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Abstract of the Disgertatlon

The DeRham Cohomology of Follated Manifolds

by
Karanbir Singh Sarkaria
Deoctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1974

Let M be a smooth closed n-dimensional mani-
fold. Whenever it carries a lwdim@nsi&na; plane field
D, the vector space A of all smooth forms on M admits
a natural filtration of length ¢ = m - 1, and this
filtration commutes with the exterior derivative 4 if
and only if D is tangent to a foliation. On such a
foliated manifold we thus have a spectral sequence
Eg’q con?ergimg to the deRham cohemology. Its first
term is E2*% = u%(m,pF) where pP is the sheaf of germs

1
- of all smooth %transverse invariant forms on M-(i,e.g

"forms  such that ixw = Ly = 0 for all X€C (D))e
The sheaf D of smooth function germg congtant on
leaves plays the same role as the "analytie" function

germs on complex manifolds. We will say that a

iii




- principal bundle Pm«é’é Hl(M.G ig invariant (==

g)
ahalogous to "analytic®--) if it lies in the image of
the map induced by Gy « Gg. Here Gs'is the sheaf of

germs of smooth functions from M to G and ¢, is the

D
subsheaf of those which are constant on leaves. We

"~ show that a complex line bﬁndle is (asgociated to) an
invariant bundle ii and only if the first chern Cl&ﬁﬂv
vanishes in HZ(MEQ). .From here we deduce that the
Chern ring of an invariant complex line bﬁndle vanishes

in dimensions » 2¢. We point out that for foliations

obeying Serre dualitymeg”q o Eimp”l“qwfand'for ¢ odd,

the signature of M is zero. This.duality holds, for

M oriented, 1f the diffeventials of the s@ectral
seguence are topological homomorphisms in the TVS
topologies induced by the usual Frechet space topology

of po. To study the finiteness problem we introduce the

notion of a k-parametrix for d and relate it to finite
dimensionality of E . We construct Z2-parametrices in
certain special cases, e.g., by uging a global
parallelism (of a foliated principal bundle) arising

from a complete invariant connection. This last

concept is analagous to “complex analytic connection®

for complex analytic bundles, For each 6¢€ HI(M,GD)

we have a family of Weil homomorphisms W(G) = A(P)

iv




given by the 8-Bott connections. We filter both W(G)
and A(P) in a natural way and ée@ that any 2 such
homorphisms are l-chain homotopic. (By k-chain
homotopy we mean that it disturbs filtration by k-1
units). In case one has an invariant connection for
g we see that all the O-invarianit connections are in
the same 2-chain homotopy class. Here a different
filtration is used for W(G). Note that for a point
.foliation the induced map ESEZBO(G) - Eé‘O(P) = H ()

is just the chern Weil homemorphism. Many other i
~results related to the above filtration are 'also

included.



Table of Contents

Abstract [ L] % ] [ L] [ 4 L] ] L] [ [ [ [} e L] & L] iii—

Pable of ContentSo ¢« € © & ® & ¢ & @& © © & © vi

The DeRham Cohomology of Folliated Manifolds. 1
Introduction (A) Motivation o o o ¢ ¢ o o a ¢ s o 1
(B) Summary of Resulis « o o « o s o 3

Texbe ¢ o o ¢ o o ¢ o o o s 0 o s 8 o o o o« 0 o o 17

1
2
3
2
2
&
L
g
2
19
11
12 Signature vanishing . « « « « & ; ¢ o e 39
13
14
15
16
17

The Filtration « o ¢ ¢ o 5 o ¢ o & o o o 17
The Filtered cOmMpPleXe o o ¢ o o o o o o o 1.8
‘The spectral. groups E%e e 6 o ©v 8 & ¢ ¢ @ 19
Reeb Ffoliation. « o o s o o ¢ o s ¢ o o o 22
The spectral homomorphisms d, 6 o & w.e o 23
Invariant transverse fOrmsSe. o o o« o« ¢ o o 2k
Ef’q = HUH,DP) o ¢ o ¢ 6 o 0 o o s o o 26
Invariant complex line bundles. o ¢« ¢ o » 29
kfhamotopy and kK-chain homotopy « « ¢ s« » 33
Construction of homotopies: o o o ¢ o o @ 35

The cup product « o ¢ ¢ ¢ ¢ o ¢ o ¢ o o o 37

Generalized Bott vanishing., ¢« « « &« ._} . M1
A Bigradation « « o & ¢ o ¢ o s o v o o o Lé
The E, tEIm ¢ o ¢ o o o s ¢ a0 o o o s o L9
Functional analytic Preliminéries s e e s 53

2-parametrices and gldbal parallelismsa . 63

vi




18.

£9.

21

Serre duality, Kodalra-Reinhart |
ex&mple et%a o 8 © ¢ o & & €& ‘¢ & ° ®

Connection theorys « o« « v o o o o o

194 Bott comnections, stiff bundles

'égéﬁ Weil m@rphismﬁo & nra [ ] ] e &

Felistions as Torsionless Structures

2-Parametrices on Principal Bundles.

Bibliography e « o ¢ ¢ ¢ o & ¢ o o o o o ¢ o

[] -]

e [ 3

et

Page

83
o 9N
»100
o111

L]




The DeRham Cohomology of Poliated Manifolds

Introduction (A) We first point out in broad outline

the object of our study, and why it is worth studying.
Think of a p-covector at x€ M, where [ is a

smooth m dimensional manifold; as a skewsymmetric and

0]

multilinear map T, %« o o XTy (p times). ~= R Ty

being the tangent space of x. We shall say that W is

of filtration » 1 with respect to a subgpace D, «T, if

(u

it vanishes whenever p~-1+ 1 of the arguments arve in D, .
Let us now suppose that M is ﬁupplie& with a tangent
gsubbundle DeT,., Then a form u will be said to be of
filtration = L 4if Wy ls such for éa@h %€M Thus we
get a decreasing sequence of vector spaces

A= AosAlﬁa e o eDDA_ DA = 0, Ai being all smooth

¢ el
" forms of filtration » i. Here ¢ = codimension of D in T.

The deRham cohomology of K is the homology of A

under the exterior derivative dspa-As H(A) = ker ¢/Im 4.
Qur starting point is the simple observation that D_ig

involutive if and only if the exterior derivative

pregerves the filtration. So.each Ay ig now a sub-

complex of A, and A is.a filtered complex. On the

other hand by Frobenius theorem--see, e.g. [ 34]--D is

involutive if and only if it is tangént to a foliation;

in other words, M can be covered by coordinate
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neighborhoods KysooosXysXy yrocesXy such that locally
a/axlgseega/axl form & hasis for D,. In this way M
is partitioned into l-dimenslonal manifolds called the
Leaves of the foliationi each leaf being a maximél
connected sub-manifold given locally by some constant
values for xl+lgeaa,xm. |

Hence to each pair (M,foliation)--l.e. to a

foliated manifold M-=is attached in a natural way &

filtered complex A. Our object is to gtudy thig

filtered complex. We recall that by standard homo-

logical algebra, as in (7], one can atiach %0 any

filtered complex an object called its svectral sequence.

It consigts of a sequence Er of graded groups, each of
which is the homology of the preceding under a dif-
ferential dr, such that E, ig the graded group of A
(under above filtration) and the fiﬁal term E_--which
is attainable in a finite number of steps--is the
graded grbup of H(A) (under the obvious induced filtra-
tion) . |

A better idea of the importance, and scope, of

“such an investigation can be formed by congidering the

analagous case of complex manifolds. In this case we

‘have a similar spectral sequence with E_ = H(Ac)n—i.en,

« the complex deRham cohomology--and &, is the so called




Dolbeaut cohomelozy. A vast theory is centered around

this cohomology (see, e.g. [15]). Deep resulis
- requiring both analytical and algebraic techniques
have been attained. For instance one has the finite-

ness theorem (il.e., if M ie compact El is finite

dimensional), the duvality theorem (i.e., for MT

compact Ef"q £z E?/z"p”m/zsaq)a and, on the algebraical

side, one can mention results invelving characteristic

giggﬁgg (e.ge, for M compact 3 (ml)Qequ = chM tdM,
ey = dim El; thig is called the Riemann Roch theorem).
These three specimen results due-regpectively-to
Cartan-3Serre, Serre and Hirzabruch have in turn led to
very interesting generalizations due {0 Grothendiecka
Grauert, Grothendieck and Grothendieck«Atiyathinger
and others.

The results, concepts and constructions oc-
curring in this work should all be viewed as part of
an ongoing and.extensive programme‘whose goal is to
build a similar body of knowledge for fbliated mani-
folds.,

(B) The following is a summary of the con-

tents.

Sections 1~5 give a rapid review of the

apparatus of our spectral se uence, following Cartan-
p B q g

Eilenberg [7].




In sections 6-7 we show that Ef’q = HQ(M3Q?)0
Here QP is the sheafl of germs of smooth forms of degree

p which are transverge and invariants a p form g is

called transverse if e 5 it is called invariant if

pﬂ
Lo = 0 for any vector field X € c(D). Q?»mar Just

D~-=ig simply the gheaf of germs of asmooth functions

which are congtant on leaves. It plays an important
role in many places.

Section 8 studies complex line bundles. Let.

i

Qg {(respe. gz) denote the sheaf of germns of smooth
nonzero complex valued functions (resp. those that are
constant on leaves). Now, the ispmorphiswsclasses of
such.bundles form a group under tensor product, viz.,

HI(M,Qg)s and the sheaf inclusion g%czgf

. gives us a

¥
"{‘S

variant line bundlegs. The first chern class of a

map Hl(M,GE)-ﬁHl(M, ) whose image gives us the in-

line bundle 2e¢H (Mggg) is an element ci(g)E.Hz(M,Z)»

We shall say that a chern class vanishes in D if iV is

killed by the induced map HZ(M,Z)-*HB(M,Q). We see

that the first chern clasg of a line bundle vanishes

in D if and only if it is invariant. PFor an analagous

result for analytic line bundles_over-a'complex'manie'

fold, see [15].

In sections 9, 10 we study two notions of




homotopy. In the category of foliated manifolds the
morphisms are those which map leaves into leaves. Two

such maps f,g:M-+M* are called k-homotopic (k=1,2) if

they can be extended to a morpﬁism By xI ~ M' where

Mx I carries the k-foliation (k=1,2). Here the 1-

foliation is given by multiplying each leafl of M by I,
and the 2=follation is the natural l-dimenslional

foliation on MxI. Then we construcet a kechain

homotopy (between the induced maps Lain () 2 A (M) of

filtered conplexes) by using & kmhomgtqﬁya 1e@op, 8
chain homotopy that *disturbs® filtration by k-1
units. Thus we can think of thé gpectral sequence Er °
for r=k, as & functor attached to the k=homotopy
category (k=1,2) of foliated manifolds, by usual
homological algebra ([7]).

Sectioﬁs 11, 12 involve samé simple observa-
tions about the relationship of the exterior product to
the filtration. Since our filtration ig of length c,
if a form of filtration 1 is multiplied by a form of
filtration j and i+j»c we get 0., Using this we see

that an odd dimensional foliation can have

il

). Here

dim H2(p) > 2aimu*5(s) only if sien N
1§

:Hj(A) ig the part of H(A) of filtration » j; {%} is

the first integer after % and sign M is the signature




of M. We shall say that a foliastion obeys Jerre
dvality if Eg’q o E;”p°lmq. It is clear that such
foliations satisfy the above inequality.

In section 13 we extend the definition of

section 8 to define invariant complex vector bundles:
Let Gg (resp GD) denote the sheaf of germs of smooth
function with values in GL(n,C) (resp. those that are
conatant on leaves). Now the lsomorphism classes

form only a set Hi(M,GS)y and we consider the image of
HL(u,Gp) + 1Y (M,05) . [Note that with a stricter
definition of "isomorphism® Hl(M,&D) ig the set of
isomerphism blasses of all invariant bundless this
notion shall play a role in section 19. Further it
plays a role in a natural K theory of invariant

bundles.] We show that the real chern ringe of an

invarisnt complex vector bundle vanishes in dimensions

> 2C. Applying this result to the complexification of
thé bundle D* of transverse l;forms one gets Bott's
vanishing theorem [4]. Note that no connection theory
is used in the proof.

Corresponding to any two projection ﬁaps
Py, PysT+T with images D and N s.t. D + N = T, one hag

“a natural bigradation of A, and the differential d is .

the sum of three dlfferentla;s d01, dlo' dz—l of




bidegrees (0,1), (1,0}, (2,~1) respectively. see [13].

In section 14 we show that F, = H, (A) and
' 10

Hoo Hy  (p)e [Following [7], this means that
15 07 '

ElsEg are the first 2 terms of the spectral sequence of

25 Lg

the double complex (A9d019d10)3 The complex of sheaves ’
D Qag;-gw.,a Q@Q?oeo (which is in fact‘exact) hag 2

standard spectral sequencesj see, e.g., [ 35]. Using

the notations of [35], the E, term of the “"second®

spectral sequence ls same as EZ of our apectral

sequence. This is shown in section 15. We see from

these that if the feoliatlion arises from a fibration the

E, term iz the game ag that in Serre’s spectral seguence

of a fibering [317.

Section 16 covers the functional analysis that

is relevant to finiteness thecrems. We put on 4 the

usual Frechet snace topology. So it induces on each Er
a topological vector space topology. We recall the

usual definition of a_smoothing map (= integral opera-

tor) ssph. Any K-chain homotopy between 1 and s will

be célled a keparametrix (of d}). We show, under some

additional conditions, that on a compact foliated

manifold, the existence of a k-parametrix implies that

B, is finite dimensional. This result is the reason




why we shall be interested in k-parametrices. We also
point out in this section that if dim,Er = €, < oy then
X(M) = % (Wl)p+qe§,qa Here x(M) is the Euler
characteristic of M.

In section 17 we construct, hy modifying

techniques ‘given in Eil]g a Z-parametrix in the fol-

lowing special case: agsume that there exisgta a

continuous uniformly transitive map Fsﬁmﬂéglﬂmgm)g with

F(O0) = 1, then there exists a 2 parsmeirix. Here
G?(MQM) consists of all smooth maps M-<M which map
leaves into leaves; it is given the usual ¢

topolegy. By uniformly transitive we mean that there

is a neighborhoed U of Gezgm which, for all xé€ M,
gives us a diffeomorphism Fx of U onte a neighborhood
of x by P (n) = F(n)(x). We point out that thisg -

hypothesig is fulfilled if a compact foliated manifold

M has a global parallelism by vector fields which are

infinitesimal transformations of the foliate structure.

Section 18 records some tid-bits which may be
of value. E.g., we point out that an obvious extension
of a "patching argument™ of [117] allows us to show that

if the foliation arises from a fibration then there is

a 2-parametrix. Again, now let‘®s suppose that M is

of the-

oriented, If the differentials dO,d

lp'en




spectral sequence are assumed te be topological hono=

morphisms ‘then the foliation obeys Serré’s duaility.
This hypothesis ls satisfied if dim B, <w. Hence gdd

dimengional foliations with din E1<5% exist only if

gignature (M) = 0. We shall also recall in this

article an:example which shows that for almost all
irraticonal flows on the torus dim By <ose But there
exist irrational flows for which this ig no longer
true,

Section 19 studies the inter-relationships

between reduction of the stiructure shesf of a bundle~~

see [12a] and sections 8,13 above--and connection

theory. In section 19a we think of a connection on a
real vecltor bundle W bver M as a derivation of A{W),
3A(W) =+ A(W), lying above d (pﬁ?é)e Here A(W) are
forms on M with coefficients in W. Now the "structure
sheaf" of W consisﬁs of the smooth germs with values

in GL(w), w=dim W. Again, as in sections 8,13, W

will be called an invariant veetor bundle if this sheaf
GL(W)S can be reduced to GL(W)Ds the subsheaf of

germs constant on leaves. We put a bigradiatioh in

the manner of sectlion 14 now and thus a splits up

into three derivations 801 °10?%2.1+ Then ¥ is

invariant if and only if one has a connection for
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which le = 0. Such a connection will be called a

Bott connection. Nobte that one can now define El(w)g

the homology of A(W) under dgg¢ Also if W° is the
natural w- dimensional bundle associated to W, (p.2dl);
we can define the group El(wz)& I'or each

E € Hl(MeGh(w)D) we shall also define the notions

I

E=Bott connection (resp. E-invariant connection) by

ol

requiring that the local connection matrices of L=
forms (with respect to trivializations of W agreeing
with E) consist of transverse (respg transverse
invariant) l-forms. Any vector bundle W assocliated

to € admits a £-Bott connection, but it need not admit
an g«invariant commection. Note that our definition
of Bott connection merely says that the curvature form
{which is a 2 form with coeffs in Wz) is of filtration
a'l. If we satisfy “filtration > 2" we shall say that

it l1s an invariant connection. Finally, we call a

hundle which admits an £-invariant connection as a

stiff bundle. Starting with any Bott connectlon one

can define an element [Ql’lj of E%’l(wz) by using the
part of the curvature which is of Dbidegree 1,1. In

complete analogy with Atiyah 1] it will be seen that

W ig stiff if and only if le l]_: 0.
P .

Section 19B is devoted to examining the Weil
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homomorphisms, and is basically a dual of section 19A.
Let G be a lie group. {(For simplicity we think of G
as a matrix group.} By a G-algebra we meana graded
anticommutative algebra (over some commutative ring)
which ig provided with (a) a differential d, (b) for
each left invariant vector field % on G a skew

a3

derivation i of degree -1 and (c¢) a derivation Ly of

2 . oy T
2 0 Iy v = [y ol T

l[X,Yj = ELxeLyjs l,d + diy, = Ly+ For example the

degree zero such that i

Weil Algebra W(G) of G is a G-algebra--gsee [6]. An-
other example arises from A(P}, the deRham complex of
a principal G-bundle P over M. In this case each
left invariant vector field X gives us ina naltucal
way a vector field--also called X--along the fibres
and iX”LK are defined to be the usual inner product
and Lie differentiation respectively. We can define

a connection to he a G-alzebra morphism of W{G) into

some other algebra. There always exist such morphisms

W(G) »A{P)t+ this definition is known to be same as
for section 19A for G = GL{w). P inherits from M a
codimension ¢ foliation:s so A(P) is a filteréd'com«
.plex. W{G) is also a filtered complex if wé set
,Wi(G) ag all those terms containing polynomials of

degree » 2i1 this is called the 1-filtration of W(G):

when we are considering W(G) with this filtration we'll




write (1) W(G). Then we will see that A principal G-

bundle is invariant if and only if there iz a connection

(1) W(g) i%a(?) preserving the filtrationg. 0L course
"invafiant" means, as before, that we can reduce the
structure sheaf GS to Gy [This result is simply the
dual of the first in the above paragraph: in this new
getting these are the Bott Gonnectionsej For each §

€ Hl(M,GD)mwi»eap each "invariance isomorphism claasg®

Fw=gne hag a famiiy of £-RBott connechions (&) (1)W(G) =

A(P) which are associated to § {They arise in the proof
of above proposition]. We show that any 2- such cone-
nections £(€), (&) are l-homotopic (in the sense of

section 9). Thus to each § € Hi(MaGﬁ) there is

asgociated a 1-homotopy elagss [L{E) Te(LIW(G) A (P) of

Bott comnections. This implies that, for r 1, the

induced maps (1)Er(G}-¢Er(P) depend only on £: we can
denote it by €. Then dualising a result of section 19A

we can state that, an invariant bundle £ € P {M, Gh) ig

stiff iff the map Eg(i)Ei 1(G)u¢h (P) is zero. We

now define the 2=-filiration of W(G) by putting
(2)Wyy g = = (2)¥W,, = (1)W;. Then we can deduce that:

A principle waundle is stiff if and only if we have a

connection (Z)W(G)—g@A(?) préserving the filtration.

[These are wha’t were in sec¢tion 19A the invariant




connections. Note that a Bott connection is simply one
in which the curvature is of filtration » 1, while an
invariant connection is one in which it is of filtration
'» 27, For each £¢ HL(M,GD) one has & family of g-

invariant connectiong f(g). We show that any 2 of thenm

are thom@%opic {(sectlion 2). Thus to each E¢ U (I, Gg}

there is associated a 2-homotopy class Ff(g)ﬁs(Z)W(G)

-+ A{P) of invarianﬁ connections. In pgrticularg for

r » 2, the induced map (Z)ET(G)wéEr(P) depends only on
E: we can denote 1t by ?e Note that for a point ;
and for each differentiable siruce-

foliation, G, = G

D St
ture ¢ € Hl(M G,)g one has the well-known map
(2)E,*(6) 8y 1y 9(p,) = HY(M,R) called the Chern-weil
homOmorphisms here Pp means P considered with the
foliation arising from the fibration Pég@ma

In section 20 we study some aspects of lLinear

connections that are relevant to our study=--and find

use in section 2i--we follow standard terminology, as
in {17}, A linear connection is any connection on the
principal tangent hundle (and so on its associated
vector bundles, T, T etec.). Given any pair (M;D),
leeey a(manifold, plane field)one says that a linear

connection is a Walker Connection--see [377], [[38]--if

it is torsionless and reducible to D* (i.e., keeps the
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plane field D parallel). Then p walker connection

exists if and only if D is invoelutive. With section 19

in mind it is natural to say that a linear connection
which reduces to D' (an invarient bundle) is a Bott

N I . . kY
connection if it restricte toe gsuch a connection on D7 .

Every Walker conneection is a Bott connection. This

gsection points out that follated manifolds may be

studlied in the context of torsionlegs Ge-struciuress

however I have not pursued this aspect in this worlk.

Seetion 21 is occupled with congtructing 2«

paramnetrices {see sectlon 17 above) for foliated

principal bundles. Specisl hypotheses are needed for

these constructions. E.g., the hypothegsis made in

gsection 21a is that--in the terminology of section 20--

‘the foliation arises from a torsionless-%(1ﬁm)mstruc«
ture. Here %(19m) is the Lie algebra of all
endomorphisms of g@ with image in g}. Let @ denote
the prinéipal bundle of compatible frames, provided
with the natural codimension ¢ foliation. Then we

employ the canonical parallelism of @ by such a

toraionless connectlion (assumed complete) to construct

a 2 parametrix on Q a la section 17. 1In section 21b

‘we assume that D' is gstiffs then we can have a wWalker

connection whose restriction to D* is an invariant




connection {(i.e., filtration of curvature » 2Zi1 see
section 1%} a linear connection with the latter

property can be called an invariant connection. Let P

denote the principal bundle of tangent frames compatible

with the foliate structure. Then we employ the

canonical parallelism of P by such an invariant tors

sionless connection (assumed complete) to congtruct a

2-parametrix foer P. In this result P is not foliated

in w dimension c¢. Instead we show that there is always

a natural 14 Im dimensional foliation of P aitting above

the foliation of M. This is the foliation.that occurs

in the above result. 1 sectioﬁ 2ic we uge averaging
process {over & Haar measure) to get a 2-parametrix
for the subcomplex Ag of forms which are right
invariant over G.
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1. Let M be a smooth compact m dimensional manifold.
We shall denote its tangent bundle by T. The dual
cotangent bundle is T%. By p-~forms we shall understand
smooth sections of APT%E the bundle of p-covectors; the
gpace of all p formg is denoted by Apﬁ and the space

of all formg by A. Let us now assume given, once and.
for all, & subbundle D<T of fibre dimension 1 and

codimension ¢y so 14+ ¢ = m. We now define a filtration

of A
A,;mAl::;AZ::.}“.:::AE:;O (1)

in the following ways we think of a p-form @ as a
multi-Linear skewsymmetric form on p tangent vecior
fields, w(xlgaachp)g which commutes with the action of
g"“(m)s Leen lXysoeesfhypenesXy) = B(XpeeesX)o
The values of this f@rﬁ are in C(M). We now say that
A? consists of all those p-forms which vanish at x € M
whenever p-*i+.1 of the vector fields Xiﬁnganasxp
lie in D at x. If i > ¢+ 1 it is seen that A? = O

We shall understand by Aj the space of forms lying in
A{EL’ for some po If 3 <0, Ay = A and if 1 > c+1, A; =0,
_Another way of looking at this filtration is this. We
have an isomorphism A PT¥F o (APT)*; at x €M, an elt.

in the latter bundle is a linear map,hpTx -+ Re By

putting the requirement that this linear map vanish

\

17
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on Vl A sos A Vp whenever p- 1+ 1 of the veciorg are
in D we get a subbundle AET%o The space of all

sectiong of this subbundle is AP We also have the

ia
bundle A.T'ﬁ formed from the whitney sum &) }LP‘J}%&
i p ot

The space of all sections of this is Ay

2. Now we mssume that the subbundle D is invelutive,
i.es, 1T two tangent vector flelds X and Y take their
values in D so does their Lie bracket [X,¥Y]. In the
real vector space A we have the exterior derivative,
dsp + A which is given by the following formula {(thinking
of forms as skewsymmetric multilinear mapsrcw(f) X ooe

% C2(1) » (M) as above explained).

,, PP
() (Xg oKy ooeeoky) = mipl (-1 2 (g oeeeayseenity))

Ogi<jsr d

+ bJ([:Xingjgxogﬂeogiigepo’}.(-suecsxr)_ﬁ}(ZD

Though the notion of d goes back at least te Z. Cartan,
the intrinsic definition (2) was given first by
Palaig [22].

Propesition 1. D is involutive if and only if

the filtration (1) commutes with the endomorphism d,
iee0y d(Ai) < Ay for all i.
Proofs If D is involutive we easily see that if

(r+1)-i+1 of the vectors xogxl,.;,,xr are in D then

r-i+1 of the vectors Xogse;,ii,.,.,xr and
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[Xipijsxoatnup%igaoegijgaesgxr are alsc in D. So we
see that if wiEAg then‘dm € Ag&l by using formula (2).
Gonversely let's simply supposge that d(&%) T Ai and
take any w‘s&%e It is a l-form which vanishss on D.
Using formula (2) we have

(d) (x,1) = 3{x(w(0)) ~ ¥(w)) ~ w((x. 3D}
Pick X and Y to be two tangent vector fields with
values in D. So this becomes simply

(dw) {X,Y) = <Zw{[X,Y])

But dw € &%e g0 it vanishes if both vectors are in D./
Hence we get @([X,Y]) = 03 this being true for all 1=
forms ®» vanishing on D. It implies that Fx,Y] itself

takes its values in D, il.e., D is involutive. QED

3. From now on we shall suppose that D is involutive,
i.e., that the filtration (1) commutes With the endo-
morphism d. This is the setting in which & homological
algebra can be used to obtain information about H{A); an

algebraical machinery called the spectral gequence ls

available which allows us fto obtain information about
H(p) from the fact that the filtration commutes with
d, i.e., from involutivity of D. The following

definitions are adapted from Cartan and Eilenberg [7],

henceforth abbreviated as CE.




In the following H will denote the homologies
induced by d. In gome other differential § enters the
pictucre we will use the notation Hé( ) o Alsorin the
following we®ll frequently se the triangle lemma

(CE, po 316) which says that if (in the figure shown),
o)

the bottom row is exact then iﬁﬂ@@ = Im oo
G
A los
A s A b AY
M m

Since our filtration is compatible with d, we
have an induced filtration
H(A) » Hy(a) ® oo = H(A) 20 (3)
0f the homology of A, where Hi(ﬁ) = Tm {H(Ai)=9H(A}}9
the homorphism inslde the bracket being induced by the

ineclusion Ay © A The 2 filtrations (1) and (3) give

. A
rise to the agsociated gquotients EX = L and
| O Aju

. Hs (4) :
R ot
Eg, = Hj+1 3T And furthermore for each r = 1 we put

ker H Kmmw + H
i - 341 1+r‘ , (4)

I ({22 (L )}

“where the 2 morphisms are the connecting homomorphisms

E

i+l

in the exact homology sequences arising from the exact

20
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sequences
0-@Ai+j-¢ A - A + 0
bipr  Bipr i
and A A:} wpaed A b .
o R St SNk S R o o P respectively
Aip Aigq As

The mumerator and denominator in (4) shall be denoted

i i -
p © Z; for
1 2
any Iyl that the spaces Br are increaging with

-

i j .
4., and B; regpectively. One notes that k

s . A A s -
r while the spaces Z. are decreasing withr . If r
p r
is bigger than or equal to either of the two numbers
i+1 and c¢-i+l (or briefly, if v is big) then these 2

spaceg stabilize and (4) reads

In {1(a;) + K u-%)}

1 {iu(i) » (L))

A
(To see thig read numerator of (#) as Im {H(K~£w>
: o ir

. ;
-+ H(A L )}g take r big now). Since 0 = ﬁL¢4 —k
e | | i A

b b 4 0 ig exact, this coincides with
ivl

Im {H(Ai) -+ H(I%MZ). This in turn coincides with
i+

Im {H(p;) » H(A)) L

e
0

. . 1 »
T {H(A-*1)'*H(A)] e le@a, Ew ¢ SO wWe see.ﬁhat if r




big Er = L o This property is called the convergence
of the spectral sequence.
In addition our vector space A is graded by the
degree of forms. And we have an induced filitratlon
HP(0) » HP(A) © oo » 1(4) ® 0 EENCDY
for each p, where HE(A) = Im {Hp(Ai)~>Hp(A)}o

Similarly for each p we have the filtration

Apnﬁgm ea@:mAE::mO (1%)
Assocliated to these Zpgets of fihrations are the
s o As : - B
guotients grePml o X ang gteP 1 - 1y (A) e And

0 D ,
Ajpq HPM (A)

for each r » 1 we have

tm {1P(; ! )«-s« P 4 )j

Eigpwi o lAr i+l (4%)
Im {HP( ”"”“’1) -+ 1P mw]:»)}
I‘ A

Once more, we point out that the vector spaces Eg’q

owe their existence to the involutivity of D.

4. One knows from deRham®s theorem that H(p) is just
H* (M,R) » the real cohomology of the manifold, which is
a topological invariant. We see thus that

HP(m,R) = @ EY . o (5
o 4 j=p :

"The whole idea of the spectral sequence is to find the
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interplay between E s and B, for low r. For this pur-
pose more algebra ls introduced. Ag explained helow,
in each E.a differential dr of degree r is introduced
{(iL.e., d? = 0 and dr(Ei)c:Ei+r) and it is shown that

H(Er) = B Hany times this statement itself--quite

re1°
independent of the nature of the differentisls dram
suffices to calculate some of the groups entering into

et us consider

[}

the spactral sequence. For example, |
I I

[

. o a s . -1 '
Reeb's [ 25] foliation of 57, when E."Y can be non-zero

only if 0<i<1i and 0<j<2. From (5) we see that

EO“O 2 Elsz = R and the other B**J = g, supposing we
[+ oG -~ (<)

have seen that E?”O = R (Section (6) below). Then

dl;Eg’ -+ Ei“o must be the null map and we must have
1,0

S = 0.

By o

2« To wind up the algebraic machinery of the spectral
sequence we recall the definition of d.. For this one

sees, using the exactness of
As A A

k i i+1
° ¢'Ai+r+1'¢ Ay ! Miprey "o
that . A A
o Im{H("iir) " —ﬁ?)}
i A A
e e ) )

coincides with
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.f‘:,j A.:er“l . oo .
Im{H(Km4m> -+ H MW;WWW)}Q Using a similar zrgument
itr el Bi+r
. s s . -1
this in turn colncides with m%g%e Hence these two
pit: ,
r

. C o fu ok , :
spaces are isomorphic (With r, 5r decreases as fast as

Bl‘i"I‘

» increasges). The differential d,., is defined as the

following composition

i i isr oLt
B e Eg - Eg %_Br+1 i by = EAFT (6)
r Bt Zi Bi+r Bi+r r
r r+1 r “n
: 2 : wd i j- - A -1 ]
As we saw in 3) for r big an = zr+1s a0 then this is
a zero endomorphism. It is clear from (6) that
: S -
i f4ry o B . jer d L s
k tB =+ B _btl oay m {E& rs 3
er {dr B, + B, } is : nd i {Er Pr} is
By
i )
Br+l

~+—= . Hence we see that xer dr < Im dr“ that is Lo say

1
B : i
o : ker d. Blvq
dr = 0. Dividing we see that Toa - equals —+== , l.e.,
. T £r+l
i . .
Eipqe This shows that H, (Er) equals E. -

r

6. We shall now evaluate the E, term of the spectral
sequence. For this purpose we introduce the notion

of invariant transgverse forms. Given any subbundle

B of Ty, the tangent bundle, a form € A o0s called

transverse if 1,0 = 0 for any X€D. Here i, is the

). ) 4

interior product (see eqn. (13) beldw)c A form is




called invariant if Lxm % O for any Xe (D). When

D is involutive, we can {(by Frobenius Theorem) find
local coordinates XysKoreoasXyd Xy, qreeosky guch that
the leaves are given by assigning some constant valués
to the last ¢ of these. In terme of these local
coordinates an invariant transverse p form will appear

ag 5 £ o g % A dx A y Y where
8 3 fa(xl+lgae o m)d « d " see ‘A dk@ whie e

1 2 D

el oy 8 coe 26, 5 M One notes that the coeffs.

It
fu are constant on each leaf. When we change
coordinate& td ancther compatible system of same type
the transformation matrix thus consists ofrfuncﬁions
whieh are constant on leaved. |

Now we define 0¥ to be the vector space of all
invariant transverse r-forms. The corresponding sheaf
of germgs of auch focus will be denoted by Q?o In
particular.gp, or just D, is the sheaf of germs of
functions which are smooth and constant on leaves. Ag
usval if a sheaf S sits over our manifold M, H (M,S)
shall denote the Eech cochomology of M with coefficlients
in the sheaf Sé

We rvemark in passing that the transverse

invariant forms are those which remain parallel along

leaves with respect to any Bott connection on the
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bundle of transverse forms (see defn. of Bott connec=-
tiong in section 19). Also we will notice as we
proceed further that functlions which are constant on
leaves play a part as important for foliated manifolds
as that of analytic functiong in complex manifolds.

The following proposition gives the first
term of the spectral sequence.

Propogition 2. E?*q is jisomorphic to Hq(mﬁgp},

The next gection dealg with the proof of this proposi-

tion. Note that the Reeb foliation of Sj and more

ndd

generally the foliatlions of S given by Lawson [20]9

Tamura | 36] are such that any global smooth function

which is congtant on leaves is simply a constant. In

other words E: ‘0 = H0(11,D) = R for such foliations.

Note that by *thickening® the compact leaves one can

destroy this property.

. Proof of Proposition 2: We recall that P4
p+q 0
A ‘ '
= m%xa . We now construct a sheaff?g’q in the following
Ap+1 :
way. We take the presheaf which assigns to each open

-set U of M the vector space Egpq(u). 1f U < V¥ we have

natural restriction maps Ag*q(v) - Ag+q(U) which yield

-homomorphisms Eg’q(v) ~ EE”Q(U), &?g’q is taken to be




the sheaf determined by this presheaf. If U has loca:
coordinates, xlgxgﬁenngxcgy1gaaagyc we may represent
the stalk at % by expressions of the type

W (X,y)dx A .. A dX. A dY. A eew A dy. « LIt
is understood thai Jor the multi-indlces @ and B we

}la'v@ Ci;l “ see ﬁ(i 81’1(1 @1 < see 8}36 . in 'thiﬁ g;@ﬁ;ﬂj-

representation the zZeroth dilferential

dOsEg’q(U) “t E§§1”Q(U) is given by

dO{wagg(xgy)dxa ANoase N dxa' I dyf} AN sse A @.‘Yg ] IV:.
i q 1 P
] 3w, o{Xey) . . .
= 1 = 9‘: ¥, AdX N ece NOXR Adx
k=i 9%y ko ey Sy By
o8 A d?fﬁ ) ' (?)
P

And =0 we also have & parallel sheaf homomorphism
doﬁgp”q wéig%l’qe Using thisg we construct the fol-
lowing sequence

g seq

o

dn s . . S
O ‘t‘gp‘:&poo mﬁgéﬁgpl - s “‘?gfgsm R -+ 0 (8)

<

Note that £D+°

is sinply the sheaf of germs of smooth

p=forms which v&nish where one of the vectors is in D.
This expiains the first inclusion. We prové now that

this sequence (8) is exact. 4n élement of'gp is given
locally by sum of terms éf the type wﬁ(y)dygl/\.se

A dy It is clear that dg will kill it. Conversely

bp
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an element ofgfg”g ig sunm of terms of the type

‘wﬁ(xay)dys A ,e,/\dy@ and it is clear from (7) that
34 :

do will kill suech a sum only if each wg is a function

of y alone. This shows exactness at first place.

Since dé is zero in U by (7)., to show exactness at
other places, we asgume that

do{ E}(ﬂ(xpg(xpy)dxall\ v es /\dﬁig f\d}”

A ;o,/\dya } = 0
0B q P

By

which can happen only if

a. 5w (Xey)dx, Acee Adx_ ) = O

0 o A al g

for each multi~index g. Using Poincare's lemma for

each ¥ one can find a g=1 form 3, ¢ (VAN A coe
I v?ﬁ . ?1

A QX% such that
Yqﬂ,l

4,12 o

b4 dx A esee AGH '

%q

The congtruction of these functions eY B(xgy)wwsee,
8

= /\ & & 9 2 ]
§ wa’ﬁ(xﬂb")dxal Adx (9)

€e.g.y Sternberg [ 34]--only involves integrating the
smooth functions wanB(X’Y) and their derivatives over

X» S0 thege functions can be chosen to be smooth in

both x and y. Since we have




a1 & 0, (X.y)dx A .o AdX AQE. Aceo AGX
0{?’?@ Vo f3 ¥q qu’l ﬂl ﬁp}

= Z (5 (}{.gy) dj{(ﬁ. AN see A {i}ia A d){.f}i AN ooee A d.}:@

6o i q P

by using (92) and (7) it follows that the sheaf sequence
(8) is exact. Note thaﬁgfggq arises also ag the sheaf
of gernsg éf smooth crosge-sections of a vector bundle.
So it ig fine, i.e.; any local cross-gection oféfg”q
can be extended globally. Again for the same reason
the space of smooth sections ofé?i”q is precimely Egﬁqe
These two facits, the fine sheaf resolution {8), and
standard sheafl theory=-ace €.g.y Hirzebruchmwncw imply
that the cech echomology Hq(Mer) coincides with the

homology of the complex

Egpo do, Eg’l do, EPéz @ eae Egﬂmwp” which is
precisely Elo QED

8. We shall now show how the chern classes of certain
line hundies vanish in HB(M,Qj. In a subsequent
gection this leads to a generalized Bett vanlighing
theorem. We have o introduce some notations. We
denote by gs the sheaf over M of smooth compiex'valued
function germs; and by QD the subsheaf made up of

those germs which are constant on leaves. Similarly

and Q% denote the (multiplicative) sheaves of




non-zero complex smooth germs and those which are

congtant on leaves. We have now the two exact sheafl

gequences
g2mil )
G +Z = Gn ~ ~» Go 0
(10)
[ GZWl{ Yo

and 0 =+ & = QD endip gb

=& £}
where the first maps dencte inclusions of the constant
sheaf Z. Note also that only the sheal G ig fine in
b
{10). EBlements of Hl(mﬁQ%) are called {(eguivalence
i
classes of) smooth complex line hundles. Sec

Hirzebruch [15] for the motivation for this

terminology. By invariant line bundies we shall under-
gtand those lying in Im {Hi(MQQE) -5 ﬂl(Mﬁgz)} where

a . . “ . N ¥ i
the morphism is induced by the inclusion Cf < The

¥ S °
first chern elass ¢,(g) iz defined for each line
bundle £ € Hl(Mggg) as an element of HZ(M,gj in the
following way. The first of the sequences {(10) gilves
us a long exact cohomology s@quences some 0f whose
terms are . _

> mt,oy) o HLMLGE) -+ HR(MLZ) -+ HO(M,GL)
The two groups at the ends are zero, as the sheaf Cq -

ig fine. The connecting isomorphism in the center is

called cl(°). I£ 8 is any sheaf containing Z, by the




Tirst chern clags in 5, we will understand the cgmp@giw

L.

tion of the above morphlsi with the map H (M Z) = H (M,8)
induced by the inclusion Z 5. For example to get real
chern class one takes § = R.

Propogition 3. The firat chern class of an
invariant complex 1ine bundle vanishes in .

Proefs We look at the following diagrams
i (i, 6 € 1( R AN HZ(I‘&._,Q)

@ (11)

2 1 5 2 T 5
Hha,el) 8, HR(M,m w HE(HLCp)

where § is the connecting homomorphism in fhe exact
sequence induged by the second sequence iﬂ {10}, The
unnamed maps arise from inclusion. This diagram
obviocusly commutes. The bottom row 1s zero due to
exactness. So the proeposition is_preved if we can see
that Hz(Msg) - HZ(Mﬁgﬂ) ig a monowmorphism. Take a

ufficiently small open cover U of M. Supposze that
€4 .
*%3 C, on 1t whoge co-

we have a i-cochain g, U0 Uj
o hydx - -
boundary is h, Ui n Uj nuU, igk R, where &y 30 hijk

are smooth and constant o leaves. 906 we have

hijk =833 7 £k By Since h, is real we also

ijk
~ have hijk = Regij + Regy + Regy.o showing that the

R

Jk

~cochain Reg, U, n U.

i ; Eola R also has h as coboundary.

QED




We can complement the above proposition by
including the converse statement, which foellows
immediately from the exactness of bottem row in (11).

Proposition 4, The first chern class of a

smeoth complex line bundle vanishee in D if and only

3

rig

Fa

if it is in

=

In this form this proposition whould be
compared with a2 theerem of Lefschetz, Hodge, Kodalra,
Spencer and Dolbeault-~Thme 15.9.1. in Hirzebruch=-
which characterizes complex analytic line bundles over ,

2 complex manifold, -

We have, ag in (5)?_that_ﬁa(mﬁ§) = Eigg

2,0
'Jt" Emﬂ [}

In this decomposition, propesition 3
implieg that the firgt real chern class of an invariant
line bundle does not lie Ln E. Ze Bguivalently 1if one

Lookg at the diagram

Fg | ;li.,,LA)
\L | W # in
H (M C ) Ei%) H (N a) - H (MoR) = H (M, ﬂ)'“ G 2 (12)

where the inclusian L resulte since gl o ﬁg&ﬁ) is
S Hi(a)
gotten from Fg 02 by ﬁuGCGSleely taklng the kernel

under the differentials dlgdzydj,oea‘of section 53 then

proposition 3 shows that the bottom row evaluates to




zero, The commutavity of the rectangle thus shows
that if £ is 1nvartﬁnr cl(ﬁ) projects to zero under the

natural map Hz(A) o g In other words 61(§)€§H§(ﬂ)

We record this as a Corollarv 8, If £ is invariant

2 ~ L3 L .
Ci(g)EEHT(A)u 30 it can be represented by & closed
form E‘Ale The converse statement iz also true.

We remark that the rectangle in {12) commutes

for the folleowing reeson: the wap H° (A) 5 E? X in

this rectangle arises from the pro ectblon map
& N

{(A,d) - (fzgdo)a These 2 complexes provide resclutions

of the two sheaves B and D which commute with the
inclugion R » D

@&;‘ I o

ﬁ ot (}{, ; ey Lj{:a el o s

ﬂ#ie‘ﬁ"‘”&%

dgl &'i@r 2 Ot

ek s
B oar ETS EN 5 To

-

9¢ In this section the guestion of hometopy invariance

of the spectral sequence shall be posed and solved.
Suppose that Ma‘i%mb is a smooth map between two
foliated manifolds which takes leaves into leaves; or,
~to be precise is such that the induced map TanggTb
gatislies f(Da) <z Dy One now has another induced

map Ay ﬂ,Aa which is a vector space homomorphism

pregenting the filtrations. Thus we have induced




homomorphism Er 1 E%E ¢ commuting with the 4if-
. 9

) A

ferentials d.. (see Cartan and Eilenberg). Suppose we
have twe homomorphisms fggaﬁb + A, Bnd we can find a
chain homotopy between them. Sthy, Ay such that

das 4 sdb = g - g, then the two induced maps
Tegsti{ay,) " H{4,) are idemtical. And the induced

+ B are the same 1f r is big enough

aps L,2:8 )
nlr..P ,L@;;_-’Ebr .’1:‘;,8.

g D

£

(mection 3). Let usg now put on the chain homotopy the

additlonal requiremant that s{a ) <A for all i,

:L f* .b i, “’1{. & a2
iee., that the homotopy disturbg the filiration by at
most k units, then one can see from CE, p«- 321, that
E - - D . 5 i
for r » k, the 2 induced maps fsgs*r,b -+ ErDa are
identical.

Now the product Ma;<1 can be foliated in twe

natural waya. We'll say that it ie l-foliated if its

leaves are gotten by multiplying the leavesg of M, by I,

And, we'll say that it is Z2-foliated if its leaves are

justs (leaf of Mo {t}). So in the first case the
codimension is unchanged, while in the second case

the dimension is unchanged.

We say that 2 maps [,gsll, - M, which map leaves

into leaves are k-=homotopic (k = 1,2) if we can find a

smooth map SaMa><I'¢ My, which talkesg the k-leaves into

leaves, with 8 = f and 8y g




Proposition 6. If Tegall, -+ M, are k-homotoplc

(in the above sense) one can find a chain hamotopy for

which S(Aj ?) < A
L g

» - ("-J v ) g j‘r? el IR o
L=ks+d ,b° (Such an & ig called a
1 .

k=chain homotony} (k =

g peinted out above this will have the fole

$2)

Lowing ¢mﬂs&quancee
Goroliary 7. The spectral sequence is & K=homotopy
invariant from %ha By term onwards (k = 1,2).

One recalls that the speciral seguence of a
fibering is otable from ths Ez term ons  The noticen of’f
fibre homotopy coineides with the notion of 2«
hamdtopy which hag been introduced above. The next
section deals with the procf of propesition 6., It
invelves a construction which will be helpful subse-

quently in building up a parametrix for d.

L0. Proof of proposition 6: Given a vector field X
on the manifold, one has a gkew-derivation ist “+ A
of degree -1 called the interior product with respect
to X. We recall--Kobayashi and Nomizu {17], p. 35==
that if  is an r-form the definition of i, is

(L0 (Yyaeean¥yg) = 2o, Yy peeosX, ) 1)
The property of the interior product needed to construct

& chain homotépy is

Ly = di, + i,d (14)

a2
U
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o
/
j’

Now turning to the two given nmaps f,gsMa - Mb and their
homotopy SeMy x T - Mb we have the induced morphlsms
fggsﬂb A, and Sthy, A(Ma><I) each pregserving the
filtration. Let usg now take the vector field to be

the 1ift of the standard vector field 23 on It X is a
vector figld in My x Lo Let us define the morphism
A(Ma><l) ié A(Ma:<l) by the formula (13}. From this
formula, and the fact that Ma)il carries the kK-
foliation it follows that this map disturbs filtration
by k=1 units only. Now we define one more homomorphism
A(Ma>cl)-§ A(Ma) in the following way. Let i,

%
M, - M, xI by the map x = (x,%)s Then rlwzzfl(iiw)dte
Q 0

a

Finally we define a chain homotopy sif -+ A to be the
following composition
. : 1
S 1x 0 ;
Ay <3 A, xTI) =5 (M, x I) 50 A(M,) (15)
It is clear that this map disturbs the filtration by

k-1 units, and is of degree -i. The formula

ds + sd = g - £ Tollows by integrating (14) s
ll. il‘ il. ii.
ds+sd:dJ:.s+ isd = [tais + [*i ds
S v [ = i+ [l |

as d commutes with the induced map S and with Il
0

" which was defined by the induced maps ii . So

-8y, =& -~ f

ds + sd = J'J‘LS:S
OX

1




as X was the 1ift of the vector %% on L. QED

1. We now study the behaviour of the exterior product

=

with respect to our filtration. Let us suppose that

form g A 0 ig defined

£

ngﬁg and GQEA%u ‘Then the p + ¢
by

)

((ﬂ A U) (Kl ﬂxzsxsaﬂ""ﬁxp‘%‘q .

1 |
= (rart & elmuliygyeeeeddyy)

& (X (16)

y*o e n(peg))

{p+l

where n is a permutation of the set {1,2,...,p+q} and

g(w) denotes the parity of the same. Now suppose that

p+vqfa1-3¢-1 of the vectors xlpngeeoaxp+q lie in Do

This implies that whenever < p-i of the vectors
Xﬂ(l)g.@.,xﬁ(p) are in D, » g~ J+ 1 of the veciors

Xﬁ(p+1)gu.,gxﬁ(p#q) are‘ln D. Hence one of the two
factors in each term of (16) is always zerec. Thus
WwAOC E Agigo The product above defined is related to
the exterior derivative in the following well known

way

dora)=dro+ (DB aar  (17)

This fact is expressed by saying that 4 is a skew

derivation. From this fact it follows that a product,




the ‘cup® product, is induced in H{ax)s this product
obeys the well known anticommutavity rule

If a€ HP(5) s e HY(A), then abe¢ HPYA(y)

and ab = (-1)Pdpa (18)

Propogition 8, IF a € Hi{a) and bEEHé(A)B
then 3b€I%$J(A) In particular, if i+ j= e, the
codimension of the folliation, ab = 0.
Prdafs Immediately follows from definitions.
a ¢ Hi(A} means a € Im {H{A) = H(A)} and so a can he
repregented by a closged fGEM(gaG(A.g Similarly we
have anoiher cloged form wbEEAJ which represents B
S0 ab is represented by the closed form My N Wyo which

by above discussion lies in A. It represents also

i+dt
a homology clags in H(Alaa) which is mapped to abd under
tm:m&%%m1%$jﬁAﬂd%gabé%&ﬁﬂ) QED

This proposition puts strong conditions on the
ring structure of H#*(M,R): these will give “vanishing
theorems* (see below). Note that we have thus a
multiplication induced in the E_, term of the spectral
sequences If g € Em = 5 Qﬁ%ﬂm has a reprehent&tlve

m%g .
'ELE}{(A) and sgimilarly b€ H-(A) represents

- j H; (A) kN |
BEES --(Km, then e € E_ is represent@d by
J+rl

abe Hi+j(A). It is clear that the coice of representa-

tives 1s irrelevant. We shall denote this induced
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product in E, by o A 8 also. Note that one may very
well have non=zero elts. a&b in Hi(A) and Hj(A)

with ab # 0 and still have w A g = 03 for, ab could
v d Higla)
A) and we have E-Td = --wm%iwﬁm@:y .

lie in H. » o

l+j+1(
But if i+ j» ¢, one can cenclude that ab = 0 if

@ A g = 0 in E,o Inan entirely analogous fashien
the exterior product in 4 induces @ preduct in Eq

i d
o °

to the equation da(w AGY = dgw A G + (mi)pw A ATt

which pairs B and EY to B The eguation (7) leads
0 0

for chEéspml and 661&3”%%39 We have @ A ¢ lying in
Eé+39p+q°l“30 Hence this product in turn will induce .a
product in the homology of Egp Vi%e, E and the dif-

1

ferentisl dl will be a skew derivation with respect %o

this induced preduct. The above remark holds at every

gstage: 1f i+ j» ¢ then vanishing in BE implies

r+l
vanishing in E..

gg; As a first examplé of exbloiting the above pro-
position, we shall study the gignature of a foliated
L4k dimensional oriented manifold M. We recall the
definition of the signature. The cup productlprovid@s
us with a bilinesr symmetric (by (18)) quadratic form

2k,

on the vector space H " (M,R) obtained by evaluating

the proﬁuct'of any 2 classes in HBK(M;Q) on the
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orienting Ak-cycle of the manifeld. So if we denote
this form by F, P(x,y) = xy[W]. The signature of F
is called sign M and iz a topological invariant.

Propogition 9. If ¢ is odd, and dim ﬁ " {a)

umuw

> % dim sz(ﬁjg then sign M = 0.
Proofs Here {%} denoteg the first integﬁr after %a

We define the cone of F as the subget Qf g

(M, R)

given by the cendition F(x,xz) = 0. It shall be

denoted by y(F)}. Let us denocte by p and g respectively
the mumber of pesitive and negative values when F is
reduaed%wby changing bageg--t0 a diagonal formu It is
well~known that that p aﬁd g are independent of the
reduction précesse And p-g = fign M. By Poincare
duality we have p+q = dim H” (A,)g as I is a non~

singular quadratic form. Now we notice, by using

Proposition 5, that H> (A) < y(F)s And therefore,
2
since it is well known, that either of the 2 nos. p, q

is at least equal to the maximal dimension of subspace

in y(F), we get the two inequalities p » dim HZk and

| 3
q > dlm sz 0 Uslng thc glven hypoth081s it follow&
{2} ’ '
. 2k 1 a1 ekt .
that p > 3 dim H*™ and q 2 % dim H"". So it follows

qg = % dim H2X and sign M = 0 o QED

that p

i
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Some foliationz obey a type of duality which
regembles that ocbserved by Serre [30] in complex mani-

folds. We'll call this Serre duallty. It states that
8oD  nC=8,L1=b

e

o8 (=]

Using this and (5) we see that the
hypothesis of proposition 6 are satisfied.

Gorallary 10. A 4k dimensional oriented manifold

admits a foliation with odd codimensien which satisgflies
Serre duality, only if the signature vanishes.

It is known that fibered manifclds in which
the fundamental group of the base space acts trivially
on the cohomology groups of the fibre obey Serre
duality. (See [839) Serre duality undoubtedly holds
in other instances; but the work in this regard is as

yet unfinished.

13 In thisz section we state and prove a geheralized
Bott vanishing theorem. We recall-~[15]--that Hl(MFS)
;is defined, as a set with distinguished element, even
if § is a sheaf of nonabelian groups. The important
cases in this section are when 5 is either the sheaf
GS of smooth germs from M into GL(n,C} or else the

" sheaf GD of such sﬁooth germs which are constant on
leaves from M into GL(n,C). The elements of Hl(M,GS)
“are called smooth GL(nggjmbundles over M. Note that

given a space Y and an action of GL(n,C) onY, one can
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]
construct for each gé}ﬁ(MgGS)p a fibre bundle with

group G and fibre ¥: simply take an open cover U in

which a cocyle g N U, - G representing € can be

1300 0 U5

feund and use the §; 59 a8 coordinate transformaticns.
0f course G can be chosen as another Lie group, and
the definitions hold. If H <« ¢ then we have

H, « G, and HD o< GD and these sheaf incluslena induce

> S
morphians Hl(MQHS) - Hl(M,GS) and Hi(mﬁﬁn) - Hl(MgGD)

etc. We shall denote bundles lying in

Im {Hl(M,GD) = Hi(Mgﬁs)} by the name invariant G-

bundles. And we shall say that the group of such a

bundle can be invariantly reduced if the bundle lies

in Im {(MM(M,H,) + H(M,G )}, We note in passing that
the group of a GL(n,C) bundle on M can be always
reduced to U{n,C), but the group of an invariant
GL{n,C) bundle on M need not be invariantly reducible
~t0o U(n,C). However for the bundle of transverse 1-
forms, the group can be invariantly reduced from

GL{e,R) to O(c,R) if the manifold admits a bundle-like

metric. (The concept of a bundle-like metric for a
foliation is due to Reinhart {27]. It is a riemannian
metric for which there exist coordinate systens such

“‘that 84 39 for i, j > 1L, is constant on leaves.) We

shall however not introduce any metrics; and the only
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invariant reduction which we encounter shall happen in
a natural way soon. We remafk again that the bundle
of transverse 1~forms ig invariant as we have lacal
trivialisations by invariant and transverse l-forms, °
and the eoordinate transformations of these are funge=
tiong Ui ﬂrUj i%j GL{cyR) which are conatant on
leaves. We recalle-from Hirzebruch's ook [ 15]-~how
characteristic classes can be defined using a theorenm
of Berel's. For a glven € € Hi(M,GD) one congbtructs
an aassociated principal bundle, i.e., taks the fibre
ag G and the action as left translation. We denocte
this bundle by P » M. Hence we have an induced bundle
p*% € Hi(p/gBGD)e Here we denote by A(n,C)--or just
A~=the subgroup of GL{(n.G) ccnaisting-of triangular
matrices (i.e., elements below the diagonal vanigh).

Propesition 1t. The group of p*Ef can be

invariantly reduced to A.

Proof: If the word invariant is dropped this is a
gtandard theorem from Steenrod [[33]. The same proof
works even now. We have a canoniecally given bundle
with group and fiber A sitting over P/A vizs,‘

P érP/ﬁe Obviocusly since the coordinate transforma-

tiong of P over M can be chosen constant on leaves,

so can those of this bundle (Note that P/A is a




Ldy

compact smooth panifold. The fibration P/ E;M picks
the follation of M up to a foliation of P/A. The

fiber of this fibration /s EM is precisely G/N» the
manifold of flags: each element of (/A is a sequence
S E, © oo e g0 of ¢M)

of subspaces 0 o E o Lot

1
nEEHICP/Agnm) be asgociated to this bundle, then we
assert that the induced map arising from AD c Gﬁa
gends 1 to p*€., The preoof of this fackt can be found
in Hirzebruch [15].

Now we resume our definition of characteristic
classes., For each K = 1,2,.00,00 We have a. map
A f? c* which picks out the kth diagonal element of
the triangular matrix. It thug induces & nap
Hl(P/A QQD) Eﬁf Hl(}j‘dg_(,_};) and corrersrponding to
p%gééHliP/&BQD} we get k complex line bundles
mk(g)g all invariant. Then one can check, ag in [15],
that p¥g is comtinuously isomorphic to the whitney
sum @i(g)% emo cpk(t;',)n We remark that this is not
an isomérphism ag invariant bundles: however this is
all we need. Now one defines the cherﬁ clags

c{p*E) € H

c{p*g) = c(mlg)c(@zg)e..c(@kg) employing the cup

EVel(p/p,.2) by the formula

product; the chern class 1+ ¢, of a line bundle

1
having been defined already in seation 8, Finally




we appeal to the theorem of Borel which says that the
projection p:P/A -+ M induces a monomorphism

pR s H* (M, 2) @II{*(P/AD_ZL) to pull this class to M. Thus
c(E) = p*mlc(p*g)mmthe theorem of Borel also ensures

that c(p*g) lies in Imp¥.

Propegition 12. The real chern ring of an

invariant GL{(n,C) bundle over M vanishes in dimensions
> 2Ce
Proofs The fact that p*sH (M,R) =+ H¥(P/A,R) is a
monomorphism allows us to assume that the glven in-
variant bundle §E<H1(M,GD) can be invariantly reduced
to A. S0 it is the continuous Whitney sum of
invariant line bundles § = € F voe F By §i€§H1(MgQZ)e
Using corollary 5 of section 8 cl(gi)é H?(A)a Then we
use prop. 5 to conclude that an r~fold product ef
these classes will vanish if r > ¢. This proves the
above theorem. | | _ QED
Note that unlike Prop. 4 we used the fact that
A has a filtration of length-c in an essential way.
If one filters (for a continuocus foliation) the
complex of singular cochains we are not sure that the
spectral groups Ei”jrvanish-for i > Ceo S0 the above

result is valid only for smooth foliation, whereas the

vanishing theorem of prop. 4 is valid for topological
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foliations.

 Bott [47 proved this theorem, only for D* eT¥,
and by a complefely different way. Thigs other method,
which uses the Chern-Weil map, fits in naturally witﬂ
our spectral sequence and shall be develeoped further
in section 19.

Of course, as Bott and Heitsch [ 57 have
pointed out, Theorem 2 breaks down for the integral
chern ring. - The reason for the (real) Bott vanishing
theorem can be traced back to the second of the exact
sequences in (10), which gives us the exactness in the
béttom row of (11).

We remark that one can build up a K-theory for
invariant bundles; just as one has the K&ring_of

complex analytic bundles.

et

1%. 1In this section, we suppose that we have chosen a
‘¢omplementary subbundle N, d:@¢ey D 4+ N = T, and 2
projection maps.PDaT - T anleNsT -+ T with images D and
N respectively. Then-~-following a papexr of Gugenheim
and Spencer [13]m~werdefine for each pair r,s such that
r+ss= g..a bundle.map.nrssaka 2+ A PT as follows: |

if v, AV, A see A vP is a p=covector write it down

as -(PDv1 + PNvl) A ees A (PDVP + PNVP) and. pick only
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thogse terms in which PNvi oceurg r times and PDvi
x : . . o [} 4 N
occurs 8 times. We now think of AP as (;x‘,I”)’= and so
4 * =
we have induced maps ﬁ; jSAP -» Aps The fixed points
¥

of thig endomorphism form a subspace which we dencte

by Arﬁ*o From the definition of EOE viz e,
prg _

.—'pnq {:.I“)‘ 3 E 2 1.
E§ v it follows that we have an iaomorphisn

Apet,
ngs = Arﬁs' We have some more simple relationssi

. rys ry8 I~ i, o
Apg G:} A ’ y A= 83 A ﬁ;‘e!\.i'"'z iﬁ‘}‘,{\_ PR oete.

g TeS Jei
=P

Now our filtration ls preserved by the exterior.
derivative, d(Ai) & Age It follows that

+ AZ’O o ﬂgsze Again the exterior product vaiausly

o b rra,s4+b
g

8

pairs AT % ana A% with 4 Finally the endo-
morphism d is a skew derivation with respect to the
‘exterior preduct. It follows Irom these remarks thatl
in the bigraded module p = @& AT'%, 4 can be thought
r,s _
of as the sum of three endomorphisms d o anad
0,1°71:0
d2-~1 of degrees (0,1), (1,0) and (2,-1) respectively.
4

Now the equation d = 0 can be written

(dO,l Ay ot dz,mi)z = 0. Equating terms of the
same bidegree to zero we get dgl = dio dgsml
= 99,1% 0 * 91,0%,1 T Y4,0%,-1 * %,-1%0
d2,—1d051 + d01d29“1 = 0, In other words d becomes
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the sum of three endomorphisms, each of ovder 2, and
any two of these commute up to sign.

Proposition 13, d.2 - 0 if and only if N
¢

is involutive.

Proofs Follows immediately from Proposition 1 applied

to the filtration gotten from N in place of D. QED
Using this bigrading we can algebralcally

characterize E1 and EZ‘ The endomocrphism d091 of

crder 2 acting on the above bigradad space gyﬂrys gives

us its homology which we denote by Hoslpﬁ)s Again since

d] o anticommutes with do 1 it induces a differential
- § . B4

5 S
v 1

If we take homology with respeet to this differential

on thisg new bigraded spaeeéE%Hg (o) of dezree (1,0).

we get a new bigraded space Hl oty 1(A)¢ Similarly
% ]
we have yet another bigraded space H, )

9M1H1$0H031(A o
‘Proposition 14. We have B, = H, .(A) and
IR

Ep = Hy oHg ({4).
Proof: The proof follows that in Cartan and Eilenberg

Pe 330, The zeroth differential in our spectral

s s s i P P+l
sequence, dOsEéﬁp o Eé”p Wl ie., Ay Ay
p APF
i+l 1+t
is the map induced from d, and so was the dO 1 above.
) L
S0 they coincide and we get Ey = Ho,l(A)° Now-=gee

CE p. 319=-the first differential in our spectral
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sequencepdlsﬁi”pwl 4 % PP can be geen to be the
same as the connecting homomorphism induced by the

A

iy, MM

~b Qa
Aigp  Hivz bing

following exact sequences 0 -+

{Notcg from (&%), that L{ﬁp A is same as HP(A ) .
it

Now the connecting homomorphisn hp(A )
i+l

Hﬁ¢1(ﬁl+1> -given &s we pass to homology under d,
i+2 :

is obviously the same as the map induced by dl 0 which

is the part of 4 having degree 1,0 (as would

d?_ p“‘i

take us to AL and thus play no role in above con-

142

necting morphism). S0 it enables us to identify d.1

gn@ dlD and see that E, is same as HlpOﬁﬁgl(A)° QED

1 H

. 3 :: 2&“‘“1 lg‘:}Hegl(A)g
~the differential 63 of the spectral sequence is quits

It iz however not true that

different from the knight move,

Lip .The father algebraical interpretation of the Ez
term, given by Prop. 14 is not altogether satisfactory.
A more geometric result is the following.

Propogition 15. The sheaf sequence

0 » resp® 4t o ,”«eg"—»o | (19)

is exact. - Por each q = 0, we have the induced ‘¢hain

complex

gt ob |
14,0 & Hq(M ply & ees = HY(M,D%) . (20)




Under the isomorphism of prop. 2 this complex is same

ag

d d
qu 1 119@{ Tl -1ng
I‘l =t E,L <+ ewoe Ei °

Thus the E , term can be thought of as the homology of
the seqn. (20).

Proofs Fifst we Gemonstrate the ex.é,ctnessa To do
thiz we employ the classical Poincare®s lemma in the
Following way: & local section of ng l1e€s, & local
invariant transverse p-form @ looks like

§ @@(y)dyal AN ooea A dyap in coordinates kzgnga@osxlg

Y veoeesY, compatible with the folliation, and d(w) is
just Py E o0 iiz'dy A dy A eee AdY
p 4 yk k ' cs:p"
Using the fact that in 5? any closed form is exact,
we are through.,
For the second part we recall that the iso-

morphism of prop. 2 resulted from the fine sheaf

resolutions occurring in the rows of the following

sign-commutative dlagram of sheaves

. . 4. . .
i w10 90,1 eiLt il

0+ D& BT T ES e €L
&‘E, 11,0 $ 0

- . . a . k.
0 Ql'{-@lﬁg,fln{aiso Hgvlgé"*'l“l-a .oos —-zf“l“‘l—-bo
_ o




Here I think of the sheafgfg‘q as the sheafl of germs

of forms in AP (see Section 14 above). Only the
comautavity of the first square could be non-obvious.

It follows by noting that on invariant forms, d@ lzzon
#

And gince thgpﬁq -5 ApT33Qm1 ig obviously zero fox

" Q§+1

‘ i .
g = 0, we see that 4l ls sane as d1 ng b
Lo

Ql+1 and so the first square commutesg.
Due to naturality, the second assertion fole
lows from this commutative diagram. QiD

In a well known special case, Serre [3L] was
able to give a hetter description of the spaces Egﬂqe
We shall now obitain hig results. So we suppese that
our foliation arises from a smooth Ffibration M.g B
with fiber F; here F and B are smooth manifolds, etc.

Before taking up the general case we note that the

case ¢ = 0 18 very easy.

Corellary 16. In this fibration case £5'° = HP(B,R).
Proofs For q = 0, (20) is just the chain complex of
sections arising from the differential sheaf Qi@ Now
the sheaf Qi is eimply the pull-back of the sheafl
i(B)-of i-forms on the base space. Hence (ED)Acoinw
cides with the deRham complex on E and the result

follows. . QED

For the general cagse we define a sheaf H%(F)
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ort B from the following pre~sheafs 4o each opesn set U
6f B we asgoclate the vector space Hq(}?miU,;i)B and
to each inclusion map W < U the inducéd homorphism
'Hq(pmlwpg) - Hq(pflugﬁ) of p“lw - pm1Um New we have -
the cohomology of B with coefficients in this sheéf,
viz., HP(3,H3(F) ). It is usuel %o call this as the
cohomology of B with loecal coefficlents in HM(F). We
then have the following:

Propeogitien 17. In the fibration case
BS*Y HP(B,HE(F)>E

Proofs We extend the congtruction above defined to the

i

entire sequence (19), l.e., we construct sheavesg
HE(Q?) an B from the presheaves ﬁhich attach to sach
open set U of B the space Hq(pmlU,QP) and to each
inclusion W « U the induced map H%(pmiw,Dp) = HQépaluggp)a
Now the morphisms in the sequence (19) induce sheaf
hemomorphisms HE(QP) “+ Hi(g?+l)s The resulting sheaf
sequence |

0 - H%(F) - Hi(g?) “+ eee - H%(QG) “ 0 ' (21)
is exact. Mcrgover each of the sheaves HE(Qi) is
fine as follows from noting that Hq(M,gi) ig é module
Vovef C°°(B)B the ring of functions constant on leaves.

~ Finally the chain complex of sections arising from (21)

coincides with (20); This proves the assertion. QED




We shall not pursue this special case further
as it ilg well known and underatood.

It should be p@inted_out however that the
exact sheaf gequence (19) is the basic reason why onhe
uses spectral sequences to study feliated nanifolds .
In the terminology of Swan E}ﬁj the "second® spectral
gequence of (19)--with resgolution by forms=--=is precise=
ly the spsciral sequence being studied. One can
generalize this procedure to studying any siructure
on M, which gives us from the-@xact sequence

I, B P L P A .
of sheaves anathér (semi-cxact sequence) Gf subsheafs .
0-» R .__u.“/tiz 2 (,g,% Sy ae s A O

In our case ¢ is the foliate structure and the subsheaf

L

i D™y the sheaf of transverse and invariant i-

G
forms, and this seguence is the exact seQuenee {19).

(This general point of view can be seen in Spencer‘s

WOrk==-see,; €.8¢p [ 32]¢)

16. Let M be any smooth manifold, not necessarily
compact, and suppose that we have a smooth vector
bundle V JaM; the space of smooth sectlons is denoted

by (V). By a local trivialisation of this bundle we

mean a diffeomorphism x of w”l(U) with the trivial

bundle [) x Rks {Here () « g@ is an open set = U and
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k is the fibre dimension). If we look at & section
g € ¢°(V) under this trivialisation we get a map
Ly 102 EF9 whose ith coordinate shall be denoted by

g;,x’.p 1 E i S k. It o = (Cf.j gﬁ.zgnewgﬁm) is a muelti-

:]” . 3
index we shall denote by g{?) the function (o + R gilven

1.
oLl

: ) vam g ot , ,
by la— gX-n (Here (o= oy b Gy b eee &m)e

3% i ax 1
1 59 e m

Now choose a compact set I, in g and se%d ]g}x equal

o0 ¢ L

to sup Bg;&?(x)ﬁe Then this ig a semi-norm on
X E L,iglgk Al

the vector space C”(V). (A function psV = [ 0ges) such

that p(x + y) < p(x) + ply}, p(ax) = & pl{x) is called

a semi~norm on the vector space V). Now we put on (V)

the weakest topology which makes all the semi-norms

bef
ngC’LaL
topology by using only a countable number of these

continuous. One can in fact get this same

semi-norms. (Take a countable number of compact sets
covering M with their interiors, each compact set
lying in a U over which a trivialization is given).
Also, all the semi-norms vanish only on the zero
gsection. Hence this vector space is metrizable. [See

p. 24 of L. Schwartz [297]. We'll refer to this book

for all results on functional analyées.] .In the




preceding sections we have come across a number of
‘vector spaces of this type. For example, As Apg EO’
E?”q are all spaces of sections of suitable vector

“bundles on M. These vector spaces, or for that matter
any other such space of sections, shall be assumed to

be topologized in the above manner.

Froposition 18. C™(V) is a Frechet space.

[A TFrechet gpace is a complete metrizable spasce. By
complete we mean that every Cauchy sequence converges.
A sequence v, is called cauchy if p(vi«»vj) + 0 as
i,j » w for each semi-norm p.|
Proof: We héve already seen that its topology can
be defined by a countable number of semi-norms. The
conpleteness follows by noting that uniform limit of
continuous functions is continuous. QED.
Corollary:- A Apa EOgEg”q are Frechet spaces.

© We remark that A is a hausdorff locally cenvex
topological vector space--briefly, a HLCTVSmmahd, as
such the theory of compact operators applies to ite

We.recall that if E and F are 2 HICTVSes then

a linear map E =+ Fis called compact if it ié continu-
ous and maps some neighborhood of zero onto a

relatively compacﬁ set (L.e., a set with compact

closure). The following basic theorem is the culmination




of the efforts of Fredholm, Hilbert, Riesz and Schwartz
amongst others.

Proposition 19, If E is a Hausdorff locally

convex topological vector space and ssE - E is compact
then the map 1 -a:E -+ E hag a finlte dimensional
kernel, a closed image, and a finite dimensional
cokernel .

We refer the reader to Schwartsz CZng Theorems
A=-1, A=2 for even mmre4genaral results. We ghall need
only the finiteness of codimension.

The volume bundle © - M is the line bundle
agsociated to the tangent bundle by the representation
GL{m) - 5% given by A - jdet A}. It is clear that
sections of ¢ are smooth measures on M. A smooth
kernel K--gsee Atiyah and Bott, Lefschetz Fixed pt.
formula [27]--assigns smoothly te each point (x,y)
of M x M a linear transformation AT%

Y
Thus for a given X, K(xpy)(w(y))is a form at x times

#
» Al © ﬂy-

a measure. Integrating over y we shall get a form
which we shall denote by Sy This integration

is possible if K has a compact support in M X M; or,
even if, for x fixed, the set {y|K{xz,y) # 0} =« I has

a compact closure. A linear map SKsA -+ A which arises

from a smooth kernel K in the fashion described is
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called a smoothing map. We will write

(8,0) (x) = j’y K(x2y) (w(y) ) o (22)

We note that the definition of smoothing map helds
even if we are working with an arbitrary vector

bundle V in place of ATﬁu Thus one can talk of

=
smoothing maps (V) ﬂéscm(V}o The right gide of (22)

continues to make senseeven if @ ig only continucus in
v. Differentiation under the integral sign shows that
if K is still a smooth kKernel, SKw shall be smooth in

%, In_other words we have & natural extension

ey
o)

0,0 BK s
C(V) =t C (V) of S, and S, =

K K K
inelusion map (V) -+c2(v).

el where 1 denotes the

We shall topologise the vector space GK(V)
of k=times continuously differentiable sections of

a vector bundle V = M by the semi-norms |-l with

%ol ol
la) <K. It is apparent that if M is compact then the
topology is given by a finite number of such semi-
normss we take a finite number of ccmpact se%s Ly
whose interiors.cover M and a finite number of triviali-

zationsxi defined (resp.) on neighborhoods of Lj .

Thus the topology is also given by a norm

b= = -

1, a« <k

IXieﬁ.eLi ’ The space 18 clearly

complete. Hence CK(V) has been topologiged, for M




compact, a&s a Banach space.

Proposition 20. If M isg comwpact cl(v)csc®(V)

isrcompacte
Proofs Take any bounded neighborhood of zero in Cl(V)a
As a subsget of GO(V) it is equicontinuous and fibre-
wlge bounded. So by Ascoli®s theorem--see; .8,
Schwartz, Th, 4-6--it has compact closure in GO(V) QED
This result shows that the inclusicn i
G*(V)C&CO(V) is also compact, as it fectors through the
above map. Hence we see that for M compact, a smoothing

map SKzA 4 A is always compact. .

By a parameirix ford--or simply, & parametriXe.

ﬁe ghall understand, as in [27}, a linear map TN
such that dp,% pd = 1«5 where A,EQA is a émocthing map.
‘When M carries a follation we will also introduce a
further refinement: a paramatrix will be called s

" Ke=parametrix if s commutes with the Ffiltration and

p(Ar) N W -EOne can always construct a parametrix
for d(sée.eug.9 sections 17 and 18 below) but it is

not known whether a 3-parawetrix is possible. An
example due to Schwartz [287 implies that one need
ngf:havé a 2~parametrix.] The important equation

1 -8=dp+ pd - ' (23)

shows that 1 -5 maps 2 (2 = {» W€ A, dp=0]}) into B




(B= { WEA Sote 3 ¢ with d6 = ). DBut Z being a
closed subspace of 5 is also Hewsdorff, so a HLOTVS.
Hence if M is compact, by Prop. 19, 2 éif 2 has a
finite codimension. Hence Z/8 is Ffinite dimensional,
which of course is well known. Similarly we have the
following.

4

Proposition 2i. Suppose that a k-parametrix

exists.

{a) Then if the space ) ig Hausdorft in the
induced topology and the induced map B8Z, = 4y is
compact then By ls finite dimensicnal.

(b) If M isg compaect and all the spectral
sequence morphisms dogdisnoa are topological homo-
morphisms then the above hypothesis is satisfied.
Proofs By [7]. prop. 3¢1, page 321, the induced
map.lwsszkﬁiaihas image lying in By Thus zk/Bk'i%
finite dimensional by using hypotheses of (a) and
ﬁroyosition 19, This proves'(a)»

Now 1f M is compact the-smoathing map
SEA ~+ A is compact. As dopdlgaee are topological
homomorphisms the vector spaces EogElgEzgo..-will all
be Hausdorff locally convex in the induced topologye'

One sees that the induced map 812, - Zk is also

compact. , ‘ QED
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The author feels that the hypotheses in (a) is
not reguired for this finiteness resuit@ However one
WOuld have to use more refined functional analysis to
settle this point.

This prcpasition tells us that it is a good
idea to construct kmparametricea for 4. (This will
be done in subgeguent sections.) IFor example, a

2-parametrix wouvld make E, finite dimensional under
-E%ﬁ
2
Hausdorff and the existence of a Z-parametrix would at
. #,0
once imply that E?

above hypotheses. Note however that 2 are always
are finite dimensional. Another
simple observation is that E,. is finite dimensional--
for M compact--for r » ¢ + 1. This follows from the
fact that E ig finite dimensional and that d. =0
for r » ¢ + 1, as the filtration is of length c. One
can ask as to whether there existis an r, independent
of ¢, for which E (M) is finite dimensionaly M being
any éompact foliated manifold. The recent counter-
example of G. Schwartz [28] Shows that if such an r
exisﬁs it must be > 3. This‘follows ag the groups in
(28] are precisely E;’O(M) and Schwarsz gives.foliations
for which they fail to be finiteldimensionalo Note

that [28] thus implies that one may not be able to

construct a 2-parametrix.
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We shall put
Pe . a3 Peq -
er dim EZ (24)

if the right side is a finite number

Propegition 22, ITf Er ia finlte dimensional -

x(M) = % (-1)Prelrd (25)
Peq : |
" where ¥(M) is the Euler-Poincare characteristic of M.
Proof: Since the ith Bettl number of M is
bi s by e£9qg it follows that
pra=i

D) (nl)p'{ﬂqeg“q 7 /

Peq

and so = % (-1)P 9P rop oy large enough.
Peg N

But we know that the Euler characteristic of a finite
complex 1s same as that of its graded homology. Hence
the last expression equals

T (=) P‘*’qeil?”‘l | QED
P

One can pose more general index problemss; €eZoe,

calculate J (ml)qegeq (if E, is finite dimensional) in
q ‘
terms of characteristic classes. It is poqs1b3e in

some cases to guess at the probable expressmons‘ But
the generdl develOpment in this direction is at the

‘moment held up due to analytical difficulties:

construction of parametrices etec., which we will




encounter in the following sections.
If we have & Hausdorff TVS V, equipped with a
ceontinuoug differential d:V + V then it is clear that

a{v) = dml(o) and so we can define the conbinuous

-1 ~
homology of (V,d) as g::%%L 3 we denote it by H(V).
a{v)

Note that Ti(V) will be Hausdorff also. On the other
hand the homology group H{V) need not be Hausdorlf.

Proposition 23, The continucus homology of
the deRham complex is same as the deRham cohomology.
Proof:s In fact B = d(p) can be characterized--hy
deRham's theorem--ag those forms which have zerc value
on all cycles.  Thus it will follows thet B = B and
the result is clear. _ | . QED

Note that if M is compact, prep. 23 is trivials
B is of finite codimension in the Frechet space %, so0
it must be closed, |

This proposition and prop. 21 show that it
might be desirable to replace the spectral sequence Er

by a continuous spectral sequence B in which at each

step we take the continuous homology with respect to
a continuous differential. The advantage of such a
change would be that the Hausdorffiness requirement can

- be dropped from prop. 21: If there is a keparametrix,

Ek is finite dimensional! By prop. 23 such a spectral
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seguence would also converge to H%(Mgﬁ)a However we
shall not go into this here because (1) a lot of pre-
liminary continuous homological algehbra is required;
and {2) the Hausdorfiness condition ought to be
gtudied, {(since it has connections with Serre duslity),

and not evaded. (See prop. 27 below.)

17. Let us denote by C™{M,M) the set of all smooth
maps M -+ M, and by_C?(MQM) the set of all smooth maps
M -+ M which map any leaf into anether. Consider a
function

FeR™ = ¢(,0), with P(0) = id. (26)

Let £{n) be any function on 2™ which ig smooth, has

compact support, and for which

| £nan = 1 (27)
Rm .

p-

Let us now write the formal expressiocns, with @€ A

(s0) (x) = [ (Ftm#e)) -2(man (28)
R" | | |

—y

and | (pw) (x) wj fo(eiﬁia F(nt)"*w)(X)
R 1 3%

o f(n)dndt (29)
Here the map F(nt)six1 -+ M is defined by

(X,t)=2F(nt)x and for each t€{0,1] we define the




64

injection O ehl - Mx I by e (X,ot) . f% is the standard
vector on Mx 1 along the t-direction. One should
compare these formulae to those in Section {(10).

We can topologize the set of all maps, GO, ,
in a natural way with the ¢ fepol@gys 80 2 maps are
‘near’® each other if {in local coordinates) all their
derivatives are ‘near® each other. The subsed
Gf(mgm) shall be given the subspace topology.

Now if we reguire that the function F be
continuous in (26) it follows immediately that the two
integrands in (28) and (29) are continuous. Since they
have compact support also both these expressions make
absolutely good sense.

Proposition 2%. p is a chain homotopy between

1 and 8¢ il.e.py 1-8 = dp + dp. If the image of (26)
lies in G?(M,M)'then s preserves filtratiocn and p is
a 2-chain homotopy.

Proof: Since d commutes with induced maps we see that

apo + pdy = [ [ (a0%i, B(nt)*e + oi F(nt)*dy )
Wq 7 a L
R Y 3T

* f{n)dndt

equals

J m.ff (e3(ai, + 1, Q)P(ne)*w) £(n)anat
R et At o

at at




which, by (14), is the same as

JlB_m Ilo (er‘:t‘(;:["égf?(ﬂ“'ﬂ)%w}f('ﬂ)dndt ,

Integrating with respect to t we get, as F(0) = id,

Iﬁmw“f( njdn - J‘Rm(l?("‘l)%(ﬁj}f( ) dn

ans 80, by (27) and (28) this is the same as
b = S .

Now, if F(n) M -+ M maps leaves into leaves then
F(n)*n » A preserves the Tiltration. So, by (28)
Sth = A pr@serves the filﬁﬁatisne Gonsldering Mx I to
be carrying the 2-foliation {section 9) we see that
Flt)®sa(m) = A(MxI) also preserves the filtration.
Since ﬁ%. is trangverse to¢ the waoliaﬁian of Mx1I

it follows that the filtration of i F{nt)*y is one

at
unit less at most. Since eisﬁ(wixl) -+ p(M) preserves
the filtration we thus see from (29) that pspA ~+ Ao obeys
the condition p(Ai) < Ayl e _ | QED
To construct a parametrix we need to choose
F so as to make the map sshA - A & smoothing map. For
" the construction of a Z2-parametrixz we will have to

ensure that the image of F lies in C?(M,M).

Consider the following situation: M is
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j
parallelizable, and admits a global parallelism by m
complete vector fields. This means that we have m
globally defined tangent vector fields on M, which are
Linearly independent at each point, and which define
L-parameter graupscﬁ?diffeomorphisms of M. Thus we
have a continuous function
Feg® » (1), Flo) = 0, (30)
with the right hand side given the usual Frechet
topology. Let us denote the leparameter group of
diffeomorphisms of F(n) by Ft(nje Then by taking
F(n) = F,(n) we get a continuous function '
FeR™ = DIff (M), F(O) = id . (31)
Hote that il M is compact the completeness assgumptlon
can be dropped from the above. The space of all
diffeomorphisms M -+ M which figures in the right side
of (31) is topologized as a subspacé of C¥(M,M). We'll
have occasion also to employ the space Diffl (i) df
diffeomorphisms of M which map leaves onto leaves.
Now choose an'X§EM and consider the map Fx of
gm into M given by n=F(n)x. This nap takes 0 to X.
Also it maps Togﬁ. the tangent space to 5@ at 0.
isomorphically onto TxMe In fact, using the canonical

identification of TQE@ with R™, this map is simply the

map FX=5@ + T, given by ne=*F{w)(x); and, by hypothesis,




it is an ilgomorphlism. 1t foellows therefore that

Fxsﬁm -+ M maps some nelghborhood of 0(&@? diffeo~

morphically cnto a neighborhood of x € M. (In general

we will say that the continuous map of (26) is locally

transitive at e M if ergm - M has the above properiy.)
Let uzs consider also the produét space M x M and

let A denote the diagonal in this space. The map F

leads to a natural map I aM){@@ -+ M xM given by

A\
(x,n)“?(xﬁF(ﬂ)x) which maps (x,0) to (x.,x) € A. Again

it follows from the given_hypothesis that the tangent
space at the first pointe-(x,0)-<lg mapped. isomorphicale-
ly to that at {x,x). Hence some neighborhood of the
first point is mapped diffeomorphically onto a neighbor-
hood of the second. From this we conclude that given
an x €l one can find a neighborhood V of x such that
a.neighbofhood of Vv of Oe.gm is mapped diffeomorphlicale
ly onto some neighborhoed of y €M by Fy for each yeV.
(This sentence makes sense for any continuous map

FsR™ + ¢¥(M,M) . We will say then that P is locally

transitive near x.)

Now if M 1s compact then the last sentence
can be strengthened to read: There exists a neighbaré
hood V of 06.5@ which is mapped diffeomorphically to

vEM: {(We will

some neighborhood of y€ M by any F

ys
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say that (26) is uniformly trangitive if it possesses
the property expressed by this sentence.)

We will assume now that the funcition £{n) used
above in constructing s and p has its support inside

the aforementioned nelghbeorhcod V of Oeiﬁ@e

Propogition 25. 1f the continuous map

Fs@@ -+ G@(M,M) is unifermly transitive and 1f £(n) has

sufficiently small support, then g isg a smoothing msp:

50 p is a parametrix in Prop. 24, If further the image
of T lies in G?(MGM) then it is a Zwparametrix.

Proofs By sufficlently small support we sinply mean

thet the assumption just made above holds. Now

U (x,FX(U)} = N gives us a neighborhood of the diagonal
X

A = Mx M sueh that for each (X,¥) € N we have a smooth

3
¥

by w(y)h%<F(n)*@)(x)§}Us here 1 = ng(y) and ¢ 1s the

linear transformation K(x,y) of AT" +to kTi@ﬁQy given

measure in FX(U) corresponding to the measure £{mn)dn

in U, under the diffeomorphism F,. Defining K{x,y) = Q

Tor (x,y);éN we thus gef a smoath.kerﬂal k on MxM. It

ig clear that the s given by eqn. (28) is the same aé

S0 é smco%hing‘mapn given by (22)= | QED
The remark made above iﬁdicates that this

result applies whenever M is a compsct parallelizable

manifold. If then the image of F lies in Ci(T)wmthe




69

vector fields of the foliation--then we will get a 2-
parametrix. If M is not cemplact, but still has a
parallelism by complete vector fields (30), then F

ig only locally transitive near each %. This situa-
tion will arise later on when we take M to be a
principal taﬁgent bundle. However, in that case F

is equivariant with reapect to group action on the

H

ibresg. Due to this F will be uniformly transitive if
the base space ig compact. {(This constructlon will be

postponed to sec. 21 gince. it uses connection theory.)

18, In this section we will make a few comments which
are not directly needed in the ensuing developments.

a. For nénwparallizable manifolds we will
rapidly sketch the mOdlfl zations to be made on the
above argument:

A. First we notice that if we have a finlite
number of linear maps SieP3 of A such that
1-5. dplﬁ-p d, then by putting g 152539a9 and
p§p1+%p2+%§§%+sa,weg@t1«smdp§mh Hmme_
it is enough to show that 88,8000 is smoothinga

B. Now, given a manifold M and any x € ¥ we
can always find a continuous map F sR - CW(T)B

F(O) = 0 such that for all y€V, a nhbd. of X

Fysgm d Ty is an isomorphism. From there we can flnd
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a map Fzgm -+ Diff (M) which P8 leecally transitive near
X. We will-take () (y) to be zero in M-V; so

M {y) = y outside of V., Now using this map F the
proof of prop. 25 shall show that s iz 2 smoothing map

0 form with

in some neighborheod of %, l.e., any G
support inside this neighborhood is mapped to a %
form by s.

C. We now can find (es M is compact) a finite
number of maps 8y 9P of A such that we have (1) 1“°Si
= dpi%=pidg () S5 snocthes forms inside the opeh set
wi { where g Wé = M)s (3) and any form with-support in

M-»w% is mapped inte a form with support in M-»wi

[a]

(here Wﬁ < Wy and ¥y W, = M). fThe lagt can be achieved

i

r.J

@
L .
by reducing the support of the_fi{n) which are used
to construct s;. But from (1), (2), {(3) it follows
at once that s - By 8p8qces will make any ¢® form into
a smooth form. Thus 1~g = dp+ pd ig the required
parametrix.

D. One notes that this paﬁching argument will
run into trouble ifr(with M foliated) we impose the
requirement that thé'image‘of F lies in Diffl(M).ﬁ
Howéver for fibered méhifolds this probiem can be

avoided; We take a product‘neighborheod V and a

continuous map FsR© - G?(T) such that F&sgw + T

is an

N
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isomorphizm for y €V F(o) = 0, F(n)(y) = 0 for

nE@l < R™ and y£V, and for all g and y,@’p“i(v)

(psM -+ B being the fibration). Now P(1n) will map

MeV into M=V aﬁdlwe will have no trouble in seeling
that (3) holds b@sideé (1) and (2). Thus patohing a
finlte number of 8 constructed from such Ve will

give the required Z-parametriz. (Note that if each Py
disturbs filtration by 1 unit, so does
p14~slp24~31$2p3%'330 = p3 gince each 84 conmutes with
the filtration.) We record this as

Propegition 26, A4 fibered manifold possesses a

2eparametrixz for d.

o

Be We remark that the hypotheses used in step
D of the construction hold alse if the foliation has
diffeomorphic leaves, is regular (i.e., each pt. has

a transverge nhbd. meeting a leaf only once), and
ariseg from the orbits of a Lie group which acts
freely on the manifold. For such a foliation we ¢an
congtruct maps F with the same properties as in D. So
guch foliations arising from the free action of a Lie
group also have a Z-parametirix. |

b. Transverse invariant forms form the complex

DO_%, Dlv—% seqg ¥ Dce . (32)

‘Reinhart [26] constructed a parametrix for D %D under




the condition that one. has a bundle-~like metrix.  And

thus (since D is a HLCTIVS) is follows that the

® . P . .
homology, i:8., E;i”og ig finlte dimensicnal, under
this condition. Since Schwarz [28] has shown that
H " . + P
EZ’O need not be finite dimenslonal (32) may fail to

]

have & paremetrix. In any case 1T we have maps D-5 D

pai

such that 1 =8 = dp+ pd, then they induce maps $+5p%
in the complex (20) of prop. 15. These induced maps
still obey the identity L ~& =d p + p%d . 80 if
the spaces of (20) can be given a Hausdorff topology,
then we will have a paranetrix for this complex also.
¢, Now we pelint out th@.simple'cénnéctisn
between Hausdorffness and Serre’s duality. We follow
the afgum&nt given by Serre [203, The baglic lemma
ig that if V is a Frechet space and the differential
d:V 4+ V is a topological homomorphism then the
homo;ogy Hd(v) is also a Frechet space (in the induced
tdpclogy) and its dual is Hdu(V“) where V°‘E§-V“ is
the topological dual., This is Lemma 1 in [20]. Let
ug now take up the forms with distributional coef-
ficients as in [20]. This complex (K,d) alsé carries
a natural filtration and thus gives us another

spectral sequence 29 also converging to the deRham
r .

cohomolegy.A One now noteg that Eg’q has the




topelogical dual Fgmp°lmq (same proof as Prop. 4 of
[20]) and that the dual map dé coerresponds Ho dO
FO -» FO under this isomorphism (same preoof as

Prop. 5 of [20]). Using thege remarks one gets the

following result by using Lenma 1 agaln and again.

g}

Propogition 27. TIf the spectral seguence

morphismng dggd pese are topological homorphisms {with

1
respect to the Induced topeologies) then Serre’s

T

duality Ei“g oz E;mpﬁ e helds (M 1s of course

orientable) .

This proposition implies that 1f E, is finite

¥
dimensional then Serre's duality holds. And thuas all

¢ad dimensional Ffollations with dim B, S e Lis only on

gisnature zero menifolds.

d. Caleulations made by Kodaira and given by

Reinhart [267] show that for almest all irrational flows
090 !Opl : -’-\190

on the torug dim Ei < oo (in fact El = By o= Li
= E%”l = R}e But on the other hand there exist
1.0

irrational Flows on the torus for which dim El

= E%’l = e2, We will recall their argument helow.

Note for the moment however that an irrational toral
flow is ergodic (i.e., any measurable set made up of
complete leaves iz of measure 0 or 1) and minimal

(i.e., every leaf is dense). S0 nelilther of these

hypotheses suffice to ensure dim E, <«
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Think of the 2 torus Tz as the (r,s) plane

satisfying o < v £ 1, 0 € s < 1 with proper boundary
identifications. Let us he given a i-folliation
represented by straight lines making an angle ¢ with
the r-axis, such that tan ¢ = ) iz an irrational number.
Let us denote by x the direction aleorng the leaves. Let

1.0 1,06
1

us now try to calculate E « Obvicusly 2 can be

fay

supposed to be all smooth ferms ¢ = pdx. Now if @

ax . s o1
%PO then @ = £ where f 1s ancther smooth

lay in B 3%

funetion. Thinking of both ¢.f as bi-periocdic funec-

tionsg in r,s we have their Fourier series

= 3 Oy GED (Zwimr + 2¢ing), £ = ¥ fmn exp (2s7imr

+ 2uing) .  Substituting in ¢ E’;% we see thalt we wmust

. P )
271 cog G (m+ n))

have ©ag = 0: and then fmn

for (myn) # (0,0), ({(The denominator m+nx #0as )
is ifrational)a Gonversely whenever Woo = 0 one can
build a fourier series for f. However this series
does not converge for some value of 3. Buﬁ if A is

irrational enough=--i.e., m+ny 3 f( n ), where

f(n) = O(HB), g » 2~-it does converge tc a smooth
 function. By a theorem in diophantine approximation
theory (due 1o Khintchine) this condition is satisfied

for all j outside a set of measure zero.




Prof. Groemov has suggested that this example

may be extendable to nilflows on nilmanifolds (see

Auslander et al., Annals Studies no. 53).

If the foliatlon hag & dense leaf notse that

1
transverge invariant formss and the value of such form

dim gPe0 < eze  This fallows since Eg,@ consists of

over & ieaf ig determined by its value at one point
thereof.
9s The f@iiawing guestions are interesting:
1. Is dim B, < o for all Anosov flows: (See
a book en dynamlcal systems for definitions.)

2. Is dim EB < e for all compact folliated mani-

Ag yet, the author iz unable to answer theme.

i9. In thig section we shall cover the general rela-
tions between connection theory and our spectral
SEQUence .

There are two main (kinds of) definitions of
connection. The first may be called ‘analytical’® as
it is convenient in differential geometry. Here a.
connection on a vector bundl@ W (on M) is a morphism
Cm(w)jécw(w)§§sw(T%M) obeying certaln rules. [See,

@.Z., Kobayashi and Nomizu.]




The second is the ‘algebralcal® definition as
it is convenient for defining characteristic classes.
Here the connection is defined as an algebra morphlism
of a finite dimensional algebra into the exterior
algebra of forms over ?9‘the principal bundle of V.
(See, @o.g., He Cartan [6].)

The two definitions are due, mainly, to Koszul
[19] and to Ehresmann [ 127, respectively. We shall
look at connection theory from hoth these viewpoints.
Firat, the "analytical® aspect. |

194. Let W be a smooth vector bundle on M and denocie

by A(W) = AP(W) the vector space of smooth sections of

W@ AT, Let us try (in analogy with the exterior
derivative dsp ~ A) to build an endomorphisnm
a(fgw A o) = Af Agw Ao+ fog Aw A G + T8y A O

, + (~1)Pfey A do : (33)
Here £ € C°(M), g € ¢™(W) = A%(W), w € 4P, ¢ € 2% and
the meaning of the various products is the natural one.
Note that by (33) & cannct be the zero map.

Propogition 28. One can find an endomorphism

iAW) » A(W) satisfying 33 [& is called a connection

— on Wjo

Proofs Locally aA(W) is generated by smooth functions,

smooth sections of W and smooth forms by employing the
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{f

various products. Hence, by (21): it suffices locally

to just define psal(W) < AY(W) . ieeo, C7(W) ~CTTY W),

To 4o this we select,. for a hasis g = By 58p5c00 of
1%‘ 3 ] .» .. 2
¢wW), a matrin g of i-forms and put

BE = ' {3h)

If in an overlapping locality a basig s° is chogen with
8" = gs, we put ' = (dg+aele (35)
Now we checl that @'s® = dgs + gds which is a{gs).
Henee the definitiocn extends globally. Actually if M
is compact a finite number of sueh matrices @ (galled
connection matrices) are enough to define 3. QED
Now we naturally ask if‘en@ can ask for @2 ez (o

Proposition 29. One can find an endomorphism

asA€W§ - (W) satisfying (33) and @2 = 0 if and only
if the structure grauﬁ of W can be reduced to a finite
subsete
Proofs Tet ug first take az = 0., Choosing as above &
bgsis s for C°(W) in a lacal’area this means azs m (0,
f.ee, a{ws) = 0 (with above terminclogy), and hence by
(33), dps + a8 A w = 0, 1eco, ds = A ws = 0. Hence
we get the equivalent condition |

Q=dy ~wAw=20 (36)

The matrix () of 2=forms (depending on 8) is called a

curvature matrix. One can see that in a new basis




¥yl
()

a® = gg we ghall have
0 =gne™ (37)

and hence () = 0 is a condition quite independent of
the loczl basis g selected. By the Ambrose-Singer
theorem (see Kobayashl and Nomizu, Chapter 11, esp.
pe 92) this implies that the loeal (or the restriched)
holonomy group of W is -z&rc.u Loeally Arivializing W
by horizontal sections we can arrange that the
coordinate transformations are constant wxw matrices.
Conversely let ug suppose thal we can cover W by a
finite number of trivializations s (basis of Cw{w)>
such that the connecting matrliess g arve constant., Now
take  as the zers matrix in @ach of these. JSincoe
dg = 0 the required transformation law holds and we
have a connection. It ig clear that one has@gsn 0. QED

Before ﬁrceeedimg with proving another Drep.
of the same kind we will indicate some additional
results. Given a connection & on W one attempts 1o
compute the cohomology Hﬁ(mﬁwﬁ) where wé denotes the
'sheaf of germs of horizontal sections (i.ec., af = 0)
of We In the‘ﬁartieular case given by the above
_ pro@ositian this shaa£-has'a fine resolution by
O -+ W_ - Q&Q(W) D oo0e b 9éﬁ(w) -+ 0

o .
and we have a generalised deRham theorem. - This




cohomnology H*(Mgwg) is traditionally called ‘with
local coefficients W.' In the general case such a
rescelution ig not readlly available and one has to
regsort to methods of a different kind (aee'wwrk of
Nijenhulis, Spencer, etce)s It is clear that the
theory of characteristic classes ls intimately related
to this cohomology.

Now we employ the bigrading of section il and
denote by AP W) the vector space formed by the smooth
sections of W& »P*%%, We denote by 2y, the part of
a connection which is of bidesgree (0,1).

Proposition 30. One can find an endomorphism

!

aipa (W) =+ A(W) satisfying (33) and agi m O 1f and only
if W ig an invariant bundle.
Proofs Suppose that agl = (O, Hence, with respect to
a loecal basis s for ¢™(W), the curvature matrix ()
consists of 2 forms having filtration » 1. Using the
Ambrose Singer theorem we see that the local holonomy
of each leaf is trivial. Now if we cover M by a
finite number of trivializations s keeping each of
them horizontal along leaves it follows that the
connecting matrices g are constant along leaves.

Conversgely take some trivializations of W which are

related by matrices g constant along leaves. Let

|
|
\
|
{
i
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be the matrices of any connection. Now compare the

parts of (35) of bidegree (1,0). We get

mio = {(dg 4 gwlo)gmls These matrices Wy 0 give required

connection, QED
An inveriant bundle shall alwayas, 1T not

otherwige mentlioned, carry such a connsction. We shall

call this a Bott connection. The ahove proof sugeesgts
QLY 228 p .

that for each &€ H'(M.G,), & = OL{w), we also define

the notion of asémBott connecticn on W as follows: Let

ug take any cocycle (@ﬁg} representing . That is Y is
a covering of M by open seits Us and g consiste of
sections 8 ; over U, f Uj of the sheaf Gpy which obey

g1 381k ” Bik {gee Hirzebruch's book for more detalls).
Now on each U, choose trivializations s, for (W) so
that a. = g

J

. B
1
respect to s

384 Let Wy be the connection matrices with

go Lf they are of filtration » 1 we say
that we have aagmBott connection. This is a valid
definitian for if some other trivializations S; are
taken eqguation (35) shows mi is also of filtration » 1.

Again if some other cocycele (M;ge) ig chosen we have

] C =1 . . cren b oA -
gij =1y gijfi where fi is section over Ui of GD‘ S0
o o - & ¥ _ . ¢ o=l .
we gee that § 3 33531 where s T,"850 By (35) the

* * . ] .
connection matrices with respect ﬁolsi will also be

of filtration > 1. The proof above now tells us that




if the invariant bundle W is as gociated 50466 ﬂ (M, GD)

Fepott connection on W
-

then we have a.g

We shall denote by Ei(w) the homology of aAlW)
under CIYR if & is a Bott connection. Also denote by
gl{w) the we—dimensional vector space of all endOm
mérphisms‘of gwe The group GL({w) acts on it hy

gel = glg . (38}

‘Using this action we censtruct a vector bundle w2 with
fibre dimension wz asgociated to W. It is clear that
one can think of the curvarure (of a connection
dra(W) = A(w)) ag an element of AQ(WZ) given locally
by the éuxvaﬁufe matrices () encogmtered before. We
dencte this glebal form also by (. So QEEAQ(WQ)Q
When W is invariznt and a is aggmBoﬁt connection we

»

get a part (O, 1(:AL” (W") which satisfies gaj(ﬂlﬁl) =

2

[becamse ()= 8w - w Aw shows that locally,
o= - v \ [ - -—.1 91 s
'ﬂl,1 d01w]a He@cg we get a class Qﬂlnlj By (w™) .
We recall that in Atiyah [1] such a class was
uged to characterize those complex analytic bundles
which can adwit a complex analytlc connectlon. Prope

31 below gives an aHQTWg@uo regult. For each

é?e Hl(M G ) a cannectlon on W (a veetor bundle

agsociated to% ) is called anﬁgmlnvarlant cennection

if its connection-matrices W5 0 wrt any trivializations

B1




:

8y agreeing with a coecyele (M,g) mf%s copsist of
transverse invariant forme. Note that the curvature
of any such connectlon is of filtration » 2. In other
wordsg Ql,l = 0. Any connechtion obeying thls condition
will be called an§invariant connection., If the vector

bundle W admit@euléudmw&rianﬁ cgonnection we shall say
that it is giiff.

L

Propomition 31. A bundle w ig stiff if and

only 1f [leljézﬂigicwzj vanishes,

Proofle The "only 1f* part is obvicus., Seo only the
converse needs a demonstraticn. W ls now just an
invariant bundle and we choose a Bott conncetion and
then leook at the homeology class Eﬂiﬁlj lying in
Ei”l(wz)e We assume that 1t vanishes. Thus there

existe a one-~Torm Qﬁ%ﬁlﬁo

e '

W such tha =

{(W") such that 258 Q1ﬂ1°
Choosing local bases s which are horizonital over
leaves one can think of § as being locally defined by

5 gﬁg“le So if @ denotes the

matrices varying by @°

L

connection matrices of the given Bott connection,
w=-0 is also a Bott connection. The relation
_aOlQ s 9191 reads d01(®«w8) = O, 1Le@ay that_theﬁe

matrices consint of transverse and invariant i1-Fforms.

This shows that W is stiff. QED

We refer the reader to Deligne [107] for a
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similar viewpoint of connection theory. [He also
considers connections as derivations of AlW) Llying
above d.] Also the work of Molino [217] is closely
related to the above, e.g., he hag the notion of an
invariant connechiong thaugh the reduéti@n of the
structure sheafl is not siressed.

19B. This section will be devoted to dualising the
resulte of section 194 into statements about the Well
homomorphism. Also some esgentially new features will
be pointed out.

It is well-known-=see, e.fe, [ 17 |: -pPages 65-66=-
that the definition of connection in section 194 (by
matrices  obeying (35)) is equivalent to putiing on
P (the principal bundle of W) a smooth plane field
transverse to the fibres, and of dimengion m, which is
preserved by the group action., With this in mind we
now go over to the ‘algebraical’® ftreatment of connec-
tions.

Let G be any lie group. We'll first of all
intreduce the notion of a G-algebra. By this we mean
a graded anticommutative algebra over R [or, more
generally, over any comwmutative ring with unity] which

;is supplied with a differential d [i.e., 2 skew

derivation of degree +1 and order 2 (d2 = 0} ] and for




each X € G-~the lie algebra of (G--is supplied with the

endonorphisms ix [which i a skew derivation of degree

~1 and order two] and Ly, [a derivation of degree zero]
£ -

such that the following cowmutative rules hold

L[:ngrj " ELxﬁLYJB i{;f{gf} ] [L}{ﬁizjg

oyl ¥ diy o= Ly {39)
Note that these imply that [L,,d] = 0.

Now we give an example of a real G-algebra. Let us
take the algebra W(G) = AG @ SG* formed by tensoring
“the exterior and the symmatric algebras generated by
G. If we agree to give the grading 2p to polynomials
of degree p it is anticommutative. We will use the
notation A(G) (respe S(G)) for AG* (resp. SG%*) in the
following. Now we define the 3 endomorphisms on the
generating elements A°(G) and 3'(G): +this will define
them everywhere as they are derivations or zkew
deri?ations. Note that any (ékew) derivation will be
2810 on WG(G) = Ro We now define ixs' for w‘zﬁl(G)g
ixw€§§ 2 WO(G) with ixm = (X)) while on Sl(G) it.

vanishes. . _ ©(40)

Lyt Tor w€ At (G) s Lyw€ At (0) with Lw(Y) = w((X,Y]).
For & 5H(G), Ly st(G) with (L) (¥) = p([X,Y]) (41)

84




d: Let h denote the canonical isomorphism A (b)-*Sl(G)g

Th@ﬂ for we A'(G), (d"ﬂh)m<§A2(G) is defined by

((d hm)u:p*z) - 3o ([X,Y]); for pes (a)

dep € (C) 1(@) wi%h‘ixd@ = Loyt (42)
Note that the last part of (4#2) means that if

¥ ﬂxgggse is a basig for G thsn d@i = 8 Qs @QLx for

3 J
@iezach)u We refer the reader Lo Cartan Eé] for more
7

Py

detalls regarding thege definitions. There it is also
shown that the commutation rules (39) hold. This W{G)

igs called the Weil

really G thet is importants we can start off with
any lie algebra and do ths ab@ve_cﬁnstruﬁtianej

Now we will define & connection 4o bhe 8 G-

algaebra m@rphism from W{G) to BOmE other real
Gmalgébra@ Hereby & gwtlbebra morph@gm we mean fhat
the entire Gwalgebra structure is preserved undér the
' AP o

To peint out its relationship to the defini-
tiocn above we firet of all see that the sgpace of all

smooth forng on a pxlneipal bundle P with group G is

in fact a Gmalgebraa‘ Denote this gpace by A(P)n—-Thén.

dia(P) = A(P) is the éﬁterier derivative. On the

other hand for each X € we get a canonical vector

field along the fibres of P. By taking the interior

bra of G. [Note that it is !

85
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product with feapect te This vector fileld {which shall
alse be denoted by X) we-define ixéﬁ{P} + A{P)
Finelly Lie differentiation with regpect to this
vector field yialdg us the third endemorphism. ALL
the equations of 397 are valid by standard resultge
BEG, CGeZey | 171

Now talke any G-algebra morphism W{b,nwgaéﬁ)
Being sn algebra morphism it is determined unigquely
s values @ﬂ.ﬂi{G} and “1(&}a But by (42) for
anj e = g € ;ié G} we have Ly = f(hy) = dfy -~ £(d - h)ts,

Hence 1t is determined simply by its restriction

AiiG}»ﬁ?ﬂiiP)e This restriction commutes with LX and

L3

with’%he HESR T iﬁsg*éa) + R, lhua if Wy elinsece 18 @
baslis of ¢* = AiéG) then f(@i)gf{mzjgeog-will give us
smeoth 1-forms on P which are equivariantg under the
right action of ¢ [V ¢ commutes with ij and also
transverse e [ £ commutes with iXB* Then ker i(ml)

i ker féwg) fi see will be the required m-dimengional
smooth plane field which is transverse to the fibres
ang Whieh is pra served- by the group action. Thus we
hava rej@inéd the standard,definitien of connection
Vrecalled above. One can of course retrace the argu-

ments back and interpret any such plane field as a

G-algebra morphlisn.




The restriction map *1{G) w%ﬂ (E) can be
interpreted alse as a § valued 2 form on P which is
equivalent under right action of G. It is the ¢urva-
ture of the connection £. When we are thinking of P
as foliated by the fibration we will write Pe to
distinguish it from the normal case when P is foliated
in cudwmmn ion ¢ by using the given foliation on M.

s -0 . s #1{‘ Q.ZD'\
Proposition 32. The image of §%(¢) .5 4%(p)
li@ﬁ&i ir} j'kzg_:gm) [
: 2V x
Proofs  The proposition simply states that the curva-
ture form is horimontal, . QED
; : . iy -
We shall say that a connection W{C) .3 A{F)

is a Bott Ceonnectlon if the image of its curvature

map SL(G)D%‘ﬁ (P) lies in A%(P}g 180, 1L the curvaiture
.is of filtration » 1 with respect to the codimension

¢ foliation. By the remarks made above this agreas
with the definition used in sectlion 19A. On the other
hand the principal bundle P shall be called invariant
if we can cover M by trivializations of P in which the
coordinate transformations U, A U; # G are constant on

J ,
leaves. We ghall alsoc set up the 1-=filtration of

W(G) by saying that an element is of 1-filtration = i

if it lies in the subgpace W(G)@?SZl(G), le2e, all

those things which contain polynomials of degree » 2i.




When we are considering W{G) with this Filtraticon we
shall write it as (1)W(G) and (1 )w (G) shall denot

- things which have 1-filtration » i.

Propoasition 33. The differentisl ¢aW(G) <+ ¥(G)
pregerves the (1)-filttration.

Proof: This followe by examining the definition of

de : QED

The dual of prop. 30 ig not the following.

Proposition 34, A principal Gebundle P in
invariant 1f and only if we have a connccotion
e (1IW(GE) = A{P) commutbting with the filtrations (l.o.,
g Bott connection).

We now examine In more detall the relationchip
between the struciturs of the lpvariant bundle P and
Bott connectiong.

" The 1m@m@fphi5m classes of principal G-
bundles over M form the setx 1 )uw;@eﬂ @oep
Hirzebruch [15]. Choose now an element g* of the

cohomology set it (MG Then if £ is an ~ ~Bott

nt
o . . . . N -
connectvion we emphasize 1ts relationshipy o % by

wrlting f(%}o

Propogition 35. All.gmﬁotﬁ connections
f(%)g(i)W(G) <+ p(P) Lie irn the same l-chain homotopy

cléls-%‘% I

|
|




89

Proof: Let flsf? be two such Bott connections.

£, s i
Choose a cocyele (U, Ui nu mig G) of % in

J
which hoth fl and fg can be represented by connection
matrices of filtrations . We now use the 1-foliation
of MxT (see section 9), i.c., we Ffoliate Mx I in
cedimension ¢ in the obvious way. ‘W@ will have the
prineipal bundle P x I sitting above M I in the
natural way. Now we can define a third conncction, |
Fi{i)W(e) + (1)A(Px 1) as follows: (F(p)(6ix))

= {_i‘l(Cﬁ) + t(fg(q)) - f1(q3)>)(>i} and

" ':1“‘:" .,..é,ﬁ. . . T % e oyt ok e
(P(m))(;x at) 0. Here ¥ is a tangent vecdtor to P,

. A . , . .
et w P o PxI is xevx,t and ﬁ? igs the gtandard vector

on 1. Further e A'(G) and P_sI = PxT is tebx,t.
Since it obvicusly commutes with ig, Lg, for all

8 € G, this definition Fipa'(G) » 41(Px 1) extends to
a Gmalgebra morphism. One sees that with respect to
the cocycle above the connection matrices of F will
also be of filtration » 1. So it is in fact a Bott
cannecticn; We now define the chain homotopy

8eW(G) ~ A({P) of degree -1 by the formula _ |

1 :
g(p) = f @ij.a F{p)dt for all € W(G). Just as in
© 5% )
section 10 we compute (ds + sd)(gp) = I Gi dia F(ep)dt

1 ' 0 ot r,
* * o, . b a0 . »
+ JO Bt 1iL a3 () dt 51nce_d8%,m eid (. d commutes with
at




S0

induced maps) and F(dep) = d(Fe) (% F commutes with d).

It (Qﬂ) dt.

oy

. . 2
Hence the right bhand side equals f Uy b
. “0 b

T

/1.

For @(?AZ(G) 1t is clear from the definition of Flep)
that 1t egquals fi(@) = fzim}@ Again for @E&Sl{ﬁ)

the curvature map Fzsléﬁ) & ﬂz(P){I} is given'by

Flo) = £{p) + t(52(®) = flcw)) A+ ?ZT@S%?mfzﬁﬁf A dt
where the bar denotes horirentalizotion ([1?m9

Pe 76<77}e {(We use the projection PxI - ¥ and think

of fi(®>s fz(m) az forms on PxI.) So Lﬁw of this

8t
is fzéﬁ) = fl(@) + formg containing dt. Hence

GTL% iz just f?(@) - flé@}e Thus the relation
3t

ds + sd = f2 - fi holds. Finally from the definition
clear that it preserves filbration. So s
is the required i-chain homotopy, in the terminoclogy
ol section 9. 4 QED
An immediate consequence of this result is
that for r-a the induced spectral seguence maps
f(g)aél)Er(G} - Er(P} doe not depend on the cholice of

the Bobt conmnection f. We can record this as

Corollary 36. Each invariant structure §'e Hl(MpGD)

gives us a well~-defined map

i

é iB,.(G) » E(F) for r » 1 | (‘#3)




G

Now ¢ o dual of Prepeslticon 31 of sscevion 194

is the following

LT 1% for 1 -; 4 A x
Proposition 37. A bundla{;é H“{Mgbm} e stilf

o
$

if and only if the map g“qug (G) - 1(P) vanighes.
Proofs This map becomes simply Eﬂi 1] if we interprat
it in the definitions of ction 194, QiR
In the present terminclogy a connectlion
£W(G) + A(P) ie called an inyariant connection if the
image of its curvature map fsSl(G} ~b AZ('
AS(P)Q (Note--by Prop. 32--that any cenhechtion is
invarisnt with respeet to the folliatlon of P ariging

from the fibration.) We new define the 2-filiration

£l
1

of W{G) by aetting (2)W (GY = {EJH?i{G) o {1}wi(G}c

2iwl
It follows from Proposition 33 that the differential
d of W{(G) also preserves this filtration. The
following proposition is obvious from the preceding

developrents.

Propogition 38. A principal G-bundle P is

stiff if and only if there is a connection £:{(2)W(G)
+ A(P) commuting with the filtration {(i.e., an
Invariant connection).

Further a detailed examination analogous o
L

the above is possible. Take an element 6€ H™(M.G,),

and let £ be an g-invariant connection. To emphasize




this relationship we use the notation (o).

Propogition 39. ALl @=invariant connections

O} (2)W(E) = A{(P) lie in the same 2-chain homoitopy
clads.
Proofs We proceed exactly sz in the proef of Prop. 35
except that we now employ the Z-foliations of Mx 1 {see
gection 9). With this change T wlill also be an
invariant connection. Now ths chaiﬁ homotopy & will
disturb filtration by one unit. 7 : GED
This regult generallises & wall known thoorem
of Well. Pirst, we see thal the induced spectral
sequence maps F{&)e(2) nm(G) -+ Lm(?}g for v » 2, do
not depend on the cholce of ﬁh&'iﬂV&?i&ﬂﬁ connection

f{6). We thus have the following.

Corollary &0. Each stiffness structure ge (M, GB)
gives ug a well-defined map
s(E)Er(G) -+ B (P)9 for v = 2. (4hey

To get the classical aa&e we assume that we
have the point foliatien on M. One can see easily
from the definition cf the Well algebvi that |
(Z)EE”O(G) are simply the symmetric invariantApﬁlyw
nomials of (--gsee [6]. Also it is clear that |

N |
O(P) w I eO(M)s and so, for a point foliation
r .

it pO

o' H™ {1)

0(Pf) = H (M). Thus in this case 6:(2)E

9




ig s 1mp1v the Chern Well homomos pthmu Note that for

8 any

E_.a.

p = Gg and so @G H“{M*GS)

differentiable structure for P over .

a point folliation G

Kamber-Tondeur [16] alsa interpret Well v | \
morphisms as gpectral sequence morphisms, but they do
not give the homotopy invariance results (Propositions
35 and 39). :
We shall end thiaz sectlon by peinting out that

one can employ thb Chern-3imonsg modif

above discussion. IL £ = W(G) ~ A(P) is a Bott connsc-
tion we note that 1( o 1([z)) 03 ﬁhus we can "throw
away” terms involving pglvnomi&ls of degree » 20
More'preelsaly we replace w(u)«mwnenb»w“ We ara

dealing with Bott conne rotionsew-by the guotient
W(G)/WC$1{G)n The rest of the treatment is precis ely
as above. The advantage of this is ihaL though

.Ew(G) = O without truncation {see [67] where it i

n

shown that H(WQG)) = 0} E_(G) # 0 with this mofication.

Tn fact one can compute E%(G}mmwith modification~~1t0

ve equal to the Gelfand-Fuks cohomology of the formal
vector'fields'an-§91E8eeg‘eugng Theorem 2.1 in
Guwllémln*ﬁ paper in Advances in Mathematics, 1973J

in fact Godbaljon, Vey, Bott and Haefliger have

apploachad the prob1am of underbtandznp the "exotic”




Cids

e

characteristic olasses from the viewpoint of this

Gelfand Fuks cohomoelogy.

20. Now the moat important example of an invariant
bundle is the bundle D* o T% of covectors which kill
the invelutive distributiocn D <o T, Any connectbion on
& subbundle of T oy T% can be extended to the whole
bundles it is such linear connectionse--i.e., connece
tlong defined on the principal bundle L{M) of taugent

frames--that shall concern us now. We shall not

assume that D is necessarily invelutive. Any connec-

tion on T# reducible to D', such that the ¢xe vart of

the curvature ls of filitration @ w.r.t. D shall be

called a Bott Connection. Her

o

. 1. .
if Q_] is the curvature

ites exce part is gilven by 1.3 » c.

Proposition #1. Any connection on T% which

is reducible to D* and which has zero for sion must be
a Bott connections and then D is 1nvalut1veg
Proofs Without recalling the definition of torsion
we gimply recall one of the consequences of ‘zero=-
torsion,® viz., the eguation

ae = A(ve) (45}
[See Cor. 8.6 in Kobayashi and Nomizu, Ch. L11I.]

"lHere A denotes alternation and v denotes covarlant

differential. Now use this eQuation with @ a section




0
Wn

of D" and % ¢ ¢7(D)Y, Yecor(T),
Gl Y) = V) {i,Y) = (V) (Y,X)]

= B V) (1) = (v ()]

: L : - P A
nce our connsctlon Le reducible to U both ﬁyw and

48]

Vois are sections of Dt. Thus QVEMJ{K) = (0. Thug
(P00 (Y) = =2dw(X,Y) (46)

whenever o€ ¢ (D*), Ye g SUTY . But eqne (46) is (SRS

cisely the coendition by which Bott f}j firet defined
a cormection whose curvaiure has Filtration > 13

provided D was inv&lutiv@e But if we take YéﬁGm(D) in

(46) we get dwl(f,Y) » 0, L.ee, W[4, ¥1)= 0. {as

w(x) = w(Y) =0)fer atl we ¢™D*). So (%.,¥} €D

Proving the reguired lavolutivity. 1Y
The proof exhibits clearly the following

M 5

T+ admits & connection reducible to DY

and obeylng (46) if snd enly if D is involutive.
We shall say that a connection on T% (resp.
T) of zero torsion which is redueible to D% {resp. D)

is & Walker connsetion: for the reason for this name,

gee [37]. Then we can extend the above corollary to
the following

F]

Proposition 43, A Walker connection exists if

and only if D is invelutive

Proofs Cleérly it suffices ta prove that a Walker
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connection exists on T when D is involutive (7.T% are
aasoclated to the sampe principal bundle: the induced

conmection on T% will supply 2 Walker connection there).
nJ
Denete by ' the fiber-bundle with Tiber H s ZLructure
. 3
i . 1% 4 - ] o e . I
group DILE (R ), and ecoordinate transformations

T, = Uiy (47)

an we go from loecal coordination xy to X, A linear

connection is & gection of I'w One has the relation

Sy Lk s .
vﬁmm»(&ﬁi) - Lji CE o {48) 7
ax 4 - )

with the first definition. [See Kobayashi and Nemizu,
{17]s Che III, section 7 for more detadls.] Since we
want our connection to be reduclible to D feor

i < 1 <1 the RHS should not contain terms with k » 1.

RO
i ' .
Fji = Q0 for k> 1, i <1 o {49)
while the condition for zero torsion is Espe citajn
ko k «

Both thﬁae c@ndlt long are compatible with (47). Thus
we get a subbundle W of T whose fiber is 391(cf1)/20
Choose any section of the sawme. 5 QED

This proof lg due to Willmore [38]; Using

fhe equa 8 (49) and (50) above we can glven another
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proof of the fart that a Walker connecetion must be &

Bott connection (Prop. 41). In fact LT one puts [17],

' i Wi
. Al S A . ‘
T L . 3 1{- - J{' -_} 1. 'Tt ‘\J- n '1 [l
héﬁﬁ ) sl ax® ’ lgﬂlkt FVJI 5% ° (J%)
thern the curvature netrix is
i i . B .
Qj =t n11 LAxT™ oA dax” {52)

in the given coordinates xig&aegxm compatible with

the feliation. sing (49), ‘k* a Q0 for 1 » 1,

J < Lt dleea, Q% = O for these velues. Using (49) and

{50) one sees that Rﬁi = 0 for L= 1, J» 1, and i
JaEd

#

o€ < L3 Le€ey for i, » 1 the 2-forms Q% are of
_filtratimn =t , ' QED

We call a connection which satisfies the
hypothesis ef-eore 42 a basic connection. For a linear
connection

Walker = basic = Bott.
50 far we have looked for éohomalegical obaturction
by using Bett connection enly. By proycsiticn Ml_it
seems reasonablé to see if a Walker connection leads
to anything new.
' For this PUrpose we reformulate propo.uﬁ;A

Given a subbundle D < T let P < L(M) be the principal

bundle of frames whose first 1 entries span D. the

group of this bundle is denoted G ( all aﬁtomorphiams
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m m : SN . o g
R™ =+ R keepling R invariant). 7The bundle of affine

framers A(M} ls 2 m-dimensloral vector budnle over

P

L{M). Let » denote the part siitting over 7, and ¢
= PO N St Y AR il
the group of P. It is clear that@(3) =@ (G)H y
with G7(G) a Lie subalgebra of ?‘{Q}u Let i be the
U Y 1.
conmection form and denote by @sgﬁ + A (P) the

canonical form, i.e., for atangent vector X atb

2

(2 ©qpenssly }oof P owhere €W end e1gﬁaosem ig &

g0 the vector @1(£)ei oeee 6 (X)e
2 3 o R " C - N j.. Ty E(L?s; d,\f . 1 oy
under Xo 30 @ and 6 gives ug a map AN(G) ‘ULY 4t {w)
and (3 = ) and 0 give us a map Q“(C} 8 2%epy. thus
. 9} i
we geb an algebra morphism. W{Q) (o m%f”’ AlP)Yo  Agein
we have the comnsection A(G) (M¢. ALPY and the related

Well map.’

Proposition Al D is involutive if and only

if the algebra morphism w(E) (29 40y can e 1ifteq

to the Well nap W(G) 25“33 1{?) for some (.

Proofs By prope 3.4, Kobayashil and Nomizu, seeticn 2

Che IIT [17] the curvature () of (w,0) sits over

0 +@% where é? 1s the torsion., Now we use prop. &1 QED
Suppose more generally that on L(K) we have a

torsionless connectlon which is reducible to a sube

;bundle with fiber G, a subgroup of GL{m). Then we

say that we have a torsionless § siructucre on M, ‘The




gtudy of such structures covers

ron. 43 a2 foliation ig such
P 1 -3

*

r@bl&mraf finding neceasary
1} F &

less G-structure Ho exist ls

nJ

Bott vanishing

Aecording to a result

eto. [18] if G is one of the

(A;J(r“) I3 O{Ti} 6 (a@(ﬂl}

we QTWdV“ heve such torsionles

riewannian, conformal struetu

flows as;zcblvaly s wuch sty

=

Trivial since there ls no obst

e

is known alse that if all

thecren ahould be gseen in this

i i;j Bl} ¢ Gl (Jagmb.\\
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neat of geomatryv. (By
a atructura.) The

ronditions

of great inte:

of farts

sroups

g connechions {(af

]
(o]
=
Fac]
Bl
3
R
s
@
-
]
-
i
Frad
1
5
=
=
q"
o
;
X

ruction.  Conversels Lb

G sitructures on M can be

made torsionless, then, for m » 2, G wugt lle in

the above list (53).
automerphigmns of g@
scalar product we know mores

can be made torsionlecs

In fact for the g

by a

roup O(m) of

PEes &YVL%“ &, n@nmﬁCﬁ*wwmaue

every O(m)-gstructure

unigque connscitlon and

conversely if every (¢ gtructure on M admits such a

unigue zero torslon connection, then ¢ = 0(n).

~Another famous tors

when G is composed:- of matrice

called a cemp?ev ”t

iontess structurses otcura

s of

the type (& B} .

V=B 4

suppose

Lzzp on M. We




[N
[
—

. . o e » . NS
w18 even: this subgroup of GL{m) is called GL(%ﬁg)e
Again, i1f out of these matrices we toke those which
‘ N iy T

are orthogonal we get a still smaller group U(g)a &

toreionless structure with this group is called a

Kepehler structure. Lt is lknown that then we have a

closed Z-form which represerte an integral cohomology
clasg if and only if the manifold is algebraic

(Kedairae®'s theorem). These examples thus show the

rreat lmportance of torsionless Gestructures.
&) g

By an integrable Ge-structure we mean that we

can cover M by charts so that the Jacobliang lie in G.

The Frobealug theoren thus says that a torsionless

GL (L,m) structure is an integrable GL{1.,m) struciure;

vhiile the Newlander~Nirenberg theorew makes the same

atatement with the subgroup GL(%BQ)E But a torsionless
O{m) ~gtructure is of course not integrables we need
the vanlshing of another tensor, the curvature tensor.
The general problem of finding nsceswsary and sufficient
conditions for the integrablility of a Ge-giructure (in
terma of vanishing of certain tensors) has been

pursued by Spencer, Guillemin [14] and others,

21« In this section we will show how the existence of

certaln torsionlegs G-structures enables us o construct

certain 2-parametrices.




a. Ap before, let M he folisted. Ho we can

agsume that we have a torsioniess GL{L,m) structure

w

on M. Now the Lie alg@bra-%L(igm) of this group

i

s 5? which pressrve R,

congists of homomorphisms R
I - 1 3 K m l"‘f‘\\ )C o) o +1os ] -
(We think of R* = R™@ R a3 usual.) We now define a
smaller Lie algebra $(1l,m) consisting of
" e 5 —\m m ” I o X ,3., - - i
homorphisas B - R whose lmage lles in R7. We assums
that we have a torsioniess G-gtructure on M where G

L3

ig a lile subgroup of GL{m) whose lle algebra llez in
%(lsm)u {(Example: IF there exist ¢ globally defined
veohbor fields %Isaco§0 transverse to the feliation

such that we can cover M by ncﬂéhbmrheudﬁ

; e O )
e z . Sk ‘h( K R = SOAF
x.ipt; 0 g lg bc[ﬂhé‘lenenpxm LR L;h.c éxlgposg& .,l Pg},l
D 23 = iisﬂoﬂsggm =‘§Ce) Let @ be the principal
N "1

bundle in question (it is a sub-bundle of ﬁhe hundle
P of frames compatible with the foliation)i then we
shall follate @ by pulling back the foliation .on M.

m>
where X € M and elaaa&@em is a tangent frame Tor Txe

Points of Q are of the type (% F@ypuees®

For each nezg@ we now define a vector field % on @
in the following ways 0% at (x;elgeﬂaﬁem) ig the

horizontal vector which lies abhove Mg&y +eoet T

(In the terminology of Kobayaghi and Nemizu, n% ig a

101
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canonical horizontal vector field.) ILet us suppese

that our connection is complete, i.e., that the vector

2y e

field o generates a one pa Eﬂﬁ@u@f group £{nt) of

diffecworphismsg of Q. (t&gi? F(ﬂﬁl)@ F(ﬁtg)

= P(t, + t,) Jo For © = 1 this gives the diffeo
morphism F(n) of Q.

m

Propoesition 45. For each n€ Lk the diiffec-

=

norphiem F(n)eQ + Q maps leaves inte leaves.

Proofls Por each A€ g Le.m) we get a camani?él vertlonl
veohor field A% in Q {(gee @ g, Ei?j); And AT
Aigeeegﬁh is a basls ﬁlﬂgsﬁh shall bhe a basis for
the tgt. gspace of fibres. By Prope 23, Ghe 111 of
[17) we have %the relation [A¥,.w] = (An)¥s end since
torsion is zero we see from prop. Selb, Ch, IIT of
[17] that [QL@UPJ is always vertical. Since

[ A%, ] = 1in 3(“*’}{; AL and aqert

..g(}

the first

equation tells us that P{ui) maps A¥ into a vector

tgt. to & leaf of Q. The second says that F(nzt}

maps nl (f@r ny €8 ) into a vector tgb to a leaL of

Q. Thus the pr@pas;iﬁan f@llows@ B QED'
7 Now o1 Q we h & complete giohul paraklellgm

(in the ‘sense of peé&v) given by

IFs'lim@ %:;_,(lem) + _CM(TQ) ' ' ( 54)

where F(n) = ¢ for Q&Eg@ and F(A) = A% for




;

Aézg(lam)e By the above proposition we have seen
that ﬁ(ﬁ)ezc@(wg) if n€ k™ On the other hand if
nLR Lﬁﬁﬂwj-dﬁﬂﬂ) WTUEAQCIlgandJJ

Ef':\.i QAE:‘]‘H

with [&19A2je‘§{lgm}a Thus the vertical vactor

i

Ay €G(om), Ay € G(Lom) we have [AY,A%]

fislds A% also preserve the follation of Q, 80 the
image of (54} Lies in C { Q). Arguing as on pp. bse
pp.6& we obtain

I

Proposition 45. Suppose that a conpact mani-

2 :

fold M has a torslonless Ge-gtructure auch that the
lie algebra % e (1 ). Lot Q denote the principsl
bundle, and let the connection ba complete, Then--
with respect to the induced foliation on Qm=we can

f£find a Z-parametri AQHP A by putting

Py = {Q

Fy)e(o)asat
BPef(1m b ot

))

k¥
i

Here F(B) m F (e) if PLQGJ is the OnemePBmP er Zroup
of F(B) in (6@}0 Thus we have 1 =g = d@{vpd where

the smoothing operator AQ“E;A islgivan by

Q

s = I - F(e) pef(0)ae T (56)
R € (1)

Here £(8) is a smooth function with sufficiently

small support ‘near the zero of g"mggj%} % (Lom)}.




.

We have alrezdy pointed cut in propesitions 21
and 27 the relation between the existence of a 2-
parametriz and finiteness and Serre duality. Note
that although Q@ is nob compact, its cohomology can bhe
loulated uging forms having a compact support; and

such formg.

c.."
i
h

map s will be compact on the space of
Another remark ©o be made is that & *G(Q) P W%“O(M)e
Hence if the foliation arises from o torsionlegss G-
structure with § = @?(l m) then L' (M) is finite
dimensional.

be We now conglder the more general case of a
torsionless GL(1,n) structure (i.e., a foliation), with
the bundie P of frames. Note that ﬁL{lgm) decomposes
a5 %{l@m) & %L ¢) where bobh parts are Lie algebras
and the first pari ls preserved by brackets with
respect to the second. Choose any basis Algsoegﬁlms
BlgeussBcz of L(l.m) agreeing with this decomposi-
tion. Also choose a basis Ty secostys glnoa,egc
@? agreeing with the decompesition gm = @1g§ gc
We define I to be the 1+ lm dimensional plane field
spanned by Aigasagﬁimg nigneegnlo Then the fOllQWlng
propesition gives us a 1+ Im dimensional foliation

- of P sitting over the foliation of M

Propogsition 47. The plane field D is




involutive.

Proofs We know that [Aigﬂgj = [Aigﬂjjﬁ and that

[ 47 L] = (AL So it only remains to shew that

1F ﬂlﬂﬂgéfg“ thenrﬂnigngj is a linear combination of -

4 e o o o . . ) s
the Tﬁ and A;a Since torsion is zerc, by 54, TIT,

LY

[17]), this is a vertieal vector. Hence it is enough
to show that&ﬂﬁﬂigﬂgj) lieg in %(lam}a Here ¢ is
the connection form, and obeys w{A™) m.As Bgt_nipﬂﬁ
being horizontal vectors we see from 5¢3,I11, 171 that
O(fny o) = =200 o) | (57)
where (3 ig the curvature form. But the ¢ x ¢ part of
£ ia of filtration » 1 by Prop. Mlv Henee the right
siie'lieﬁ in %( ) I QED
Now the guestion arises whether F{n) P - P
preserves this foeliation of P In geﬂaral it cannot.
But if the normal bundle D* is‘stiff (gée sécticn 19),
 then'thi3 i so. Then onc can assume that our torsion-

legs conneaulon ig invariant restricted to D

Proposition 48. F(n):P = P maps leaves into
leaves for each né%ﬁmg if‘the connection is invariant.
Also the same statement is true for the diff@bm@rphigms
F(A)sP -+ P for any.h ¢GL(1,m). (Ft(A) being the 1-

parameter group of A*e)

Proof: 1In this case the ¢ xe part of the curvature is




of filtration » 2. So the RHS of (f

it Y, € 13_3" and n, € ;§ﬂ.—. Hence LT]lﬂ'j; |
Tor some A€ %{19m)e Again 1f A€ {"(1 m) mﬂd ﬂ. Rm

Eﬁ%9vﬁj w [An]" with Aﬂé?@l. These 2 remarks giVS

the first part. On the cther hand if A((vb(lﬁm}

and n(:dl

then [n# A% ] Lies in D being equal to
~(4r3¥ .,  And Lf AliE%L(Lgm)ﬂ Azééﬁ(lgm) Hhen
EAlg.!a,Zj et%(lgxﬂ) - OF {;, 1em) ism an ideal iné L{Lomw).
Thig shows that gﬁigﬂz €D. And thus we have the
second parte. ‘ QIED

Note that foliatlions which can be supplied
with 2 bundle~like metric are & fortiorl invariant,
but the converse s not true.

+

Proposit L9, In ease the folilaltion is ine

variant we can find a smoobhing map APg%pAP which
preserves the foliation (tgt. to D) together with &
paraemtrix AP°E?AP which disturbs the filtration by
one unit. These are related as usual by 1 =8 =dp+ pde
Proof:s Use the formulae (55) and (56) with “mgﬁﬁ(lgm)
replaced by 5@@@%&(lsm) together with the discus&ign
of pp. 63-68. , o QED
Again this 2-parsmetrix will have the familiaﬁ

‘consequences regarding the finiteness of the E, terns

of the foliated manifold P.




107

L.

Let us notlice that prop. 48 implies that all

Ead

the leaves in P are diffeomorphic to each other. In-
gtead of F we could work in the bundle P° of frames
mod D (i.e., the principal bundle of 7/D), where this
foeliation would collapse o the horizontsl 1
dimensional folistien: for each ﬂé%@? the canonical
vector field wt in po will preserve this feliation.

This yields a theorem of Reinbart [27], Molino [217:

any folistior

inve

W42

tion of

Ce Let P be a principal bundle with graph G

sitting over M. Now ¢ acts freely on P from the right,
and 0 for each a€ ¢ we have a diffecmorphisme.

R_¢FP = P We denote by AP the vector space of smooth

forms on ¥, and by Ag the subspace of right invaciant

34

formg, i.e., forms ¢ such that R;w = @ Tor all a€G..

Clearly if Rgm = (3 Lthen Bzd@ = Ws 80 A, 18 a subcomplex

Of Ape
Now let us equip G with a left invariant

normalized Haar measure (g). Then we define a linear

map Ap éE;AG by

wvo = [ oRgnte) (58)
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(We will assume for the time bhelng that G lg compactew
which is a severe restriction. ILater on these

definitions will be amended for more general cases.)

N%etMﬁf%Mm@ ”J LH*MMW
. 9 g
G
i“c“ : r;: oy e oy ot al "C‘“ s
- r Hyprl(g) = Ja Roelwlu(ag), as the measure is lefi-
inveriant, and so equals Ave ‘thus Avig is

[

right-invarient as stated above. Alsoc from (58) it
is clear that

d{Avy) = Av(dy) (

L
0
ho

It is clear slso that Av is a continuocus map.

o

Suppose given a pavametrix for A, L.e., 2

jeN
S a. - hd S T TR 4 -
maps A, =% Ap such that s is smoothing and
: Y
nﬁ
1~ = dp+ pd. Then we can define 2 maps A&'ii hy DY
p .

.

sﬂ-m AV p. By virtue of (58) it is clear that we
will still have 1-8° = dp* + p'd, and also s“-will
be a smoothing mépe In other words by composing with
Av we can turn a parametriy fef Ap into a parametrix
for %G“

(thn G is not compact we take a Haar measure

on G and. replqc@ (58) by

AV, = Lim - f R0 (g) (58%)
iwo fG 4 VG, & .

where Gi is a Tinite measured subset of ¢ which - G




as 1 = oes, Clearly the Limit will be finite if we

work cnly on hounded forme in P, i.e., we have a meap
bdad

AVIALT 2 Ag. The equation (59) will also held. By
X
composing with Av we®ll be able to change any parametriy
bdad .
on Lo one On pas
Ap ACT )

de now retwrn to the case which was being
treated aboves M is foliated, P is the principal
GL{Lsm) buhdle of compatible tangent frames and is
also foliated by the foliation of prop. 4%. Let us
asgume that we can find a parawetrix (s,p) of P such
that & preserves the filtration while p degtroys 1t by

ong unit (we accomplished this when ¥ ecarried a

3

complete invariant connection). Then the following
proposition will allow us the same kind of paramnetris

On Ag .

Prcpcﬁitianljgg The map ﬂP ﬁgbgG pregerves the
filtration given by the foliation of prop. L7.
Proofs Tt will suffice to check that RgsP “+ P
preserves the plane Tield D, for each £¢€G. FPFor
1}@5}9 Rg(ﬂ%) = (g”ln)% (202, 11T, {171 . Since
gt ean(1,m, g”tn will lie in B* also. On the other
hand if A e-%(l,m} » then 4% € 5. Let @ be the connec~

tion form on P. We have w(RgA%) = ad(g“l)m(A%)

. ad(g“l)A, (By 11, II, [17])s The last term lies




fmn

et

7
e

L{1l,m) . Hence the

in Gll,m) as %(lﬁm} ig an

So

4]

vertical vector R_AY lies GED

Lo ug denote the spectral ssguence resulting

from AG by EM{PG)a The existence of a Z-parametriz
for Ag gives u teness information about E?{PG}g
Lo T

o)

. 0 . . . - .

Cefoy that B,° (PG) ig finlte dimensicnal.
L] T
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