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The object of this thesis is to study the moduli

scheme of polarized abellan varietles, 1ts stratlflcatlon
according to p -rank and the endomorphlsm rings of 1ts
fivers. 'f_ r;;‘~. ; o
" One knows that an abelian varlety X defined over SR \

- & Finite field has sufficlently many complex multiplica-

tions and the rank T of‘inﬂ(X) satisfies the




inequality: Qg;,g r/ 1Lg , Where g = dim(X) f If X is
defined over an infinite field then the rank T could be
any integer satisfylng ‘the inegquality: 1‘/ r;f 4g .

One can ask whether there are abelian varieties hav1ng
'trivial endombrphism yring. TFor elliptic curves Deuring's -i,f5;ﬂ-

theory proves that a generic elliptic curve has no -

complex multiplications. In this thesis, we gener&lize'

this result to any dimension using Serre-Tate's theory N

of 1lifting of ordinary gbellan varieties.

Now we shall describe briefly the contents of

various sections. First we fix some notations. k will -e": B

denote & field of characteristic p )>o If X 15 an I
gbelian variety defined over k, End®(X) = Endkﬂx) 2 Q.

will denote an irreduCible component of. the fine

Mg: l,n
noduli scheme of principally polarized abelian varletles

of dimension g with level n structure deflned over k.

.In B1, ve define the index of good reducbion of

abelian varieties. If v is a discrete rank one Valuation . -

of k with inertia group I, then the index of good

e rank over Zg

reduction s of an abelian variety X is th

of T o (X)/T g (x)T, where T g(X) 1s the § -saic Tate module

of X, £ #'p andifg(Xj is the submodule of elements of -

_T{Q(Xj invariant under I, Then we prove:




) X has good reduction iff s = ©

‘ii) X has very pad reduction iff 5 =0 |

iii) X hsas stable reduction iff s = g~dim(¥), where Y
is the abelian part of the connected-component of

+the Néron model of X.

T
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In §2'wefexplain Serre-Tate'!s theory of 1ifting
of ordinary abelian varieties and using that we give

-counter exampies to two questlons on BarsottlaTate groups.-

In'§3,.we define speciai,-completsly special and
supersingular abellan varietles and study the connections
between them. We also prove that the endomorphism
algebra of any abelian varlety with p-rank one never‘

contains a simple algebra which is not a field.

In 84, we pfcve +that the fine modull scheme M,
2,1,

contains a projective curve with singularities. Note that

this is opposed to the situation in char.zero where the

-modull space M5 4 . is affine as Igusa has shown."
. 2 )
In §5, we prove the following'theorems:

‘qheorem I: The generic fiber of M has no complexr
' , ) g,1,n

mulitiplications.

'Theorem.II Any pr1n31pally polarlzed abellan variety A




g

daflned over an algebraically closed field k is a

.speciﬂllzatlon of an abelian variety dafined over
a

K((tysaeesty 1/2 g(g+l))) C having no complex multiplica—

- tions( here the superscrlpt ac denotes the alcebraicz

'_closure).' SRR o -'“T‘- ”..r _ ,-17 e

[ . . . - -
bl . - . - - E

' As a consequence, we see that the generic fiber

is simple and has Picard number one.

In § 6 and §7, we consider the- following problem*  A‘

GlVen a leiSlon algebra L and an 1nteger g, does there “

’ ex1sts a simple abelian variety X of’ dlmen51on g such
- that Engd® (X) L? In characterlstic zero, Albert and | ,
Shimura have SOlVed this problem In characteristlo p>>o, o "- o i
I haﬁe some partial answer to this question when g = 3. “ ‘
When g = 2; R.Fishef has discusséd_this question in his
Harvard thesis. In fﬁct, we determine algebras L occur .
and'coopute the dimension of;the moduli‘space Mp in ther
_case of dimension 3. Here M, is an irreducible componént.
of the modull scheme Mao,n where W =(L, § , /A »8,4) 1s an
ordered set con81st1ng of a finite simple Q—algebra L a
p051t1ve 1nvolutlonf A an order in L and g,d are

integers such that dj\c:f&. My n is the analogue of
- >

Shimura's modull variety Vpy in char.p o.
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8 0. Introduction

_Let'_{\;‘i_fr(,k) be the category of abelian varieties
“defined over an algebraically closed fleld k of
charactefis.tic p> 0. For any object X in AV(k), let
End®(X) = Eridk(}() ® §. Then End°(X) is a semi-simple @-
algebra of rank ( Hgg, where g = dimension of X and End (%)
ig an order ih-End"(X). If X is polarized, then End®(X)

is endowed. with a totally positive involufion.

The rank of End°®(X) depends on the field of
definition and on the structure of X itself and it
satisfies the lnequality: l,g rank End"(X)\{ Hgg. If

Xis d_efined over a finite field, then 2g {rank End® (X) £

. N
4g% For example,see[2f. But if X is not defined over
a finite field, we can find plenty of abelian varieties
X such that End°(X) « @§. 1In fact we prove thatl generic

_'principally polarized abelian varieties do not have

complex multip‘lications‘.

If L is a division algebra with an involution
which is totally positive and €: I & Eﬁd"(X)' is an
embedding compai_:ible with the i_nvolutions, one can
ccl)ns'truct. the analogue of Shimura's moduli space Vo in
positive characteristic and _compute the dimension of the

moduli space Mw n for various simple algebras L. In
.' ) H4




1=
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‘generalizing Shimura's results to characteristic p) 0
one must obserﬁe the important difference. In char O
the order End(X)aL does not change when X varies in a
continous family whereas this is not always true in the
cése of positive characteristic.In the latter case one
must fix “the order A and determine the embeddings

A €5 End(X). The dimension of the moduli space will

depend on the orderJﬁ_.

In § 1, we give'an account of the reduction of
abelian varieties and complex multiplications. In §2,
we explain briefly Serre-Tate's theory offlifting of
ordinary abelian varieties. We alsd give counter

i
examples to two questions on Barsotti-Tate groups. ‘

In § 3, we define special, completely specilal
and suersingular abélian varieties and odserve that comp-
letely special is equivalent to special. In dimenson 2
these three notions are equivalent.f special two
dimensional abelian variety 1is a product of supersingular
elliptic curves. In dimension » 3, this need not be the
case. One hasg only.construct a special simple.abelian
variety as in Lenstra and Oort{7] or one must find an

“abelian variety whose Picard number is not the maximum

possible.
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‘We also show that the endomorphism algebra End°(X) of

any abelian variety with p-rank one never contains a

simple algebra which is not a field.

In §4, we show that the fine moduli scheme-of

principally polarized abelian surfaces contains a projective

curve with singularities. Note that this is opposed to
the situation in characteristic zero where the moduli

space M2,1,n is affine as Igusa has shown[H].

In § 5, we prove the following theorems:
Theorem L. If M denote an irreducible component
—= g,1,n )
of the fine moduli scheme of principally polarized

abelian varieties, then its generic fiber has no compleX

multiplications.

Theorem IT. Any principally polarized abelian variety

A defined over k is a specialization of an abelian

. : ac .
~variety defined over k((tlf”’tl/é g(g+1))) having no
complex multiplications ( here the superscript ac denotes

algebraic closure.)

As a conseguence, we see that the generic fiber

is simple and has Picard number one.

In § 6, we collect the results of Shimura on



"t'he modull variety Vg and i1ts analogue in positive

characteristic as described by Fisher[@,7.

In 87, we determine which algebras I occur
and compute the dimension of the moduli space Mp.,iri dim 3.
)

This is done in the case of dimension two by Fisher{ 7.

In both the cases the results are only partial.

I wish to express my sincere thanks to
Professor M,Fried for his help and encouragement during

the preparation of this thesis.



1. Reduction of abelian varieties and complex

multiplications

Let k be a field of characteristic p)o0. Let

AV(k) denote the category of abelian varieties defined
over k. AV°(k) will denote the category of abellan
varieties upto isogeny. AV°(k) is a semi-simple @-linear
category. It is the category of "effective motives of

weight one."

In AV°(k) isogenies are isomorphisms. For X,Y
in AV(k), Hogé_o(k)(x,Y) = Hozr%éy(k)(x,y)@m,° If X=Y,then
End®(X)=End(X)R®Q is a semi-simple §-algebra of rankg
4g2 where g=dimension of X. In fact by Poincare-Weil
complete reducibility theorem X is isogenous to a

product of simple abelién varieties:

n n n
Xahfxll X X22 X ceaa X er

where X; are not isogenous to each other. If Di=End°(Xi)

then End°(X)=Mnl(Dl)x.o x Mnr(Dr), where Mni(Di) is an

n, x n,-matrix with coefficients in D,. Note that End(X)

is an order in End°(X).

If x* denote the dual of X,then any polarization

> u! on

N X.————~)>Xt induces an involution u

End®(X) which is totally positive,i.e. for any non-zero




a in End® (X), trmdo(x)/m(uu‘) > 0.

Let X be an object in AV(k) of dimension g and

let G=Ga1(ks/k),where k, is the separable closure of k.
. For any prime 0 # p,let Tg (X) denote the f£-adic Tate
module of X. Tp (-) is a covariant functor from AV(k)
into the category of Zg -modules. Tp (X) is free of rank
2g over Zg . Put Vg (X)=Tﬂ (X)8Q. Both Tp (X) and

V‘ (X) are G-modules.

If X.go is the f-primary part of the torsion
subgroup of X, then we have the following exact sequence
of G-modules:

O

>Tg (%) >V g (%) >Xgw —>o
Taking Galols cohomology,we have & long exact sequence:

| >H(Cq ,T g (X)) ——> (G LV (X)) —>

—— > E°(Gy SXyw) — >N (G sTg (X)) —> veen.

where Gy 1is the closed subgroup of Au'tZL (TL (X)) identi-

o

fied with the Galois -group Gal(ki m/k),kzm being the
field of rationality of X g=. Since ee Vg (X))=o0, [80],

we have the following

Proposition 1.1. H"(GE ,TZ(X))zo and
B (Gg ,Tg (X))=H"(G ,Xpgw).

Remark 1.2. I do not know the geometric significance of

the above cohomology groups.




.Let us now recall the reduction of abelian

varieties, Let k be a field with discrete rank one
valuation v,of valuation ring R and residue field k. Let
S=Spec(R) with closed point s and generic point t.Let X
be an abelian variety in AV(k). Then according to Néron
and Raynaud ,X has a Néron model N over S, N is a group

gscheme smooth and of finite type over S such that the

generic fiber Nt is isomorphic to X and N represents the
functor : T-————}ZHomk(Tt,Nt) on the category of group
schemes smooth over S or equivalently,N satisfies the

following functorial property:

.

| HomS(T,N) ——————->iHomk(Tt,Nt) is bijective.

Definition 1.3. {(a) X has good reduction at v if N is an
abelian scheme.

(b) X has stable reduction at v if
(after a finite sepéfable extension of k) the connected
component of the special filber NS of N is an extension

of an abelian variety by a torus.

If I is the inetia group of v,let!PE(X)I denote
the submodule of elements of Ty (X) invariant under I.
It is clear that T, (X)/TL(X)I‘ILS a free Zg -module

of rank say s,

Definition 1.4, & is called the index of good reduction




of X with respect to v. Note that og s { 2g.

Let N be the Néron model of X and N;.the connected
component of thé special fiber N of N. Lé'l: T, be the
maximal subtorus of Nj. Then N;/To is an extension of
.an abelian varlety ¥ by a unipotent group UO(Which is
smooth and connected):
> U, > N2/T, >Y > o

Note that dim NS = dim X = g; let r = dim U,u = dim T

o

v = dim Y, Then g = r+ut+v, Also .1@&1.1’11{2‘!1‘»E (’I’O) u

li

rank Tl (N;/TO) = rank Ty (Y) = 2vy rank _TL(N;) u+2v

)t '

a

= rank Tl (N,) = rank Ty (X

Definition 1,5. r is called the unipotent rank and u the

réductive rank of X.

If g = r,i.e. the reductive rank of X is g,then

we say that X has very bad reduction at v.

Proposition 1.6. i) X has good reduction at v if and

only if s = © |
i1) X has very bad reduction at v if

and only if s = 2g

X has stable reduction at v if

)
‘and only if s = g— dim Y.

Proof: i) follows from the theorem 1 of Serre-Tate [21!].



4i) TIf X has very bad reduction, then g = r.
Therefore g = g+ut+v or u+v = o and hence u = o and v = 0,

rank _Tﬂ (X)I

il

s 2 'y 0. Q
This implies that N — U, and rank TL(NS)

which is zero, This implies s = 2g.

Conversely,s = 2g implies Tz(}(_’)I = o, Therefore
rank Tf_(X) = rank Ty (X)I
= rank TE (N;)
= 0

So ut+2v.

I
C
-
o
413
o
il
O
-

v = 03 hence g =r Q.E.D,
i1i1) can be proved in a similar fashion.

Remark 1,7. If X is an elliptic curve,then the index of

good reduction is elther o0,1 or 2. The case 8 = ©
corresponds to good reduction; s = 1 implies that X has
stable reduction or equivalently X has nodal reduction;

s = 2 means that X has very bad reduction or X has

cuspidal reduction.

Let X be an object of AV(k) of dimension g. Then

as we mentioned before rank, End (X) <\' 4g2°

Definition 1.8. Suppose that End(X)™ Z for any finite
~extension of k. Then we say that X has no complex

- nmultiplications; otherwise X is said to have complex




multiplications. We say that X has sﬁfficiently many <
complex multiplications over k if End°(X) contains a

semi-simple commutative @Q-algebra of rank Qg.'

Proposition 1.9. Assume i) X is k-simple abelian variety

deérinéd over k
‘ ii) X has sufficiently many
complex multiplications by a field L. Then

1. if char k = o, L is a CM-fleld,i.e. a totally
imaginary gquadratic extension of a totally real field.
2. if char k # o and if L is stable under the Rosati
involution ¢ defined by an ample line bundle,L-is a
CM-field.

3. Either X has good reduction or very bad reduction.

Proof. For the proof of 1,see [R4] and for the

proof of 3, see[i®]. We prove the statement 2,

Since X is simple,End®{X) is a division algebra
over Q. Then by proposition 3,chapter II[24], the
commutant of L in End®(X) coincides with I itself and L
containsg the center of End°{(X). Then I, is a maximal sub-
field. Since L 1s stable under ¢ ,we can restrict @ to
I. and denote the restriction agéin.tw'go Then L is not

elementwise fixed; otherwise 2g must divide g by




Voo

the'corollary on pp.191(11] which is impossible. Let Lo

be the subfield of L consisting of elements fixed by @ .
Since ¢ is totally positive on End®(X),its restriction
is also totally positive on L and so TrL/Q(xx9)>>o for

every X in L. Then by lemma 2 pp 41[24,L is CM-field.

Theorem 1,18. Let X be an abelian variety in AV(k)
having sufficiently many complex multiplications, Then
there existg an abelian variety B defined over a finite
extension 6f.the prime field of k and an isogeny
between X énd.ﬁl(hence B_is defined over a number field

or a finite field). B

,Cohversély,an abelian variety defined over a

finite field has sufficiently many complex multiplications.

Proof. The proof of the second part is a
consequence of a theorem of Tate[R§.For the first part

‘see[29.

Remark 1.11. From the second part of the above theorem

one can'ask Whether there are abelian varieties defined
over infinite fields and not having sufficiently many
“complex multiplications. In fact there are lots of

abelian varieties having no complex multiplications at

all,see § k., Por the sake of fun we give here an example




«0f an abelian variety defined over & number field which

does not have sufficiently many complex multiplications.

Consider the following congruence subgroup

[ (23) 287 ( m= (® D)esp(2,2) such that

: . cm o (Hmod23)].

‘Tet H* be the union of the upper half plane and
the cusps of f'o(23)o The quotient space H¥/ [5(23)‘is
a cémpact Riemann surface and so corresponds to an
algebraic curﬁe. It hag a model C defined over @, It
is easily seen that the genus of C is 2. rLet JIQ(23) be
the Jacobian variety of C., It is known that
J fg(23) is a si@ple abelian surface and End°(J r;(23))
is a real quadratic field. Hence by 1) of propositionl.ll

J [ (23) does not have sufficiently many complex
o _

multiplications.




2., Barsotti-Tate groups.

Hereafter we assume that k is algebraically

closed and char k = p>» o. Let X be an object in AV(k).

For any integer n,let Xpn = Ker{p™ :X >X). Xpn is
a finite commutative locally free group scheme of rank'Eg.
Xpn are never etale(as opposed to the case for §# p)

unless X ~ o,

o et .
on X Xpn into connected and

etale parts. Let X(w) = { Xpn s i, ] be the p-Barsotti-

Decompose Xpn = X

Tate group associated to X. Denote by TPLX) the
projective system associated to X(w)., We shall also
call Tp(X) the p-Barsotti-Tate group of X. The decompo-

sition of Xpn induces a decomposition of Tp(X). Define

s et :
Tp(X)red = Lim %pn ’Tp(x)red is a free Zp-module of

rank, say,r and call TP(X) the p-adic Tate module of X.

red

Also Limit X;n is the formal group assoclated to X,

Definition 2.1. The integer®r" is called the p-rank of X

and denoted by pr(X).

Remark 2.2. Observe that pr(X) { & and that the p-rank

is an isogeny invariant. By looking at the Lie algebra

of X,we see that pr(X) = dimension of the semi-simple

part of Lie(X) with respect to the p-th power = dimension
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of the semi-simple part of Lie(Xt) = dimension of the

1
(X,OX). Let

semi-simple part of H
F ot H'(X,0,) ——> H'(X,0

x)
be the Hasse-Witt transformation induced by the Frobenius

homomorphism F : Oy ———) Oy defined by a >aP, By

theorem 3,pp 148{11], under the isomorphism
Lie(x%) ——> (X, 0,)
the p-th power map in Lie(Xt) goes over into the

Frobenius map in Hl(X,O Hence pr(X) = dimension of

X)'
the semi—simple part of the Hasse-Witt transformation of X.

Definition 2.3. We define rank(X) to be the rank of the

Hasse-Witt transformation of X.

Definition 2.4. An abelian variety X is called ordinary

if the p-rank of X is equal to dim(X).

From the remark 2.2,we see that the Hasse-Witt

matrix of an ordinary abelian variety is invertible.

We shall now briefly explain the Serre-Tate's

theory of lifting of ordinary abelian varieties.

Let A be an ordinary abelian variety in AV(k) of
dimension g. Then Aon = (K )% @ (2/p2)% anad hence

T, (&)

ph :
o Et,:._u g 7 £
‘TP(A) & Tp(A) Gy @ (Qp/ P) . In

il
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particular, the Barsotti-Tate groups associated to all

ordinary abelian varieties are isomorphic.

For any artin local ring R with residue field k
Z/pRZ has a unique 1lifting to R and hence by Cartier
duality an has a unique 1lifting to R. By taking direct
limits and sums,@i and (Qp/zp)g have unique liftings
to R. Let them be M and E respectively.So among the

lifts of A/k to R there is a natural 1ift X given by

setting TP(X) M ® E, X is called the canonical lifting
of A/k to R. For more details on these liftings and

for the proof of the following theorem see Messing[10],

4

Theorem 2,.5. An ordinary abelian variety X, in AV(k) has

a canonical 1ifting to characteristic zero,i.e. there
exlsts a complete noetherian local ring R of characteristic
zero with residue field k and an abelian scheme X/R

such that Xu®e§pec(k)fi X, and the canonical 1lifting is

the unique lifting X/k to R such that every endomor-
phism(and hence every polarization) of X, lifts to an

endomorphism(to a polarization) of X/R.

Corollary 2,6. If an ordinary abelian variety has

sufficiently many complex multiplications +50 does its

canonical lifting.
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Remark 2.7. From the existence and the formal smoothness

of the separably polarized abelian varieties,it follows
that a gépafably polarized abellan variety can be lifted
to characteristic zero. From the general principle

that specialization of liftable varieties are liftable,
one can prove that any polarized abelian variety can be

lifted to characteristic zero.

We now discuss a few questions on Barsotti-

Tate groups of abelian schemes.

Question 1. TLet P be the set of all natural

primes. For an abelian variety X in AV(k) and for
every prime p in B,let TP(X) be the p- Barsotti-Tate
group of X. Consider now two bbjects X and Y in AV(k).
Suppose TP(X) is isbmorpnic to Tp(Y). Then is X
isomorphic to ¥? In other words, 1s the natural

injection ISOM (X,¥) ———n> ISOM(_TP(X),TP(Y)) bijective?

We give an example to show that the answer to
this questionlis‘no in general.

Let X be an object in AV(k) with a ring of endo-
. morphisms O which is a finite Z-module. Let N be an

invertible O-module ,projective of rank one over O.

tY=NRTZ 30 K22 =0-. But N(=N® Z_) is
I_Je p’ = —=p p( p)

p




Qp-isomorphic o) Qp and hence Tp(X)-is igsomorphic to

Tp(Y),since TP(Y) is isomorphic to Np ® Tb(X).But it may
happén that X is not isomorphic to Y. For example
considef the ring of integers ¢ in an imaginary quad-
ratic field having class number h}. There are h
different eiliptic curves defined over € having ¢ as the
ring of endoﬁorphisms. They are all defined over a
suitable number field. Let E be one such curve . Choose
a non-trivial projective O-module of rank one, say, R

and let E'=E 8 R. Then E 1s not isomorphic to E' since
Hom(E,E') is canonically isomorphic to R and hence not

a free O-module, But Tp(E) = Tp(E‘) for any p in P.

"Question 2., Let v be a discrete rank one

valuation,of ring R and let 8 - Spec(R) with generic
point t and closed point s. Let X and Y be two abelian
schemes over S. TLet Tp(X),Tp(Y) be the corresponding
p-Barsotti-Tate groups of X and Y respectively. Assume
X, and Y, are isogenous and TP(X) is isogenous to Tp(Y)
Le. T (X) 8 q is isomorphic to T () 2 B. Then

are X and Y isogenous?

Here again the answer is no in general, Here is
an example. Iet XO be an ordinary elliptic curve
defined over a perfect field of characteristic p # o,say

over a finite field k. Consider its 1liftings over
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the fing W(k) of Witt vectors as expléined above. There
is a one-to-one correspondence betwéen the isomorphism
classes éf 1iftings of XO and the elements of the group'
W(k)* of the ring W(k),see[10]. Also recall that lifting
X, is equivalent to 1ifting TP(XO). Let u be 8 unit

of W(k)* and let X, be a lifting corresponding to u. Now

if u' = u™ where u,u! =1(mod p) and n is a p-adic unit

Tp(Xu) and TP(Xu') are isomorphic. However the curves
Xu and Xu' are not always isomorphic; in fact there

are too many of them.

Another question for which I have ‘no answer

at present is the following: Characterize the system

{ Gp{ peP, of Barsotti-Tate groups which come from

abelian schemes.




3. Abelian varieties with p-ranks o and 1.

Definition 3.1. Let X be an object in AV(k). X is

called special if pr(X) = o; X is called super singu-

lar if the Tormal group X* associated to X is

isogenous to ( }8,1.e. X* is isogenous to E*® where

1,1
E* is the formal group of a super singular elliptic
curve; X is called completely special if all the in-

variant differentials are exact.

The'fdilowing theorem of Manin{[ ¢f] gives the
structure of the formal group of an abelian variety

upto isogeny.

Theorem 3.2. Suppose X is an object of AV(k) of

dimension g. Then X¥ the formal group of X is iso-

genous to :

X¥erP= 1 Gy o + z((}ni’m1

g =.r + X(n; +mi) + h3 1{ mynd =

'r = p-rank of X (myn) = 1

~Proposition 3.3. 1. X is completely Speciai if and

only if X is special.
2.” X.super¢singu1ar implies that X
is special, The converse is always true 1if the dim X=2.

3. If X is defined over a finite-
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field,then X is completely special if and only if X* is

isogenous to hGl 1 for some h,.
. . k)

Proof. 1. Hl(X,OX) has a basis consisting of invariant

differential forms which are exact by our assumption.

Since the Cartier operator vanishes on exact

differentials and since it induces the Frobenius map

on Hl(X,OX) »the semi-simple rank of the Hasse-Witt

transformation h: Hl(X,OX) _— Hl(X,O is zero,

x)
Hence pr(X) = 0. The converse follows by retracing the

steps.

2. Suppose now that X is super singular. Then
by the theorem 4.2 of 06rt{}7],X is isogenous to E® where
E is a super singular ellipticrcurve. But the
pr(E) = o (note that for elliptic curves super singula-
rity is equivalent to special). Since p-rank is additive

pr(Eg) = 0. Therefore E° and hence X is special,

Let X be a special 2_dimensional abelian variety.

For a 2-dimensional abelian vafiety,by the theorem 3.2

1,0 0o 1) OF Gy o + Gy 3 Gy 5.

or 2Gl 1+ In our case since pr(X) = o,X* is isogenous
, .

X* is isogenous to 2(G G

to 2G1 1 and so X is sﬁper:&ingular.
-2 .

3. 1s proved by Manin[g I.
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Remark 3.4, If X has dimension 2,all the three notions

are equivalent and so the distinction arises only in

dim }3.

In case dim ) 3,there exlsts special abelian
variety which is not supfe-singular. Lenstra and Oort
prove in [ 7 ] that for any isogeny type of a formal group

having at least one factor different from G there

1,1
exists a simple(even absolutely simple) abelian variety
having the given isogeny type as formal group. They use
Honda-Serre's classification of simple abellan varieties
over finite fields[4 ]. From this we see "that we can

construct a special simple abelian varilety.

Theorem 3,5, Let X be an abelian variety in AV(k) of

dimension g »2 with p-rank one. Then End°(X) will
never contain a simple]subalgebra which is not a field.
Proof. Suppose that End®(X) contais a simple algebra L
such that the identity of L maps into the identity of
End®°(X). Let K be the center of I so that [L:K]=d° and
[K:&] = e.

‘Consider the representation of L on the

Dieudonne module of the formal group X* of X, This

representation has degree 2g over W(k). It splits into
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three parts corresponding to the spiitting of X* into
loc,et
>

X*Et, K X%loc,loc.

The first representation 1s the representation

over Zp of L on the p-adic Tate module Tb(X) Since

rad®

the p-rank of X is one,Tp(X)red ﬁ!Zp. Extend this

representation to a representation of L ® Qp on

Vp(X) = Tp(_X)red 2%, Q.

- e _
Write Lp@ mp -t ]:T My (mp). Since the identity

of L maps into the identity of End°(X),this representa-
tion does not comtain the zero representation. Hence
= 1,i,e. L is a field., Hence the only simple algebra

contained in End°(X) is a field.

Corollary 3.6. Let M be the one dimensional family of

abelian varieties of dimension 2 defined over [ whose
endomorphism ring is an order in an indefinite

‘quaternion algebra 6ver . Then closed fiber of M is
either special or ordinai-y,i,e° its reduction at any

- prime is either special or ordinary.




4. Moduli scheme of principally polarized abelian

varieties and its subspaces.

Definition %.1. TLet p : X —> 8 be an abelian scheme

of relative dimension g. Assume that n is invertible
in 5,i.e. the residue characteristics of all s in S are
prime to n. For n > 2,a level n structure on X/8

is a set of 2g sections Clsveres O of X/S,such that

2g
i) for ail:geometric points s of S,the images U&(s)
form é basis'fqr.the group of points of order n on the
fiber fs and ii) ne+@; = € where ng: X —> X is
multiplication.by n and ¢ is the identitytsection. X/s

by itself is called a level l-structure.

Definition 4,2, If 8 is any locally noetherian scheme,

let‘j1g,d,n(8) be the set of triples:
1) an abelian scheme X over S of dimension g

) a polarization : X —--—_--_}Xt of degree 62

)} a level n structure'ci,....,OEg'over s all

upto isomorphism,

‘Definition 4.3, If M é.n is represented by a scheme
& E

M then M will be called the fine moduli

g,d,n ’ g,d,n

~scheme” of level n, for g-dimensional polarized abelian
varieties of polarization degree dg.

Definition 4.4, Let M be a scheme and Y is a morphism
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From Jﬂg d.n to the functor represented by M. Then
2 k]

M is called &a coarse moduli scheme if

i) for all algebraically closed fields {3,

¥ (spec(0)): M o, (Spec(())) — ny(spec(f2))

is an isomorphism

i1) for all other morphisms ¥ from Jvl to

g,d,n

representable functors h there 1s a unigue

B’

> hp such that W= Y .X.

morphism X : hM

Theorem 4.5, a) If n)>6%.d. /g1 , then the fine moduli

scheme M d.n exists. It is quasi-projective
3 2

over Spec(Z).

b) For all g,d,n, the coarse moduli scheme
Mg,d exists. It 1s quasi-projective over every open
set Spec(Z)-(p) in Spec(Z).

For the proof,see Mumford's book[lR].

Remark 4.6. If the fine moduli scheme exists,then it is

also a coarse moduli scheme and there is a proper

morphism from M ——9 M .
P g,d,n g,d

g,1,n *°

‘irreducible. This is seen as follows: let Mg 1.n2E
L] 3

denote the generic fiber with base extended to T and

It is known that the generic fiber of M

let Mgnl , denote the analytic space associated to
3 L




th a » L} ' - - .
e v rlety'Mg’l’n & T. Since Mg,l,n ® T is of finite

type over I,so is Mgnl n and hence it is quotient of
. 2 2

fhe Slegel's upper half space by a simplectic modular

n

'group. Consequently,Ma is irreducible and
- g:1,n

therefore Mg 1.n ® I is irreducible. This proves. that
L 3

the generic fiber of M is irreducible.
- g,1,n

Remark %.7. It 1s not known whether the fiber at any

closed point is irreducible or not.

Hereafter we shall fix a prime p. Denote M
' - g,1,n

an irreducible component of the Tiber at p of the fine
modull scheme of the principally polarized abelian

varietles. Then Mg 1.n is quasi-projective ,of finite
. L] 3 .

type and hence noetherian over Ep. Let A

e, 1,n be the

~universal abelian scheme over Mg 1.n° The fiber at any
¥ L2
closed point is defined over a finite field.

Proposition 4.8. A

g,1,n°

¢, 1,0 is progectlve_over M

1z smooth. This is seen

Proof. Tirst note that
roo note t 7 ﬂg,ljn

Vas follows: take the level n structure such that (n,p)=1.
tThen M ,1,n is etale over the cgarse moduli scheme. To
'provelthat Mg,l,n is smooth, it suffices to prove that

;ﬁhe coarse moduli scheme Mg 1Iis smooth.. Since

2

smoothness is a local property and the local moduli
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functor of a principally polarized abelian variety is

formally smooth,Mg 1 is smooth. If t is the. generic

>

point of Mg,l,n,then on the generic fiber Xt of Ag,l,n

take an ample invertible sheaf &t. Then there exists

an invertible symmetric sheaf 1, on Ag 1.n such that
> 3

L, is algebraically equivalent to 12. Since L, is
ample, L is Mg,l’n—ample. Consequently,ﬁgsl,n is

rojecti v .
proj ive over Mg,l,n

Remark %.9. The smoothness property holds also in

characteristic zero for the same reason given in the

above proposition,

The Tirne moduli scheme of abelian varieties
with separable polarization or inseparable polarization
whose kernal contains no local-local component is
.smooth because in those cases the local moduli functor
is formally_smoothﬂ%ﬂﬁ]. As a result,ih those cases the

conclusion of the above proposition holds.,

be the universal abelian

As bef let A
8 before let g,1,n

scheme over M, 1 , wigh generic point t. For any

closed point s, let X, be the fiber at s. For the proof

of the folbowing theorem,see[6] and [47].
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Theorem 4,10, a) pr(Xs) < pr(Xt) for any closed

oint 8 in M
POIRE 8 A Mg, 1,n

b) Let W be the subset of Mg,l,n over

which the fibers have p-rank { g-1l. Thils set is closed

by corollary 1.5 in[l7]. W is non-empty because it
contains a fiber which 1s supersingular. Then each

component of W has codimension one in Mg 1.n
3 L2

c) _Let Mg’l’n,r = { seMg’l’n | pr(X,)

is { r } for any integer r{ &.

Then M is pure of codimension g-r in M

g,l,ri,r- ) g,1,n"

d) M is smooth at those points

) 7 g’lJnJr
where the fiber has rank g-1,

Corollary 4.11. 1. The generic fiber of M is ordi-

g’ l’n
nary.
2.,Thé closed subset of special

abelian varieties in M is pure of dim=1/2 g(g-1).

gJ lJn
3. The set of supersingular abelian
varieties has dimensiony 1/2 g(g-1). In fact strict

inequality may hold in dimension E,B,CfuRemark 3.4,

Note also that from this corollary we can

deduce the well-known fact that the set of isomorphism

- classes of supersingular elliptic curves 'is finite,
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Proof. 2) and 3) follow from the theorem and from the

fact that the dimension of the modull scheme Mg 1.n
. . ‘ sls
is 1/2 g(g+l) by the theorems of Grothendieck

and Mumford{lsé].

In[28], Grothendieck has mentioned that in
characteristic p > o, the fine moduli scheme My 1,n
could contain a projective line as opposed to the
situation in.characteristic zero where Me,l,n is affine
as Igusa has shown[f ]. The following theorem asserts
only the existence of a projective curve which might
have singularities. Although this theoreﬁ is a particu-
lar case Of a'mpré general theorem(see [1¥]),we give a

glightly different proof'. Bul first some definition.

Definition %.12. Let ﬂ(p br the local group scheme
defined by & = Ker(F: &, —> &,), &, being the
additive group scheme and T is‘ the Frobenius map. Then

“Hom( «_ , X) is a k-vector space for any abelian

P
~variety X in AV(k). Then define a(X) = dimkHom(<¥p sX).

‘Some facts on a(X). For details see[l§].

1. a(X) is not an isogeny invariant.
2, I X and Y are isogenocus abelian varieties

then a(X) = o if and only if a{Y¥) = o.
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3. If a(X) = dim(X),then pr(X) = o; but the
converse is not true.,

4, In general a(X) + pr(X) { dim(X). If
dim(X) — pr(X) = 2,then there exists an

abelian variety B isogenous to X such that

pr(B) + a(B) = dim(B).l

Lemma(Oort)4,13. If a(X) = dim(X), then X can be

defined over a finite fleld.

For the proof seell7].

-

Corollary 4.14, TLet X be a two dimensional special

abelian variety. Then X has sufficiently many

complex multiplications.

Proof. Under the assumptions on X and by the fact 1)
above, there exists an abelian surface B isogenous to X
such that a(B) = dim(B) = 2. Then by the lemma of Oort
B cén be defined over é;finite field. The corollary

follows by theorem 1.10.

Theorem 4,15, M, containg a projective curve

s1,n

" possibly with singularities.

is 3,by theorem 4,10

 Proof. Since the dimension of M

2,1,n




26

the closed subscheme P of special abelian surfaces has :
dimension 3 - 2 = 1. To show that P ig projective, it
suffices to prove the following: |
1) P is quasi-projective
ii) P is proper

The quasi-projectivity follows because M, 1.n
2 3

is quasi-projective and P is closed in My 1 pe
3 L)

To prove that P is proper,we use the valuation
criterion for properness and so we have to prove that
the canonical injection: :

Homk(Spec(R),P) ———->}Homk(8pec( )sP)
1s bijective for any discrete #aluation ring R which is
a k-algebra ,K being the field of fractions of R with
residue field k. Let u belong to Homk(Spec( }sP). TWe

associate to u an abelian scheme over R.

Now u in P(K) defines a special abelian surface
A over K. Since any abelian variety has stable reduction
there exists a finite separable extension I of X such
that if S is the integral closure of R in L énd if Nt
is the Neron model of A % L over S,the closed fiber of

NL has no unipotent radical. We show that NL is

actually an abelian scheme over S. TFor that we show
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that the closed fiber N, o of No is an abelian variety
2]

over k. We have the following exact sequence:
0 v By >N > B So
- »

where r {2 and B is an abelian variety of dim{ 2.
N

We can assume that all the groups in the exact sequence

are defined over k.

Every endomorphism f in EndK(A) induces an endo-

morphism,of‘NL 5 Since every endomorphism is continuous
- ' >

in the Zarisky topology, I induces an endomorphism £

. 0
of NL,S‘

group of NZ
2

Morgover since Eg is the maximal linear sub
s ahd since the homomorphic imége of a
linear'group is linear,f' maps m; into iteelf, Hence T
induces an endombrphism of G; and an endomorphism of B,
We thus have W ¢ Endy(A)3f —>1f eEndk(m;;) a ring
homomorphism such that X (lA) = 1pr. Since
Endk(Eé)f!'Mr(Z),'X‘induces a homﬁmirphism of End°(A)
into MQCQ). The central Q—algebra M (R) of r x T
matrices QVéf'Q,Qﬁﬁ have subfields of rank at most r

over Q. But r = d@im(E ) { dim(A) { 2 dim(A)=[F:R]

gince A has suffi@ientlyjmany complex multiplications

by corollary 4.14,sabiy the field F. Note that & # 0.
‘Hﬁnce 1eF maps to o = identity of &i and hence m;:o.

‘Therefore N . and hence N is an abelian scheme/S,
: >

Lifting the polarization of A to N

Ve deduce that the
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seetion u can be extended to a section
Ve Spec(R)‘——u~—9>M2’l,n.
Since P 18 closed in ME 1.n° ¥ factors through P. This
) E e | .
proves the surjectivity of the map in the valuation
criterion., The possibility of P having singularities

is. discussed 'in the following

Remark 4.16. Let X be an abelian variety in AV(k} of

dimension g. Let h: Hl(X,OX)-~—~9>Hl(X,OX) be the
Hasse-Witt transformation induced by the Frobenius.
Let'vl,...;;vg.be a basis of the g—dimens%onal vector

x) -
basis will be fixed by h; let them be Vl""’vr° Then

gpace Hl(X,O If pr(X) = f, then r elements of the

for a suitable choice of v
1( ‘

r+1"°"vg the p-linear action

"of h on H'(X,0 has matrix of the form

%

X)nilp
: . - L] 0
Q [ ] 0

B
where Ng ls the g; x g -matrix with nilpotent rank g4-1
: i L ' .

of the form j‘
0
0
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Hence there is a one-to-one correspondence between

isomorphism types of p-linear endomorphisms of Hl(X,O

v
and partitions 7 = (r,gl,....,ge) of g such that

T30 812850 ceanns },gé},l, r+ % g; =g, glven by

-
[II_ o . 0
' 1 O L] L]
(rbglso-:ge) H H = Ngl .
O - . 0
O L ] -] N
L 8, |

Where I, is r X r-identity matrix, Clearly rank(X)=g-e.

In our case g being 2, the possible types of the
Hasse-Witt matrices are:

rank({X) = pr{X)
rank(X) = pr(X)
rank(X)

rank(X) = pr(X) = o

The projective curve P consists of abelian
surfaces of types T; and Ty. By theorem 4.10 d),the
singularities of the projective curve P occur at those

abelian surfaces of type T4.

Question: Does P have a projective line as a component 2




5. A generlc abelian variety has no complex

multiplications

Proposition 5.1. Let X be an abelian scheme over an

- algebraic k-scheme S, Assume S is irreducible with

generic point t, Then for any two points s,s' where s!

is a specialization of s, End(XS) c End(XS,).

Proof. By E.G,A. II 7.1.%4, there exlsts a discrete
valuation ring R such that if T = Spec(R) with generic
point & and closed point b and a morphism £: T —3 8
with f(a) = = s'. Thus we can consider X , as
a specializatibn of X, with respect to R.

Consequently End(X,) = End(X_, ).

Corollary 5.2, If some closed fiber has no complex

multiplications,so does the generic fiber.

Corollary 5.3. The map 8 ——> r_ = rankZEnd(Xs) is

lower gemi-continucus,

® T denote the fine moduli

Proposition 5.4. Let M

g,1,n
scheme of principally polarized abelian varieties defined

over L., Then the generic fiber of the universal abelian

scheme over M & T has no complex multiplications.,

g,1,n
Proof. It follows from a theorem of Weil[26 that for
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any given integer g, there exists an abelian variety
defined over T of dimension g having trivial endorphism
ring. From this we deduce that some special member and

hence the generic fiber of M

g,1,n 2 T has no complex
3 =2

multiplications.

Remark 5.5. We can also give a dirct proof of the

Prdpdsitidn 5.4, without using Weil's theorem by

applying équicharacteristic formal deformation theory.

denote an irreducible component

heor 6. Let M
Theorem 5 r.e z,1,n
of the fine moduli scheme of principally polarized
abellan varieties defined over an algebraically closed
field k of positive characteristic. Then the generic

~has no complex multiplications.

fiber of M
e ot Mg, 1,n

Proof. By corollary to theorem %.10,the generic fiber

A, is ordinary. Ay is defined over k(t),the residue

‘field of t. k(t) is a function field of transcendance
'degreeiL/2,g(g+l) and_if is not a perfect field. Denote
by k again the algebraic closure of k(t) and let

AO = At ® k., Since AO iérordinary over a‘peffect field
k, Serre-Tate theory (cf. {2) assures the existence of

. the canonical 1ifting of A_. In other words,there is a

projective abelian scheme A over W(k) whose reduction

is A such that Endw(k)('A)f"—_%>Endk(Ao) is bijective,
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Also recall that A is the unique(upto isomorphism)
1ifting of AO such that the above map is bijective.
Taking a suitable level n structure,for example, (n,p)=1

the level structure and the polarization can be lifted

tQ A,

Let K be the field of fractions of W(k). The
generic fiber A, of A/W(k) can be considered as the
generic fiber of a fine moduli scheme of principally
polarized abelian varieties in characteristic zero. In
fact let M! be & fine moduli scheme of abelian

ngJn
varieties over K. Then MY 1,n is irreducible K-scheme.
> 2
3 ~ap] 1 1
If Ap 1s not the generic member of Ag,l,n —— M Lo
we can consider it (by a suitable finite extension of K

if necessary) as a closed point of M! Then by

s1,n°
reduction mod p, the generic member of Mé,l,n 1s mapped

to AO and AK maps to a proper specialization of AO which
is impossible. 1In short,we can say that the generié
point t 1ifts to the generic point in characteristic.o.
Since the generic fiber in characteristic zero has no
complex multiplications,by proposition 5.4, and since
Endw(k)(.AJ'ZfEnd K(AK), the conclusiqn of our theorem

follows.,

Corollary 5.7. The generic fiber A, of M_ is simple.
: g,1,n
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Proof, If not by Poincare-Weil theorem on the decompo-
sability of an abelian variety into a product of gimple
abelian varieties(cf. § 1), the rank of the endomorphism

ring of the generic fiber would be > 1, contradiction.

Corollary 5.8. The Picard number of the generic fiber

is one,

Proof. The Picard number is,by definition, the rank of
the Neron-Severl group NS{X)} for any variety X. Since
CNS(X) & B is contained in End®(X) consisting of

symmetric elements, the Picard number is { the rank of
the endomorphism ring. In our case, since the rank of

the generic fiber 1is one, the Picard number is also one.

Theorem 5.9.. Let k be an algebraically closed fleld as

before. Then any principally polarized abelian variety
A deflned over k is a specialization of an abelian

. . ab
variety B defined over k((tl"°'“’t1/2 g(g+l))) such
that B has no complex multiplications. (here the super-

script ab denotes the algebraic closure)

Proof, Consider A as a fiber at a closed polnt s of the

fine moduli scheme Mg 1.n° Then the generic point T of
3 =2

belongs to Spec(OM S);'here-éxdenotes the

M
g, 1,n g,1,n’

completion.- :




34

Note that t is also the generic point of

Spec(0 ). 8 being the unique closed point.

Now Spec(OM ) is the algebrization of the

8
g,1,n’
formal moduli of AS and so we have an abelian scheme over

M

g,1,n°°

Spec(0
d ( Mg:l:n;S
formal moduli scheme is formally smooth and hence
T —

Spec(OM
g,1,n

Here we take equicharacteristic formal deformation.

Y. Since A, 1s principally polarized,the

) is isomorphic to k[[tl"""tl/é e

s 8 g+l)]]'

The closed and the generic fibers of the abelian scheme

over k[[tl""°’t1/2 g(g+1)]] being A resgectively

E/k((tl’""’tl/Q‘g(g+1)))’ the conclusion of our

theorem follows from theorem 5.7.




6. Analogue of Shimura's moduli space in char p> o,

Let W= (L, P »A »8,d) be an ordered set
consisting of:
a finite simple @-algebra
a positive involution on L
a Z-order in L

g, integers such that (dEACZQ

Definition.6.1., For any locally noetherian scheme S,

let ijn(s) be the set of isomorphism classes of objects
(X/S, N, {637}, 8) where :
i) X is an abelian scheme over S8 of relative
dimension g
il) A X -——-%Xt a polarization of degree §°
1i1) {e} is a level n-structure on X/ |
iv) & : L %Endg(x) is an injective algebra
homomorphism such that a) 8(A) EndS(X)
b) 6(Ll,) = 1q
c) 6(xP) = (8(x))' for all x in L

where x ——> x' is the involution induced by ) .

Theorem 6.2. 1. For n) 6%5.4 . /g7, Mcd , 1s represented
- k)

by a scheme M M 1s quasi-projective over Z.

w,n’ W, n

2, for all n,the coarse moduli scheme Mw 0
. 2
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exists., It is quasi-projective over every open set
Spec(Zz)—(p) in Spec(Z)
3. The forgetful morphism
pw,n: Mw,n ;Mg,d,n
is a finite morphism(i.e. we forget the endomorphism

ring) .

Proof. The proof of 2) can be given by imitating the
proof of Mumford for constructing the usual coarse

moduli scheme,

For the proof of 1) and 3),see Fisgher{g7].

Rems.rk 6.3. If L is not a division algebra, decompose

L into a direct sum of simple algebras: L=i§l L;. Let
{ei} be the corresponding central idempotents of L.
Let \ be an order in L. Assume that A= Liﬂi\
contains e.. If f is a positive involution on I, then

£ =( 71,....,?‘K). Let (X/S,p) be a polarized abelian
scheme over S and 6 : L -9>End§(x) be an injection such

that (A ) is contained in End.(X) and o(x%)=e(x)',

S

e(1,) = 1,. Then 1y =3 e(ei) and we get X = z'e(ei)x.

X.
Then X splits into a product of abelian schemes Xi’

where X, = e(ei)X. Also 6 induces an injection

i

. o

0.8 Ay ——}EndS(Xi) and Qi(ei) = 1y . The polariza-

tion p will induce a polarization p, on X; and p,
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induces the involution ' on Endé(Xi). Ift0=(LgL,f ,8,d)

with L = ® L;, then

) X
| M3 = U TN, n(s) |
where the union is taken over all sets of integers g

and d; such that 3g;=g, Z2d;=d and (Oiz(Li’fi’j\i’gi’di)

and_so M = M .
W, n Y Wy, D

‘Now let us compare the modull scheme M n with
L

Shimura's modull space vfl'

Let L be a simple algebra ovér @ such that [L:@]
divides 2g and let§ be a positive involution on L. The
condition [L:@]|2g is automatically satisfied when I is
a division algebra. A PEL-type is a collection
2 = (Lotp 5V;T,ﬁ1,xl,...,xs) where

¥ is a representation of L into ¥ (&)

V a left L-module of rank-m:Eg/[L:Q]

T_a non-degenerate L-valued § -antihermitian

form on V

M a free Z-submodule of V of rank 2g

Xl,....;xs are elements of V

Note that the order A in ourwis present here

©dmplicitly as A = {Ael | Amicm ],

A PEL-structure is a collection © =(A,A,85ty,..,t,)
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where (A, A ) is a polarized abeliah variety over T, ©
is an isomorphism of L into End®°{A) and tis...,t, are

points of finite order on A.

We say that O is of type {1 if there exists a

commutative diagram
0 > Vpfy —> O

Lo J

0 >D > — € 5 a >0

such that ¢ gives a holomorphic isomorphism of IL‘g/D onto
A, £ is R-linear and f(m ) = D, f(«x x) =Y («)f(x) and
l)0(°<) defines 8(d}) for « in L, ‘)Ldetermine's a Riemann

form E on T&/D such that for (x,y) e VxV,
E(f(x):f(Y)) = TI‘L/Q(T(X,y))

ey

1L = 1,---,8-:

A PEL-type §) 1s called admissible if there

at least one PEL-structure of type 1. For {1 to be
admissible it is necessary thatg-w? is equivalent to

a rational representation of L.

For an admissible PEL-type (Y, Shimura =g ,the

maximal family of PEL-structures of type 0. Zn_ is

parametrized by a bounded symmetric domain S on which

acts an arithmetic group[?in such a way that the coset
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space ['\\S is the moduli space for PEL-structures of
type f1. Except Tor a few {l's, I"\\S has a quasi-

projective algebraic model Vg . Va is defined over the

field of moduli of . Vp is the moduli -variety for

PEL-structures of type .

6

When L is division algebra, Shimura computes

the dimension of S, Hereafter assume that L

division algebra.

Let K = center of L, Ko = the subfield of K.
fixed by ¢ . Put [L:K] = d2, e = [K:@]1, e, = [KO:Q],
m= 2g/[L:@)]., If L is type IV,i.e. I, is a central
divisiqn algebra over a CM field, let [6‘1, .oy 5480-,?61, ..,?G‘éo}
be a complete set of isomorphisms of K into T. TLet

dry, ,respectivelydsy be the multiplicity of Gy resp. oy

in @ restricted to K. Since ()0+t? is equivalent to a

rational representation, we have ry + 8, = md,

The dimension,N, of S is:

(Type I) N _Qiggglg

(Type II)

(Type III)
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. o ' g
(Type 1IV) N =\>‘§-1 98ys Tytsy=md= =

Shimura also proves the following

Theorem 6.4, If (A,A,©) is ageneric member of Zn »then

8(L) = End(A) 8 @ except in the followlng cases:
L is of %ype ITT and m = 1,
L is of type III,m = 2 and there exists a totally
pQSitive element &« such that'N(T) = ag,where N is

the reduced norm of My(L) to K.

0.

' S e
L is of type IV, '\?—Z-(l)r’v SV =

L j.S Of type IV, m = l, d = 2, rvzs :l"ﬂ:l, cc’eoc
L is of type IV, m = 2, 4 = 1, r9=sv:1;J=l,..,eo.

In the cases a,b,d, if if (A,A,9) is of type

(L,?,f), then A 1s isogenocus to a product of two copies

an abelian variety B. In case e), if (A,r,8) is a

geheric member,‘ then A 1s isogenous to a product of
two copies .ofl a éimﬁle abelian variety B such that
End°(B) is a totally indefinite quaternion algebra

over K_ . In case c), A is isogenous to le=md= copies of

~an abelian variety B of dimension e, belonging to the

CM-type (K3{¢y}). B may or may not be simple.
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‘Remark 6.5. Let f1 =(L,%,9;V,T,M) be a PEL-type and

O = (A,),8) a PEL-structure of type §1. Let M

w,1 Pe
the coarse moduli scheme for a given W=(L,f,A,8,d).
Assume that the order A satisfies AMl<yrt. Then 0
determines a point of Mtd,l(m)' Conversely, a point of
Mtu,l(m) determines a PEL-structure 0 of type {1 rfor
some type fl withTla lattice in V. Infact O determines
a2 unlque equivalence class of such §fl's. If P is the
complete set of representatives of admissible equi-
valence élasses of fl's, then P is finite by theorem 6.2 |
the morphism pw,l : MﬁLl ———Q--7\>]3/Ig’d’1 being finite. é 
Hence Mw,l x Spec(l) VUV, withdlin P, the union

being disjoint,

If we assume that A\ is maximal, then all the

components of the generic fiber M & @ have the same

th,1
dimengsion,say,N. One can show that this statement does

not depend onAbeing maximal,

In the case of dimension 3, we compute and
tabulate the possible endomorphism algebras -and compute

the dimension of the moduli space M‘u n24-= Mj. In the
2

cagse of dimensibn 2 Fisher has computed the same [R7]. We

use the following table which gives restrictions on the

invariants é,d,g, When the division algebra L = End®(X)




42

where X is a g-dimensional abelian variety which is

simple.

TABLE I

Restrictions in Restrictions in
char 0; g=dim X char p> 03 g=dim X
L = End°(X) L = End°(X) _

eleg el
2elg 2elg

2elg elg

2
a“le e dle

Next we shall give tables for the possible
endomorphism algebras in diemnsions 2 and 3. Note that
by theorem 6.4, quadratic imaginary field does not

ceccur in our tables.rAlso note thait we have included

only those algebras where generically End®(X) = L.




Table II dim(X) =

dimensions
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@
Q(/d), a>o
D, quaternion algebra

K, imaginary quadratic extension
of a real quadratic field

@ xQ
B x q(/d), a{ o
’(/d) x B(/€), d,e{ O

M, (@)
M, (R{/d)), a< o




i

Table III dim(X) = 3
L dimensions

totally real cubic field
totally imaginary quadratic
extension of totally real
cubic field

BRx @4 xQ

R x @ xQ(d), a{ o

g x u(/d) x a(/€), d,e< O

a(/d) x w(/E) x a(/T),d,e,£{ ©

M3(Q)

Ma(R(/T)),a< 0

R x@ |

B x Fo’ Fo & real quadratic field

® x F, F a CM-Field of degree 4 over

MW N - O N oW O

@ x D, D a quaternion algebra over @

!




7. Characteristic p X0 and dimension = 3,

In this section we shall compute the dimension

of the moduli space M, in c#haracteristic p> 0 and

P
the dimension of the abelian varieties is 33 the

results are‘Only partial, In dimension 2 Fisher[27]
describes the possible division algebras and computes

the dimension of the moduli space M(u,n fbr various
p-ranks. At Jeast in p-rank o, the difference between
dimensions 2.and13 is that in dimension 2,one such abelian
Variety is-isbhorphic to a product of supersingular
elliptic curves whereas 'in dimension 3,this 1s not the
case. 1In fhe latﬁer case, the set of supersingular
abelian varieties is a proper subset of the set of

- special abelian varieties. This fact makes the compu-

-tation harder in dimension 3 than in dim 2.

Let X be an abelian variety of dimension 3 in
AV(k) where k is algebraically closed of char » > 0. Then
the formal group X* of X is isogenous to one of the

following five possible types(upto isogeny): 3( G

(Gy,0 T Go,1)

2((}1’O +GO’1) + Gl:l; Gl,o + Go’l + 2 Gl’l; 3 Gl,l;

3 G’l’g + G'Q,l-

(A). p-rank 3. Let M be an irreducible




component of the fine moduli scheme Mtu n at the
3

n be the universal abelian scheme

prime p. Let Atu

2

over M , .. If M_ contains an ordinary point,i.e. a
W, n p

point corresponding to an ordinary abelian variety, then

its generic point,say,t is also an ordinary point. The

set of such points being dense, Mp is a component of

the closure of points in characteristic zero and hence

dim Mp is the same as in characteristic zero, Also

since the generic point is ordinary, it has a canonical

iifting to characteristic zero(ef.§ 2),the latter

having the same endomorphism ring as Aislee, End°(At)=L

whenever this is true in characteristic zero-that is,

for the algebras in Table III. Thus we have to

determine which of the algebras in Table ITI actually

occur. Thus in the cage of p-rank three,we have only to

show the existence of an ordinary point.

1) @. This algebra obviously occurs and so

the dimension of My is six.

11)  My(R); Ma(RG/D))s @ x @ x @(/d);
R x B(/3) x 5(/e); A/ x a(/5) x Q(/T);
@ x @ xQ; 0x{.

The first six of them occur as endomorphism

algebras of At,when At is 1sogenous to
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products of elliptic curves with the restrictin that

the prime p splits in each of the quadratic fields that

occur. The algebra @ x @ occurs as product of argeneric
elliptic curve and an ordinary generic abelian surface.

In these cases the dimension is the same as in char 0

and End°(X) = L generically.

iii) K, totally imaginary quadratic extension

of a totally reallcubic field. In this case we can
show the existence of ordinary point as in the two
dimensional case. Since the degree of K is four over
and since the representation R1+R2 is eq&ivalent to a
rational representation of X and is degree six, 1t
follows that Rl+R2 contains each of the irreducible
representation of K over Qp exactly once., Recall that
Ri is a representation of /\ over Zp and Ry 1s

equivalent to(Ry+§)*, * representing the linear dual,

IT q is a prime of K lying over p and if Rl contains any

representation over Qp of the completion Kq it must

contain all the representations of an It follows that
if (K,§) can embedded in the endomorphism algebra of an
ordinary 3-dimensional abelian variety,it follows that
the following condition must hold:

(¥) For every prime ¢ of X lying over p, q # q.
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s e —e.
Now suppose condition (x) holds. Let p Oy = Tﬂ'& 1571
and set a = TT}pei. Then a determines an isogeny class
of simple abelian varieties which are ordinary with
endomorphism ring ,say,K',see Honda[4J. Then K!

determines ordinary points in our moduli scheme Mp.

iv) @ x F,» F_ a real quadratic field;
@ x F, ¥ a CM-field of degree 4 over @

® x D, D a quaternion algebra over §.

These cases occur as one can see from the two

dimensional case,

V) K . & real quadratic field. This case will

also occur but I am not able to prove this at present.
(B) p-rank 2.

Proposition 7.,1. Let X be an object of AV(k) of dimension

-3 and p-rank 2. Assume that End°(X) is a simple

algebra. Then X itself is simple.

Proof. Let[End°(X):¥] = de,where K is the center of

End®°(X). Then arguing as in theorem 3.5,we see that d
must divide 2 and hence d = 1 or d =2. 8o End°(X) is

a division algebra and so X is simple.
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If X is a product three elliptic curves

E, x B, x Eqs; then End®(X) is of the form:

Dp X @ x @ Dp X B(/d) x QQ/E)s
Dp x Ma(Q)s D x My(w(/d)),
where one of the curves ig supersingular and the other

two are ordimary. The dimensions of the moduli spacesg

are 2,0,1,0 respectively.

If X-is a product a supersingular curve and an
ordinary simple abelian surfacs, then End®(X) is either
D x 0 or Db x @(/d) and so the dimension of the moduli

p
space 1g 1 or 0.. Here D, denotes the quaternion

algebra over § ramified only at p and » and d,e are { 0,

The simple algebras which may occur are given
by the Table I: Q; toﬁally real cubic field
~Definite quaternion algebra over @
Defiﬁite quatefnion algebra over a

totally real éubic field;

CM-field

i) XK is a OM-field. In this case,as in p-rank
.- three, Honda's theory shows that the moduli consists of
simple abelian varieties having sufficiently many complex

multiplications and hence they are all defined over a
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finite field., In this case the dimension of the moduli

space 1is O,

Since dim(X) = 3 and pr(X) = 2, the isogeny

type of the formal group of X is 2( + G + G

G1,0 * Go,1)
Since we can deform such an abelian variety to an

1,1.

ordinary one, we conclude that the abelian varieties
with p-rank 2 are contained in the closure of ordinary
points and hence any component of the space of abelian

varieties of p-rank 2 has codimension one in Mp'

ii) §. By reasoning as above we see that the
pdints of Mp with p-rank two and End°(X) = @ are contained
in the closure of ordinary points ans so the moduli

space has dimension 5 in this case,

(C) p-rank one. The isogeny type of the formal

group of such an abelian variety is G + G

1,0 T %o,1 * Gp, 10

If X is a product of elliptic curves, then

End®(X) is of the form: @ x Dp x D or @(/d) x Dp x D

p %

or @ x ME(Dp) or (/d) x MQ(DP)' The corresponding

dimensions of the moduli space are 1, 0, 1, 0, O

respectively.

In case End®(X) is a simple algebra, it is a field




of one of the following types: @ toatlly real cubic
Tield; CM-field of degree six; ®(/d), a{ O

If is a product of an ordinary simple abelian

surface and a supersingular curve, then End®(X) is:

Dy % Q5 D x &/F), 4< 0

Dp x @(/d), a> 0; Dp X K, X a CM-field.
The corresponding dimensions of the moduli

space are: 1, 0, 0, O,

By deforming Gl,o +-Go,l + 2 Gl,l to p-rank 2
and then to p-rank 3, we see:that if Mp contains a point
of p-rank one,then the dimension of the moduli space

-1s four.

(D) p-rank 0. If X has dimension 3 and
p-rank O, then X* is isogenous to one of the following

+ G

or Gl,2 2,1°

types: 3 Gl,l

Suppose X* is isogenous to 3 G Then X is

1,1°
isogenous to a product of a supersingular elliptic
curve and so End®(X) =~ M3(Dp). Further if a(X).= 3,then
the isomorphism classes of supersingular 3-dimensional

abelian varieties is a finite set. This we can see as

follows: If a(X) = 3, then X is iéomorphic to a product

of supersingular elliptic cufves. Since the isomorphism
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classes of supersingular elliptic curves ig finite, our
claim is proved. Consequently, the dimension of the

moduli space Mp is 0.

If X is simple, then X* ig isogenous to
G + G and the possible endomorphism algebras in
1,2 2,1
this case are: g; ME(Q); Division algebra over an

imaginary quadratic field; a CM-field of degree 6,

If these algebras occur, then the set of abelian

varieties whose formal group has isogeny type

G1,2 + G2,l form a component by themselves.




TABLE IV

>3 psplits
D, quaternion,splits at p and
K, a CM-field, for any prime gq
over p, q # q
s POK=
or pOK=
where Nm
@ x @

L

R x &(/d), a<

22

Q:(/a-) X Q(/E): d:e< O:(

XDJ.—;
% p

Q(/H) X Dp: d—< 0, (
M, (R)
Mo ((/D)), a< 0, () = 1

maximal
g sufficiently small

2
1
2
1
2
1
1
2
2
0
0

HO O K O H H O KF MWD

The above table is computed by Fisherp7],




TABLE V

2>

L

K, a CM-field of degree 6
32

L)
Bxq
B x Ko’ KO a'real gquadratic field

225

22

@ x K, K a CM-field of degree U
MB(DP)_and a(X)=3,. maximal.

® x D, D a quaternion algebra/f
‘axaxn | |
B xR xg/d),d{ o

R x ®(/d) x @(/e), d,e{ ©

%(/3) x B(/s) x B(/T), d,e,£{ O
Mq(R) o :

My (B(/d))

3
2
1
3
2
1
3
3
2
1
3
2
1
0
3
3
3 .
3.
3
3
3

O H C H DN w M O OO0OHKH NMwHE N OOC = 5
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bottom supersingular suersingular

P inertia | inetia
top W(k)* of the units W(k)* of the
' of the ring W(k) ring W(k)
top contain combtain
any closed fiber closed fiber

top Denot bj M Denote M

g} lJn g’ lJD
be br
F ' f

Shimﬁra constructs Shimura =
2

six . " four

If X is a product If is product




