projection,
.the axes of the Ti‘s bognd m annili; their complement S* 1s
relatively compact. Let d* be the diameter of $% measured
in the Poincaré& metric., Then for any q > 1 and positive

integer p, the norm of the inclusion map
<o
L : Ag(U,G) - A, (U,6)
has an upper bound given by

g_1+taph( d%1p))L/P
(1—tanh(d*+b))l/P

max {c (3% ) /
121,20, 2 109%—
where_cl, Cy and b are constants. We then prove the incl-—
usion of Ag(U,G) in A: (U,G) for any finitely generated
Fuchsian group G. When p = 1, this is the well-known
,Aq(U,G) < Bq(U,G) conjecture.
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CHAPTER 1

Introduction

Poincaré's firét essay on autémorphic function,

published in 1880, began.a new era.in Function theory.
He not only generalized the concepts of circular, elliptic,
hyperbolic and certain other Tfunctions éf elementary
analysis, but he also provided a powerful tool for studying
Fuchsian groups. Later he extended the concept to auto—
rorphic Torms of weight (-2q) via the introduction of
'Poincaré theta series. With the proof of the uniformization
theorem, given by Koebe in 1912, the classical theory of
automorphic functions came toc a close.

| In the early 19207's, Hecke defined the Fisenstein
series Suéh ﬁhat the resulting autombrphic form ¢ is a cusp

Torm, i1.e., ® vanishes at all parabolic cusps. Meanwhile

Petersson, Hecke's student, was working on the correspondence .

between Riemann surface theory and automorphic function
‘theory, and in 1939 he introduéed'the important Petersson
scalar product which makes the set of cusp forms a Hilbert

“space. In 1960, Bers obtained the Banach spaces-Ag(U,G),

1= p= o, by applying the LP-norm to Lhe set of holomorphié

automorphic forms of weight (—Zq)'with respect to the group



G. Then he proved in 1965 ([3]) that Aé(U,G) _ Az(iU;G')?”'
provided that the group G is finitely generated of the.
first kind. They are, however, different when ¢ is of the
second kind. As a matter of iact that A (U G) is always
separable, whereas A (U G) is not. It is natural to
conjecture that A (U G) < A (U G) Tor all Fuchsian groups

: G. Several authors had made contributions to this problem.
In 1968 Dragsin and Farle [L]}, among others, proved the
congecture for flnltely generated Fuchsian groups ol the
gsecond kind and, using the closed graph theorem, they also
proved the continuity of the inclusion. _In 197374,

Lehner [13,14] proved the conjecture for certain infinitely'
. generated Fuchsian groups with additienal restrictions.

The major difficulty of this conjecture is that we did
not have:enoﬁgh-information'about the behavior of automorphic'
forms near the holes.' To attack this problem, iﬁ is
‘1mDortant to investigate the norm of the incluslion when
G is generated by a single hyperbolic transformation
7 T AZ, A > 1 As we shall see in ﬁhis paper, the norm of
the 1ncluelon map, in this spe01al case, is bounded both
from above and from below by comstant multiples of the
reciprecal of the circumferehce of the hole, i.e., l/legk.

Hence the norm will blow up when the size of the hole shrinks.
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- This suggests that the conjecturs must be-false and a
Rlemann surface W1th 1nf1n1tsly many holes decreasing in
size should glve us a counterexawple. In May of 197@,‘
Pommerenke [19]-announced this result. In his counter;
exampie, he Tirst built a Fuchsian group G csntaining
infinitely many such hyperbolic generators {z - N 7,

A > 1y i=1,2,...}1 with the property that A 7L as

i = o . Then he used the technique of Bloch functions
to show that there eXlsts an. 1ntegrab1e automorphlc form
which dis not essentially bounded.

_ In estimating the norm_of the inclusion, twsigeometric_
objects came to our_attention:.the circumferences of the
holes and the “"diameter" of Nielsen convex region. Mumford
[18] dlscovered an inequalitys:

'Let d be the diameter of a compact
Riemann surface, and let m be the
length of a shortest simple closed
geodeSic on 5, then we have
md = Rarea(S).
It is of 1ntsrest to flnd out whether there 18 a lower bound
for ths se two geometric terms.
Iin this.dissertation,IWE first derive a lower bouﬁd
and sharpen Mumford's upper bound. More precisely, we

have




sinh(m/4)as (1/2)area(8) = msinh(d),

We then-discuss the general inclusion mapAg(U,G) C-A:?U,G)
for positive integer p and Tinitely generated Fuchsian
group G, Our second result is an ex?licit bound Tor the.
norm of the inclusion in terms of the maximum of the
"diameter" of the Nielsen convex region and the circum-—
Terences of the holeu on 5. As a direct consequence of
this theorem, we present a new and gsimple proof for the
r_Aé(U,G) < A;KU,G) conjecture when G is finitely generated.
In Chapter 2, We summarize some known Facts about
Fuchsian groups and Riemann surfaces that will be needed
subsequenbly, and we fix our. netations. In Sectlon 1, we
-cla851fy the Moblus transformations and define.Fuchsienr
groups. In Section 2, we discuss Riemann surfaces and
“the Correspending fundamental domains. In Seption 3,
- we iﬁtroduce.hyperbelic geometry and Dirichlet regiohs.
Chapter 3 is devoted to the development of the
inequalities and a diseussion on_the geodesics of 3.
Chapter 4 is on automorphic forms. Some well-known
results in the spaces of automorphic forms are introduced
:iﬁ Section 1. Ie Section 2, we discuss the Ag(U,G) ¢.A:1U,G)
conjecture and state the main theorems. In Section 3, we

prove the result for the two special cases: G is eyclic
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(G 1s generated by a single transformation z = Az, x > 1)
and U/G is compact. Both cases are important in themseclves.
Moreover, they yield the decisive facts for the main
theorems. In the last section, we present the proofs of

the main theorems.



CHAPTER 2

Uniformizations

2.1. Mobius transformations.

We denote the extended complex plane € U [= } by €.
We shall study the group PSI(2:;0) whose elements are 2%2

- matrices A = (i-g) with complex entries and the normali-
rations ad-be=1, where we identify A with -A. Each matrix

i ’ ", . . L
A is czlled a Mobius transformation. Sometimes we also

write this matrix as a rational function mapping @ onto

itself;
A(z) = ugug-;;--g-, ad-be=1.

This mapping is one-to-one and directly conformal,rit
preservee circles (1nclud1ng stralght 11nes) and it

preserves the cross—ratlo, i e.,

V(AZ]_’AZ ZB’ 4) (51922,23’ Zl})a
where |
G =T, DT
_ 173 72 %4
(Zq9B55%0,%, ) = —=== ——t
1772327, Zy Zh_z2 23

One sees at once that every non-trivial element of
PSL(2;C) has at least one and at most two Tixed points.
"This leads to the well-known classification of elements of

PSL{2;C) by the number of fixed points. If A has exactly



conjugate to the translation z = % + 1. One can also
obtain, by conjugation, a general form for a parabolic

transformation A with fixed point Z, 7 ©as

1 : = l +p,p7£0.
Ay — » 7 - 9
o) 0

In the case that A has two fixed points x;,x,, we can
=0 and Bx,=% . Thus BAB™

2

find some B in PST(2;€) with Bx;

has the Torm
.BAB—I(Z) = 1z, 7 # 0.

Since we could have chosen B to take xlrto @, and X, to 0,

we may always assume |[®] = 1. If [u| =1, = # 1, then
BAB™! is a rotation, and A is called elliptic, If [#] > 1,

then A is called loxodromic; in the'special case that #
is real, # >1, we say that A is hyperbolic.
We may also classify them by the well-defined

trace h = troh = (a+d)®,

[

", (ab
* A = (c d)’
If A # id., then A is
elliptic ir and only if  tr°A € [0,4),
parabolic if and only ir  troA = 4,
hyperbolic  if and only if  troh > 4,

loxodromic otherwise.




g,

Let G be a subgroup of PSL{2;C), then for any z € 6,

we denote by GZ the gtabilizer (or the stability subgroup)
of z; that is,

G, = { ASG : Az = z}.

We shall say that G is discontinuous at z, if
| (1) @, is Tinite,
(ii) there is a neighborhood V of % such that
A(V) =V, for all A € G_,
A(V) NV = @, Tor all A € G- G,.
The set of.points in £ ét_which G acts diécontinuously is

called the regular set or the set of discontinuity, and is

denoted by Q(G), or simply Q if there is no danger of
confusion. Since Q is open, we may call Q the region of

discontinuity. Each point in @ is called an ordinary point.

Obviously, @ is invariant under G, i.e., A(Q) = Q, for all.
A € G. A connected component of 0 which is 1nvarlant under

G is called an invariant component. The group is ggggont—

iggggg ir @ # . A discontinuous subgroup of PSL{2;C) is
called XKleinian. If G is discontinuous and A € PSL(2;C),
then AGA™F is also discontinuous; we shall regard these
_groups as being the Same.' It is a basic result that a
discontinuous group is countable (Ford [5]).

_ A _ _
A point z in € is called a limit point of G if there

‘is @ point x in Q, and there is a sequence {Aﬂ} of distinct
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elements of G, so that An(x) = Z. The set of limit points, -

célled the limit_set, is denoted by A(G), or simply A if
there -is no danger of confusion. It is known that

ANQ = Q.and AU Q= C. We recall that a set is perfect
if it is closed and dense in itself; i.e., every point of
ﬁhe set is a limit point of other points of the set., We
also recall that a perfect subset of Fuclidean space can
not be countable. It can be shown that if A contains more
than two points, then A is a‘nowhere-dense, perfect set.

Hence M is uncountable. For the case A contains at most

two points, G is called elementary. Thé elementary.groups
are completely cléssified, The readér maj ind the details
in.Ford [51. | | |

A non-elementary Kléinian group G is-called Fuchsian
if ail its.loxodromic elements are hyperbolic. Then G

leaves a disc or a half plane'fixed ([11]), whose boundary

~1s ‘called the principalrcircle. One can achieve, by
éonjugation,-ihat this be the unit disc U br the upper half
‘plane H. 8Since a M8bius trénsformation'A which maps the
unit disc U dnto itgelf has the form

AMz) = "EELiF%H, ad-cc=1,
cg + a :

we may regard a Fuchsian group G as a subgroup of




c
a

)}

8U(1,1) = { A € PSL(2;€) : & = ( 2
In the case of the upper half plane H, all elements A € G
have real coefficients. Thus we may also regard a Fuchsian

group G as a discontinuous subgroup of PSL{2;R).

‘We call a Fuchsian group of the ¥irst kiad, if every'

‘point of the principal circle is a limit point; of the

secbnd kind, cherWise. The points of A are either fixed
points of hyperbolic elements of G or aécumulation points
of SQCh points'([llj). There are two iﬁvariant'compéﬁenﬁs‘
For a Fuchsian group of the first kind; whereas there is

only one for a Fuchsian group of the second kind.

2.2 Riemann surfaces.

A Riemann surface if a connected Hausdroff space S

together with a conformal structure {U }dEA“ In this

A
o? “n

context {Ua}uéA constitute an open cover of S and the

mapping Zy * Ua - 0 ig a homeomorphism'onto an open subset

of the complex plane € such that the btransition funchions

1

Ty = zao;B” : ZB(UanUB).a za(UaﬂUB)

are conformal (i.e., holomorphic with non-vanishing deriv-

atives). Each Z, together with its domain U, is called a

local parameter, and U, is called a parametric disc.
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Classically, a compact Riemann surface is called
closed; while a non—compaét oneis called Qggﬁ.

Let S be a Riemann sﬁrfaee; and let S be its universal.
coveringISpace; Again ¥ is a Riemann surface. Then we
have the (cf. [21])

Uniformization Theorem. Any Simply connected Riemann surface

is conformally equivalent to one of the fdllowing:
(1)  the Riemann sphere £ = € U {1,
(2)  the complex plane €, 7
(3)" *the unit disc U ={z € € : |z| < 1} or its

conformal'equivalent, the upper half piane H=1{ z€C : Imz>0}.

-Let_ﬁ-: g"é 3 be a holomorphlc universal coverlng map,
and 1et G be the coverlng group of m; that is, G = | conformal
self-maps g of 8 : g = w}. Then G is dlscontlnuous and
fixed poiﬁt free. Fﬁrthermore; G = (S), the fundamental
group of 8, and S is conformally equlvalent to uhe orblt
space, g/G, of § under the action of G.

The uniformization theorem implies that any compact.
Riemann surface of genus‘zefo is confofmally equivélent to.
the sphere, Thus a Rlemann surface with € as its unlversal
covering space is ltself ﬁ It can be shown bhat the only
" Riemann surfaces with € as thelr umiversal covering spaces

are conformally equivalent to the once—punctured sphere,

~the doubly-punctured sphefe, or a compact Riemann surface
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of.genus 1. Tn all other cases, S = U (or, equivalently,
g = H). This is the case in which we are primarily inﬁerm
ested.

Let G be a Fuchsian group. The projection m : H = H/G
is locally one-to-one, except at points z € H with non—
trivial stabilizer.gz. In this case GZ is a cyclic group
o' order k, the projection is k-to-one near =z, and the
image of % under theprojection is called a ramification

point of order k. We also call a point w € R a ramifim

cation point of order © , or simply a puncture, if 2 is a

fixed point of some parabolic element in G. If G is

finitely generated;_ﬁhen‘s = H/G is a closed Riemann surface
of genus g with n ramification points and m disjoint conformalr
discs removéd'(cf. Ahlrors [1}). These ramification points
'Cofrespond td the imageslof the Tixed points of the elliptic
and parabolic elements of G under thé projeétion. - Let the
conjugacj classes of iheserélliptic'and parabqlic elementéz

be 01;02,;..,Cn and order them so that théir corresponding

1
disc, called a hole, is the image of a conjugacy class of

orders vj satisfy 25v SV =,,.8y S® . Each removed conformal

intervals of discontinuity, by which we mean the intervals
on R whose points are all ordinary points of G. G is said

to be of type (gjmjn) and of signature (g;m;n;vl,...,vn):

We also say that G is of Tinite type if G is of type {gz;n),
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i.e., m = 0, there is no.holé.
lGonvefsely,,let S.be'a_Rieménn surface ofl geﬁus g;
and let [pl,pz,..,pn} be a finite set of points, where
there is & number vi, 2 = vi'éfw ;'assigned to each pi.'
We assume |
n
2g — 2 & .Z [1 -~ ;/vij > 0.
i=1
A classical theorem in Fuchsian group theory, due to Koebe
and Wong, states that there existé a finiteiy generated |
Fuchsian group G of the rirst kind so that U/G bhas n ramif-
ication points 2 eadﬁ is of order vk,-k.z 1,2,..,n, and
: Q/Gm{ql,qz,..,qn} is conformally homeomorphic to Q/G~{pi,..,pn},
i.e., G is of signature (gibin;%r-;vn);(wong [22]). Under

‘the above circumstances, we say that G uniformizes

{S;pl,“,pn;vl,..,vn}. Thus the notation for, and the terms,

type and signature are appliéd to Riemann surfaces as well.

 A Tfundamental domain D for a given Fuchsian group G
is an open connected subset of ﬁ such that
S A(D) ND =g, ror all A €G, A # 1,
(2) UMDY =vu. | |
AEG o

It is known that for every Fuchsian group there are infinitely
many fundamental domains, . We shall construct a special one
in the next section, and hence prbve the existence of such

domains.



2.3, Poincars metric and Dirichlet regions

Hyperbolic geometry is obtained from‘plane Fuclidean
geometry by feplacing the parallel postulaté by the follo—
wing'axiom: Through a given point not on a givén line in

'a plane, there passes more than one 1ine_ﬁhich does.not

.meet the giveh line. There are two models for this |
-(Lobatchevski’s) nonweuclidean geometry: the unit disc

model U and the upper half plane H. They are equivalent.

Let Q be the boundary of U, that ié, the unit circle.

A point in the hyperbolic plane is represented by a point

in U,Vand a line is represented by the arc.of a circle
-orthogonal to Q which lies in U; including the diaméters

of Q. Also, the éngle measure is the same as Euclidean
'angle measure.  We define the Poincarg metric ds = A(z)|dszl,
'z'EUby .
S oMm) =2 (1 - (5D |

‘Since the MBbius transformations which map U onto itself

are ofl the form

,A-: ( i

Lo

)7.35”96213

we have

MAzZY AT ()| = A(z), = € U.

The Poincaré metric thus defined may be used to define a
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new metric on U, _other than the Euclldean Wetrlc on U, that.
-glves rise to the standard topology. Ir 4 is a rectifiable_
curve in U, we define the length of 4 by

4 =] \(z)|dz]| .

We then define the distance between any pair of points 7y
“and Z, as the length of the arc of a "line" passing through
Zq and %n with center on Q. Thus the distance between any
two points u, and z, is the inFimum of the lengths of curves

“joining %y Lo Z,. Since we can always transform %, to the

1
'origin of U by some transformation A of U, we can derive.

the'distance formula for a pair ol points,zl and Z, as .

L |( aymzy ) /(13 5)
‘]( Zz“zl)/(l“zlzzﬂ_a

d(zl,zz) . log

 81nce the cross—ratlo 1s invariant under MGbius transfor~
matlons, the same is true Tfor the distance d. Hence the
conformal self—maps of U are rlgld motlons for the hyper—
'bollc plane. We also deline the area of a Lebesgue measu—
rable set w in U, denoted as area{w), to be the Lebesgue |

.integral | 7
(;/2) II K(Z)zldzAdE] = XI 1(2)2 dxdy.
w W

. . S ' 0.
Using polar coordinates, il gz = pel s Then the area can be
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expressed as

rp odede
I£ (l_p2)2

This leéds us to the following
" Lemma, The disc B(O;R) centered at the origin with euclidean
radius R is of area ﬂR?/(lﬂRz). |

R R . z
area(B(O3R)) = [ [ pdedl _  TBZ

oo (1-p®)2 1-R?

- Now let us turn.to the $econd modél: the upper halfl
plané H. The.hyperbolic lines are represented by the arcs
of circleg orthogonal to the real axis R, including the
straight lines parallel to.the imaginary axis, and the
'Euclidean angle'is retained. _Also note that the group of
conformal self-maps is known to be PSL{2;R). We define thé

Poincaré metric ds = M(z)|dz], zrz x + iy € H by
Mz) = 2(z-7)7t =y
Similariy, we have the 1éngth of a rectifiable curve 4 as

|._'E'l = f{ ?(Z')]dzr - j"t].dz:[/y_.

and the area of a Lebesgue measurable set @ as
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aréa(w)': [0 vy™® axdy.
® o

' . ' . / .
A remark should be made is that the Poincaré metric
thus defined gives a constant Gaussian curvature ¥ = -1.

Recall that K is defined by

K =

A(log A)
N

| where A is the laplace operator, i.e., Afu = uXX+UYy’
Another remark is that the Poincarg metric is the unique
complete COnformal.Riemannian metric of curvature = -1. |

We shall now constrﬁct a-fundamental reglon by means
of hyperbolic geometry. The hypefbolic concepts will be
dénoted_by prefixing H: H-line, H-distance, etc.

Let G be a finitely genefated Fuchsian group. Let
z, € U be a non-fixed point of G. We enumerate the elements
of G by {I:Ad’ﬁl5 2,;..}. The imageé zy= Az are éll
distinct. Denote by B, the perpendicular bisector of the
H—segment %% - The 1ine Bi.divides U into two regioﬁs;
the one which contains ., we call Li' w € Li if and only
if d(w,zo) < d(w,zi),_where d(,,.) denotes H-distance.
Deline

oo

D= Int( N Li
i=1 -

).
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D is called the Dirichlet region (or bhe Poincard polygorn,
in some literature} of G with center % We may characterize
D by saying that D consists of those points of U that are

strictly nearer zé than to any translate of ZO;'i.e.,
D=1 z: d(z,zo) < d(z,zj), >0 1.

Ey construction, U is open, chnecfed and convex.
Let us now examine the boundary points of D. Suppose
.z lies on a single bisecﬁor.Bi. One notices that there
is no other bisectors in some neighborhood of =, It
follows that there is an arc of Bi ail of whqée ?oints are
boundary points of D. Let s be the largest such arc (it
may be the whole Bi)-and call it a side o' D. The endpoints
of a side, ére'points 1ying on two or more sides, are called
vertices of D. If a side terminates in a point p of Q,
there may be anbther side of D, issuing from p, but there
"chnot be more thén one, because of the éonvexity of D.'.
Suppose there is no side of D_in the neighborhood_of P
.except . Then there is a maximal arc T of Q.beginning aﬁ
p.whibh.forms part of the béundary of D; f is called_argggg
side. The only 1imit point that could possibly lie on the
boundary of D are parabolic Iixed points}- Thus the boundary
of D consists of sides, free sides and_parabolic Tixed

“points.




19.
The Dirichlet region thus constructed is a fundamental

domain ([11]). Moreover,

Theorem 1 (Heins [6]). Let G be a finitely_geﬁerated

Fuchgian group. Then any convex fundamental domain is-
finite sided. In particular, any Dirichlet region is of

Tinite sides.

Cohversely,'if a Fuchsian group G has a fundamental
domain with a.finite number of sides, then G is finitely
genérated (Ford [5]). As a matbter of fact, G can be read
off through D. B

Given a Fuchsian group G with signature (g;m;n;vl,..,vn);
'there'exists a fundamentai domain D bounded by Lg+2mi2n
Jordan curves in U and m boundary arcs on @ with the
following properties (Keen [91). Suppose the sides of

D are sultably labelled in order:
al!blsai:biy--yag’bgiaéabéyclicis--’Cnrcﬁr

dar,

dl’e]_?di, . e ,dm’ em’ m

There exist hyperbolib elements Ai’ Bi and'Dj in G, 1 = 1,2,

cee38y J= L,2,..,m, such that Ai(ai) = ~al, Bi(bi) = -b}
and Dj(dj) = —d', and elliptic elements Ck € G of order Vi
_ j _ |

(parabolic if Vi = w_},'k = 1,2,..,n, such that Ck(ck) = —Cp.
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These elements satisfy the relation

.¥ % A gt I % ‘
(‘) | iBiAi_Bi C.. D 1.

jerl | G=1 9 kel K

By a standard set of generators we mean the setb {Al,B

17
A ,Bg,Cl,...,Cn,Dl,..,Dm} with the relation (¥) and the

g
relations: C;k =1, and it generates G.

We remark that since conformal mappings are rigid
motions of the hyperbolic plané, we can always transform
the center zZ, of D to the origin of U without éhanging any
metric prbperty._ The advantage is that the distance.from
.any point z on S to Z can.be realized as the H-length of
the ray emanating from the origin to Z., We shall in
general assume this to be done. N

The following is a standard theorem in PFuchsian group
théory. - For proof the readgr is referred to Kra {10].
Theorem 2. Let G be a Fuchsian group acting on U and let
D be a Dirichlet region as defined above, theh the following
'.donditions are eduivalent: |

| (a) area(d) <@,
(b) area(ﬁ) < ® , where D is any fundamental
domaln for G in U,with meas(gﬁ)-
(¢) D has a finite number of sides and no

free sides,
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(d} - G is rinitely generated of the Tirst kind,
G

is of finite type.

Since area(D)'is invariant for all fundamental doﬁains
. of G, we may define the hyperbolic area of a Riemann surface
S = U/G as _
| .area(Q/G) ='area(8) = area(D), |
fér;anyrfundamental domain D off G. By Theorem 2, area(s)
is Finite if and only if G is of finite type.

There are two important consequences of the well-known
.Gauss—Bonnet theorem which we Shall need later. The.reader
may refer to Kra [10] for the proofs. | |
Theorem 3. ILet G be a Tinitely generated Fuchsian.group.
with signature (g;n;vl,.{,vn). 'Theﬁ

o oon
area(U/G) = 2 {2g - 2 + Z

_ 3—1(1 - ;/vj)}.i

Corollary. For a Riemann surface S without ramirication

points, we have

area(8) = hﬁ(gml).

Theorem 4. The hyperbolic area of a hyperbolic triangle
in H with angles 8, ©, and 65 is Finite and equal to
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CHAPTER 3
The Diameters of Compact Riemann Surfaces

In this chapter, we consider a finiteiy generated
- Fuchsian group of the rirst kind contéining no parabolic
elements for which the orbit space 8 :‘Q/G is a compact
Riemann surface of genus g. This in general includes
groups with elliptic elements, Uﬂless.the contrafy is

specifiéally stated.

3.1. Geometric Preliminaries.

Here we summarize some basic definitions and results.
Fér a detailed exposition, please refer to Hicks [7]:

‘Recall that the Poincaré metric on H, ds = Mz)ldz] =
(Im z)“lldzl, is the unique Riemannian metric with constant
curvature -1. AThe Poincaré metric on S is that induced
“Trom the Poincaré metric on H by the.group G, and is still
written as A(z).

.Let Y be a rectifiablé curﬁe on S. We define the

length of 4, written as |@l, to be
=0, M

Then the distance between any two”points x and vy on S is

defined by
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A(x,v) = inf { 4] : ¢ is a rectifiable curve

- joining x to vi.

It is well-known in Riemann surface theory that there is
‘a curve % realizing that distance. Such a curve is called

‘a minimal geodesic. It can be shown that it is in fact a

geodesic in the differential geometry sense. However, it
is-not necessarily unique. We shall prove later in this
section that there are only Iinitely many of them. Another
- remark ﬁhat.should be made is that there may be other
non-minimal geodesics from x to y. . |

The distance function d : 9xS —> R' U {0}, is clearly
'continuous. Ir S is compact, d is bounded from aboﬁe. It
is then'natﬁral to define the diameter of S, written as

diam(S),
diam(S) = gup | d(k;y) : (x,y) € st }-l-

.This ie Wélludefined, By compactness,-there exists-a pair

of points that realize this diameter. |

On S5, there are maﬁy closed curves which are not
homotopically_trivial; In each free homotopy class of curves
:through a given polnt, there is a uﬁiqué minimal geodesic..

A simple closed minimal geodesic on S which_gi#és the |

shortest length will play an iﬁportanﬁ role in our theory.
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We conclude this section by the following result.

:E@eorem 1. Given apy'tWO-points x and v on S, there are

ét‘most'finitély many minimal geodesics joining x to V.

“Proorl. Let X be a preimage of x of the projection map

w3 U— U/G=35. Fix %. Then every minimal geodesic

-frbm x to y will be lifted uniqueiy to a minimal geodesic
from X to some v in,ﬁ,.where v is a preimage of y with 7
d(x,7) = a(%,¥) = c. The hyperbolic disc B(%,c) is relatively
compact in U. Sinéein any compact subset of U there are

only finitely_many points equivalent to y-([ll]), there are

only finitely many G-equivalent points of v in B(g;c).‘

This proves the Iiniteness.

Remark. Let S = U/G bera-compacﬁ Riemann surface with
ramificatibn_points { pys p2,.;., p, }. Let D, be a Dirichlet
‘region with center at x = 0, where x %,piQ i=1,2,..,0n.
Denote the radius of D by R(x), which is defined to be the
" distance Between the point x = 0 and ﬁhé farthest vertex of
D_. By definition, | | |

R(x) = dian(U/G),

for all x € u/G - {pj,..f,pn}. It follows that

sup { B(x) = x € U/G'} [Pys-vopp} 12 diém(Q/G).-
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This inequality becomes equality provided that the diametér
of 8'= U/G is not realized by a minimal geodesic & whose
iendpoints are bothrramiried. Lét Xo be the non-fixed
_endppintrof 8. Form thé Dirichlet region Dx . Then the
other endpoint mist be the farthest vertéx og DX y by the

definition of the diameter. This distance is exactly R(Xo).

Thus,
diam(U/G) = sup{R(x): x € U/G—{pl,..,pn}}.

In other words, the diameter of 5 can be realized as the
length bf the hyperbolic line segment emanating from the
origin of U to the farthest vertex in some Dirichlet regionf
In.the case that the diameter of S_is realizéd by a minimal
'geodeéic whose two endpoints are_both fixed points of G,

the result is still known.

3.2. The inequalities.

Tn [18], Mumford proved a general_compactness theorem
and obtained, as an applicaﬁion,'thaﬁ for any g = 2 and

- constant ¢ > 0, the set of compact Riemann surface of genus
g all of whose closed geodesics, measured in the Poihcaré
metric, have length = ¢, is itselrl éompact. Later Bers [2]
proved that the theorem remains valid fOTlFuchsian-grdups

containing elliptic and parabolic elements, Alohg the line
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of Mumford's proof, he derived the following inequality:
Let S be a éompact Riemann surface of genus g Withqut
ramification points. Let d be the diameter of S and let m
.be the length of a- shortest closed (non~trivia1) geodesic

on 8. . Then We have
md = 2area(S).

._ We shall sharpen this inequality and derive another

one. QOur main result is

Theorem 2.. Let G be a finitély generate&'Fuchsiaﬁ group of
the Tirst kind without parabolic elements. Then 9 ='H/G'is
a compact Riemann surface of genus g together with fhe |
?oincaré-metric.. Let d be the diameter of S and let m be
the 1eng£h of a shoftést.simple closed geodeéic on S.

We have the following inequalities:
sinh(m/k)d = (1/2)area(U/G) < msinh(d).

~As a direct consequence of Theofem 2 and Mumford's

compactness theorem, we have

Corollary 1. For any genus g > 2 and constant ¢ > 0, the
‘set of all compact Riemann surfaces of genus g with diameter,
measured in the Poincaré,metric, having length < Cy 18 ltselfl

- compact.
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‘Corollary 2., Tor any'compact Riemann surface of genus g = 2

without ramification points; we have

sinh(m/4)d £ 2n(g-1) < msinh(d).

We start by establishing the following lemmas. ILet
- x and v be any twﬁ points on S with d(x;y) = r. Let T be a
minimal geodesic.on S realizing the distance between x and
v. Construct a belt B around T of radius s as the union of
all geocdesics on S perpeﬂdlcular to T, and each is of length
g3 in addltlop, we also assume that no two such geode51cs
will meet. We shall give B a geometric interpretation on
.the vpper half plane H. |

We may assume that is lifted to the imaginary axis
on H so that T is the segment [i,ie"]. Then the geodesics.
perpendicﬁlar to T are those circular arcs on H with

euclidean céntef at the origin. We then observe that

Lemma 1. The ray 0 = 8  in H is of distance & = log| cscd

1+ cot 6 | to the imaginary axis I. Conversely, if a point

o}
Z = pele in H has distance § to I, then arg z = BO =
cul(cosh(ﬁ)).
Proof, - Let z'= peleo be a.point on the ray © :_80. Then
| T1/2 |
d(z, I) Iﬂ/g PdY_ j / CSCe de 1og]csce +cot3 [

eo _ pSll’la , 60
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Conversely, if & = loglcsc 90 + cot Bolf'then é‘simple

calculation shows that BO = csc”l(cosh(é)).
" Thuse B is a region in H bounded by the curves p = 1,
p =g, 0= CSC—l(COSh(S)) and-a - ﬁ-m'cscﬁl(cosh(s)).

a
pJ

Lemma 2. A& region 0 in H bounded by the curves p= 1, p = ¢

8 =b, 6 = T - b is of area 2acot(b).

Proof. :
- a a
e 1—b pdpdb e b 5
area(0) = [ o [ A2 2
1@ pzsinze 1 p. b sinze'
=2 a cot{k).

Lemma 3, The area of B is 2rsinh(s).

Proof. This is directly from Lemma 2 and

cot(cscml(cosh(s))) = J csc?(csc—l(cosh(s))) -1
= ginh(s).
Proor of Theorem 2.
| let o be a minimal geodesic realizing the diameter d
of S ='H/G. Let m be the length of a Shdrtest simple closed
geodesic on 5 and construct a belt B around o of radius q/&.
‘Then there are two possibilities: either no two of theée

geodeslcs meet, or else some pair dl, Cy meetl. 'We_shall.

prove the second one is impossible.
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suppose Gy and %y meet. Let 219 Bo and w be the points

indicated in the figure and let e be the distance TFrom 7y to

4, along o, Then we can go from x to y by geing from x to

4

on o, following Gy g then o, and going from Zo to ¥ aiong
®, This has length < (dﬂé)+m/2. Since o is the shortest
path from x to vy, '

a < (d—e) + m/2,

i.e., e = mVZ. But then Gyy Go and part of o between 2y

and Zg is a closed path 7 of length at most m. T is
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éertainly.not.homotopic to zero, fdf otherwise 7 wbuld'be'
1ifted'to.a ﬁriangle in the upper halfrplane'H With two
interior rightrangles; which is. impossible. Moreover, T
has corners and so it is not itself a geodesic. Therefore
there is a closed geodesic freely.homotdpic to T of leﬁgth
< m. This contradicts the definition of m énd thus only the
first possiblity is correct. This also shéws that the whole
belt B is in 8. | 7 |

Now we can apply Leﬁma 3 to measure the area of the
belt B, which is then 2dsinh(m/A). Since the whole belt B
is in S, the area of B is bounded by the area of S. This
proves the flTSt 1neqpa11ty

For the second inequality, let 8 be da shortest simple
closed geodesic on 8§ withllength m. Let p be 2 pbint'on B
whlch is not a flxed point of any elllptlc element of G at
all. We may assume that the p01nt ie / of H 1s a preimage
of p of the projection map T : H ~ Q/G,- Form the Dirichlet
fegion D of Gin H with éeﬂter.at p = ie m/2. We.may_assume,
.Without loss of genérality, that B8 is on the imaginary axis
I of H. More precisely, B is the segment [i, iem] with two
endp01nts identified by the group G. Construct the belt B
around £ of radius d. We claim that D is contalned in B

Let A be a MBbius transformation in G so that A(i) = ie
We first observe that i and ie™ dre lying on some sides 84

and. sz'of'D respectively. By the cénstruction of D, s, 1is
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an arc of the curve p = 1, and S5 is an arc of the curve

p = em; with A(q ) = s In other wordg, D is contalned

2‘
in the strip bounded by the curves p =1 and p = ¢", Since
every point g on S is at most of distance d to the p01nt

= 162, q is at most of distance d to 8. Thus D is

contained in B. Hence we have
area(D) = area(B).
Again by Lemma 3, area(B) = 2msinh(d) gives the result.

. Remark, There is a ﬁatural isomdrphism'betweén the set'of
congugacy classes in G and the set of all closed geode81cs

in S = H/G. This map is defined by taklng an element A f 1
~in G to the shortest geodesic from x to Ax, for all x € 8.

1t is easy to check that'lt is in fact an 1somorphism._ Let

. the conjugécy class of A correspbnd torB,Ithen A is cbnjugate
~to-a hyperbolic_transformation

(T 0y,

A > 1.
0 N -

Since the square of the btrace is invariant under conjugation,

" we have

Te & = ST 4 1T
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.Mofeover, the length of B, which is also invariant under

coﬁjugation; is log k. Then a simple calculation shows

| Tr A ] = 2 cosh( 19?5“21 of By,

Thus, Ior a shortest simple closed-géodesic B of 1ength I,
we have
Ty A

cosh(m/Z) = |

*

Hence we can rewrite Theorem 2 as

Corollary 3. Let G be a Finitely generated Fuchsian group

of the first kind without paraboloc elements. Then S = H/G
is a compact Riemann surface of genus g together with the 
.Poinéaré metric. Let d be the diameter of S and let m be
the length of a + shortest 81mp1e closed geode31c on S

:If the conjugacy class of A corresponds to the shortest

'.Simplé closed geodesic; then

L inn( cosn™l( Lz A1) a = & area(n/e)
2 R . by

E cosh ]—Ezwéwl) sinh(d).
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CHAPTER 4

Automorphic Forms

4.1 gpaces of Automorphic Forms

Let G be a Fuchsian group acting on the unit disc U and
let D be a fundamental domain for ¢ with area (dD) = 0. By

_a holomorphic automorphic form of weight (-2q) for G in U we

mean a holomorphic function f(z), z € U, satisfying the func-

tional equabion
£(a(z))A(2)% = £(r), for all A € .

For any real numbers p = 1 and q > l the holomorphlc

automorphlc forms w1th

Tnfuq',p - (e —qplf anldzmnl/p ¢ w,

2 -1

~where A(z) = ~|z| is the P01ncare metrlc on U form a

Banach space AE(U,G) of p- 1ntegrable forms°

The holomorphlic automorphic forms with_

£l

Mz) g -,
4o, G zgﬁ[ (z)7F|e(z) [} <

form a Banach space AQ(U,G) of bounded forms. The integral

1s Independent of the choice of the fundamental domain D.

The supremum is not changed if we replace U by D. The spaces
N _ . _

Aq(U,G) and=ﬁz(U,G)-are of particular interest in the theory

of Fuchsian groups and Kielnian groups; in some literature
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they are also denoted as Aq(U,G) and Bq(U,G) respectivelya

The Petersson scalar product

(f, e, {; )2 qu (2)glZT aznaz,

3

exists whenever f € AE(U G) and g € Ap (U G) for 1 = p < o
with 1/p + 1/pt = 1.
The above deflnltlons also apply to G = {1}, the'trivial

group. If f € AP(U 1), the P01ncare theta series

or(z) = 3 T(a(z))ar ()Y,

- converges uniformly and absolutely on compact subsets of U,
We state three basic results on automorphic forms, for

a more detailed exposition,. the reader 1s referred to Kra [10]:

Theorem A. @ is a continuous linear mapping of A (U 1) onfto

A&(U,G) of norm < 1. Furthermore, for every f € AS(U,G), there

is a g € AS(U,l) such that
and

Whére Cq = (2q—1)/(q—1j.

Theorem B, (Bers [3]); For 1 = p < o with 1L/p + 1/pt = 1,
the Petersson_scaiar prbduct_establishes an anti-linear

isomorphism between AE'(U,G) and the dual space bo Ag(U,G)g
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Furthermore, if f GZAS'(U,G) and the linear functional I on

Ag(U,G) correspond to each other under this isomorphism, then

~Le Co= o= ‘
o el p o =l el p1 60

where |1l i the norm of the linear.function T
The situation becomes much simpler if & is of finite

type. Then Aq(U,G) = Bq(U,G), is finite dimensional, and
is called the space of cusp forms. If G has signature
(

g;nwu'vl,...,vn), then

, _ ' ‘n .
dg =dim A (U,G) = (2q—l)(g~l) + Jil[q~q/?j1,.

where [x] is the greatest integer fundtion, aﬁd it is agreed
that [g-q/w] = g-1. This formula is a well-known corollary

of the Riemann-Roch theorem.

Theorem C. If T is a mBbius transformation defined on U

(or H,_the upper half plane), then the mapping

Tq : Aq(T(U)fTGT ) q(U,G)

defined by
2le(z) = e(0(2))1(2)%, 5 € U,
is an isometric isomorphism, and '

% .
(T f,T*g)

oo T8)g,q = (£:8)g, map-1-

for all f € Ag(T(U),TGT"i); g € Agr(T(U),TGT—%)ﬁwith
1/p + 1/p = 1. |
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We end this section with the following standard bheorem:

Theorem 1., TLet G be a PFuchsian group. If for somé_p,

:]_Sp<oo)

p .
Aq(U:G) Aq(U:G):

then _
Ag(U,G) c ﬁg (U,a),

Tfor all pf_satisfying_l < p sSp! = o,
Proof. Let f € AE(U,G), then

B0 = £ 1™ ()7 jaanaz

| J/r ((2)" 4 £(2) )P P (A (2)27P | £(2) |P) faznaz|
U/ : S

< el 2o hellg, pe

1-p/p HEl2/2" . <«

Hence ”f“q,p',a s_Hqu,m,G_ a4,p,G

b2 éq(U,G) - Bq(U,G) conjecture.

It was conjectured some years ago that
(-:(-) | Aq(U:G) CB.q(U.:G):
for all Fuchsian group G and that the indlusioh map 18 contin-
uous. The siltuation is triviai when G is of finite‘type.-

Sevéral_authors, Drasin and Farle [4], Metzger ahd Rao [15],



[16], Knopp [8] and Lehner [12], have vroved (*)'for Fuchéian
'.group G of the second kind. VA_.var-iety ofrtools hés been used
in these proofs, in particular,'Abel's theorem on Riemaﬁn
surfaces and a reproducing formula. Drasin and Earle also
‘proved, using the closed graph ﬁheorem, that the inclﬁsion
‘map 1s bounded as scon as there exists an inclusion. Recently
Lehner [13,14] proved (*) for infinitely generated Fuchsian
groups under additional restrictions. Pommerenke [19] gave a
counterexample.fgr G'contaihing infinitely many hyperbolip
geﬂerators, using the technique of'Bloﬁh functions,

Instead, we shall deal with the_more general caseﬁ the
”inclusion of AE(U,G) in.A:tU,G)lfor any q > 1 and positive
integer p. Also, we assoclate to each finitely generated
Fuchsian groﬁp G with aAstandérd set of generatofs éome
intrinsiclgeoﬁetric objecté; measured in the Poincaré meﬁric;
of the surféce g = Q/G serving as an upper‘bound for the norm

of the inclusion map
. <o,
AE(U,G) c Aq(U,G).

We start with the cutting of a fundamental domain of a
Finitely generated Fuchsian group G of the second kind. As
We_meﬁtioned in Chapter 2, U/G is a closed Riemann surface with
n holes removed and.some punctures under parabolic eleménté in
G. let { l’TQ""’Tn} be the hyperbolic transfbrmaﬁions corres—

ponding to the'holes, where each Ti is conjugate to
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z v Az, A, > 1, z € H.
i i

Then the-géiE.Of_Ti is defined-as the conformal image ofrthe
imaginary axis i oﬁ B under the previous cénjugation.

Assume = 1s a parabolic fixed point of G, and T genefates
the stabilizer C_. Iet Hqy denote the Sét {z € H : Im 2z > 1)},

Then it is known that the action of ‘¢ on H, is the same as

1.
the actioa of the cyclic subgroup generated by T Dn'Hl {(Shimizu

[20]). Thus the line 4 = {z € H : Im z = 1} encircles a

punctured disc
Vv, o= Hl'ﬂ {z €H :0 { Re z < 1}

as a_nétural neighborhood of cw,

‘The Dirichlet region D of G in the unit disc U consists -
of a finite number of sides énd a finite number of free sides.
There is exactly one-side of D términating in the left end -
point of a frée side and exactly one terminating at.the right
endpoint;-these'two_sides ére'identified_by some hyperbolic
element T, of G. The opén quadrilateral bounded by these
two gides, the free side and the axis of T is called‘a
funnel. If’G has parabolic elements, D will have a finite
number of cusps p lying on Q = {z € € : |z{ = 1} which are
fixed poiﬁts of.parab01ic'elements. The regioﬁ formed by
the two sides of D meeting at p and the conformal image‘of.ﬁgr

which'is_the conformal. image of'Vm, is called a cusp sectbor.

The complement of these funnels and cusp sec tors 1s relatively
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compact in U. We call it the compact component of D and

denote it as D*. Then D consists of a compact regioa nx. g
finite number (poésibly Zero) of.éusp sectors, and a finite
number bf funnels. The decomposition of D obtained this way
is completely determiﬁed by a given standard set of geﬁerators

8 of' & group G. By the reduced dlameter d* of a group @ with

respect to a standard set of genarator 8, we mean the diameter
of D*, measured in the Poincaré metric. The axis of Ti in a
funnel is of length log A;. Both terms, the reduced diameter
‘and.log Ay, are conformally invariant and hence are given by
thergroup G. | |

 Under the projection, S = U/G is a compaét Riemann sufface
of genus g with'n disjoiht closed discs removed and poséibiy_
:_a finite number of punctures. The axes of the T, 's boﬂﬁd n
‘annuli, and the conformal iméges of 4 (which_are circles |
tangent internaliy at cusps) bounﬂ a finite number 6f‘punctured
discs. Their complement S¥ in S, which corresponds t@ﬁD*,lis
relatively compact having d* as the reduced diameter. OQur

main result is

Theorem 2. Tet G be a finitely generated Fuchsian group of
the second kind contalining no parabolic elements. Tet D be
~& Dirichlet region of G. Let {T,,...,T_} be the hyperbolic
eleménts corresponding to thé.free sides; where each Ti is
conjusmbe to 2 *-Xiz,,li > 1, .z € H. Let S*'be-the Comgact.
region bf.S - U/G with reduced diameter d*¥. Then for any
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g = 1 and positive integer p, there is an inclusion mapf
AE(U,G) Cy Az(U,G)
whose norm has an upper bound given by

éﬂ%i;igl/b c (1 + tanh(d*+b))Q+1/P

| 3
EY ey (3 (1 - tann(axb))L/P

1=1,2,...,0

where Cys Cop and b are constants.

Theorem 3. Let G bé a finitely generated Fuchsian group.

'Then for q » 1 and positive integer p, we have

P ]
£q (U,6) < 8 (U,6)

And the inclusion map is continuous.

Remarks., 1, We obtain a new, elémentary'proof for the

_Aq(U,G) c Bq(U,G) conjecture, whenever G is finitely gener-

ated, by setbing p = 1 in the proof of Theorem 3.
2. Ve find an explicit upper bound for the norm

of the inclusion maprAq

gencrated of the second kind containing no parabolic eleménts,

(U,q) < Bq(U,G),'wheneverfG is finitely

'by setting,p = 1 in Theorem 2.
3. There are two special cases, both are important
in themselves., First, 8 = H/G is éompact, The reduced diameter
.d* ia the dlameter d of 3 and the log ki terms disappear from
the upper bound. More precisély, it is |

(1 + Lanh d)Q+¥/p

C p
(1 - tanh a)¥/P

.

2
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'Second, if G is cyclic and is geﬁerated by a single hyperbolic
transformation :
ZH'KZ,}\‘:’]_,ZGH.

‘The norm then ig bounded by

¢ (3 + Lo 3)i/p

1 log A

As.a corellary to Theorem 1 and The orem 3, we have

Coroliary 1. For qr> 1, p 21, p € %, we have

1 ) o]
A, (U,0) _CAQ(U,G) < Ay (U,G),

whenever G 1s finitely generated. Furthermore, the first

inclusion map satisfies the following

elly,p o = IEI2hell o

 Where L s Aq(U,G).C-Bq(U,G).

For the reverse inclusions, WerhaVe (ef. Kra [107)

Proposition. TFor any real numbers ¢ 2 1 and p = 1, we have

Az(gjgj»c AQ(U’G) C_Aé(U,G),.

whenever U/G ig of finite type. ‘Furthermore, in this case,

the inclusion maps are all continuous.

Corollary 2. For p € Z, p = 1, g = 1, we have
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1 P, co
U = =
Aq( »G) Aq(U,G) AQ(U,G)

whenever U/G is of finite type.

This is the space of cusp forms.

4.3 TIwo special cases.

In order to prove Theorem 2, we need to study the behavibr
of the norm of the inclusion map L : AE(U,G) - Az(U,G) in two

special cases.

Theorem 4, ret Gy = <Tk r 2P Az, A > 1> be the cyélic group
generated by a single hyperbolic transformation Ty - Then for

any. q > 1 and integral p > 0, the inclusgion

Iy Ag(U,Gk) - AQ(U,GK)

holdé and is continuous. Furthermore,HLK“satisfies the'folibw—
ing'inequalities

' =y ' /a -, log 3.1/p
k (log A) s ”Lk“ = k2(3-+rjggme /p>

‘where kl and k2 are constanis, HLKH is the norm of the map Lk'

;ggggge. In this proof,,we shall use the upper half plane H
‘rather than the unit disc U. Let Di ={z€H :1< Jz| < A}
tbé a fundamental domain for G,. ILet f + 0 be in Ag(U,G).
Note that © is holomorphic in H, then so is fP for positive

integef p. Let ¢ = 8+in € ‘H., Recall the Poincaré metric on
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Cas A (L) = 1. We define

6(C) = {z € H : |z-¢] < n/2), "
u(e) = n%£(¢)],
and
By = géﬁ A(C).
A

£P(¢) = —1— [] £P(z)axay, =z = x+iy.

7 (n/2)"

“In A(¢), (2/3)y < m < 2y implies

Cpoq (v/1) A2 2 1 for allp =1, q > 1,

where
" gquz , if pq = 2.

C = { , .
pd (2/3)pq"25 if pg < 2.
ﬁThen we have |
[£(6) [P = Mﬁ_lnnga{g)lf(Z)Fﬁxdy
< b0 2 1, Coqlo/mP | (z) |Paxay
atty P4 | |
< Ly ~inPdg [ qu'z |f(z)dedy
pa %
- A
Hence

M(0)P = PO [P = 2ropy [ PPl (2) P jaznaz].

We know that Bk can be covered by finitely many translates

of Dk5 we can estimate that number as follows. InIBk, the
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farthest and the nearest points to the origin are 3)/2 and 1/2
respectively. We also know that all the translateg of Dy are

of the form
fz e mZEF < |z} <\, k41, k€ Z).
It guffices to {ind integers m and n so that

m

M= 3n/2 and AT = 1/2,

for then the sum m+n ig the number desired. ‘A.simple calcula~

Lion Shows that

m = [(log %%)/10% ]+ iﬁ

o
H

[log 2/1og X1 + 1,

where | ] is the greatest integer function. Choose
hy(x) = 3 + log 3/log x.

‘Clearly, hq(X) = min. Then

M{G)P = 2w“lc§th(x_)' gj’ yPA=2 [ (z) [P[d_z/\dij

H

llfll

4,p,Gy 7

where C is a constant. Therefore,

o . - 1/p
el o 6 = 2up M(C) = 1,0 P l\fllq PGy -

By definition,




sl ©, Gy

: _ 1/ ;
ol = ?ig Wf“;*—"—— < kghi/p(}).

:P:GK

nis gives the second inequality of the theorem, éﬁdﬁéhﬁéV'

‘h{z) is analytic in H and is an automorphic form-of weilght

-2q). Then
HhN = sup (y)%|n(z)
: A5 GK zCH |
‘and
| | T A P2 p
Hth DGy, il f v [ (z)|*¥ rarde
= [T[* (r sin 8)P97% +7PY rgrag
= ijk 5inP97%g v Llarde = log X qu,
whe re _
Kog = 4 s3inP9"%0da
' O
fwe claim that this integral converges for pg > 1, and depends

only on p and q. For pg = 2, it is obvious, since sin € is
-iways.bounded from above by 6. It femains to show that qu
‘is convergent for 1 < pg < 2.

For cOnvénience, write t.= pq - 2. Then -1 < t < 0.

Note that



fﬁ sinte a8 = IO sint(v—s)d(w—s)_% IW/E Sints do,

/2 /2 | 0

I sin’e ap = 2]™/? sinbe as.
D O

Also, the elementary fact that lim (sin €/8) = 1 implies
8—0 ' o
(sin e/e)t'is bounded from above, say by M > 0, in (0,7/2].

Hence

™ sin®e as = 2[™/? 51n% ao = 2 11w [7/2
o - 0 .

o L (sin 9/0)%" ae

oM 1im [7/2 e%0 = 2u [7/2 odg < .
E—#O £ . . ] D ‘ . .

Corollary. Let Gx'be the c¢yeclic group generated by z-H.kz,j
A >1. Then, for pq > 1, p = 1 and p € Z, the inclusion map

A

. AP -
Ly : Aq(U,GK) Aq(U,G
satisfies _
1). NL)LH = w, ag A ""7.1:
2) HLXH =0, as A = .

Remark . This cofollary suggests that to bbtain a counter-
‘example for the'Aq < By conjecture we need to have infinitely

manykwpefbolic generators ziﬂ'Anz in G with‘kn-ﬂ 1. This is
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exactly Pommerenke's approach.
Next, we consider those groups G of the first kind which =
‘contain no parabolic elements. Then 5 = U/G is a compact

‘Riemann surface of genus g, and

area(U/a) = (1/2) j} A(z)%|dazAdE]| < .
u/G

IFf G contains no elliptic elements, then by Gauss-Bonnet
theorem,

area(s) = 4r(g-1), g = 2.
The following is a well-known result.

Temma 1. (Marden [17]) There is a universal number r >0

go that gi#eﬁ any Fuchsian group G there exists a Mbbius

transformation I such that the Dirichlet region D of TaT L

(in the unit disc U) contains the hyperbolic disc B(037).
In the unit aisc U, M(¢) = A(§)[2(0)] = 2%(a-[¢ ) e()]

is invariant under G. And we have

Lemmea, 2. Let D be a Dirichlet region of a finitely generated
Fuchsian group G with center at the origin of U. TLet D* be
the compact‘cbmponent of D, then D¥ is contained in é hyper-
bolic disc B(O;R) with 0 < R < o. fhen for any § € D¥ and

for any f € Ag(U,G), we have

(1 +ltanh(R))pQ+l Hpr

p
)" = x (1 - tanh(R)) 4,P,G7

where K is a constant.




1.8,

Proof. Tet C & f € Ag(U;G) and § € U. Then P is holomorphic

in U, Define

AG) = {(z €U : |z-¢] < (l~|Q!)/2},

and

2Pq"2 ', if pg = 2,

1

G =
pa {

(1/3)P972) 3¢ pg < 2.

Then for 'all z in A(C)

o] - el <z = Jg + 128
wé have = . :

T
=(1-]¢1) = 1-lz| = ;'%% .
Since 2 = 1+ |z] = 1 in U, we obtain

3= 1¢]) = 11517 = 3(-]¢]).

Thus

(1-¢)P2 = o) (1-]z]?)PI2,

By the mean value property, we have

fp(;)“= s A{é

'fp(z)dxdy,-a _ 11l z = xt+iy.
Ta ) . .

2 7 -

Then, for all § € D*, .



.
_ M(Q)p - EPQ(l_I§|2)PQ|f(g)[p'

- gpq+2ﬁ"l(1+|c|)Pq<1—|g;>PQ”2A{£)lf<z>lpdxay

,e4n'1<1+|g|)PqA{é)<e<i—lgl))PQ‘Qaf(z>1Paxdy

A

) pa

pq AT

‘The region on which the mean value pfopefty appllied is

U A{¢), which can be covered by a disc cenbered at the
- LED* ‘ S ‘ _ '
origin with euclidean radius x = (1 + tanh R)/2. 1In other

‘words, U A({) is contained in some hyperbolic disc B(0;s)
¢en* | S
~wlth center at the origin and

| Lix . ‘3+tanh R
5 = (l/Q)ng To% = (1/2)10g m.

As formulated in Chapter 2, the hyperbolic area of
B(038) is given by | o

rd rd 8 gy (lttanh R)°

area(B(038)) = [2T[*
O Q

Temma 1 tells us that the compacﬁ component D* of D
contains a disc B8{0;r) with the universal number r as its
.radius. Every translate of D¥ will certainly coﬁtaim a reglon
' of the same area as thab of B(O3r). Since thé hypefbolic area,
of B(03s) is finite, the number of.translétes of D* needed to

cover B(0;:;s) will not exceed

e e DPLL o (2(1-12]2))P942 | 2(z) |Paxay

8 t(1e]c])PL ¢ Ig)(2(1—12|2))pq_2!f(2)lpldzAdE

(lﬂr2)2 %-(3+tanh R)(1-tanh R)"
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area(B(038))q o 2 area(B
(

O3
L [area(B(O r)%] area(B 3

(038))
o))
mere [ ] is the greatest integer function.'-ﬂeﬁce

M(e)? = 8 t¢! (1+|f;1)an{é)(2(1_[z12))m-2|f(z)|P|_dz/\d'z"|

< 87" c (1+|g| pq jj ) —Iz| YPL2 1 £(5) P |dzrdE |

= Br g (ar1c ) pq<2a§gg?§%g 51D [[(e0-la®)Pr?

Jf(z)ipldzAdzl

< or~loy (¢ PIESERRR0ISHD [(2 (- [a]®))Pe-2

]f(z)lpldzAdE[

< K {L+tanh r)yPa+l “fH

l-tanh R A,D G’

‘ where K = 16 C;q(area(B(Osr)))“lo - This proves lemma 2.

Ag a direct consequence of Lemma 2, we have

Theorem 5, Tet G be a finitely generated Fuchsian group of
the first kind containing no parabolic elements. Then the

inclusion map
T AQ(U,G)-*_AE(U,G)

ig continuous and satisfies the following inequalities:

| a+1/p
Ky = ol =k (1%&ﬁﬁgﬁi?d)

where Ky and K, are constants, d is the diameter of 8 = U/G.
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Proof. Choose a point p in 8, which is not a fixed point

bf any element in G. We may'aohume that the orlgln in U
Dirichlet region D of G with respect to the origin in U. By
the definiton of d,

D < B(03d).

‘Then the second inequality follows from Lemma 2 with R replaced
by d, and hence the continuity of I, aiso follows.

For the first ihequality,'let £ € Ag(U,G). Then

el 5 o = ,r/( “Pqif z)]pldzf\dz]
j/f e (z n qa( ;P|amz|
< HfHE o, G {; |d4AdzI

> area U/G el ®

I

q,°,G"
~Thus

ey p o = oty o g

‘where € = (Q-area(U/G))l/p'is a constant. And K = ¢~1

L4 he Proofs. -

We now proceed with the proof of Theorem 2, ILet G be.
a finitely genefated.Fuchsian group of the gecond kind. Iet

D be a Dirichlet region of G with center ét a non-fixed point
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% = 0. We shall medify the decomposition of D described in
‘section 2 to serve our purpose, We extend the compaCb component
D* to

Dy = U (z €D a{z,8) < b/2},
CED*

where d(.,.) i1s the hyperbolic distance in U determined by

the Poincaré metric, and

b = log(csec tanflE + cot tan"l2)
= log((¥5 + 1)/2)

The number b/2 has a geometric meaning; It is the distance.
of the curve {z € H : arg z = tan 2] to the 1mag1nary axis
on‘H; More pre01sely, we obtaln,Dl by extending the ' axes
over into the funnels by a distance of b/2 The compact
region D1 thus obtained has the reduced diameter alt most
d*+b. And the funnels obtained herewith are the conformal
images of | | |

F, = ={z€H :1<|z] < Ki,O < arg 7 < tan—IB},

_ underlthe MBbiusrtransformaﬁions A, 1= 1,2,0..;hu

. Suppose { assumes its eséentiai Supremumn iﬁ one of the
funnels, sayﬂk(Fk).’ As mentioned in section 1 (Theorem C),
the conformal meppings are isometric dsomorphisms betwéen_
the spaces of automérphic forms., 'Hencé we éan evaluate the

esgentlal supremum of the corresponding automorphic form of £

in ¥ . Slnce there is no danger of confusion, we can still
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write that automorphic form as £. Then'f is holomorphic in
H} and so ig P for p051t3ve integer p. Iet § € Fk“ By-the.
mean value Property of fp

£P(¢) = - [[ P(z) axay,

_ : q/z AYG :
where { = B+in, z = x+iy and A [z € H é |z-4] < n/2}.
| The reglon the mean value property applied is

B, = U A(¢)
QEFK

which lies completely in [z € H :0 < arg z < w/é}, and D,
~in this case, ‘lies completely in the strlp (€ 0 ;1< |z] < kk}.
Define
R, = {2 €D :0 <argaz<w/2}.
Note that Ry
the estimation technique in Theorem 6, h

i8 a fdnnel of 5 cutting along the axis. Using

= (3+log 3/log A

1 () )

- copies of RK,Will certainly cover Bk' Hence

u(¢)P = P9 (¢ |p = npqw L ﬂ/2)“2A{£)|f(2)lpdxdy'

- 5 -1.pg-2 -2 R
-‘2w P A{é) g /P g (ZJ!dezﬂle
= pq 2 %) |PldzAdz
{g £(z) ¥ [dzAdz ]
< jj z) 1P lazndZ |
| By o
< ZW C h ( gf VP (Z)|p]dzAd§}.

k



5l
< 2 lo n (x') ” ypq‘2|f(z)lp|dzf\d2|
- pa Ltk ' ‘ ,

, =1
(A
er e Py ) Hf“q .G

Hence we obtain

M{§) = él(3+log 3/1og kk)l/P Hf“q,p,GJ
where ' '

Now'suppose f agsumes its essential supremum in the.
compact component D, of D. Since the reduced diameter of G

is at most d*+b, we have

Dy € B(03d*+b).
We can apply Lemma 2, with d*+b in place of R,

(Q)p < K(l+tanh(d*+b )pq+l || £l|®

(I- tanh(d*+b)) qJP:
Thusr Y
* q b
M(C) < © (1+tanh(d*+b) H H
(©) 2'(1—tanh(d*+b) /P 9 .0

Since f must assume its essential supremum either in the

compact component D, or in one of the funnels [Al(Fl),..;,An(Fp)};

\fllwgs max  (sup M(¢), sup M(C)].
? i=1,2,...,n0 (;ED .QE*‘_‘i(Fi)

Thus the theorem isg proved.

To prove Theorem 3, we shall need the following well.-
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cnown result. For the convenilence of the reader we insert a

proof.

Lemma 3. Iet f'be in AE(U,G) with respect to a Fuchsian gfoup
G. Then f£(z) =~ 0 as z - p within a cusp sector at P. Moreover,

M($) is bounded within a Cusp sector at p.

EﬁEEE- We may assume, without loss of generality, thaﬁ 1o A8
a cuSp'and the_stabilizer Gim is generated by T ; 2 ¥ z+1 acting
on H. L[et D be a fundamental domain for G. Set R te be thé -
(¢ € H: [Re ¢ < 1/2}.
:Clearly, D g R.. | _ _ _ _
Ietif be holomofphic in D, so is fP. Since'f ¢ Ag(U,G),
£(g+1) = £(¢), we have fP(¢+1) = £P(¢). 1t follows that P
has-a Fourler eXpahsion in H |
.fp_(g), _ Zm ahe?;riﬂg!

. =eea
Shimizul's theorem:guaraﬁmﬁs us that for ¢ :-u+iva v. > 1, the
Fourier coefficients o
a, - IL/E fp(g)e—EWingdu_

-1/
Then ,
el = [Y2 1e(6) PP an,

~1/2 -

‘and
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fh pa- 2 'S I IL/E

dudv,
—1/2

(Q)|Pqu~2é2ﬁnv'

o .

where h > ho > 1.  Hence

a ‘K = eewnh.jh Il/g ]f(g)]pqu"gdudv

n o ' '
: o _ ho_l/2
2rnh
| = 1/2)9 i Hqu D,G?
: -2 :
_ _D pa .
Wl’leFf'e . . (hpq - hD )/(pq—l): iE P4, = 1,
_ pg- o
K, = [T dv = , ‘ .
~n _ 1og(n/h0); : > 1f pg =

o
Now let h - « we deduce that a, = O for n = 0., Therefore

Py = s aDEEWiHQ
D=1

Hence £({) = 0 as § = iw. Moreover,
MG = vPLe(g)|P = = |a_ |vPUe-"TOV
n=1 n '

inplies that M({) = 0 as v - .

Proof of Theorem 3. Iet z € D. If z lies - in Lhe compact

region Dl’ we obviously have
(%) M(z) = A(z)Y(2)] = ¢ < w,

for gome constant ¢ > 0.

Next, let z lie in a funnel. From Theorem U,

M(z)P = ¢ n ( Hfl\q 0.7
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50 (*) holds in Ghis case as well. Finally, let z lie in a
dusp sector. By Lemma 3, M(z) 2 0 as z = p within a cusp
sector at p, (%) is also valid. Hence
=.B8up M(Z) < oc,;:

z€U

and the theorem is proved. A
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