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Abstract of the Dissertation
Conformal Structures on 3-Manifolds
by
Mark Charles Wolff
Doctor of Philosophy

in

Mathematics
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1975

In this paper the existence of a strong type

of conformal structure on 3-dimensional manifolds is

[

examined, To this end the group o™ of ail conformsl
sell maps of Sn9 the standard Buclidean n-sphéere, 18

‘examined in section 2., We present various transforma-

tion groups isomorphic to Gn, We 1list a number of the

most important properties of conformal transformations

and of the group G,

Beginning with section 3 we concentrate on Gj,

e

. . . } 3
the orientation preserving half of G°. For most pur-

1poses we utilize a model of G3 whiech operates on RB,

“the one point compactification of Euclidean 3~space,
In section 3 we classify the elements of Gj according

to their fixed point sets. Using this classification




we show that every element is conjugate in G3 to a
transformation in one of 4 "normal forms.,"

In section 4 we determine the set of circles
left invariant by a transformation in normal form.
Thig refines our understanding of these four types of

transformations,

In. section 5 we give geometric conditions for

two transfoymations of G3 to commute, The primary
tools for doing this are the results in sections 3
and 4.

The remaining two sections of this paper are

devoted to demonstrating the existence of a closed,

orientable, 3-dimensional manifold which does not

admit a conformal structure. For our purposes a con-

formal structure for a manifold M is an order palr
(G,D) where G ig a discrete subgroup of g3 acting on
R§ and D is-an open subset of Eg. D must be an
iﬁvariant, conﬁected component of the set of proper

digcontinuity of G, and D modulo the action of G must

be homeomorphic to M, Thus a necessary condition for

(¢,D) to be a conformal structure for M is the
existence of a homomorphism h from the fundamental
“group of M to @* such that G equals the image of h.

In secthion 6 we construct a particular




3~dimensional closed, orientable manifold MO and
compute its fuﬁdamental group, In section 7, using
the relations established in section 5, we are able
to show that "very few" hcemomorphisms of the required
type exist. Finally we examine thosze that do exist
and show that they cannot yield a conformal structure

for M
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Section 1

Introduction

1.1 In this paﬁer we examine the group G3 of
orientation preserving cenfofmal maps of 83 onto it-
self, We then use this information to prove the
existence of a 3-dimensional closed, orientable
manifold which does not admit a strong type of con-
formal structure as explained below,

The paper is divided into 7 sectiogs. Each
section is Ffurther divided into subsections. Theorems
and definitions are referred to by the subsection in
which they appear, so that definition 2.3 is the

definition given in the third subsection of section 2,

:1.2 The material in section 2 is primarily backe
ground material. The reader is expected only to be
familiar with the concept of a differentiable manifold
and basic related structures, Many of the definitions
in section 2 can be found in an introductory text on
Differential Ceometry such as Hicks [7]. Most of the
heorems, propositions and corollaries in section.2

a ibe found in the literature in some form. They

come from a wide variety of sources (both Ford's




Automorphic Functions [ 4] and Lehner's A Short Course

in_Automorphic FPunctiong [ 8] provide much of this

of dimengion 2,) For this reason

material in the case

we either give short proofs whenever possible or list

references when this 1s not possible.

In particular we carefully define the group

Fasiecazr

" of 211 conformal transformations of the standard
We denote the

Riemannian unit n-sphere s? to itself,

—

orientation preserving half of g by G, Four other

models of G are also presented, Each model is & group

of conforral transformations of a Riemannian manifold

onto itself. The most important model for our purposes

is obtained by putiting a Riemannian metric on

R® = RO ) {3}, the one point compactif of

_Rn. The metric is chosen so that stereographice

n n . .

projection from S° to R is conformal.

One of our major tools for understanding the

~model of &% is Liouville's Theorem. It states that

is generated by translations, dilation, rotations

nd inversions of R®, We prove four important

orollaries to the theorem which describe the structure

Gn and the geometry of a conformal transformation

——— .



The remaining three models of G? which we

describe all act on a manifold homeomorphic to Dnﬂp

open unit ball in Rn+1, Tn these models G" is in

g

fact the full group of isometries of the Riemannian
manifold, For the model acting on

+1 ntz 2 C s .
H = {(xige..,xn+2)|i§2 x; = xy - 1}, this implies
that G" is isomorphic to a subgroup of index 2 in
S0(r+1,1), PFinally we define the notion of a discrete
subgréup of Eﬁ.
1.3 Beginning with section 3 we restrict our
attention to the group Gj, In this section we prove
two theorems about the ngmodel of GB. The first
theorem states that every element of G3 hag 0, 1 or 2
“fixed points or an entire circle of fixed points,
vThe second theorem gives normal forms for the elements
of G° according to the cardinality of their fixed point

t. For example we show that a transformation with a

rele of fixed points is conjugate in G3 to a rota~

There are two important results which we use
‘the proofs of these theorems. One is a corollary
jouville*s Theorem which shows Tthat an element of
;hloh fixes an (n-1)-dimensional hypersphere must

he identity. This allows us to determine the
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action of a transformation in G3 by restricting our
attention to any invariant 2-sphere,

The other result is a lemma in section 3.
Given any two 2-dimensional hyperspheres S1 and SZ in
Eg the lemma establishes the existence of an element
T in G3 shich maps Si onto 82 and allows us to preage
sign the value of £ at any 3 points on 81, This gives
ug great flexibility in conjugating a given transforma-
~tion into another one which is more easily understood,
We end section 3 by defining a transformation f of G3
to be parabolic if it has one fixed point, loxodromic
1f it has two fixed points, elliptic if it has a circle

of fixed points and bielliptic if it has no fixed

One of the important properties of conformal
maps of R™ which we establish in section 2 is that they
preserve the family of k-dimensional hyperspheres in

R for all positive integers k € n., We will use the

erm circle to denote both orindary Euclidean circles
d extended lines thru w, This property then implies
ﬁﬁccnformal maps carry circles to circles, in

'ion 4 we examine which circles in 87 are sent to

“élves by elements of GB. Given a transformation




f in G3 the number and relative location of any f-
invariant circlés is the same for any conjugate of f,
Thus it suffices to determine which circles are
invariant for transformations in one of our normal
forms, Section 4 ends with =z thedrem which describes
the set of invariant eircle for parabolic, loxodromic,

B

elliptic and bielliptic trensformations of RB in

normal form, These results are particularly important
in the biellipitic case, for they give us a much clearer
description of the action of a bielliptic transformation

than we get in section 3. A

1.5 In section 5 we determine conditions for two
‘elements in G3 to commute, Since this property is not
,éffected by conjugation in G3 it suffices to give
onditions for a transformation to commute with a
*given transformation in normal form. Many of our
‘esults are ohtained by repeated applications of the
dllowing gsimple observation: If S is a f=invariant
t then fg = gf implies that fg(S) = gf(3) = g(8),
g(8) must also be f-~invariant. For our purposes
two most important examples of f-invariasnt sets
fﬁhe fixed points of f which we examined in

ion 3 and the f-invariant circles which we

néd in section 4, The importance to this paper

(Nt




of understanding when two elements in G3 commute is

clarified in subsection 1,7.

1.6 In section 6 we construct a closed, orientable

3-dimensional manifold MO, In section 7 we will show

that MO does not admit a conformal structure. The

mani fold MO is a torus bundle over a circle, Using

the exact homotopy sequence of a Tiber bundle we

compute Hl(MO). The group Hl(MO) has a presentation

consisting of 3 generators, a, b and ¢ and the 3

relations [a,b] = identity, [c,b] = identity and

[a,c] = b,

1.7 In section 7 We define the type of conformal
structure that we wish to consider and show that My,
;as constructed, in section 6, does not admit such a

tructure., We will define a conformal structure for

manifold M to be a pair (G,D) where G is a discrete
bgroup of G3 which is invariant and freely dis-

’oQﬁinuous on the set D in R2 and such that D/G is

meomorphic to MO.

a

The first lemma we prove in section 7 states

ecessary condition for (G,D) to be a conformal

cture for a manifold M, Necessarily there exists

momorphism from Hl(M) to G2 with image G and guch




that D is a maximal connected G-invariant component of
the set of discontinuity of G, This lemma clarifies
3

the importance of knowing when two elements of G
COMMUEe .

Broadly, we prove that M, has no conformal
gtructure by first showing that there does not exist
g 1l=1 homomorphism from HI(MO) into GB. This implies
that D cannot be simply connected., Next we show that
if (G,D) is a conformal structure for MO then the
limit set of G (= {x, € E§]§i2 gk(x) = Xy} where
{gk};zl is any collection of distinct elements of G
and x is any element of RB) cannot be finite. If it
‘were finite D would ve simply connected or G/D would
not be compact. The brosf of the theorem 1is compieted
n two steps, First we show that any homomorphism
hini(MO) + GO must éarry b to an elliptic elehent of
'finite order., Finally we prove that h{b) of finite

rder implies that the limit set of G is finite,




Section 2

Definitions and Background

In this section we define what we will mean by

2.1
a conformal transformation on R and on various sub-

manifolds of Rk. This will enable us to define Gn,

the group of all orientation preserving transformations

of 9 onto itself as well as a number of other trans-

formation groups isomorphic to ¢™,  Tet X be a smooth

n-dimensional manifold, For each x € ¥ let T(X,x) be

the tangent space to X at x and let I(X,x) be the set

of all inner products on T(X,x).
A Riemannian metric on X 1s a

Definition:

map, {( , Y5 from X to the union over all x € X of

(X;x) such that for each x in X (, y{x) is an element
f I(X,x) and for any two smooth vector fields Vl and
on X,_(Vl,Vz)(xJ is a smooth function from X to R,

“set of real numbers. The pair (X, ¢ , }) is called

Riemannian manifold. It will be necessary to dis-

nguish between different Riemahnian metrics on the

¢ manifold X, This will either be done by using

erent shaped brackets, (e.g., { 5, Y(x) and

(x)) or by assigning different letters to the




various metrics and writing M( , )(x) or P( , }(x).

2.2 Definition: Two Riemannian metrics, { , )

and [ , ], are said to be conformally eguivalent if

there exists a ¢~ positive real-valued function F
defined on X such that (v;,v,)(x) = F(x)s[vl,vzj(x)

for all x € X and for all vy,v, in T(X,x).

243 Definition: Given a smooth manifold X and a

smooth map f from X to a Riemannian manifold

(Y, { ¢+ )) the pullback of ( , % by Ff, written f*( s Vs

{(or simply %#{ , ) when it is clear which function is
involved) is defined by the equation

f*(vlgvz)(x) = (f%(vl),f*(vz))(f(x)) where fg is

the differential of f,

An immediate consequence of the definitions

ff( s » and f, is that £*{ , ) is a Riemannian metric

Definition: A smooth map f from a Riemannian

fold (X,{ , )) to a Riemannian manifold

1) is said to be a conformal map if { ,

.”[ . | are conformally eguivalent i.e., if there
8.2 smooth positive real-valued function F

"d‘dn X such that for all x € ¥ and all ViV in
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T{X,x}, (V19V2> = F(X)‘f*[\rlsv‘g](x)

= F(x)e[Fvy  £v, (F(x) ). I F(x) is identically
equal to 1 and £ is & diffeomorphism then £ ig said to
be an isometry, and (X,¢ , Y and (¥,[ , J) are said

to be isometric,

2.5 Lét ¥ be a submanifold of n-dimensional
Euclidean space, B® (n > 1). Let f be any smooth
real valued Ffunction on X, The tangent space T(%,x)
is spanned by the vectors ei(x),..,,en(x) where

o (0)(£) = (31/ax;) (%),
n .
Definition: Given v, = 2 a,g:{®) and
172

n
Z Bie;(x) in T(X,x) then the gtandard
j=1 L1

i

jemannian metric {(or the Euclidean meiric) on X is

Let S be the unit-sphere in R™1, We will

ote the group of all conformal homeomorphisms of
‘standard Riemannian metric) onto itself by G°
2}, The subgroup of all orientation preserving

ments will be denoted by ch,

Let R? = R? |J {»} be the one-point compactifi=-
of R, Let R™ have the differentiable structure

atible with the coordinate charts determined by




11

W

the natural inclusion, inc, of R™ into R and the

o

inversion map, i, from R™ into R" defined as follows:

o2
. (1/121 Xi)'(xlsoensxn)i(Xls‘eepxn) |
1(x19...,xn)m £ (0,...,0)

oo (Xino--vxn)z (0yeees0),

——

These coordinate charts give us a basis for T{R",x)

for all x € R, For x € EE - {0} let

yj(x) = inc*(e(x)) and let éj(i(x)) = i%(e(x)) for
j = 1;...9n, then {Yl(x)’°"'7n(x)} is a bagis for
T(R, x), x # « and {61(X)g...,6n(x)} is a basis for
:T(Eﬁpi(x)). x £ 0,

»8 In this subsection we define a Riemannian
;étric E( , ) on EH. In subsection 2.16 we will
sresent an orientation-preserving conformal diffeo-
rphism from (EE,E( ' )) to (Sn,sﬁandard Riemannian
tric). Such a map implies that the group of con-
rmal {orientation presefving) homeomorphisms of

e’

E( , )) onto itself isisomorphic to GV {respec-
ely G), We will label both of these groups EH

ectively G") and refer to them as the *S"-model"
'“?;model" when.we wish to distinguish which space

ansformation is acting on,




For y € R let |lyll be the standard Buclidean
norm of y, i.e., Mygseaeey )l = (Y% + ... Yi)%.
Let y be a C° function from [0,] to [0,1] such %that
g(t) = 1 for t £ % and g(t) = 0 for t > 2, Define
g1+8, from ;ﬁ to [0,1] by:
g(lxm)//e(=ll) + g(Ii{x)|)
gUIL(x Vg Qixll) + (1L (x)).

{glggz} is clearly a partition of unity for EH with

i

gl(X)

and  g,(x)

s

respect to the cover $; = {x ¢ R™:ix] < 2} and
82 = {x € Rnsuxﬁ > 2}, (By a slight abuse of notation
we let |loll = o and have « € 3,.) Note that
gl(i(x)) = gz(x) and gz(i(x)> = gq(x), For
n
v, = Elakﬂjyj(x) (k = 1,2) let

. n
19V?_](X) = Z alsj°a2,3 ¢ For V\TK =

jzl Bkajéj(X)

a

n
by
J=

1

: . n
1,2} let (wlsz)(x) S jgl 51’382’39 Mnally we

Examples of elements in the R? model of G

'formality of these transformations is proven

12
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below,

1. Translations T(x) =

o

for some fixed xj in R? - {eol,

2. RO'ta,tiOI”}x R(Xiﬁ‘.ﬂ?:{n)

n

n
= (jél rivj.xrgg'.’jzl rnijj>
and R{es) = oo
T
where iél ri,j'ri,k = ﬁj,k For i = 1;,..,40,

..{oo}so<'t0<oo

i
o
<
>
b
')}
o v]
o

3, Dilation: D(x)
D(e0)

it
&

Inversion: I (x) = %/ MK, % # (Oyeras0),00
In(O,.oegO) = ® and
I} = (0;0.0040).
remaxrk that inversion is just the extension of the
version map defined in subsection 2.7, (We will
:press the subscript from In whenever the dimension,

clear or arbitrary.)

In this subsection we verify the conformality

P

he above transformation on (Rn,E). We note first

R

 ﬁ is in fact an isometry of (Rn,E( . )),'.For
in T(RY,x)
2)(3{) = gl(X)"[Vlng](X) + 52(¥)<V1EV2>(X)o

-)) = 63(I(x)) and I%(éj(x)) = Yj(I(x)>
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therefore E(vl,vz)(x) = gl(X)(I%(Vl)oI%(V2)>(I(X))

+ 82(}{)“[1*("\"1);I*(V‘?’)](I(X)) .
We also have gq(x) = gz(I(x)) and gz(x) = gl(l(x)),

therefore E(vl,vz)(x) = gzkl(x)(I%(Vi),l%(vz))(l(x))

ey (T[T (vy) Tulvy) 1(1(x))
= E(I%(vl),lﬁ(vg))(I(X)).

We next observe that restricted to ;; - feo] B( , )
is conformally equivalent to the standard Riemannian
metric on R™ (which we denote by { , )(X)), 1.8
1nc:(Rn,{ y YY) - (EH - {e},E( , )) is oonférmal. We
“compute: |
(visvo) = gy (X)[vnv,J(x) + gu(x) vy, vy)(x)
= g, (x)ine™ 1) (vy ), (ine™ ) (v,) (%)
g, )/ Ik Y« (Cine™ ) (v) (ime™ ), (v,)) ()

= (g () + (g ()1 )

(ine™ ) (v ), (ine™d) L (v, )y (%),
Since = 1g a fixed point for T, R and D the
nformality of these maps on (Eﬁ -~ [, E( , ))‘is
?alent to their conformality on (R, ¢ , )). T
Rfare igometries on (R™,{ , )) since with respect

'(x),....en(x)} the matrix for Ty is the identity




matrix and the matrix for R, is R so that
(R*(ei(X)>,R*(€j(x))> =6y 5 = {ej(x)ey(x)). With
respect to this same basis D, hag the matrix t Times

the identity matrix therefore

- 2 o
(D%(ei(x)).D%(ej(x))} = 8,5 To complete the
verification of the conformality of Ty R and D it is
only necessary to congsider what happens at infinity.

Since I“iRI(x) = R{x) for all x in g?
E(Ry (85 (=) ) R (85() )e)
= (LRy(v; (00 )y TuRy(v5(0) ) (0)

n n
= T > e h, - O
_ kzi rk.l 61(m)’k§11k5363(m))

= 5igj = E<&i(m)96j(m)>-
Similarly

E(D, (85 () )1 D4 (05(=))) ()
- E(I%(DI)%(yi(O)),I%(DI)%(Yj(O)))(O)

since T is an isometry)

B(1/5v4(0),1/8v5(0) )(0)

2 o 4 P

6%, o = 1/6%8(8; ()1 65(=) ),

show that T is conformal it suffices to consider
case where x5 = (1,0,...,0) as any other transla-

‘can be conjugated into this one by using

fions and dilations, As before we have
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E(T5 (85 () )2 (55(0) )) (=)

- se(r7ter), vy 0o () 1 000))
A computation ylelds

leTI(Xistvnsxn) = 1/(UXH2 + in + 1)

2
i '(Xl + xll pxzye.oyxn)
At x = (xlgoagpxﬁ) the matrix for (I"J'TI)F;,r with respect
to the basis {yi(x),,oapyn(x)} is

(Ix)? + 2%, + 1)7%

2
1+-2x1+‘2x1uuHxH2 mZXZ(Xl4”l)... m2xn(x1-k1)
'»2x2(x1%~1) Htz-2x§4»2X1%-1.,. ~2x2xn
w2% (%, + 1) “2% X Nx - 2%° 4 23, + 1
n'"1 " nt2 *°° n "7l

¥ = (0,,..,0) this becomes the identity matrix.
HE - ‘-1 ' mi 7

herefore B(1™T1),(v;(0) ), (1 TI)%kyj(Q))(O)

E(y; (0),v5(0)) = 65 ;= E(5,(0),6,(0) ).

is completes the verification of the conformality

5, T, R and D.

The importance of these examples of conformal
of (Hn,E( . )) is made clear by the following

em due to Liouville (Blashke (21D,




N

—r

Theorem: (Liouville) The RM-model of G" is generated

by ‘translations, rotations, dilatlons and inversions,

We have four useful corollaries to this theorem,

2,12 Corollary: ¢t = g U IG™ and therefore G"

. . . n
iz a normal subgroup of index 2 in G .

Proof: I is the only generator which reverses

ey

orientation and I Inln

We generalize the usual notion of a "k-
dimensional sphere" in gﬁ to include extended
k-dimensional affine linear subspaces plt U fe] in
;ﬁ (k = 1,.,.4n=1). With this definition of k-

dimensional sphere {or simply k-sphere) in R™ we

get our second corollary to Liouville's theorem,

i

2.13 Corollary: Every element of 6" preserves the

—

Family of k~spheres in R (k = 1,..,,n=1),
fggggi: For translations and rotations this follows
immediately from the fact that they are Euclidean
sometries with a fixed point at , For dilations
:hd inversion it suffices to prove to corollary for
-1) dimensional spheres as the lower dimensional
_phnres can be written as the intersection of such
We first consider the action of a dilation

Let S be a Euclidean (nml)mdimensional

here of radius r centered at the point x, of the

17




r, D(S) is then of the form

i

form S = {v € Rn|Hv‘»x0H

D(S) = {keV € R|IIv-x4ll = r} (for some k > 0) which
equals {kv ¢ Rn]Hkv«-KXOH = kr}--the (n-1) dimensional
sphere of radius ker centered at k»xo, Next consider

a (n=1) sphere P which contains e, P ig of the form
P {ve Rn|(v,m> = p} U {=} where p € R, { , ) is
standard euclidean inner product on R® and m is a
fixed vector in R" of length 1, Transforming P by a
dilation D we get D(P) = {k.v ¢ Rn|(v,m) = p} U {ee}
(for some k > 0) which equals {k-v € R|({kv,m)
= kep} U {»}. This is also a (n-1) sphere, thru
2 and the corollary is established for dilations,
Note that for translations, rotations and
dilations e 18 & fixed point and therefore "finite"
(n~1)-sphere (i.e,, gpheres not containing {»}) are
“carried to themselves by these transformations,
$imilarly extended spheres (i.e., spheres thru o)
are.carried td themselves, However the inversion In
interchanges 0 and =, This explains the necessity
r enlarging our notation of a sphere to include
extended" spheres, It also necessitates separate
éﬁsiderations for spheres which contain 0 in the

of of this corollary.

Let 8§ = {v ¢ Ranv-nxon = r} as above, If

18
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0 F s then a straightforward calculation shows that
In(S) is a (h»l)msphere with center

xg = (1/1x, 12 = v%) e x, and radius (lix, 1% = 1)/(IIx, 12 = £%)
0 0 0 ‘ 0 0 ¢
S will contain 0 if and only if x5l = r.  In this

case S = {V[Hvil2 = 2{v,x)}, For all v € 8§ -« {0} we

zolly = /I IE 2/ g 1)

= (1/(HVH2°HXOH))°<VnX) = 1/(2HXOH). In(S) nust
therefore be the extended sphere

v € RMCvyxy/lixglly = 1/(21Ix,11)} U ],

Finally we consider the action of I, on

obtain (Ih(v),xo/|

the"*extended® sphere P = {v € Rn|(§,n) = p} {J (=} as
above, If p = 0 then clearly In(P) = P asg

(v/llvllen)y = (1/[vi)e{vym) = 0 for all v € P = {0,e},
If p # 0 then an easy computation shows that I(P)

is a (n-1) sphere with center n/2p and radius 1/U4p, ged

2.1@ - Corollary: Given any two k-spheres Zl and 22
in ;H (k = 1,.00sn=1) there exists g in G such that
g sends I, to Z,.

Eroofs It suffices to assume that 2, is an extended
?lane thru the origin. 1If 2, is also such & plane
eh g can be taken to be a rotation R, If 2; is an
:énded plane which does not contain the origin let
T where T is a translation carrying some point

5. to the origin, If « is not an element of 21




let T2 be a translation sending a point p in Xl to
the origing. IT, will send Zl to an extended plane
and we are reduced to Tthe previous case,RTITz however,
reverses orientatiorn. Therefore we let g = IRTIT2

(note that I maps L, onto itzelf). qed

2,15 Corollarys Let f be in G" and let ™' ve
an {n-1)~sphere in R" such that f restricted to
51 55 tne identity. Then

i, f €GP implies that f is the idéntity en all of

;ﬁ and

ii. f.I € G implies that there exigts ¢ € G such that
gfg”l = 1,

Proof:
'anl divides Eﬁ inte two disjoint open, connected

regions Rl'and Rze Since f is orientation pre-
serving, in case 1,1t maps each of these reglions
onto itself, Let p be any point in one of these
regions, say R;. Iet S and S' be lespheres which

intersect En"l

orthogonally and such that

S NS = {p,q} where q € Ry, We will show that
S and S¢ must cach get mapped to themselves
implying that {f{p),f(a)} = {ps,al}. Since T
sends Ry to itself this means that f(p) = p and

proves our assertion, By corollary 2.13, £(S)
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must be a l-sphere, By the assumption of this
corollafy st - rs) 0™t By the con-
formality of £ £(S) must be orthogonal to Zn°1.
There can only be one l-sphere intersecting Zn“l

orthogonally at S N Zn“ig thus F(S) must equal Se

i

Similarly £(S°') St. Note that proof of the
equality f(S) = S does not depend on S being a
i»sphere and would work for any k-sphere

(k = 1,25...sn=1) orthogonal to Enﬂl.

i
|
o

By corollary 2.14 we can find g € " guch that

n-1 1

g maps Zn-l to ST, egfg "I is the identity

on ™1 thererore by part i above gfg“il = jdentity
or gfg™t = 171 = 1, ged
.16 An important consequence of corollary 2,14 is

the existence of a conformal diffeomorphism from

"Rn,E( . )) to (8%, standard Riemannian metric).

onsider R" and S as n-spheres in gl By corollary

FEE———Y

T ey

.1l there exists a conformal map of-(Rn+i,E( , ))
 §ng (RngE( ‘ )) to &E:LE( ; )). As we obgzerved
éubsection 2.10 omr:._Rn'i"i - feo} B{ , ) is conformally
ivalent to the standard Riemannian metric, There-
";(Sn,E( , )) is conformally equivalent to

étandard Riemannian metric) and the map of

ollary 2,14 restricted to R (as contained in



L.

Rn+1) establishes conformal equivalence between
(Rn,E( , )) and (Sn,Standard Riemannian metric),

The remainder of section 2 ig deveted to presenting

three models of Gn. In each case GO will he

described as a group of isometries acting on a space

diffeomorphic to

ntl - il
H = {(xi,a,n.xh+l) € R 1X 5 > 03,
2,17 In this subsection we extend the action of

e on RY to gV

in a natural way. Using Liouville's
theorem we must only define this extension e, for
translations, rotationsg, dilations, and inversion.
Let 7, R, D and In be defined as in subsection 2.9.
We set

1 en(T)(Xi""’XH"}{n‘?l)

= (T(Xl““”}{n)”xmwl)E
e, (T)(e) = co;
en(R)(Xlsonoexﬁyxn+1);

= (R(Xialentxh)ﬁxn¢1jk

e (R) () = w;

fte
et

[
-

en(D)(le LI ) ::xrly Xﬂ‘f-’l)
= t(xlp..asxnpxn+1)s

Whel"e D(Xl,,.eﬁ}{h) = t(xibonnoxrl>§

e (I) = T4 v



Note that en(Gn) (respectively en(Gn)) is a subgroup
o

e Aeas

of Gn+1 (respectively Gn+l).which keeps invariant R

ana HY'Y,
In fact en(Gn) is the maximal subgroup of
Gn+i with this property. If f in Gn+1 preserves R

then let fo be I restricted to R and let g = en(fa)@

1f i8 the identity on R" and is orientation

e

5"

. +
preserving on R 1

L therefore by corollary 2,15 g °f

Nt

is the identity, i.e¢., £ = g ¢ en(Gn), Using

corollary 2,15 it is also clear that e, is an injective

e 25

homomorphism from G (respectively G%) into g™t
(respectively G“+1). We will refer to en(Gn)

(respectively e(Gn)) as the H''emodel or gP

(respectively ¢™),

2,18 In this subsection we define a Riemannizn

metric P{ , ) on Hn+1 and show that the Hn+1omcdel

of ¢ is the full group of isomebries on (}n+1,P( . )),

Qggggggions Lot H™ nave the standard differentiable

structure of an open subset of RVTL, Let

{Qi(x)s...,en+i(x)}be@1basisfbr Pyl

n 2.5, P(eg (x),e5(x) )(x) = (1/x,,4)%5; 5 where
= (xi,,.u.xn+1). P{ , )} is usuwally referred to as
n+1

s X) as defined

2 Poincare metric for H




Propositions The Hn+1mmodel of G" is the full group

of isometries of (Hn+1,P( ; )>¢

The proof of this proposition is quite lengthy,
For this reason we do it in two subsections, 2.18 and
2,19, 1In this subsection (2,18) we show that en(gﬁ)
is a group of isometries of (Hn+1,P( R ))e In 2,19
we show conversely that every isometry of (Hn+1,P( ' ))

is in en(Gn), .
To show that en(Gn) ie a group of lsometries
of (Hn+1,P( . )) it suffices to check that en(T), en(R},
e, (D) and em(l) of subsection 2.17 are isometries,
Note that P( , ) is conformal to ¢ , ) the standard

Rnﬂ‘0 We have

Riemarnnian metric defined on all of
already observed in subsection 2,10 that translations
and rotations are isometries with respect to { , )

therefore for all vy,v, € ot

y X}, where
= (xlpesapxnwi.i)’ we h&lvei
'(-:Vipvz)(xissnagxn'+1)

(l/xn+1)2<vluvz)(x)

:: (?L/xmj_)?’(enT)%(vl); (en’P)%Vg)((enT)(X)>

o

((e @) ulvy )y (e D) lvy) ) (e T)(x)),

24
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P(Vlgvz)(}{l! ® a’.gxl'l“i“l)

= (1/%41) (v 0 V) (%)

it

(1/%01 )¢ e R (v ) (0 R (v,) Y (e, R) ()

B

P((enR)%(vi),(enR)%(vg))(enR(X)>o
Similarly. for en(D) we have
P(vlﬁvz)(xl""’xn+l)

(I/Xn+1)2<vivvz>(x)

|

[H

(1/%p01 )5 (1/6)% (e D) (v )y (e, D) (v,)) e, D(x) )

i

(1/t‘xn+1)2<(enD)-ﬁ(Vi)r (enD)es(V2)>(enD(X)>

H

P((e,D)uvys (e, D) v, ) (e, D(x) ),

*inally en(In) = T A simple computation ghows

n+l’®
hat <(IY’1+1)*(V1)’ (Il’l'i'l)""'(vz))(x)
(1/HXH4)(V1,v2)(x). Therefore we have
::.(viﬁvz)(xlv L] esxn“i_,l)

= (1/%,,1)° (v 07, (%)

125,102 (T ) avy s (Tpgg ) avpd (T, (1))
1/(Xn+1/1ix512)2- <(In+1 ).;:-'Vi $ (In+1 )*V2> kIl"}.‘i“i(X))

.:.P((In'%-l )"“‘“Vl’ (In+l )*V2><In'i-i (x) )'
proves that en(Gn) is a group of 1somelries of

P(y))

+




2,19 In this subsection we show that any isometry

g of (Hn+l,P( A )) is in en(gﬁ)e We will use the
Ffollowing theorem (See Helgason [5] lemma, 11,2, p, 62),
Iheorem: Given a connected Riemannian manifoeld M and
an iscometry f:M - M such that for some m in M f(m) = m
and £,:T(Mm) -+ T(M,m) is the identity then f is the

identity on M,

For any isometry g of (Hn+1,P( . )) we will
construct an element h of en(Gn) such that f = hg
satisfies this theorem. Thus T = hg = identity or

wl ~n

_ h
= h "€ e (G),

Assume first that g i¢ orientation rreserving,

et g(0,,..,0,1) € (ryseevsr, . 1), Since r.o., > 0 we

1+ 1
an define the dilation h; by the equation

1 s eeeniy ) = (U)o (g eniyx, 0 ) and the
ranslation h, by the equation

cXi""’xh+1) = (Xl " (rl/?n+1)'°"’th"(rl/fn+1)°xh+l)“
?1%)(0powey091) = (04..050,1) therefore (hzhig)% is
rotation of T(H“+1,(o....,o,1)), In order to

Lify notation let Xg = (0,,..,0,1) and

)y = T, If T(Qn+1)(XO)) * €n41 (%) then T has

1% representation relative to the basis

-)}...,en+1(x0)} of the form

26
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0

R * where R is a rotation of the subspace
O
1

0 o0 O
T(Hn+1,x0) gencrated by ‘”1(Y )portgc (XO)} Let

RO be the rotation of R™ with matrix representation R

relative %0 the standard basis of R°, Let

hy = e (RO'). Tet h = hyhohy and let £ = hg, I

clearly has a fixed point at ¥g and 1% the identity

Ol T(Hn%LsxO), Thug g = Ut g e (Gn}

~1

In fact
h ™ € en(Gn)g

We next assume that Y&GﬁAl(ﬁ )) # Cnﬂl(\ ),
To complete the proof in this case we construct an
- 5 SRR . . i
element k of e (G7) such that (khzhlg)%Kun+l(xo))
1(? } reducing thisg case to the previous une,
'Let 1; and 1
el

o be parametrically defined lines in

such that 11(0) =2 12(0) i P
:.1)45-(0) = en,%_l(:’{o) and (12)%(6) = T(En{qi(xo))e
n+1(x ) and (en+1(xo)) are linearly independent
n 11 and 12 will determine & Z-plane P in Hn¢1
sing thru ¥ge 1T en+1(1 ) and (@n+l(xo)) are
arly dependent redefine 12 by the eguation

(Os000s0,stsl). 14 and 12 will again determine

ane P as above, Without loss of generality we can

me P = {(0,...,0,%,¥) € Hn+1}. We will now




construct k¥ so that k(xo) = Xge k € en(Gn), (k)y is

a rotation of the subspace of T(Hm"l

gxo) determined
by P and is the identity on the complement of this

subspace and Iy Tenp1(Xg) ) = epaq (%g)e Lot

bt

r:R" o+ R? be defined as before by the equation
I‘(Xl,.ewxn) = (Xlaoaogxﬂmig“xﬂ) arnd I‘(O&‘)) oes,
Let (Si"""snnl”sn) = (1,,,Li1,»1)9 theiw@iﬁh respect
to the standard bases for T(RD,x) and T(Rnyr{x)),
(x # o), (r,) has the matrix (r,). . = 8,6, ..

A ST A
Clearly r is an isometry on R" - {«}, The following
egqualitlies demonstrate that r is an isometry at e« as
well; E(r.ﬁ_(éi(“’))9}:"-3,;.(6;]("’:’)))(%)

w1

E(I,}i_r%(yi(o)),Iﬂ;x‘%kyj(o)))(ﬂ) (since r = I™'rI)

E(s; 065 (2)y556 () J() = 6,
ZIE(éj(m)Péj(M)>(w), A similar argument shows Lhat

nFl n+i

He transformation rt':R -+ R defined by

(XI{) 2 s 0 ,Xn, Xn"‘l"i) = (}:1 Feow ,Xnml‘gm}{ngi{n*’i) Bnd
(») = « is an isometry of (Rn+l§E( ‘ ))a rE

i

tricted to R equals r therefore r' must egual

r), Ve define two more naps. Ta, a translation in

and Da' a dilation in Gn, which we use to define

leen a E -H. let qa'(le e o d 93{1_1) = (Xla '] ;ai\'nml gxri“‘gl,)

| . N2\ ,
Xilﬂlﬂlxn)m (1/(1.{”& ) )‘(Xlﬂvatﬁ}j‘-rl)o Let

prly o ). An algebraic computation gives

(T
T a DT
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us
ka,(Xl' LI} ',Xn"';"l)

+1
= ((1+2)%/( 3, 2

2
1 iuZXna*i"a. )(Xl’uo'v}rﬁ”lgagxn’xn'?l)

4

1

+ (Oso-cvoﬁ”aso)n
Clearly ka(xo) = ka(Og,..,O,l) = X5k, is the
compoesition of two iscmetries, r* = en(r) and
-l '

e (T“ID I. D

Ty DI D, ), and therefore is itself an

1.1

3.

isometry, (Note that en(T; D; InDaTa) is an isometry
as it is conjugate to the isometry en(ln) = In+1J
The proof of this part of our proposition is completed
by showing that for an appropriate choice of constant
aomf R (k) = (kao)* has the desired action on

n+l 1 1InDaTa))%

,XO). We compute (k_)y = Ken(r’l‘a D,

-1 ) ; .
w e (I )ge (DT )y or equivalently

?2en(r)*en(DaTa)
. (r))”l(k Jo = e (DT )“19 (I )y,e (D.T_) In
\: 11 * a’¥* n*taa’* n'‘"'n’*n‘vaa’¥ ;

. : - 2 A
matrix form (&jQEDaTa))%(x))i’j = (1/(& +1) )'ﬁl,j
for all x in ROL - fa},  Thus we get

-1 m
n(r))* '(ka)*(xo) = en(In)*(Dala(XO)) or

givalently (ka)%(xo) = en(r)%'en(In)%kDaTa(XO?)“

r), and e (I )y are easily computed and we get
Jalxg) )i, 5 = 8y, for
.f {(n"lsn“l)r(nmirn)n(nvnml)s(nrn)}.




((ka)*(XO))n;l,nmi = ((ka)%(xo))n’n &= (azmi)/(a2+l)

and ((ka)*(xo))n,nnl = "((ka)%(xo))nmlﬁn

= 2a/(a+1), For all a € R -1 g (a?1)/(a%+1) < 1
and ((azml)/(a2+1))2 + (2a/(a2+1))2 = 1, i.e,,
restricted to the hyperplane P of T(Hn+1gxo) (ka)*(xo)
is a rotation thru the angle arccos ((agml)/(az+1)).

Thus for an appropriate choice of a. € R

_ 0
(kao)ee<’f‘(€n+1(’<o))> = (104 (T{ep4q (%)) = e, (x,)
and we have reduced this case to the one in which
T(en+1(xo)) = en+1(xo). Finally if g is not

orientation preserving then e_(In)g is an orientation

n
: preserving isometry of (Hn+l,P( , )) therefore

e

(en(In)g> € en(Gn) and g € en(Gn).

2.20 For the sake of completeness we describe

(e

another model of G" in this subsection which is

almost identical o the H'"lomodel. Let

bﬁ+1 = {x ¢ Rn+1!HXH < 1}, Our new model will be a

ransformation group on'Dn+1. We define conformal

It

ransformations Ty, T,, and 1 on R Gueh that

ot | n+i - '
rTEIn+1Tl maps D to H . [ is then used to

n+1 Tl

ull back the metric P on H to . Let




PiyoenenX ) = (XaeeasX i X 0q=1),
Tz(xl,.u,,xn+1)x(xlg..,,anxn+i+‘%)s Ti(w) = co,
I=1,2 and v(XgsenasXq) = (KppeeosX =% 1)
Then o= rTZIn+1T1‘is the composition of conformal
maps of (EﬁxT,E( ; )). A simple computation shows
that :

f(Xlgoo & ?Xn+1)
= (1/2( nxnz - 2% * 1))- (2x1, ceer2x 5 (1= Hxliz))

and f(w) = (0,...,0,-%), Note that £ is one to one,
carries S to the n-dimensional extended hyperplane

0 and f{0,...;0) = (O,,,.,Og%)@ Therefore f

1oonte B, We use T oto pull back the

n+l

Xl
maps D

Poincare metric P{ , ) on H to get P*( , ) &

- - - -L' - ., -
metric on anl} We will refer to P#* as the Poinecare

metric on Dn+l. A tedious but straight forward

computation shows that Tor VysV, € T(Dn+1,x)

oy ' 2 :

P(vyvy ) (0) = (/01 = Ix1) ) (vga vy d ().

Since P* is the pullback by f of P, f is an isometry
'f (Dn+1,P*( ’ )) onto (Hn+1,P( ' ))e Conjuzation
y_f therefore is an isomorphism of the full group

isometries of ( n+1,P( ; )) to the full group of
: . _ -+l A : PO
ometries of (D s PR, )). Moreover, since £ is

N )), the group of isometries




of (Dn+lgP*( ) )) is exactly the subgroup of Gn+1

: +
which preserves n" 1.

e

2.21 FPinelly we describe ¢ as 8 matrix group. Let
n+l | w2 IZ o
H. .o = {(Xi,,o,gxn+2) ¢ R” Ls‘g Xy = x?— 1 and x; >0},

i=2

N

e n..},
For x € Hddl let v, = 3

B 1 6.6 (x) and

1=

e

ntZ

= 3 ﬁiei(ﬂ) be in the subspace of T(Rn+2,
j‘ -

xf

+ N o _ . . -
tangent to HY ?1 Define a Riemannian metric L{ , )}

on Hnii by +the eguation

. n+2
1 i = 2 Y e - m 1
L(VI,VE)(X) (%) Kizz Gy B alsl)u The full group

of isometries of Gt )) is known to be a simple

subgroup of index 2 in S0(n*+1,1) (the group of

(n+2) x{n+2) resl matrices which preserve the form
; P e}

2 Ty .1_1 < r?
- 2.4 X

i and have determinant +1), (Seeﬂrtin[l],l96)
2

..I(Xipeeaﬁxn%_l) = (1/(X1+1))2(X29l9¢?Xnnf.l) iS an

1 = > o 11
For x - (Xi"'°’kn+1) € I a vector

uation ¥ a;X; = 0yx;.  We compute the entries in

1=



33

the tangent matrix,
(u-ﬂ-(x)>i’1 = “Xi+1/(xi+i)2 for 1 = 1,...,n.,
(e g, 541 = 55,5 (1/(x#1)) for 3,3 = 1,...,n,

P4 (1 )y () ) (u() )

H

(l-aHu(x)H2>“2(u%(vi)pu%(v2))

i

(Xl"{-:}-)z/’q'e <U¢§(V1)QU§(V2)>; If
n+l

V,. = 3
SR ]

(uy (v oug(vy))

aiykei(x) for k = 1,2 then

= e, OE2 2
= (1/(X1+1)) (ngz Gy g0y o(xy+l) )

n+l n+1
- (xg+l)elay 5 352 @5, 1% F Oy g j§2 o5 o%p)
, n+2 5
$ (al,lalﬁz jgg xj) e
n+i
ubstituting jéz aj,kxj == ai,kxi for k¥ = 1,2 and

= xi ~ 1 into this expression and simplifying

ﬁl/(xl+i))2’.3 Oy 100y " Oy 100 L)




P"'“(u*(vl_) ,11*:(\’2) )(u(x) )

n+i )
= (E)(jég Uy 905, 0 = &g 10 o) = Llvy,vy)(x)

proving that u:(ﬁE,L( y )) “» (DnsP%( ¢ ))is an lisometry

2.22 We conclude section 2 with a definition and a
list of notations which are utilized in succeeding

sectiong,

Definition: Let G™ have the compact~open topology

oty

(i.e., a subbasis for the topology on G consists of

all sets of the form {f € Eﬁzf(k) < U where k is
‘compact and U is open}). A subgroup G of EH is said
to be disecrete if the subspace topdlogy on G is the
iscrete topology.

Notations:

1) id, will always be the identity transformation on
the topological space X, |

iy

I, will denote the inversion of R in the (n-1i)-

dimensional sphere of radius one centered at

%, (iue,, if T(y) =y + x then I = TInT"1>e

'P(f) will denote the fixed point set of the
~ transformation f. -
txis (R) will be used occasionally instead of

FP(R) when R is a rotation.




Section 3

Normal Forms for TransformationsiJ1G3

3.1 In section 3 we classify the elements of G3
according - to their set of fixed points. In theorem
3.2 we show that every element of G3 has either no
fixed points, one fixed point, two fixed points, or a
circle of fixed points,

Examples of the last three types are easily
found., A translation T of Eﬁ or a translation T
followed by a rotation R with axis (R) = {v € R3] \'s
= A+T{0) for » € R} U {~} has a single fixed point
at infinity. A dilation D or a dilation followed by
a rotation R with {0,»} < axis (R) has fixed points
{0,%}, A rotation R has a circle of fixed points,
amely axis (R).
| Throughout section Bg‘unleSs stated otherwise,
G3 will always denote a translation of'RB,
€ ¢? will always be a dilation of K’ and R will
wéys be a rotation of Eg, with e € axis R,
Examples of elements with no fixed point are
difficult to describe directly. The existence of

transformations can be seen as follows. TLet f be
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a rotation of EE with the following matrix representa-
tion relative to the standard basis for R4
a «b 0 0

b a o0 0

0 0 ¢ =d

0 0 d C

where a, b, ¢ and d € R and a2 + b2 = 1 = 02 + dz.
Tis clearly an element of 63(G3), say T o= ej(f). ?
has no fixed points on 53 therefore  must be fixed
point free. In theorem 3.7 we show that up to

conjugation these are the only elements of.G3s For

example if € G3 has a circle of fixed points, then

we can find h € G° such that hfh™l is a rotation R,
3.2 Iheorem: Every non-trivial element of ¢

pas either no fixed points, one fixed point, two fixed
pdints or a circle of fixed points,

| We first prove the following useful transim'
ivity lemma for Gj. In particular this lemma will let
5 conjugate a given element I of G3 gso that the con-~
ugated element hfh”l has a “convenient" fixed point

For example if we know that f has a unigue fixed
”_t, we can choose h so that FP(hfh“1)=={w}, This

11 facilitate the proofs of theorem 3,2 and theorem 3.7.
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Lenmas Given two 2-spheres S, and S, contained in R’

and three pairs of points (xi,yi) with x; € S; and

+

¥ € 82, io= 1,2,3, there exists a unique element h

3 4 - . =
of G such that h(Sl) S, and h(xi) = Yy

j— = 192930

Proof: This lemma is based on a similar transitivity

s

2 . 2 . . - .
for G acting on R?; given three pairs of points

(vi’wi) o= 1,2,3 in gw there exists a unique k in
G% such that k(vi) =W, 1= 1,2,3, (See Ford [4],
p. 7.) It suffices to assume that

S, = {(%,y,2) € Rhuz = 0} U {w}. If w¢ S, choose
(Xgs¥ge2y) in 5, = {=} and let

T{x,y,2) = (xnxO,ymyogzmzo)ﬁ Note that

B By the note above there exists a unique
lement g of G~ acting on S° which satisfies

_RT(xi)) =yss 1 =1,2,3. Let 1 = e,(g) where e,

the canonical isomorphism of G2 into G3 defined in

ubsection 2,17, Then h = 1RT satisfies the

hditions of the lemma, If e £ S5 choose X, € §,

let I, be an inversion of R? centered at X, as
a 5
d in part 2 of subsection 2.22. Since

% (Sl)’ we have reduced this case to the previous
%, _
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one except SOr the fact that 1RTI§O € (Eg— GB)o Let
r(x,y,z) = (X,y¥y=%2), T also reverses orientation and
restricted to Szp r is the identity., Thus
h = rthﬁa € G3 and satisfies the c¢onditions of the
lemma, If h' is another element of G3 satisfying
the conditidns of the lemma then h’h”1 maps 82 onto
itself and fixes Vi Yo and an Therefore by the
note at the beginning of this proof h“h“i is the
identity on S, and by corollary 2,15 nthttois
therefore the identity on alil of §§= i.e., n* = h, ged
In the next two subseciions we consider
- elements of G3 whoge fixed point sets are non~empty.
We will see that they must be conjugate to elements
in a particular form. In subsection 3.5 we bring
this information together to complete the proof of

heorem 3.2,

Lemma: Let £ € G7 with FP(F) # ¢ then

is conjugate fto a transformation of the form

where FP{D) ¢ FP(R), Either D, R or T might be
trivial dilation, rotation or translation
ﬁectivelyq

oft By lemma 3.2 we can conjugate by some

73 so that o € FP(hfh“l), For the sake of

licity and without loss of generality we assume
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that o € FP{(f), Choose some coordinate system for RB,

Let £1(0) = Fye Let 2(x) = x - Xy, 0F st

1

fixed points at 0 and «, By corollary 2,13 Tf = must

send any plane Pl thru the origin to another such

plane P,. Let R be a rotation of R? with 0 € FP(R)

which sends PZ to Pl' Then P1 U {e0} i3 invariant '
under RTF™L, R can always be chosen so that ree”t
is orientation-preserving on Pl ) {1 and has fixed
points at 0 and e, Thus restricted to Pi U {1} the
transformation RTE™ Y nmust be a dilation followed by
a rotation (See Ford[4],18), By "absorbing” the

s

extension of thisrotation to R3 into R it can be

1

assumed that RTL™' restricted to Py U {e] is a

dilation with fixed points at 0 and e, By corollary

2,15 RP£L must be a dilation on all of RO,
Fquivalently f = DRT. 7 ged
3 H Corollary: An element £ of @2 has two or more

fixed points if and only if f is conjugate to a
transformation of the form DR where FP{D) < FP(R).
(As in lemma 3.3 D or R might be trivial.)

If f has two or more fixed points then by

en

emma 3.2 we can conjugate f by some element h in G3
1
)

o that {0,0} < FP(hfh™ " ). As above we simply assume

at {0,»] < FP(f). The proof of lemma 3.3 tells us




3.6 - In the proof of Theorem 3.2 we saw that in-

e

that £ = DRT with T(x) = x - £71(0), i.e.,

T = identity. The converse is clear. qed

3.5 We now bring together the material of sub=
sections 3.1 to 3.4 to prove Theorem 3.2. Az we saw
in subsection 3.1 there are elements of G2 which are
fixed point free, have a single fixed point, two
fixed points, or a circle of fixed points, By j
corollary 3.4 an element f in G3 has two or more fixed
points if and only if it is conjugate to a transforma-
tion of the form DR, If D is non-trivial then for
gome k > 0, k # 1 the norm of f(v) is k tiﬁes the

norm of v, f can therefore have only two fixed points
0 and «, If D is trivial then £ is conjugate to &
rotation and must have a circle of fixed points, | |

This concludes the proof of Theorem 3,2,

ormation about the cardinality of the fixed point set
:f.an element £ of G° gave us information concerning

3ﬁe "type" of transformation f had to be, up to

onjugation in G3, Theorem 3,7 refines this informa-

on so that given the cardinality of FP(f) we can

more precisely what type of transformation f is,




3.7 Theorems Iet f be a non-trivial element of GB.

i) If f has exactly one fixed point then it is con-
Jugate in G3 to a transformation of the form RT

where T is non-trivial. Moreover, if R is also
non-trivial then we can find a coordinate system
for B2 such that T(0) € axis (R).

ii) If f has exactly two Ffixed points then it is
conjugate in G3 to an elemént of the form DR where
the dilation D is non-trivial and FP(D) < FP(R),

iii) If £ has a circle of fixed points then it is

conjugate ianB to a rotation R, .

iv) If £ is fixed point free then f is conjugate in
&3 to transformation g of §§ which is invariant

on A = {x,y,z) € R - {=}(x,y,2) # (a,0,0)}or In

cylindrical coordinates (w,eie)

glwiet0) = (r(w),e ™)) ror a11 (w,etfe n2yst

where 7 is 8 non-trivial elliptic fractional linear

transformafion of ﬁreserving the upper-half plane

H® and 6, € (0,27), (By continuity this deter-

mines g.on all of ;3.)

Parts il and i1ii of this theorem folicw
rectly from corollary 3.4. In either case T is

iﬁjugate to a transformation of the form DR, If T

"szexactly two fixed points D must be non-trivial,

11
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If £ has a circle of fired points then I must be
trivial, Part.i of this theorem is proven in sub-
section 3.8 and part iv is proven in the next 3

subseciions.

3.8 To prove theorem 3.7 part i we assume, as in
the preceding subsections that FP(f) = {e}, Lemmz
3.3 implies that £ = DRT, where FP(D) < FP(R). As
before we assune FP(D) = {0,%], We can always choose
a coordinate system for §§ so that T, R and O can be

written as follows: T(x,y,2) = (X%‘Xo,yd‘yOSZ*%Z
cos (@) =-sin (g) o\ [x

o)

R{x,y,2) = sin (@) cos {g) 0/ |y
0 0 1 7

and D{x,¥,2) = ke (X,y,2) for some k > 0. We will show 7
that k # 1 implies that f has a finite fixed point.

Let §O = (%537 %) and Ei = (%X{4¥qs21). £ has a

finite fixed point El if and only if the Ffollowing C

sequence of eguations are true;

1

quivalently, let Id be the identity ﬁransformatiﬂn

= DRT(x;) = DR(¥y ~ X,) = DR(X;) - DR(%,).

R then ;l € FP(f)} if and only if

R(§O) a DR(§1) - Id(?i)‘which we will write as

R - Id)(?l). DR - Id is a linear transformation

RB. If it is nonmsinguiar we will be able to find




an El such that DR(§0) = (DR - Id)(Ej) and F will have

a finite fixed point. Therefore we must make sure
that the determinant of +the matrix representing

(DR - Id) is zero, (DR - Id) is represented by the

matrix (kcos (g) - 1) ~ksin (&) 0
' kgin (&) (kcos {8) - i) 0

0 0 (k 1)/ . f
|

The determinant of this matrix is

(kz - Z2kcos(g) + 1)(km=1), Thus k must equal 1 or

& : % @
((2008 A+ K&cosz(g) - &)“)/2) oo § 4 (cusgg - 1)%, g
Since k is real we must have cosgﬁ -~ 1> 0, i.e,,

o2

cos 6 must be + 1, This gives ue k = + 1 but Ik is

greater than zerc, therefore k must squal i, i.e,.,

Lo

D must be trivial.

We must still show that 7 3 g non=trivial ang

that in some coordinate system for Rj T(0} € axis (R},

If T is trivial then f becomes a rotation which clearly

contradicts the assumption that FP{T)} = {w},

Therefore T is non-trivisl. If R were trivial, then

there would be nothing further to prove; we assume

from here on that R is non=Ttrivial,

We first observe that in the coordinale

ystem used above T(0) = T{0,0,0} = {xo,yo,zo)

an not be of the form (XOFyOgO). If it weres of
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this form then f restricted to any plane P orthogonal
to axis (R) Would be a- translation follewed by a
rotation and f would then have a Tinite fixed pdint
in P, To see this write f restricted to P in complex
coordinates, We get f|P(w) = (w o WQJ«eiQ for
wy = xg b iyo and w € £, This has a fixed point at
W= (woeie)/(lweie), If ™M0,0,0) = (meogze)
with %0 # 0 then T carmmot have finite fixed points
as any plane orthogonal for the z-axis is sent to
another such distinet plane by f.

Finally we find a coordinate system in
which T{(0,0,0) ¢ axis (R), Por covputatiornal purposaes
it will be easier to consider f as zcting on |
ExR U {»}., We send (x,y.z) in R o (w+iy,e) in
xR, TFor all (w,2) € CxR we get | _ ,L:
f(w,z) = (eie(wﬁvw ),z%'z') where 7, = x. < iy-,
| | 0 0, S 0 0
Making sn affine change of coordinates in f which

‘sends 0 Lo (WO@iG/(luaeie)) f becomes
(eie(w&{wnneie)/(l~~ei9))+

(elew,Zévz

H

0);
ranslating this new coordinate svstem on R to Rjg
o

e obtain f = RT.  This completes the procf of

heorem 3.7 part i,




3.9 In the next 3 sections we prove theorem 3.7
part iv. We begin by proving a lemma concerning
elements in the unmodel of ¢7, (See subsection
2.20 for a description of this model.,) We will use

this lemma to show that a fixed point free transforma-

P

3

tion in the R7-model of G corresponds to a particular
type of rotation in the Dawmodel of Gj. Finally we
-show that such a rotation corresponds to a transforma-

tion of the type described in theorem 3.7 part iv.

3.10 Lemma: Let f be an element of the Eg-model
of G3 and let ¥ be the corresponding element in the
Dammodelo_ If f has a fizxed point in the interior of
D4 then T is conjugate in G3 to a rotation of D&,
 Proofs We prove this lemma by using yet another
{model of GB, namely the anmadel of subsection 2,21,
Let u}(ﬂa,L(-, ))'4 (D&BP*( . }) be the isometry of

subsection 2.21, Recall that GB is isomorphic to

a gubgroup of index 2 of the matrix group S0(4,1)

in the E&wmodel. Let f = u"i(%). In subsection 2,19
i

e established the transitivity of e3(G3) on H

This is equivalent to the transitivity of SO(4,1)

. Thus T is conjugate in SO{4,1) to a trans-

rmation g which has the point (1,0,0,0,0) in its
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fixed point set, We will show that uguwl is a

4

rotation of D7,

Let F be the bilinear form associated to the

2
2

T oees T X%

quadratic form q(xip.aﬁpxs) = mxf + ¥ §

of S50(4,1). Let Xy (ai,..,gaﬁ) and
xz.z.(bi,easgb5). By the polarization identity
(Hoffman & Kunze [7], p. 368)

Flxgoxy) = (3)(alnpay) = alxy-%,))

)2

i

5
: N B 2
T(é)("(&imbi + 152 (ai+bi) )

5
2 2
I " . ¥ -
(@)( (al bl) t j_?'; (ai bi) )«
g must preserves this bilinear form F, Let
eip..,geS'be the standard basis on R5. For i # 1

= Flegses) = F(gE(eq)h2(ey))

Letiing

O eigp_o-pes we

“T1,1 0

similar calculation yields 0 = bty 4 for i £ 1
= ’

refore (tj j) must be of the form
- 9 -
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RF

¢

-

R' must have determinant 1 and pPreserve the quadratie

Form xg + ..

point (1,0,...,0). Recall that

+ ¥gr i.e., € is a rotation with fixed

e

u(xl,..,,xs) = (1/(x1+1))-(x25,.,,x5). A simple ;i

algebraic computation shows that

~——w]
ugu (Xlg,.,pxa‘) = R' (Xl,ota?X‘[j’)a . qed
3.11  Corollary: If f is a conformal transformation )

- of 52 with no fixed peoints then F is conjugate in the
o

model of G to a rotation of S3 which has the

following matrix representation relative to some

L

rthonormal basis for R,

where a2 + b2 = =

0 0 ¢ =d and a ¥ 1 # ¢,
d C

i
o’
&
<
]

Let T be the element of the D -model of o3

;¢h corresponds to f, By the Brouwer fixed point

orem f must have a fixed point in the interior of
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Dz‘L as i1t has none on 83. By lemma 3,10 above f nust

be conjugate'to a rotation é. Restricted to 83, é
nust be fixed poinﬁ free and therefore relative to
some orthonormal basis for R4 it is of the form
indicated above, , ged
In order to complete the proof of theorem 3,7
we must still show that the elements of G° in the 55;
model described in part iv of the theorem correspond
to fixed point free rotations in the 83 model,
Define a stereographic projection Pr, of (SB,standard
Euclidean metric) to (;3,E( , )).‘ We use
Pr(xl,...,xu) = (l/é(l-xh))(xl,xz,xj) when x;, %‘1'
‘and Pr(0,0,0,1) = w, (This is essentially the con-

formal map from D4 to H4 defined in subsection 2,20,)

h respect to the standard basis for Ru, where

cos (6;), b = sin (@), ¢ = cos (65),
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d = sin (62), and a and ¢ are not egual to 1, Let T
be an elliptic'transformation‘of #Z U {} with fixed
points + 1/2 and multiplier elel. A simple algebraic
computation shows that

-1 (Y+0, )1
cP gP Lty = (T(x+iy),e ™),
i.e., g corresponds to the element described in part

iv of theorem 3,7. ged

3.9 We end section 3 with some definitions based

ori theorem 3,7.

Definition: If f € G2 is of type i) then f is

said to be parabolic. As a special case if R is known
to be trivial (i.e,, if f is conjugate to a translation)

‘then f is said to be purely parabolic, If f is of type

ii) it will be called loxodromic. Again as a special

¢ase if £ is conjugate to a dilation then T is called

hyperbolic., If f is of type iii) it will be called

elliptic and bielliptic if it is of type iv),




]
;
;

Section 4

Invariant Circles for Transformations in G3

4.1 In section 4 we try to gain a clearer geo-
metric uwnderstanding of how the elementsg of GB act

on ;ﬁ’ To this end we describe the invariant circles
of the different types of elements of Gj. Recall
that for our purposes, "circle" denotes both ordinary
Euclidean circles and extended lines through
infinity., First we make some preliminary definitions

and remarks and then we state theorem 4.4,

b2 Définition: Given T € G° let C(f) be the set
~of all f-invariant cireles in EE, i.e., |
C{f) = {c = E§|c is a cirele such that f(c) = e},
Note that for f,h € G ¢ € C(f) implies that
hic) € C(hfh“lj. Thus in order to understand C(f)

it suffices to consider any conjugate of f. This

motivates the next definition,

.3 Definition: An element f of the Ri-mbdel

£ o’ is said to be in pormal form (with respect to

——

given coordinate system for RB) if £ is equal to

ne of the standard forms of Theorem 3.7. .
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In the following 3 subsections we describe

C(f) for f in normal form when f is respectively
parabolic, loxodromic and elliptic., The remaining

subsections are devoted to deseribing C(f) for f

bielliptiec in normal foxm, For the sake of future

reference we bring our results together as theorem

4,18 at the end on section 4, As in section 3,

T, D and R in G3 will always denote translation,

dilation and rotation respectively.

b In this subsection we consider C(f) for f
parabolic, If f is purelj parabolic, i.e., £ = T
then C(f) is the set of all extended lines whose
restriction to R3 is parallel to the line
L = {r.T{(0}r € R}, If f is parabolic of the form
R+*T with R non~trivial then C(f) = {axis (R)}].

: When £ = T then for all X5 in R3 the extended
line determined by the three distinct pbints
Xy T(xo) and Tg(xo) is clearly f-invariant., Since
tio, T(XO) and TZ(XG) are always distinct for x, # o
this must be the unique f-invariant circle thru x.
Clearly this extended line is parallel to L in
J - .

Let £ = RT be parabolic in normal form,

?call from theorem 3.7 that
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axis (R) = FP(R) = L U {w} = {r+T(0)|r € R} U [e].

The circle L‘LJ{M} is certainly T invariant by the
observations of the previous paragraph and therefore
it is clearly f~invariant,

In order to prove that C(RT) = axis (R)
we let co‘denote an element of C(RT) and prove that
Cq Tust equal axis (R). First note that for any
r > 0 ¢4 cannot be contained in B, = {x¢ R3[HXH < 1)
since fk(Br) rx(Br) = ¢ for some natural number k.
Therefore c, must contain «, Let 1o = ¢y ~ {=}.
The line 1, cannot intersect axis (R) in single point
Wy since T'(w,) € axis (R) ~ {o}, Thus ¢y # axis (R)
implies that 1, N axis (R) = ¢, o cannot be of the
form axis (R) + wy where w, # axis (R) since such a
circle is preserved by T but not by R. Since Cy
'énnot be of this.form there must be a unique.point
0 in 10 which minimizes the distance between 10
nd axis (R)., To see thisg, projec% axis (R) and Lo
'ﬁ_any plane in R3 orthbgonal to axis (R). The line
projects in a 1-1 fashion to a line and lO projects
point, Take the minimizing point in the projec=—
n of lp and 1ift it back to 1,. Since ¢, contains
t must also contain 2y = %(ZO + f(zo)) if it is to

~invariant, However, the distance Ffrom 2 to
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axis (R) is less than that of z2y to axis (R). This
can be geen Ey projecting onto a plane in R3
orthogonal to axis (R) as before, Let p denote

this projection. Then E(f(zo)) = Rp(7,) and B(z,)
is contained in the interior of the line segment
connecting these points, Clearly E(zl) is closer to

p(axis (R)) than 25 is, Thus the assumption that Cq
is f-invariant and not equal to axis (R) leads to a

contradiction.

L.5 In this subsection we determine C(f) for f
loxodromic in normal form, i.e., £ = DR with

FP(f) = {0,0}. We show that

C(£) = {c € C(R)|{=,0} € c}. (When R is trivial this
implies that C{f) is the set of all circles containing

{04%3.)

- To see that any f-invariant circle ¢y must

contain the set {0,»} note that for any x, € ¢, the

0 0
set {lIf(x,)ll]k an integer] is neither bounded from
above or below, Dilation clearly sends any line thru
0 and e to itself and therefore cy € C(f) = C{DR}

and only if c, € C(R).

In this section we consider C(f) for f

ptic in normal form, i.e., f equals a rotation R.
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We muet consider the two cases £? # identity and
2 = identity.Separatel&,

When £° is not the identity C(f) contains
axis (R) and the set of all Euclidean circles which
lie in a (non-extended) plane P orthogonal to axis (R) |
and which are centered at axis (R) N P. When < j

is
The identity then C(f) is the set of circles deseribed

above together with the set of all circles which interw

sect axis (R} orthogonally in 2 points,

We assume first that f2 = R2 is not the

identity, Writing RO

- {»} as £xR we can assume

that f(z,r) = (eiesz,f) for all (z,r) € £xR and

6 € (0,7m). Given any real number p > 0 the circle

¢ = {{w,r) ¢ £ xRs|w| = p} is clearly f-invariant,

When g # 1 the_orbit_of (pel@.r) under f containsg at

least three points and so c must be the unique f-

ihvariant circle passing thru (pele,r), Observe that

axis (R) = FP(R) and therefore axis (R)-is certainly

nvariant,

We next assume that f2 = identity or

uivalently that in the representation of f in the

evious paragraph, § = m. The circles described

OvVe are still -invariant, but now more than one

ment of C(f) can pass through a given point,




———rt

Let Cq be contained in R% - {} and let (zo,ro) be a
point on cq guch that (z,r) € ¢y implies ro < 1.
Now f(zO,ro) = (uzo,ro), and so if 2 # 0 then ¢q
must lie in {(z,r) € £ x Riy = ry}s hence ¢ iz of
the type described above, If Z2g = 0 then there

exists (zlurl) € Cq with Zq # 0 and ry z Tae  Cp is

then determined by the set {(O’ro)’(Zifrl)'("zlﬂrl)}'
Such a circle must be orthogonal to axis (R) and
intersect it in two points, If « ¢ c, # axis (R)
then there exists a point (Zifrl) in ¢y as above and
Co is determined by {(zl,r1)9(~zi,r1),m}. Co is

therefore a circle which intersects axis (R)

-orthogonally at zero and infinity and is clearly

f-invariant,

7 The remainder of section % is devoted to
escribing C(f) for f bielliptic and in normal form.
rst we must recall some facts about elliptic

actional linear transformations

Let M be = comected, Hausdorf, CM manifold

h Riemannian metric ( , Y. Given any piecewise

curve 0:[0,1] + M, let 7,(t) be the "velocity®

?:nt vector to 0 at o(t), i.e.,

T

(3/3t). Define |o| by
.t

55
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L 1
lof = [ ((Zy(t),1 () )*at .
0

It can be shown that |0| is independent of the
parémetrization of 0, Given p;q9 € M define d(p,q)
by s
d(p,q) = inf{{o}:0 is a piecewise(focurve from p to q}.
d:sMx M s R defines a metric {i.e., a distance function)
(Hicks [67], 69-71), Let d( , ) be the metric on H
determined by this method where {( , ) is the Poincare
metric P( , ) as defined in subsection 2,18,
We have the following two facts (Lehner [87,

25):. '

1) Given 7y € H2

and r € {0,x) then Tor

1

L= {z € H|d(z,2,) = r} is

2 = Xg + 1y, S
a circle in the ordinary Euclidean sense with center

he

Xg F i-[yo-(e -bl)/zer] and radius

Ayo(ezr-»l)/zer; {The Fuclidean center and radius

of Si are easily computed once it is established

1

that Sr

is a Buclidean circle,)

If T is an elliptic fractional linear transforma-
tion acting on H2 with fizxed point 20 then C(7T),
the set of T=invariant circles in HZ, is

1 re (0,e), Si ig ecalled the Steiner circle

for T of radius r,
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4,8 Let f be a bielliptic element of the gg;model
of GB. Recall from theorem 3.7 part iv that on

A= {{xy,2) € Rjj(x,y,z) # (2,0,0)} £ can be
represented in cylindrical coordinates

; - i(e+e,)
x ST by f(w,ele) = (T(w),e 2

(wye ) where

T is an elliptic fractional lipear transformation
acting on H2 with multiplier elel. Using the material
of the previous subsection we can now begin to get a
clearer idea of the action of f on Rju subsequently,
in subsection 4.9 we will describe C(f) under the
assumption that £° # identity. The case

% = identity is left to subsection 417,

‘Fact 2) of the preceding subsection motivates

the following definitions. DLet

i
i

5 {(wye) € Al0 = 95} for 0y € [-mym]. Define
0 \

3332 - A by ig(w) = (wy0), 1.e., ie is an obvious
1dentification of H2 with U8 in A, Givenr > 0

let Si(T) be the Steiner circle for T of radius r

. . L . - 2
oposition: For all positive real numbers r, Tr(f)

f-invariant,
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Proof: This is clear as f(Si.B(f))

1
r e+82(f) ded

Tz(f) will be called the Steiner torus for f of

radius r. By the proposition above the action of F
on LL%O Tg(f) can be understood by considering £ on
any Steiner torus Tﬁ (f). The complement in {3

L&>O Tg(f) is two linked circles lying in orthogonal

——

planes, One circle which we call ]f R3-AB

L

xSl1zO = FP(T)}. (See diagram1,)

The other circle which we call S
{(z4,6*0) € B

Note that Lf and S% can be thought ¢f an degensrate

Steiner tori, S% is the "limiting set® in R3 for the
12(£) as r tends to 0 and L. ig the “limiting set in
E? for the Tg(f) as r tends to o, By a slight abuse
of notation we will write_Tg(f) =‘S§ and

T (T} = Leo  We now can weite R’ as the unicn of

18301ni, f=invariant subsemo, il.e.,
L& O(Tr(f)>

4.9 We are now ready to describe the set C(f) for
“bielliptic in normal form, (The reader is reminded
hat we are assuming that @ # identity, Although
Verything in the previous subsection holds for f of
der 2 we will treat that case separ ately in

bsection 4,17, )




The linked f-invariant circles
Lf and Sf,

Diagram 1,
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Certainly the circles S; and Lf are f-
invariant as they each can be written as the difference
of 2 f:invariant sets; S% = A - (L%>O (Tﬁ(f))) and
Lo = R? - A, Recall that f(w,eie)==(T(w),ei(6+e2))
where T is an elliptic fractional linear of H°
with multiplier 6182? 8, € [~-mm). If o, # 105 |
we will gee that C{(f) = {bf,Lf} It
;] = l6,] # [m] then we will show that for every
point p € Tﬁ(f), r> 0, one of the oblique toroidal
circles passing thru p is f-invariant, (See Coxeter
[3], 132 for a description of these obiigue toroidal
circles,) Which of the 2 obligue toroidal circles
is f~invariant will depend upon whether 0; = 8, or -
6y = =65
In order to determine if a point p lies in an
:fninvariant circle we wili examine the orbit of p

under £, i,e,, we will examine {fk(p)|k is an integer],

We will call this set Orb(f/p). For all p € A the

ardinality of this set is the least common multiple
f the orders of the transformations r.oiSt o 5l
1,2 where rj(e ) = e when these orders

ist and the cardinality is otherwise infinite.

nce we are assuming that | | Ao |82|

b(f/p) mugt always have at least three points and
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therefore Orb(f/p) would determine an f-jnvariant
circle containihg p. If pe¢ Ti(f) r > 0 then as we
have seen Orb(f/p) < T (f) In lemma 4,10 we show
that the cardinality of Orb(f/p) being greafer than 8
implies that not only must Orb(f/p) be contalned in
2 ~f) but ‘that any f-invariant circle thru p must

lie entirely within Tr(f)' Thus for "most" of our
normal bielliptic elements we can restrictrtﬁe search
for f-invariant circles thru p to circles in the
Steiner torus containing p. _

In subsections 4,10 to 4,15 we show that the
only circles in the Steiner tori which could contain
Orb(f/p) are the oblique toroidal circles and fihally
that they do contain Orb(f/p) if and only ir
le; ] = 6,1, This establishes our claim whenever the

cardinality of Orb(f/p) is greater than 8. The

remaining cases are dealt with in subsections 4,16 and

b.iv,

For simpiicity of notation we will shorten
Y 2 .1 1
Tr(f) to Tr and S, 0(f) to S, 0 |
formation f is clearly determined by the context,

whenever the trans-

10 Lemma: For p € T (r # 0,0) if the

afdinality of Orb(f/p) is greater than 8, then p is




contained in an feinvariant circle if and only if

Orb(f/p) is contained in a circle which lies entirely

. 2
in Tr"
Proof: Assume that Orb(f/p) is contained in a circle

in TE. If Orb(f/p) has cardinality greater than two
and is contained in a eircle it determines that

circle, Orb(f/p) is certainly f-invariant and there-

fore the circle it determines is f~invariant,

Assume next that P is contained in an f-

invariant circle, Orb(f/p) is certainly contained

in T§ and in the given f-invariant circle,- We must

show that this entire circle lies in Ti. Since Tf;

the surface

(r # O,w)'is a regular torus (i,e., it is

obtained by revolving a circle in RB«{w} about a

line which does not intersect the circle) it can be

represented as the =

eros of a fourth degree polynomial

in 3 real variables, For R,p > 0 let

s

Y, 0 {(X9390)|X2 + (y- (R+p))2 = 92} then
T? = {(Xry'ez)'xz + (Jy2+22 - (R+p)>2 = pz}.

A cirecle is the zero set of

& Second degree polynomial

in a real plane, Therefore a circle not contained in

a torus could intersect the torus in at most eight

points, By assumption Orb(f/p) has at least 9 points

therefore the given feinvariant circle must lie

62
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entirely within T2 (Walker [11], p. 111, Thm, 5.4.) ged

4ot In order to study Orb(f/p) we can conjugate

f if necessary and assume that T has fixed point at

+ i, i.e.,

- . a

0 e 16 16
T(w)x(w.;(uel Lyt (e 1-—1))/(w(1--el Lysi(l+e

1
) )-
Clearly it suffices to let p be any point on an

arbitrary non-degenerate Steiner torus T? . Let

0 < R< 1 and let r, = -In (R). By note 1) in sub-

0

section 4.7, p the Euclidean radius of Si o is

O!
therefore egual to (1 - Rz)/ZR. We will examine

orb(£/p) for p = (i+(R+2p),n/2) € 17

o (See diagran
2.)

0

If p lies in an f-invariant circle; the circle
must lie in the plane Pllj (the subscript & is clarified
‘below) determined by {p,f(p),ful(p)}, If p, f(p) and
ffmi(p) are colinear and therefore do nof determine a
plane then any f-invariant cirele thru p would have
to contain {»j. But £° # id implies that the only

2

ffinvariant circle thru {«} is L 7. If Orb(f/e)

f:
has three or more points this is immediate, If
Orb(f/«) has two points then ]91| =1, ™(w) = -1/w
T(e0} = 0, Thus a f-invariant circle thru «

t lie in the plane Ue L}Lf LJUe+ﬁ for some

[0,7), where U_ is defined in subsection 4.8,

&



Diagram 2, The Steiner forus Ti (£).
' 0




By assumption £2 # identity therefore 8 =

implies that |91| # M. We see that

(U, ULy UUg) = Ueﬂkez ULe U Ue+w+62 and the only
circle which is contained in both of these sets is
L |

If T(p) = a + bi then T"*(p) = a - bi since
P i1s purely imaginary and T is elliptic wiﬁh fixed
points +i. We see that f(p,n/2) = (a+bi,ﬁ/2+92) and
£ (p,1/2) = (aebi,n/2 - 6,). From the symmetry of
f(p) and f”l(p) we can see that RD is gotten by
rotating the xz plane = {(x,y,z) € RO}y = 0} about
the z-axis thru some angle §, § € [-m,77], 1.4, PlIJ

has the linear basis {(0,0,1), {(cos ¢, sin {, 0)}.

4,12, Motivated by our previous discussion and by

lemma 4,10 in particular we prove the following lemma
:which-tells us for which values of {f the set

wa N Ti contains a Euclidean ¢ircle. Given p € Tg
f Oxrb (£/p) has cardinality greater than 8 then by
émma 4,10 the non-existence of such a Euclidean

ircle implies that p is not contained in a f-

nvariant circle.

Lemma: For § € [0,m/2]) PLlI N Tg contains a
0
rcle if and only if ¢ = 0,7/2 or

cta. ( 2% = l :
n { (2pR+ R™) /b) where r, = «Iln (R),
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p = (1=-R)/2R and 0 < R < 1,

2 2 |
[ ) 1 - o
Proof: Clearly, IO N Zro and Pﬂ,/2 r}Tro are each the
union of two disjoint circles. For "small" values of
R Pllj N Ti is the union of two congruent disjoint,
0
simple,; c¢losed curves ClSLIJ and CZ,$ where

(1e(R#+2p),m/2) € ¢, y and
3
-p = (i(R%-Zp)snn/E) € C, e The finite plane
¥

I

1Y

domain bounded by C1,¢ is symmetric with respect 1o
the line segment t-(0,0,R) 4+ (1-t)(0,0,R¥p) for

t € [0,1]. ™Therefore, if C1;¢ were & circle it would
have center (0,0,R+p) and radius p, The only such
circle contained in Ti is C = SI

0 130 ro!ﬁ/go

argument suffices to show that P¢ F}T% contains no -
0 .
circle for i small enough to insure that
1 o
:Pw r‘SrO,O = ¢ | 1
lain: If 0 < < arctan ((2pR+R%)%/p)

1 =

S 1

If { = arctan ((EpRﬁ-RZ)E/p) then
1

Pm N Sr

This

is a single point,
0*?

oof of claim: This is seen by considering the

anar cross section of Tg D,Pw obtained by setting
e 0

0.

1 1
rO,O Ljsro,ﬂ)'

Ve2) € Rﬂ'g = 0} is the line y==(tan (w))-x,

2 — g
.gyyZ) € Tr lZ = O} = (b
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z = 0, The claim is established by finding the wvalue
of § € [0,1/2] such that {(x,tan(y))|x € R} is

. 2 N 2_..21_ 4
tangent to {(x,y)ix 4—(y=»(R{p)) = 0 }"'Sr0,0° (See

diagram 3,) The angle Vivpvy is n/2 and

i
i = arctan ((RE'FZRD)Q/D>. This completes the proof
of the cldim,

Continuing the proof of the lemma we use a
2 where
"o 2

E ] L] E
arctan (8% +2R0)%/p) < ¢ < /2. Pje N UI; 1o the
disjoint union of two circles with center (0,0,0)

similar argument for P¢ N T

and having radius R and R+ 2p respectively.. For

alues of § "close” to 11/2 P¢ N TZ is the union
Lo

£ two disjoint simple closed curves Cl A and C i
’

5 above., Using the same type of arguments as we

reviously used we see that Ci 0 and C cannot be
: ?

2,
reles for § sufficiently large to insure that
0 contains two points. An argument identical

that of the claim above shows that P¢ ﬂ 5 0
OP
tains two points for

tan ((ZpRé-R )§/p> < i < /2.
L,
Finally when f = arctan ((2Rp-bR2)2/Q> we

'e oblique toroidal circles, ged

Before continuing with the description of

e attempt to simPlify notation by setting




e . dmmny  a——

Figure 3,1

gt y
rﬁj-ﬁ rq|(:)

ZIN
N

\'
Pigure 3,2

Diagram 3, Figure 3.1 shows Tg and a portion of
: the plane P&. 0 Figure 3.2 is the

planar cress sectlon of Tr NP

obtained by set z = 0, 4] Y

N
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R+ 20 = g¢. -Making this substitution we get:
r(si) = (sin (9;) (1= %)+ 201)
%-(sz(i-»cos 31) + {1+ cos 91)).

When 6, = 1 we get T(si) = Ri and therefore R = 1/s,
p o= (32..1)/25 and
arctan ((2pR~%R2)%/p) = arctan (28/52—1).
Let fi{g) = 28/(52-1).

The description of C(f) given in subsection
4.9 is completed by establishing the two statements
below Tor the case in which the cdrdinality of

Orb(f/p) is greater than 8,

1) £(i.s,m/2) € Pyy(s) 1f and only if |egl = le,l.
2) Orb(f/(is,ﬂ/Z)) E-Cl,w(s) when ]el| = [82[ for
01’¢(S) ag defined in lemma 4,12,
In subsection 4.16 we use special arguments
o examine the cases in which the cardinality of

rb{f/p) is less than or equal to 8,

14 In this subsection we prove statement 1)
bove., In rectangular coordinates f(i.s,n/2) is

ven by (1/(32(1mcos 91) + (l+cos 61)>) times.

_ (sin el(lmsz).sin 82(28),003 92(23)).
((s)) = (sB-1)/5%+1), sin (y(s)) = 25/(s41)




and Pw(s} = {(Kl(sz-i)/(82+1),h1(2s)/(82+1%h2)]xl,lz

€ R}.

We have f(si,n/2) ¢ Pw(s) if and only if
sin (91)(1m82)/sin(82)(23) = (s%-1)/2s
(for_el,ez € (nw,n)) equivalently 8y = =8« When

8y = 68, flsi,n/2) € P;$(S). This proves statement 1),

4,15 In this subsection we prove statement 2)'of
subsection #.13, i.e., we show that
Orb(f/(isfﬂ/z) = 01'$(S) when [@,| = |82|. Recall
that C1 U (s) is obtained by rotating the circle
# Y .

y = 0, x° + {7 - ((sz-«al)/ZS))‘3 = ((32+1)/Zs)2 thru
the angle §(s) about the z-axis., We will rotate
ﬁfn(is.n/z) thru the angle -f{=) about the z-axis and
show that it is contained in our original circle,.

| Let 64 = 6, = 8, then
T, . _ : .
£(is,n/2) = (1/(1-—008 (ne)) + (1-+cos (ne))) times
(—sin (na)=(sgm1),-sin (ne)2s,cos hue)zs)

rotation by -fi(s) about the z-axis is given by the

1 trix

(sgul)/(sa+i) 23/(sz+l) 0
~2S/(52+1) (s2-1)/(s*+1) 0
0 0 1

H respect to the standard basis for R3!
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Ms(fn(is,ﬂ/zb) = (1/(82(1=COS 8) + (l+cos e))) times

(»sin (s 41) O Zscos 8)

A long, but °tra1ghuforward, algebraic computation
shows that this point satisfies
x° & (2 = ((sgmi)/,’ES))z:z ((32+1)/23>2
If g, = =g, then we must rotate O1,p(e) TBTU
+(s) instead of ~fi(s) and the result Follows again,

This completes the proof except for the cass |
of [eif # |92| and the cardinality of Orb(f/p) less i
than 9 which is done in the next subsection and the ot

final case of g | = fe,] = 7 which is treated in

subsection 4,17,

4,16 Thus far we have been able to show that

Orb(f/b) is Lontalned in a ¢ircle in T2 ¢ the Steiner
O

torus of radlus ry (ro # 0,0) containing p, if and

only if |8;] = |6,]. When the cardlndllfy of Orb(f/p)

is greater than 8 lemma 4,10 1mplges that pis
contdlnedrln a f-invariant ecircle if and only if
Tegl = oyl

We next examine what happens when the

cardinality of Orb(f/p) is greater than 2 and less

than 9, When ley| = ley] lemma 4,12 and the two facts

tated in subsection 4,13 imply that Orb(f/p) is




contained in a circle and Orb(f/p) will again deter-

mine a f-invariant circle thru p. When {g;| ¥ |0,]

Orb(f/p) will not be contained in Tg . However if

Orb(f/p) has cardinality less than 9? this is no
longer a necessary condition for p to be contained
in a f-invariant circle, The cases which do arise
are considefed in this subsection,

If |gy] # 16,] then %(p) = p for
k € {2y...,8} if and only if the unordered pair
{loy]s1e5]3 is contained in the set, {{ﬁ,ZW/B}:
[n.ZTT/M.{11.211/6],{17,211'/8},{W/B,Tr/@}.{Zﬂ/Bm/B}}.
When {loq|,]651} = {m2n/j} for j = 3, 6 or 8 then
(0, 2%(p), ¥ ()} and (£(p),£7(p),£5(p)] deternine
two distinet circles, either Si /2 and Sio’mw/2
or {(p,;0)}e € [~m,m]} and {(T(p),9)|ﬂ € [-m,m]3.
Therefore, Orb(f/p) cannot be contained in an f-
invariant circle, _ - B
- When {|91|'|92|] = {n/2,1/4} or {2n/3,1/3)}
lﬁthen a computatlon shows that f(p) and £° (p) do not
. lie in the same plane Pm and therefore by lemma 4,13
Orb(f/p) cannot be contained in an f-invariant

circle. For example when (64,8,) = (n/2,1/4)
= (si,m/2)




f(si,n/2) = (T(si),}ﬁ/@) = ((1-82+2si)/(82+1),3ﬂ/b)
and fz(si,ﬂ/Z) = (Tz(si)nw) = (i/s,m). Converting

into rectangular coordinates we get (1/(52+1)> times
(1-82,wJ§Eh J28) and (0,-1/5,0) respectively,
Clearly the plane By containing £%(si,m/2) is the
plane x = 0 and f{si,n/2) is not contained in this
plane,

When {}o;l,10,1) = {m2n/4)
Orb(f,(si,n/2)> equals {(si,m/2),(i/s,m),(si,31/2),
((i/s),21)} or {(si,n/2), (1(s1),31/2), (2" (s1,30/2))

= (T(sD0,30/2), (1/s, 31/2) 3.
In either case Orb(f/p) is clearly not contained in

a single circle,

Gh,17 Finally when |e;| = |6,] = m, i.e., when

f27= id then f(w,g) = (T(w),8+ﬁ)

all w € £ with im(w) > 0, Converting into

i

(=1/w, g+n) for

. rectangular coordinates we get

T(x,y,2) = (~1/(x2+y2+é2))(xyy,z). Let S° be the

‘usual Buclidean unit sphere {(X,y,Z)'xZ-#yg-%zl =

13
‘and let aa§§ -+ §§ be defined by a(x,y,z) = (~X;~y,-2)
nd a(er) = e, (The map a will be called the
ntipodal map,) To complete description of C(f) in

his case we show that a circle ¢ is f-invariant if




and only if (¢ N Sz) is nonempty
the antipodal map,

and invariant under

Let ¢ be an f~invariant circle, If there
exists a point p such that P€cand p g 52 then p and

f{p) lie in different path components of R- - Sg. c

must intersect SZ.

f is clearly invariant on 82 and
f)s®

= aI82 therefore ¢ € ¢(r) implies that ¢ N e is

a=invariant,

Assume next that ¢ r182 # ¢ and is invariant k

under a, If ¢ ¢ S° then as noted above ¢ ig fw L

invariant if ang only if it is a-invariant.as

f[Sz = alSE. Assume that there exists a point

(x0:¥0129) € (0 1 (&7 = (52 U (0,03)) ) ana

(X10¥152¢) € c 0 5%, 1f (Xgs¥0¢24) and (x15¥1024)
are linearly dependent then ¢ must be the extended
line {h(xo,yo,zo)lk € R} U {7, This "line" is
Clearly invariant under I

r

3 and a and therefore under
If (xO,yo,zO) and (xl.yl,zl) are linearly
"ndependent then (0,0,0) and these two poiﬁts deter-
ine the extended plane, P, containing c,.

(Xogyo,zo) and f(xl,yl,zi) also lie in P, Therefore

Sends P to itself, We can assume that P is the

lane z = 0 ang that

{(£,y,0)[(x~1)% & y° = 1+b°) b # 0, - Given
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(xl,yl,o) € ¢ a simple computation shows that
f(xliylno) = (i/(x§+Y§))'(‘"Xi:“ylro) € C, iroeaw
R 2 2 2. .24\2 _ 2
(—xi/(xlé yl) ~- a) : (-yl/(xl~%yl)) = 1 4+ a“,

proving that ¢ is f-invariant.

4,18 We summarize the results of section & in the
following theorem,

Egggggm; Let £ € g7 be in normal form with respect
to a fixed coordinate system for E? then;

1) If £ is purely parabolic, i.e., f is a
translation T then C(f) is the set of all extended
lines whose restriction to R- is parallel to the line
L = {r+7(0)|r € R}. |
2) If f is parabolic of the form RT with R a
non-trivial rotation such that T(0) € FP(R) then
C(f) = [axis (R)}.

' 3) If f is loxodromic of the form DR with
FP(£) = (0,00} where D is a diletion and R is a rota-
tion then C(f) = {c € C(R)]{O,mj o c}, (When'R is
rivial this implies that C(f) is the set of all
ircles containing {0,e},)

4) If f is elliptic, i.e,, ¥ is a rotation R

en C(f) contains axis (R) and the set of all Euclidean

cles which lie in a (non-extend) plane P orthogonal




to axis (R) and which are centered at axis (R) NP,

-
In the special case that F° = identity, all circles

el
which intersect axis (R) orthogonally in 2 points are

also in C(7F).

5) If £ is bielliptic and determined by The

s

angles 91,92 € [«n,n] then we can write Rj as the

o

union of disjoint feinvariant tori Tﬁ and two ¢ircles
{S;,Lf} which are “limiting tori" for the collection
{Ti] =0, S; ang Lf are the only elements of C{f)
unless ey | = |e,]. If 611 = l0s] # m then passing
thru every point p in Ti (0 < r < ®) one of the two

oblique toroidal circles containing p is feinvariant.

The cholce of thig circle depends on whether

s
[y
¢

9;) or 6}1 = "’92¢

If |og

= lo,] = w or equivalently if

identity then f(x,y,z) = (ml/(x2+y2+zzj>(xpy,z)g

H
I

and C(f) is the set of all circles o such that the

set ¢ ﬁl{(x,y,z)!x24~y2%-zz = 17 is non-cmpty and

feinvariant.




Section 5

Commutativity of Transformations in G3

5.1 In section five we examine the problem of
knowing when two elements of 63 commute, This is done
via a sequence of four preopositions and a corollary,
FPirst we state and prove the following simple |
proposition because of its frequent use,

Given elements f and g in a group, (f,g] will
denote their commutation, i.e., [fog] = fgfnlg"l. We
wili also write "id" to denote the identit& element
of G3.

Proposition: Given f,g € G° such that [fog] = id
then:
1) If S¢ §§ is f-invariant then g(S) is also f-

invariant,

2) Let Sa be a subset of R> which is f-invariant and

satisfies some property P which is preserved by

all elements of G2 (e.g., P may be the property,
"is a circle"), If S is the union of all such
sets Sa then S is g-invariant.

Proof: 1) fg(S) = gf(s) = g(8)

2) By 1) above g(s,) is f-invariant and by




assumption g(Sa) satisfies property P. There-
fore‘we have g(38) « S, Conversely [(f.g] = ia
implies'[f,g"lj = id and we have gml(S) < 3,
Applying g to both sides of this relation we
have S = g(g"l(s)> a g(S). qed
The two most important uses of the gecond part

of this proposition are; i) S, 18 an f~invariant

(fixed) point and S = FP(f) and ii) S, is a f-invariant

cirele and S = C(f) (as defined in subsection 4,2),

5,2 As in section 4 we will assume whenever
possible that the transformations we examine are in
normal form, This is clearly sufficient since conjue~
gatiﬁg a transformation f into normal form by an
element h and then finding all elements g such that
[hfh"lgg] = id is equivalent o finding all transforma-
tions h“lgh such that [f,hwlgh] = id, We also

Wwill continue the convention of 1ettiﬁg T,.D and R
aenote translatioﬁ; dilation and rotation respectively,
Ih this subsection we describe the set of
ransformations which commute with a parabolic trang-

ormation, In the succeeding 3 subsections we do the

same for loxodromic elliptic and bielliptic elements

respectively,




Proposition: Let f be a parabolic element of GB of

the form f = RT where 0 # T(0) € FP(R), If R = ig

then g € 67 and [f,2] = id if and only if:

1) g is a translation (i.e., £ is purely parabolic
and FP(f) = FP(g) = o),

2) g is a rotation with axis {(g) € C(f), or

3) g is a composition of elements of these first two
types.

If R # id then g € 67 and [f,g] = id if and only if:

4)

Jq

iIs a translation and C(f) = C(g),

5) g'is a rotation with {FP(g)} = C(f), or

6) g is a composition of transformations of type 4)
“and 5) above,

Proofs Let g be a transformation in @7 such that

[T,g] = id. By proposition 5.1 [fyg] = id implies

that g(FP(f)) = FP(T), therefore = € FP(g), By the

symmetry of proposition 5.1 f(FP(g)) = FP(g). This

:iMplies that g_must either have the uniquerfixed point

. » Or it has an infinite number of fixed points. Thus

g must either be parabolic or a rotation,

Assume first that R = id, If g is pufely

arabolic then it is a translation and clearly

£,8] =id, If g is elliptic then £(FP(g)) = FP(g)

equivalently axis (g) € C(f), This establishes




the necessity of 2), Conversely if axis (g) € C(f)

then in some basis for R3 T(0) = (0,0,a) for a € R
and axis (g) = {(0,0,r) € R?}. A direct computation
gshows that fg = gf,

It is clear that a composition o} elements of
type 1) and 2) must commute with f. It is also
clear that this is the only type of parabolic transe
formation with a unique invariant cirele which can
commute with f, for the transformation g must satisfy
FP(f) = FP(g) because FP(g) ig a single point, and
it must also satisfy C(g) « C(f) as C(g) is a single
circle.

We next assume that £ = RT with R # id,

Part 4) is clearly the same as part 3), If g is
elliptic then it must satisfy the condition of
statement 5}, i.e., {FP(g)} = C(f) since
£(Fe(e))
axis (g) € C{f). But as we have noted C(f) has a

Ii

FP(g) = axis (g), implying that

‘unigue element, The suffieiency 0of the condition
}{FP(g)} = C(f) is easily seen by representing g in
matrix form by a rotation with axis equal to éxis (R)
énd computing. Fart 6) follows immediately in the same

lanner as part 3) above,




5.3 In this subsection we consider the loxodromic

case,
Proposition: Let f = RD where FP(D) < FP(R) then

g € @7 satisfies [f.g] = id if and only if g is a
dila‘tion,Dl such that TFP(D) = FP(Dl) or g is a
rotation R, satisfying [RgRij = id or g is a
composition of two such elements,

Proofs The assumption [f,g] = id implies that
g(FP(£)) = g({0,%}) = {0,}. This implies that
{0,201 < FP(g) or g(0) = e and g(«) = 0. Since f is
loxodromic this second case is impossible.. To see
this note that for any v € E? - {0,090} lim Hfl(v)ﬁ is
either 0 or e« depending on whether HD(%?E,O)H is
less than one or greater than one, Assume that the
‘limit is infinite,

Since we are assuming that [f,g] = id we

have g“1

flg(v) = fl(v) for all integers 1 and

v € R - {0,%}, But

lin g™ tte(v) i = g7 (1im £lg(v) )il = 0 if £(0) =
Lo Logo0

and g(«) = 0, This does not agree with the assumption
that Lim [£5(v)) = @, therefore [0,»} < FP(g).

: L o0

Thus g must be a dilation Dy with FP(Dl) = [0,)

or a rotation Ry with {0,00} = FP(Rl) or the

Composition of two such elements., We let f = RJ_D1




where eitherrRl or Di might be trivial, Clearly

Eflg] = [RD;R1DJ_] = I:RsRl]s i.e., [f,g] = ig if

and only if [R,R,] If R or Ry = id then the

condition [R,Ry] = id is trivially satisfied and

[£f,2] = id, 1In any case when [f,g] = 1d we have shoun

that g is either a dilation D1 with FP(D) = FP(Dl) or

a rotation R, such that [R,R1]==id or g is a composi-

tion of iwo such transformations, The converse ig

clear, ged

5.4 - In the previous two subsections we saw that
elliptic transformations could commute with rarabolic

and with loxodromic transformations, In this subw~

section we

£ive necessary and sufficient conditions

for two elliptic elements to commute,

Iropogition: Let f and & be elliptic elements of o2

ﬁhen [fye] = id if and only if axis (Ff) ¢ C(g) and
axis (g) € ¢(f),

Proof: Assume [f,g] By proposition 5,1

FP(f) = axig (r) € C{g) and FP(g) = axis (g) € C(r).
The converse is establz@hed in two parts, first we

assume £2 # 1d then assume £2 o id = g%, We will

assume for the remainder of this proof that f is a

rotation with matrix represetation
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a -b 0
b a, 0
0 0 1

2

(where a,bh € R and a° - b2 = 1) with respect to the

standard basis for R3.

We first assume that £< #1id, i,e., that
a # «1, By theorenm .18, axis (g) € c(¢) implies
that axis (g) = {(0,0,2)1z € R} U {e3}, or that rfor
some d,k € R, axis (g) = {(x,y,d)[xgiﬂy2==k > 0%,
If axis (g) is of the former type then g has matrix

representation e «-f 0

1 e 0
0 0 1

(with e + £% = 1) with respect to the standard basis
for R7 and a simple computation shows that [f,2] = id.

If axis (g) is of the second type then g
restricted to the set §§ - axis (f) can be represented
in ecylindrical coordinates; To understand this
representation consider the foliowing.

Let P {J {~] be any extended plane which cone
tains axis (f). P will intersect axis (g) orthogonally
in two antipodal points {wl,wé}. g{P U {=}) must be
8 sphere or an extended plane, and must intersect

<axis (g)) orthogonally at {g(wl).g(wz)}f Since
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WiaW, € axis (g) = FP(g), £(P) must also be orthogonal
to axis (g) at w; and Woo P U {»} is the unique such
sphere or extended plane, Thus g(P) = p, g|P can be
expressed asg a fractional linear transformation Tiwith
Fixed points wy and Wo.o Tymust be elliptic as

axis (f) € C(g|P U {~}) and axis (f) separates wy

and Wo o Let Pi U {=} be any other extended plane
which contains axis (f)._ The same argument shows that
restricted to Fi U {=}, g must be an elliptic
fractional linear transfgrmation T*.  Representing

P ) {0} -~ axis (f) in cyiindrical coordinates as
{(a+vi,0)jab € R, b >0 and o ¢ {0,m}} and

P} U {} - axis (f) as

{(a:#bi,e)[a,b €E R, b>0and g € {¢,w+n}} for

Ir € (0ym), then T(a+hi) must equal T4 (a+bi) as T

and T{ agree on axis (f). Thus on R - axis (f) we
can represent every point as (ar#bi,@) where a,b € R,
b > 0 and g é [O,Zﬂ). In these cylindrical
coordinates g(a+bi,p) = (T(aukbi),e) and

£(a+Dbi,0) = (a+bi,o+6,) Tor some 8 € (0,2m).

| The computation below now shows that

[fg] = 1d, gf(a+bi,0) = gla+bi,p+ Oo7
(ra+vi)io+oy), te(a+rb,0) = 2(0(a+bi),6)
(T(aekbi),e+-eo). This completes the proof of the




proposition under the assumption f2 # id, Note that

the case of fg'% id and g2 = id is included in the

above considerationsg.

2 2

Assume next that £ = id = g, By theoren
4,18 we can see that the only new possibility for
axis (f) € C(g) and axis (g) € (£} is that axis ()
and axis (g) intersect orthogonally in %two points

Py and Poe Conjugating if necesgary we can assume
thatl py = 0 and Py, = w0, The matrix representation

for £ becomes -1 0 0
0 -1 0
o 0 1 . )

We can assume by conjugation if necessary that the
matrix representation of g with respect to the same

‘basis is el 0 0

0 1 0

0 0 =1 .
Clearly [f,g] = id. ' qeﬂ
' In proving the above prgpositien we derived a |
useful-representation of the action of an'elliptic
2

transformation with axis equal to {(X,y,d)[x2-by =k >0}

for d € R and having {(0,0,r)]|r € R} as an invariant

corollary for future use, Note that we do not have

assume that {(0,0,r)lr € R} is invariant, In Tact



we show that this must necessarily follow from the
fact that the transformation has axis
{qud)h2+f2:k>ey

Gorollarv: Let £ be an elliptic transformation of o’
with axis (£) = {(x,7,0)[x"+y~
R

=1}. Represent

- {0,0,2)|2 € R} in cylindrical coordinates as
{(w,0)]e € [0:2m), w € £ with Im (wj > 0} then
£(w,0) = (T(w),5) where T is an elliptic fractional
linear transformation with fixed points +i,

Iroof: To prove this corollary we must only show
that L = {(0,0,2)}}z € R} U {»] is f-invariant and
that FP(T) = +i; the corollary will then follow from

the proof of proposition 5.4, Since F is elliptic
we can find a transformation h in G3 guch that_hfh"l

is a rotation R of ;?; Let h be such a transformation,
We must prove that h(L) is R-invariant. Since

L N axis (f) = ¢ we have h(L) M axis (R) = ¢

- therefore by theorem 4,18 we must show that h{L) is

‘a circle contained in a ﬁonnextended Euclidean plane P
which is orthogonal to axis (R) and such that h(L)

is centered at P N axis (R). Let Py U feo} and

22 U {1 be two distinct extended planes containing L;
(L) = h(lp; U {=3) N (P U =)

B(P; U {=}) N h(P, U {=}). P; and P, intersect




axis (f) orthogonally, therefore h(P1 U fe0}) and

h(P2 U {=} must be spheres which intersect axis (R)
orthogonally. Any sphere which intersects axis (R)
orthogonally is certainly R-invariant, Thus h{L)
is the intersection of two R~invariant spheres and
must itself be R-invariant. Thus by the proof of
propogition 5.4 f(w,p) = (T(w),e) where T is an
elliptic fractionzal linear transformation and w and
6 are asg in the statement of the corollary,

The fact that T has fixed points + i in £

can be seen by looking at

axis (£) M {{w,0)|w G-HZ} = {(i,0}}. Therefore

T is an elliptic fractional linear transformation
which keeps the real axis invariant and has a fixed
point at +i, T must have the other fized point at

~i, (See Ford {4], 20.) ged

5.5 We conclude section 5 with. a proposition which S

_describes the_elements_of Gj which can commute with a

bielliptic transformation.

Proposition: ILet T be a bielliptic transformation

) N
in G3. Given g € Gj let % and g be the corresponding
}
elements in the Dpwmodel of G3 (see subsection 2,20).

If [f,g] = id then FP(f) « FP(g) and & is elliptic




or bielliptic,

Proof: Since I is bielliptic, FP(f) = ¢. This is

also true of T the corresponding transformation in

the S"j model of GB. By corollary 3,11 T is therefore

conjugate to a rotation of the form a b 0
-b a 0

0 0 s

0 0 d

e

where a2 4 b2 = 1 = ¢ d2

and a ¥ 1 # ¢, Thus

? must have 2 unigue fixed point in'Du. Clearly

[fsg]

FP(f) ¢ FP(£). By lemma 3.10, this implies that

il

id implies that [¥,8] = id and therefore

. . . L
18 conjugate to a rotation of DY and g must have
circle of fixed points or no fixed points; i,e.,

is elliptic or bielliptic,

o>
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Section 6

Gonstruction of the Manifold MO

6.1 In this seétion a closed, orientable, 3-
dimensional manifeld MO is constructed and its
fundamental group is computed, Subsequently, in
section 7, it is shown that MO has no conformal

structure ag defined in the introduction.

6.2 Let X be a n-dimensional closed, orientable,
conmected manifold. Any homeomorphism f of X onto
itself determines an equivalence rélation, ~f, on
the product space X;([O,l] as follows:

Given (xy,t,) and (x1,%4) in Xx[0,1], we

define (xo,té} s (Xlgtl) if (xo,to) = (xlgtl) or
if ty = 0, ty = 1 and f(xl) = Xy, Let

M= (Xx[0,1]/%f) be the space of ~Ff equivalence
classes with the quotient topology M is a closed
.(n+1)—dimensional manifold, It is orientable if f
is orientation pregerving.

We have the fbllowing procedure for
describing HI(M)’ the fundamental group of M, Let

{x,1) denote the equivalence class under ~f of the

air (x,i) € Xx[0,1]. ZLet intX + M be the map
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in(x) = (x,0) and let p:M = st be defined by

e2ﬁ1t'

plx,t) = . The map p gives us a weak fibration

and we have the short exact sequence

ing Py 1
1 I, (%) > (M) —3 [,(s%) » &, (See
Spanier [10], 377). (Note we have used the fact that

HE(SI) = 1,) If FP(f) # ¢ then there exists a Cross

section jsS1 + X namely j(ezﬁlt) = (xopt) where

Xy € FP(£)., In this case pj:S* + S' is the identity

and we get a splitting of the sequence
ing

p
> 0 —=> m(sh) -1,

&\j“‘-"/ )

1 - Hi(X)

Hl(M) is therefore a semi-direct product of HI(X)
and Hl(Sl).

6,3 We now use the procedure outlined above to
construct MC and compute Hl(MO)' Let X = T2 = Six S1
and let_f:Tzrq 7 be a Dehn Twist about a loop
repreéenting a, generatdr of Hi(Tz) = ZxZ, Let

My = (ﬁxx[o,1]/~f), f can be taken to be the
identity on all of T2 except a "small" collared
neighborhood of a "nice" loop representing the chosen
generator. If we call this neighborhood N and let
h’zS1 x (0,2) = 72 be a hoﬁeomorphism ento N then §

can be defined by: f}(Tz-»N) is the identity and




f(h(eie,t))
h(eieyt) if}OI‘ t € (Os%j U [3/292)

n(el 0. P 2) o) por ¢ ¢ [4,9/2]

be representéd by a leop which intersée
exactly once and such that a and b toébth
ﬂl(TE). Then f,(a) = ab and by the réha_'"
section 6,2, Hl(M ) is a semi-~direct pro
ﬂi(T ) and Hi(S Y.
The sequence

in, p R

is splite-exact, IF ¢ - is a gencrator for*ﬁx(*

The only other relations in Hl(,e) are giVe

action of j,(c) on inyg(a) and in,(b), Denote th s

action by m, iny(a) +F Je(e) ln*(d)J%(C)
ing(b) 5 j,(c) in%%(b)gﬁ,('c)f?“.i_"

(See diagram 4 ,) Clearly m(in§(a)>==in*(f%(a)>

and m(in*(b)>==in*(f%(b)). The action of m therefore
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Diagram 4, The manifold M. is constructed by making
the indicated Identifications on T< g I,




gives us the two additional relations
in*(f*(a))
in,(£,(0)) = in,(b)

j*(c)in%(a)j*(é)“l
Jele)ing(b)ju(c)~t
in Hi(Mo)e

It
H

it

by [ing(a),ing(b)] = id, [in,(b),j.(c)]
Lix(e)iing(a)] = in,(b),

-

ing(al)in,(b) and

Summarizing s ﬂl(MO) is generated by in,(a},

ing(b) and j,(c) and a full set of relations is given

id and




gives us the two additional relations
Jx(e)ing(a)ie(e)™ = iny(£,(a))
Jele)ing(b)j ()=t in,(£,(b)) = iny(p)
in Iy (My).

Summarizing s Hl(MO) is generated by ing(a),

Hi

ing(a)in,(b) and

i

ing(b) and j,(c) and a full set of relations is given
by [ing(a),ing(b)] = id, [ing(b),j.(c)] = id and

Lix(e)ying(a)] = in,(b).




Section 7

Proof that MO Does Not Admit a Strong Conformal Structure

7.1 This final section is devoted to proving the |
following:
Theorem: My has no conformal structure,
Before proving this we recall our definition
of conformal structure and we establish some notation.,

Definition: Given a closed orientable n-dimensional

manifold M, a gonformal structure for M, denoted S(M),
is a pair (G,D) where D is an open conhected subset

of 5" and G is a discrete subgroup of G which acts

freely on D, where I/G is homeomorphic to M.
Notation: Given G, a discrete subgroup of ¢?,
0(G) will be the set of free discontinuity of G,
i,e.y 0(G) is the set of all points v, in S, such
that there ekist a neighborhdod__l\lv of v for which
N, rmg(Nr) = ¢ for all g € Gl - {id1.

For the same group G let A(G) denofe the limit
set of G, 1.e.y, A(G) is the set of vy for which there
~exigts an infinite collection of distinct elements

_glpgzg... in G and a point vy in R™ such that

Vo = lim (gx(vy)). Mote that Q(G) N A(G) = ¢;



2(G) clearly can also not contain the fixed point of
any g € G,

The ordered triple (ﬁ.p,m) is said to be a
(normal) covering triple if and only if M is a (normal)
covering space for M with projection p:ﬁ -+ M,

1r (M,p,M) is a normal covering triple then
T(M,M) will denote the group of deck transformations
for (fM,p,M), i.e., T(ﬁ,M) is the group of all self

homeomorphisms h, of ﬁ, such that p = ph

7.2 Theorem 7.1 will be established through =
sequence of lemmas and proposition., First we prove a
necessary condition for the existence of a conformal

structure on a manifold W,

Lemma: If (G,D) is a conformal structure for a

closed, orientable, n~dimensional manifold M then
there exists a homomorphism h:ﬂl(M) + G° with

image (h) = G and such that D is a maximal connected
componenf of ©(G). |

Proof: The definition of conformal structure implies
that D is a normal covering space of M with ™(D,M)
isomorphic to G, Therefore G = nl(m)/(n,\%(nl(n))
Where [I1D 5 M projects a point in D onto its orbit

nder G, By definition, D is contained in a connected




component of Q(G)., Assume D is not maximal, i.e.,
assume that there exist D connected with

D # D < (@), M would then be homeomorphic to a
proper sub manifold of the n-dimensicnal connected
manifold D/G., This contradicts the fact that M is

assumed to be closed, ged

7.3 In this section we show that no discrete
subgroup of G3 can contain an elliptic or bielliptic
element of infinite order. This lemma utilizes the
following theorem:

Lfheorem: A group of isometries G of a manifold M is

discrete if and only if it is discontinuous (i.e., if
and only if A(G) = ¢). (See Siegel [9])s p. 32.)
Lemma: If G is a discrete subgroup of e’ then G
contains no elliptic or bielliptic of infinite order,
Proof:+ In both the elliptic and bielliptic case
there are compact non-empty subsets of 53 and a
Riemannian metric for which the transformation in
question is an iscmetry., It will then follow from
the theorem quoted above that the cyclic subgropp of
G generated by the given transformation will be
discontinuous and therefore discrete if and only if

it is of finite order,




If g-¢€ e is elliptic then by a suitable
conjugation g can be assumed to be a rotation of R3
with matrix representation (ripj)° In subsection 2,10
we showed that g was an isometry of Rj. The orbit of
a point v, not contained in FP{g), is contained in &
cirecle in E§ - FP(g). Since the circle is compact
the orbit of v can only have a finite number of

distinct values and therefore g has a finite order.

When g is bielliptic we can use the 33~model
of ¢~ to get our results, By corollary 3.11 we know T
that in this model g is conjugate to a rotation of 83.
Rotations of 82 are Euclidean isometries and 33 is

compact therefore g must have finite order, ged

7.4 By lemma. 7.2 a necessary condition for the
existence of a conformal structure on MO ig the

existence of a homomorphism thI(MO) -3 G3 with image (h)

discrete, Recall from subsection 6.3 that Hl(MO) is
a group with generétors ing{a), ing(b) and j,.(c),
which we now simplify to a, b and o respectively, and
with the three defining relations [a,b] = identity,
[b,c] = identity and [a,c] = b, In subsection 7.5

we show that there does not exist an injective

homomorphism from Hl(MO) into G7 whose image is




discrete, By lemma 7.2 this means that (G,D) cannot
be a conformal structure if My(D) is trivial, In
lemma 7.6 we establish a necesgsary relationship between
D and the elliptic fixed roints of G, In the final
four subsections we show that for any homomorphism not
previously examined from HI(MO) to ¢ with discrete
image, f(CG) is connected and either simply connected
or does not satisfy lemma 7,6, Thus none of these
homorphisms yield a conformal structure for MO'
For simplicity of notation we will denote
both an element in HI(MO) and its image under a
homomorphism h by the same symbol whenever this does
not lead %o confusion. For example we will write,
"Let ¢ be elliptic." This should be understood to
mean, “Let h(c) be elliptic.”

7.5 Proposition: There does not exist a homo-

morphism h:Hi(MG) 4'G3 whefe h(a),rh(b) and h(c) are
2ll of infinite order. ' |
Froof: By lemma 7.3 h(a), h(b) and h(ec) cammot be
elliptic or bielliptic. We divide the rest of this
proof into two cases; case 1, h(b) is parabolic and
case 2, h(b) ig loxodromic, (We will simplify h(a),
h(b)and h(e) to a, b and ¢ respectively for the

remainder of this proof.)




Case-1: b is parabolic., We can assume that

FP(b) = {w].' Since [a,b] = id = Lbse] and a and ¢

cannot be elliptic, proposition 5.2 implies that a and
€ are parabolic with FP(a) = FP(¢) = s, Both a and o
cannot be translations'as this would imply that

b = [a,c] = identity, Assume that a is not a trans-
lation, Then by theorenm 4,18, a has a unique invariant
circle which we call Ly. The fact that [a,b] = identity
implies that La is b-invariant; therefore

L, = b(La) = cac_la"l(La) = cac"i(La) or

equivalently c"l(La) = ac"l(La). Since {L,} = C(a),

the circle c“i(La) must be La; i.esy L. is also

a
¢-invariant. By proposition 5.2 this also implies
that b = [a,c] = identity. Thus if b is parabolic

it must be trivially parabolic, i.e., b = identity.

This completes caseri. o

| | Case 2: b is loxodromic, We can assume

fhat FP(b) = [O,ﬁ]. Since a and b”cannbt be elliptic

and [a,b] = id = [b,c], proposition 5.3 implies that

a and ¢ must also be loxodromic with

FP(a) = FP(c) = {0,00}, We know by theorem 3.7 that

we can let a = DIRI’ b = D2R2 and ¢ = D3R3 where the

Di are non-~trivial dilations and the Ri are possibly

trivial rotations, for i = 1,2,3. We must have




b = {a,c]. The commutator [a,c] however equals
[Rl’Rjj which is an isometry of R with the usual
metric and therefore isg certainly not loxocdromic,
This completes case 2, , ged ’

Corollary 1: There does not exist a homomorphism |

hally (M) 67 with image (h) discrete and trivial : #

kernel,

Corollayy 2: If (G,D) is a conformal gtructure for

MO then D is not simply connected,

7.6 Lemma: TLet G be a discrete subgroup of G2
and D' an invariant, maximal path componen% of

(Eﬁ - A(G)) such that D' contains fixed points of
elliptic elements. If D equals D' - {v € D'|v is the
-fixed point of an elliptic element of gl}then D/CG ig
not compact,

Lfroof: By an appropriate conjugation of G we can
assume that {0} € D' ~ D and that G contains an
elliptic element g where | |

FP(g) = {(0,0,2) € R7|z € R}.

Let Ne = {(X,y,;2) € R3|x2 “+ y2 + 22 < el.

For sufficiently small ¢ » O,‘Ne < I and

>
If h{Ng) NNy = ¢ then n(N,) is homeomprhic N and | {

|

|

oo - o |

h(Ne) N Ne ¢ or h(Ne) N, for all nh € G, |




the ¢losure of Ne is homeomorphic to h(closure of Ne)

for all h € G, ¢ acts on the set of elliptic fixed

points in D', IF p is the fixed point of an elliptic

element e then heh™ L is elliptic and has fixed point
at h(p), Let S, = LhEG (h(clmsure(Ne/k))> for
kﬁ=1,2g3;“ns. Le.t CK:D“ S [} C:: '[Gllc

i1g an open cover for D

23039030)
. IEach Ck is invariant under

the action of G; therefore we can form the cover
C/G = {cl/e,cz/a,c,j/e,,,,} for D/G. Clearly these

covers have no finite subcover, The Ci are properly

nested (i.e., j < k implies that CJ is properly con-

tained in Ck) and Ne(k+i) i1s not contained in Ck

thus C has no finite subcover of D, By the

invariance of G on the C; this implies that C/G

has no finite subcover for D/G and D/G cannot be

compact, ged

Corcllaggs Let G be a discrete subgroup of G3 and
let H be a-subgroup of G of finite index, If A(H)
is of finite cardinality, then for any maximal

cormected subsets D of O(G), the pair (G,D) cannot

be g conformal . structure for MO,
Froof: Since H is of finite index in G there exist
€1s+ves8) in G such that G = gi(H) U eee L)gK(H

This implies that A(Q) gl(A(H)> U... gk(A(H)) and




A(G) must alkso be a finite set. This implies that
0(G) is simbly conmected which is not acceptable by
corollary 7.5-2 or it implies that /G is not conpact

by tha lemma above which is also not acceptable, ged

7.7 Lemma: 1) Every element of I;(My) can be
written in the form aibjck where i, j and k are
integers, 2) Multiplication in HI(MO) is given by
the formula

(aibjck)ﬁ(apchr) = ai+pb(j+th'1)ck+r where

isdelePeq and r are integers,

Proof: Part 1): Since b commutes with both a and

ﬁith c 1t suffices to frove the following two state-

ments: Let w be any word in the letters a, b and C,

then there exists a word wt with no more occurrences

of the letter_é than there are in w and such that

Wa = aw'®, Similarly there exists a word w' with no |
more occurrences of the letter ¢ than there are in w,

such that we = cwr.  We prove the exisﬁenée of wr',

The existence of w" follows frem the symmetry of a | 1
and ¢ in Hl(MO). Recall that b = cac™ta-1 or
equivalently ca = bac, We do an induction on the
number of occurrences of ¢, If thére are no

occurrences of ¢ then wa = aw since w is a string of




powers of a and of b which commutes with a, Assume
we can find w' if w has n=1 occurrences of c. Let w
have n occurrences, w = xey where ¥ is a word with
n-1 occurrences of ¢ and y is a word using only the
letters a. and b. Then wa = xcya = xcay = Xbacy = xabey,
By the induction hypothesis xa = ax’, therefore
wa = ax’bey and w' = x'bey satisfies the requirement
on w',

Part 2): It suffices to prove that
cFaP = b ¥PaPcK,  thig is a simple induction on k.
When k = 0 this is trivial, When k = 1 we have
caP = casP! = pacaPl = ... = bPaPe,  Assume that
K10 = b"(k"'l)batz‘?’ck“'1 for some k » 2 and for all
integers p. We have the following simpie calculation,

Kb - c;(c(k---l_)ap) - c(bﬂ(k—l)papck-»]_)

= ’o"'(k“’l)p(cap)ck"’1 = b-(k“i)p(b"papc)ckml = b"kpapck.

A similar induction proves the statement for k<0, ged

7.8 - Proposgition: If h(a), h(b) or h{c) is bi-
elliptic then image (h) = G is finite and therefore
for any D < 53 (G,D) is not a conformal structure for
MO'
Froof: If h(b) is bielliptic then [h(a),h(b)] = id
and [h(e),n(b)] = id imply that h(a) and h(c) must




be elliptic br bielliptic by proposition 5.6, Lenma
7.3 implies that h{a), h(b) and h(c) must have Finite
order, By 1emmé 7.7 this means that the order of
image (h) would be finite.

If h(a) is bielliptie, let 4, B and C be the
extensions of h(a}, h(b) and h(c) respectively to D}‘L
(see subsection 2,20)., By corollary 3.7, A has a
unique fixed pointg'sayvbb [a,b] = id implies that
o (vg)
= cac'l(vG) or equivalently C(VO)‘e Fr(a) = {VO},

vy € FP(b) therefore vy = bavo) = can

Therefore vy € FP{c) and by lemna 3.7, ¢ is elliptic
or bielliptic, Again image (h) must be finite., The
case h(c) bielliptic is the came as hia) bilelliptic

by the symmetry of I, 01y« qed

7.9 Proposgition: There does not exist a homoe

morphism h:Hl(Mo) - @3 with h(b) of infinite order
and image (h) digcrete.- |

Froof: By proposition 7.5, a, b and ¢ in G2 cannot
all have infinite order. By corollsry 7.7, a and c
can be assumed to be elliptic whenever they have
finite order, We will first examine what happens
when b is loxodromic and subsequently when b is

parabolic,




Let b be loxodromic and such that FP(b) = {0,007,
Either a or ¢ must be elliptic as a, b and ¢ camot

all have infinite order, Assume a is elliptic. By

i

proposition 5,3, [b,c] = id implies that ¢ is either
elliptic or lozodromic and {0,x} = FP(c), In either
case b = [a,c] is a(perhaps trivial)rotation, contra-
dicting the agsumption that b is loXodromic., If we
start with the assumption that ¢ is elliptic rather
than a, the symmetry of Hi(MO) gives us the same

result,

Next consider the case where b is parabolic,

Again we must assune fhat a or ¢ ig elliptic, Assume
a is. Ve also can assume that FP(b) = {w}, This
implies that a and ¢ which both commute with b have a
fixed point.at_W. We will show that FP(a) ig c=

invariant and usihg-propcsition 5.2 we can show that

¢ must be a translation or a rotationrwith axis (e)
parallel to axis (a), or a compo i%ion of two sﬁch
transformations, This will suffice to show that La,c]

cannot be a non-trivial parabolic Yransformation,

Since [a,b]) = id, FP(a) is b-invariant. We |

also have the equation ateml = e~ 1y lp-l

a‘lc"'l(pp(a)) = o lgmy" (Fp(a)) = c“l(Fp(a)). Thus

c
we have that ¢ (FP(a)) is a~invariant., Since o

b and therefore




is in FP(a) and in FP{c), {~} € c“l(FPia)>a If
ad # id then by theorem 4.18 ¥P(a) is the uniqus
a~invariant circle containing «, i.e.,

c“l(FP(a)) = Fp(a), If a® = id, c“"i(ff:@(;:i)) couls

be an extended line which intersects FP(a) orthogonally

However since (b,cl = id and b is parabolic, 10ropogie
$ F o 4

1. . . .
is elther a {Uranslation, or

tion 5.2 implies that ¢
a rotation with axis (c“i) ¢ C(b) and therefore
parailel to FP(a), or a composition of two such trang-
formations., In all of these three cases C“E(FP{a)>

is elearly not orthogonal to FP{a). Thus even in the
case a® = 1d we have c"l(FP{a)> = FP(a),

i)
3

W

Finally we see that a1l three possibiliti

for ¢ imply that b = [a,c] is not a non-trivial
parabolic transformation, When ¢ is & translation
proposition 5.2 implies that fa,e] = id, If ¢ iz a
rotation with axis parallel to axis (a) then anyv plane
? orthogonal to axis (a)'(and therefore o axig (c))
is kept invariant by [a,c], Proposition 5,2 however,

o

c¢learly implies that P cannot be b-invariant if

[a,b] = id. Finally if ¢ = TR where T is a transla-

tion as in the first case above and R is a rotation
as in the second case, then [c,a] = [TR,a] = [R,a]

and we have reduced This case to the previous one,

s F
%
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This completes the proof of the proposition under the
assumption that b is parabolic and a is elliptic.

The case that ¢ is elliptic is the same by the symmetry
of I, (My). : qed

7.10 The proof of theorem 7.1 is finally completed
using corollary 7.6 and the following proposition:
Proposition: ILet h:Hl(MO) b G3 be a homomorphism with
h(b) of finite order, Let G = image (h), If C¢ is
discrete then A(G) has finite cardinality,

Proof: We prove this proposition by attempting to
find an h such that A{(G) is not finite. We will see
that no such h exists. By proposition 7.8 we can
assume that b is elliptic of finite order, or that b
is the identity. 1In either case both a and c must be
of infinite order. If they were not both of infinite
order, then G would have a cyclic subgroup H of finite
index, 'The limit set of H would equal the fixed point
set of the generator of H which contains one or two
points and A(G) would be finite, Thus we must let
both a and ¢ be of infinite order if A(G) is to be

an infinite set, |

If b is the identity then a and ¢ must commute

and must therefore be simultaneously parabolic or

107




1oxodfomlc._ In élther case A(G) ( FP(a) = PP(C)) L

Finite agaln-:ffgj?kfﬁ"

The ohiy remalnlng possibility is that b
elliptic of flnlte order 3ince both a and ¢ must
commute with b, both FP(a) and FP(c¢c) are contained in .
FP(b). Restricted tQ FP(b) a and ¢ must commute,
and therefore a(FP(g))_: FP(c) and c(FP(a)) = FP(a),
This implies that F?(é) = FP(¢) and therefore a and ¢
must both be parabolic or both be loxodromic,

First we assﬁme that a and ¢ are parabolic,
Since a and ¢ commute with b both a and ¢ must be
invariant on axis (b}, By proposition 5.2 two
parabolic transformations with a common fixed point
and a common invariant circle must commute., Thus the
map sending a, b and ¢ to hon«trivial transformations
with-a and ¢ parabolic and b elliptic cannot be a
homomorphism,

Next we assume that a and c are both loxo-
dromic. Recall that we have shown that FP(a) = FP(c).
We can conjugate G if necessary to get
FP(a) = {0,=} = c) A typical element in G nust
therefore be a rotation of ;§ followed by a dilation
of §§ with fixed points 0 and o, Certainly

{0,2} < A(G) and in faclt we will see that-




log

{0,400} = A(G){- 1é¢ a = DaRa’ b = Rb and ¢ = DCRc where
D, and D, are ﬁon—trivial dilations with fixed points
at 0 and « and Ra; Rb and R, are possibly trivial
rotations which have fixed points at 0 and «, By
propositions 5.3 and 5.4 if RS # id then FP(R,) must
be contained in FP(R,) and FP(R,). (Note we only

have inclusion and not equality of fixed point sets

as R, or R, may in general be trivial,) If Rg = id
then either FP(Ra), FP(Rb) and FP(RG) are related as
above or FP(Rb) is perpendicular to R, and Rg = id

or FP(R,) is perpendicular to FP(R,) and B> = id,

(This, of course, includes the possibility that both
R, and R, may have order 2 and have their axis per-
pendicular to FP(Rb),

In order to deal with these various possi-

bilities all together we define a subgroup H of

Tinite index in G which satisfies A(H) = {0,%}

for these possible definitions of ¢. Let H be the

subset of G conSisting of all elements of the form

1, 3. F . . . . s
a*bde® where i, J and k are integers and where i is

even if axis (Ra) is perpendicular to axis (b) and

k is even if axis (RC) is perpendicular to axis (b),.

By lemma 7.7 H is a subgfoup of G of index 1, 2 or 4,

Note that axis (Ra) perpendicular to axis (b) implies




2 2

a

)2 -

=~

that a

= (DéRa DiRi D>, A similar statement
can be made for ¢, Thus H acts as a group of con-

formal motions on. the extended plane P |J {e} which

ig orthogonal fo axis (b) at the origin.

Restricted to P 1) {°} 0 and e are certainly
limit points of H, Since the set {0,»} is closed in
P U} {«}, contains more than one point and is invariant
under H|P (J {=} we have A(H|P U {=}) = {0,»}. (See
Ford [4], theorem 5, 43,) This implies that
A{H) = [0,0}, To see this we assume on the contrary
that there exists another limit point xb and get a
contradiction,

For notational convenience we assume that

axis (b) = {(0,0,2)}z € R} and that

PUJ e} = {(X,y,Z)lz = 0} IJ {=}, We will write the
point (x,vy,z) in R7 in "modified spherical coordinates"
as (x+iy,arctan (z/(x2+y2)>) when xz + y2 # 0 and as
(0,2) when x> & yz = 0, i.e,, for points not.on

axis (b) we write (x + iy,@) where ¢ is the "angle

of inclination" of the point (x;y,2) from the plane

P 1) {~=}, The point (0,z) % (0,0) is assigned the
angle of ineclination (z/‘z[)vH/E. The importance of

this representation is that the angle of inclination

is left invariant by all elements of H, Thus if




.
Xq # 0,0 is a ;imit point of H then x5 = (w0,¢0'5:.;"'.'
; where Wy € C- {0}, Xy = ]l{}wn; gk(wl,@o) and :
[gk} oj is a sequence of distinct transformations: in
f;; 9 H, This implies that lim g (w;s0) = (w,,0) which'_
% contradicts the fact tgﬁ A(H|P U {e0}) = {0y}, ..
Thus we must have A(H) = {0,%}. TFinally since a, c
and ac fix 0 and o, not only must A(G) be finite

but eclearly A(H) = A(G). This completes the proof
of theorem 7.1, : ged
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