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Abstract of the Dissertation
Some results on nonnegatively curved manifolds
. oy .
Walter Andrew Poor, Jr.
Doctor of Philoséphy
in
The Department of Mathematics

State University of New York at Stony Brook

1973

Cheeger and Gromoll proved that every complete
non-compact Riemannian manifold M of nohnegaﬁive sec-
tional curvature has a compact totally convex totally
geodesic submanifold without boundary, which they
called a soul of M. Tﬁey then proved that M is homeo-
morphlc to the normal bundle of the soul.

We prove that M and the normal bundle of the
soul are actually diffeomorphic; the diffeomorphism
we obtain is closely adapted to the geometric
situation. _ -

Next we prove that the total curvature of a

complete 4-dimensional Riemannian manifold M of

nonnegative sectional curvature exists and is bounded
between zero and the Euler characteristic of M. This

generalizes a result of Cohn-Vossen,
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The argument also reduces the question to the
so-called algebraic Hopf conjecture for the case of

even dimension greater than or equal to six.
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The results are related in the sense that
both rest heavily on the global existence of certain
cbnvex functions; the analysis of these functions,
which are in general only continuous, is the central

technical aspect of the work.
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Finally we give some applications.
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INTRODUCTION

Cheeger-and Gromoll have proven [1] that every
complete Riemannian manifold M of nonnegative sectional
éurvature has a compact totally convex totally geodesic
submanifold §, which they called a soul of M. Further-
more, they have proven that M is homeomorphic to the
normal bundle v(S) of S in T™; for M simply connected
and of diﬁension greater than five, they proved that
M and v(S) are diffeomorphic using the open h-cobor-
dism theorem. This result greatly simplifies the
study of non-compact complete manifolds of Qonnegative

curvature since it partially reduces the problem to the

study of vector bundles over compact manifolds.

Our first result will be to-prove the differ-
entiable soul theorem, that is, we will prove that M
and v(8) are diffeomorphic (witﬁout dimension 5r
connectivity assumptions). The diffeomorphism to be
constructed will be rather closely adapted to the

geometric situation. -

If X is the Euler form on an oriented complete
even-dimensional Riemannian manifold M, then [x (if it
. . M '
exists) is called the total curvature of M. It has

long been known [4] that the total curvaturé of a
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complete surface of nonnegative curvature is less than

or equal to one; since in this case X = %L, where X is
. i (i

the sectional curvature, the result is usually written

[K< 2m,
M

Our second result will be to prove that for an
oriented complete nonnegatively curved Riemannian mani-
fold M of dimension 4, the total curvature exists and
is bounded between zero and the Euler characteristic
of M. This obviously generalizes both the above ‘
result for surfaces and the generalized Gauss - Bonnet
Theorem for four—dimensional oriented compact manifolds
of nonnegative curvéture. In addition, for oriented
complete nonnegatively curved Riemannian manifolds of
even dimension greater than 4, we reduce the question
to the sb—c&lled algebraié Hopf conjecture, This
implies a partial result in dimension 6.

Finally we give some applications.
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BAGIC NOTATION

Given a C® manifold M = M, TM ——> M will
denote the tangent bundlé. For p in. M, My := "1 (p)
is the tangent space to M at p. Tg will be the set
of C” sections in the bundle § —> M; particular
examples are FM := T (MxR) = {C® functions on M}, and
HM 1= ITM = {C® vector fields on M}. V will always
denote the covariant derivative operator XNng —_—> fE
in whatever bundle § we are discussing; exp will be
-the exponential map of V.

If M is a Riemannién manifbld, then <,> will
be.the first fundamentdl form, and ViWMxYM ——> %M

will denote the Levi-Civita connection. T.M := {ueTM|

1
W] = 1} is the (unit) tangent sphere bundle, and for
p in M, S;“ 1= Mpr\TlM is the (unit) tangent sphere

to M at‘g. Given nonzero u and v in MP' 9{u,v) will
denote the angle in [0,7] between u and v. |

For p ‘and q in M, p{p,q) is the metric distance
from p to g. For'r > 0 and p in M, B.(p) is the open
metric ball {q ¢ Mlp(p,a) < rl} with boundary eqﬁal to
the metric sphere S.{p}) := {q ¢ M[p(p,q) =r}. A
geodesic is called normal if it is parametrized by arc
length, If there exists a unique normél geodesic

c:[0,p(p,g)] —> M from p to q; it will be called




the minimal connection from p to q.

Let Xy be thé Euler characteristic of M.
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§ 1. Construction of a soul of M.

In addition to the construction of a soul of
M, we will alsc need a few of the technical facts
Cheeger and Gromoll used in the proof of the contin-
uous soul theorem; this section consists mainly of
tﬁe necessary material from [l], which we reformulate
for our purposes( .

A nonempty subset C of M will be called

totally convex if for any p and q in C and any geo-'

desic c:{0,1] —> M from p to g, c lies in C.

C is strongly convex if for any p and g in C, there

is a minimal connection ¢ from p to g and c lies in c.

Lemma 1. Let C be a closed totally convex
subset of an arbitrary Riemannian manifold M. Then
C h%s the structure of an imbedded k-dimensional
submanifold of M with smooth totally geodesic interior

N and (possibly nonsmooth) boundary 3C = N - N.

' Cheeger and Gromoll actuall& proved a stronger

version of the lemma, but this is all we need.'

For a closed totally convex set C and for

. a . : —— ,
a>0, let C :={pe Mp(p,C) £ a} = p%)C‘Ba(p); in

<
addition, if 8C # ¢, let c® := {p e ¢lp(p,dC) > a}l,

%)
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Notice that C? may be empty.

Lemma 2. Let M have nonnegative curvature,
and let C be a closed totally convex subset of M with
nonempty boundary. If C% is nonempty, then c? is a
"closed totally convex set. If apsy % max {acR|C3##}

, a '
= max p(p,9C), then dim C max ¢ dim C.
reC _
Lemma 3  (standard). Fox every compact .

subset K of M there is a number € > 0 such that for
all p in K and r in (0,@): ’

(1) the metric ball B_(p) is the dlffeomorphlc
strongly convex image under eXpp © of the open Euclidean
ball of radius ¥ about‘o in MP:

(2) if c:[0,u] ——> Br(p) is a non-constant geo-
désic, Co:[0,1] —;—> Brfp) is the minimal geodesic

from p to c¢(0), and <& (0),80(1)> 2 0, then the function

s F—> p(b(s),p) is strictly increasing on [0,ul.

From now on, we will always assume that M is a
complete non-compact Riemannian manifold of nonnega-

tive curvature.

We will only use parts (1) and (2} of the next

lemma; part (3) is presented because it gives the flavor




of the proof of the:continuoué soul theorem and is a
model for some of the work we must do.

Lemma 4. Let K be a compact totally convex
set in M with nonempty boundary and let 0 < € £ a ../
where € ié a constant as in Lemma 3, and ag., =
max {p(p,3K) |p ¢ K}. Then

(1) there exists § e(o,e)-such‘that p(p;Ka') < &

for all p in K* if 0 < a < a' < a and ‘a' - a < §;

max
(2) there exists a "continuous geodesic contrag-
L] ' . N -
tion" of K2 onto XK? if 0 < a £ a' £ ayx and
a' - a < §;

(3) given 0 £ a < a' < ap,y sﬁéh that a' - a < §,

there is a homeomorphism of K3x[0,1] onto K& - int xa',

We will now describe the constructions in parts

(2) and (3) exﬁlicitiy.

' .
a , there is a closest point

Given p in K? - K
g in Ka'; g is unique by the first variatiog formula
and Lemma 3. Define h(p) := ¢. h is continuous by
unigueness of q and the continuity of p'kﬂ—>'p(p,Ka').
Thus we can contract K2 onto X&' alohg the minimal
connections from points on 3k? to the closest points
'

on Ko . We will occasicnally refer to h.as "the

1
contraction" onto K2 .
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Let a' < a" < a .. SO that a a< §. Let

h be the contraction onto K?", and for p in 3K?, let

gp:[O,l] —> K2 be the unique minimal geodesic
such.that gP(O) = p and gp(l) = h(p). Define

9:3K% ——> {0,1) such that gé(@(p)) e 9K&'; ¢ is
continuous. Define F:3K®x[0,1] —> K& - int ka‘ such

-that (p,t) +—> gp(Q(p)t). F is the homeomorphism.

Let {Cily,q be a family of nonempty compact

totally convex sets such that

< dim M if t = 0,
*'{1) dim Ct {

dim M if t > 0;

t

(3) Y, Ce = M
_ ] | t _
;Noge. For all £t > 0O, Ct = Cqye

Cheeger and Gromoll constructed this family as
follows: a normal geodesic c:{0,®} —> M is called a
ray if any segment of ¢ is minimal between i;é endpoints.
It is straightforward.to see that every point in any

_non-compact complete Riemannian manifold has at least

_one ray through it. If ¢ is a ray, let By := égBBt(c(t)).
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Bg is called the open half-space with respect to c,

and its complement M - By is totally convex in our
case.

Now pick p in M. For t'; 0, let
Ly = Q) (M-Bc.), where the intersection is taken
over all rays c emanating from p, and ct is the ray
determined by ci (s} := c{t+s), 0 < 8 < =, Each Lg
is compact and totally convex, and p is iﬂ 3Ly

If dim L, < dim M, then let C, = L for all:

t 2 0. If dim Ly = dim M, let éo ;= max ‘p(q,BLo)'

and let
) ag-t -
: L for 0 £ t £ a5,
Ct-'='- {

Lt-ao for ag < t.

I1f 3C, = @4, then let S = Co. I 3C4 # @4, let

a

Ky = Cp and ag = max p(p,3Ky) ; then K; := Ko ©
PeKy :

is a totally convex set of lower dimension than K,

Iteration yields a sequence K, Kl-j ces 2 Ky of
. ajq

compact totally convex sets such that K;,, := K, =,

i
where aj := max'{p(p,BKi)lp £ Ki}, and such that

9Ky = d: J < dim M. Leﬁ S := KJ.

Cheeger and Gromoll called § a soul of M; it

T SR ST
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is uniqﬁe up to the choice of p. Theylproved that M
is homeomorphic to the normal bundle of S and

sﬁated that the construétion could be smoothed out so
as to give a diffeomorphism. We have carried outrthis
process in detail and consider this approach to be
unnecessarily complicated. Here we presént a modified
construction which is simpler and also more satisfying

geometrically.
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- § 2, The differentiable soul theorem.

Let M be a cbmplete non-compact Riemannian

manifold of nonnegative sectional curvature.

Theorem A. M is diffeomorphic to v(S).

The exponential map restricted to v(8) is a

smooth surjective map onto M which fails to be injec-

tive. The map we obtain is modelled (roughly speaking)

on the exponential map, and in fact we may think of

it as being a smooth bijective "bent exponential map".

We will actuélly prove the following theorem;
by standard arguments from differential topology it
is equivalent to Theorem A. For these arguments, as
well as for several argumepts used in the proof of
the following theoreﬁ, we refer the reader to refer-

‘ences [8] and [10].

" Theorem B. Let Mo = S, There exists -an

increasing sequence Ml’ M2, ..+ Of nonempty qompact

submanifolds with boundary such that

(1) ¥y is diffeomorphic to a disc bundle in v (S),

(2} M;.,

for i > 1, and

- int M; is diffeomorphic to Mix[O,l]

11
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(3) M is the disjoint union SlJ(igk(Mi+l - M)

This result will be proven in several steps.
First we make a few remarks..

Recall that we have an expanding sequence

{C¢liso ©of nonempty totally convex compact sets and

a decreasing sequence'cO =KD KD .. 2 Ky =8
as constructed in § 1. ~

Cheeger and Gromoll construct a continuous

_"broken exponential map" by locally adjusting the

exponential map restricted to v(S) to get a locally
injeétive map; by using therabove sequences of sets
to keep track of the resulting "continuous flow",
they end up with a homeomorphism from v{S) to M.

The local arguments are of ﬁhree types.
First,.given a sufficiently small f > 0, they construct
a homeomorphism between rKo and the disc bundle v.(8)
of radius r. This argument takes into account the
difference in dimension between K; ;nd Kj41 at each
step. Then they use another argument to show that rC0
is homeomorphic to C, = Cll-r. The third argument

uses, the exhaustive sequence {C.} to extend this homeo-

morphism globally.

12




Simply smoothing out ﬁhese constructions
directly is not very efficient, and so we have modi-
fied the whole approach. |

First we present an interesting fact.

Lemma 5. Let K be a compéct totally convex
subset of M.. Let d:M —> R such that d(p) :=‘p(p,K).
Then there exists an open neigﬁborhood U of K

such that djy-x is cl,

Proof: Consider the set lK. Choose € in (0,1] for lK

as in Leﬁma 3. Then € also satisfies the conclusion

of Lemma 3 for the smaller set €x. Let U := int k.
.Let ﬁ:U ——> K be the "continuous geédesic contraction"
onto K given in Lemma 4(3); hip) is the unique point in
'K such that p(p,K) = o(p,h(p)) = d(@).

Let p ¢ A :=U - K. Define £5:A —> R such
that fp(q) := p(q,h(p)). Clearly we have fp > d; in
addition, fp(p) = d(p), and £, is c® on a neighborhood
ofrp in A. Let AC:Mh(p) be the supporting hyperplane
for K orthogonal to the migimal connection frpﬁ p to
h(p) (cf. [11). DLet Ag := {v e sl fvl < el. Then
exph(P)Ae is a local éupporting hypersurface for K.

' Eér q € A, let gp(q) 1= p(q,exph(p)ae). Then Ip < d,
gplp) = d(p), and gy is c® on a neighborhood of p in A.
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By the squeezing principle, d is (once)
differentiable at p, and in fact
, d%|p = Tpx|p = Ip+[p
{ To see this, let ¢ be a C* curve in A such that
! c{0) =-p. For small positive t,
gpoc(t) = gp{p) dec(t) - d(p) fyec(t) - £,(p)

; : < <
5 t = & = t

and therefore,

(gge0) ' (0) g lim doclt) - dlp) (£,00) " (0)

Similarly;

(£

p°0) " (©) < 1im dec(t) = 8(p) ¢ (g ec)" (0).

0" t

Thus, (fpoc)'(O) = (gpoc)'(O), and therefore (doc) ' {0)

exists and equals (fpoc)'(O).
‘But the assignment p +——> h(p) is continuous, °
p - and therefore so is p +—> Vi, (p) = Vd(p) (see the remark

below); thus 4 is ct on U - K.

-
-

Remark. Given p e U =~ K, let Yp be the minimal
connection from p to h{(p) € K. Then
Va o yp(t) = Vip(p) = -vp(t),

for 0 < t < d(p). In particular, Vvd is a continuous

autoparallel unit vector field on U - K. In addition,




- ~h(p) = expp(—d(p)Vd(P))-

Lemma 6. Let K be a compact totally convex

subset of M with nonempty boundary, and let

apay := max {p(p,3K)|p & K}. Choose € £ (0,1] as in
the proof of Lemma 5 and choose r € (0,€). Define
‘d=[0,améX]XrK ——> R such that d(a,p) = d,(p)

l:= p(p,k?), and set (vd) (a,p) = Vdy(p). Then Vd

'is uniformly continuous on the set

{(a,p) e [0,apax]**K [ p € ¥{k®] - int 'ﬁ[Ka]}.

Proof: First we prove that d is continuous on

{O,amax]er; we already know that for each a, d, is

~gontinuous on ¥X and cl on r[ra] - K4,

Let {(aj,pi)} be a sequence in [0,apax]**K

_converging to (a,p). Choose a sequence {qj ¢ K31}

.such that d(aj,p;) = p(pi,gy)- LetAé be a limit point

-of this sequence; such a g exists since K is compact.

Then lim dlay,pi) = lim p(pi.gi) = po(p,q) > dla,p).

Now choose g & K& such that p(p,q) = d{a,p), and let

"{g;} be a sequence such that qj ¢ ki and lim g; = q.
- i

—For each i, d{aj,pi) £ e(pi,di), and therefore

im d(ay,pi) < Lim o{pi,ai) = plp,q) = dla,p). Thus

‘d is continuous.

15
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But then since A = d‘l{ﬁﬁ,r], A must be com-
pact. Define h:A —> K such that h(a,p) is the
unique point in K® for which p(p,q) = d(a,é). By
continuity of 4, h is also continuocus. But

h{a,p}) = expp[-d(a,p)Vd(a,p)],

and thus Vd is continuous on the set A,

We are now ready to prove Theorem B.

Choose €; ¢ (0,1) for the set C; as in Lemma

3. Choose 51 e {0,8) as in Lemma 4. Let 0.< r < §;

and choose §; for € = f and the set C; as in Lemma 4.

Recall that Ko = Co and Kju1 = Kiai, where

: aj = max {p(p,9Ki) |p & Kjil.

Since Vvd is uniformly continuous on the set

r
A = {(a,p) & [O,ao]erO | p e FIK,2] - int 4[Koal};

there exists £ > 0 such that if (a,p) and (b,p) ¢ A
and |a-b| < &, then 9(Vdy(p),Vd,(p)) < ¥; we may

assume that £ < 61.

Choose numbers 0 = by < by < ... < by = a4

such that b;,y ~ b; < &, 0 2 i < k-1. Let Ly = K,
Ly = Kobl, ceey Ly = Kobk = Kj. Continze similarly
with Kl,v...,‘KJ_l (choosing a different value of §

at each step, if necessary) to get a dewreasing

sequence

16




KO= LoD LlDoo-DLk=KlD -ooDKZD .--:La=s
such that for 1 £ i £ @, L; = Li_lai for some suffi~-

ciently small a; > 0, and

r/ r/ r
R S éLi—l'

r .
Let dy: Lj —> R be the distance function
from rLi to L. Then each dj is C1 off of Ly and if

. .
p e TLj-1 - 7Ly, then 9(vdi(p),¥dj-1(p)) < %

We can choose a C¥ function éi on.rLi such that
(L lag - d;l < = |
. - 8a - : 17
and (2) Vd; # 0 and 9(va;,vd;) < T off of 8Ly

i £ o, let N; be the compact submani-

For 1 £
fold {p e *L; | dj (p) < 40-2i+1 1y yith C® boundary
4o,
Hy = di_l(4u’—2_1'j-_.1‘_ r} . Then

40,

OL; € int Nj & Nj & int Ly,

20-i+1

20-1 p
"~ r.. Also, V4; | H;.

where ¢ = r and T = -
20 20

Thus Hj is also transverse to Vai_l, 1 <iZga, by

the way we chose everything. Therefore  the gradient
flow of éi_l determines (after reparametrization) a
diffeomorphism H;x{0,1] = Ny - int Ny, 2 21 2 o

In addition, Véa determines a diffeomorphism

7)) P H .
between 9 (/48)x{0,1} and N, - int '4S. By the choice

T AT A
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of r, the exponential map is a diffeomorphism between

T,
the normal disc bundle vFV(S) of radius % and 'QS.
. 2
Set
) x/
Mz = NCf.
Ma+l := Nln

‘M4, is a compact ggbmanifold with boundary

"such that

rlL .r

1€ M < Iy
2a~-1
20
larger submanifolds required by the theorem.

r. We will now show how to f£ind the

where ry =

Choose- €5€ (0,1) for the set C2 as in Lemma 3,

 §2 e (0,85) for C2 as in Lemma 4, and let

0 < rp < min{gz,rl}; finally, choose &y for € = I

as in Lemma 4 for the set Cye

Let k¥ be an integer greater than % . Then
. 2
r1=r3 (Lo g, For 3 =0, 1, «e.s kg let
K K ] -
n(3) S S j ¥1°¥2 .. As j runs from 0 to k., n(3)
K

decreases from ri to Iryi let 2(3) = %. We have the

following inclusions:-

n(j)c Cn (j"'l)c, '.

: Gle ...
Co5-0¢ S €7 Ca -1 i 5-1 ")

TR R A
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By the way we have chosen everything, we
can now use the appropriate distance functions as
before to obtain compact submanifolds M; with

boundary for i = a+2, ..., otc-lL, such that

n{j) n(3j+1l)

Co(3) & Mosie2 < Co (341)

for j =0, ..., ¥x=1, and having the properties
required in the theorem.
. Dy
My4r-1 is now close to 2clc: Cy. Pick

all the appropriate constants for Cj3 and iterate.

~This completes the argument.

A ERTEEIE
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§ 3. Total curvature of M.

In this section we will prove that for a com-

plete nOn;compact oriented Riemannian manifold M of
" dimension 4, the total curﬁature of M exists and is
bounded between 0 and the Euler characteristic of M.
In addition, if the dimension of M is 2k, k 2 3,
then our argﬁment reduces the problem to the alge-

braic Hopf conjecture; in barticular, this implies

a partial result in dimension 6.

This result had been announced by R. Walter,

but his proof turned out to be incomplete. He used

a different approach.

The calculus we employ is not new, but does
not appear in the literature in this exact form. We

start by presentlng classical material to help le

the notation.

Let T*TM be the pullback of TM over itself

-under the map T3 THTM ——> TM
[ =

v v

™ 2> M

~We may reallze T*TM as the vertical bundle VM in TTM:

for v e TM, the fiber in VM over v is “*lv (O)CZTTM.
For u in My, let uy denote the canonical identifica-

tion of My with (Mp)utz VM by parallel transport,

i
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. a
- v v 1= — + tv).
that is, for £ Mp' uy t_O(u tv)

Then we may identify w*TM with VM using g as follows:
for (u,v) € m*TM, u and v are in the same tangent
space td M, SO WV makes sense, and (u,v) <—> uyv

is the required bundle identification.

Suppose § -—> M is a gundle over M; let Ajg
be the aésoqiated bundle over M for ﬁhich the fiber at
p in M is the vector space of alternating j-linear
‘forms on the fiber Ep in £ over p.

Given w € Aji and U € Aﬂg, both over the same
"point p in M, we have as usual the ({(j+%)-form

WAl = 1 _x sgn{c) wBueo
o}

FI&!
;Qhere the sum is taken over the symmetric group on
.§+% letters, .

Recall that MM = I'TM, and let Af(g) be the
FMéﬁodulerof alternating r~linear forms on HM with
values in Tg. If vvaxré —_ Tf is a covariant
~derivative operator in &, then we have the standard
-exterior derivative operator av:af(g) —> A?+lls)
.with respect to V defined by

| | (avw] (x) := Vyo

for w € A°(g), and by

21
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(@7l (Xgr «eer Xg) :=E(-1)ivxi(m(xo,....,fci,...,xr))'
+ iEj(-l)i+jw[[Xi,Xj],XO,...,ﬁi,...,ﬁj,...Xr]
for w ¢ AY(E), r 2 L.

Notice that for an arbitrary covariant deriv-
ative V in an arbitrary bundle &, a'aV does not have
to vanish; a bundle § ig .called glggnwith respect to
v if.anionly if a’a¥ = 0. Example: MxR is flat with
respect to its canonical connection.

We will be using modules of the form AT iy,
and we need a sort.of double wedge prodﬁct.' Given
$ € AT (adey, v sAs(ARE),vand RpeoorXppg € My e

define the form dAP(Kys woor Xr+s) £ PAJ+£E to be

-1
.8 n(O’) (X .« X ) L (X s o X )
ris! E g ¢ oy’ ‘ r Rt ¥ dr+l' r R0 g '

where %s usual, tﬁe sum 1is takéﬁ over the symmetrié
group on r+s letters.

aVv and ~ have the following usual propérties:
(1) & is natural: £*(d'w) = aE* Vi exy).
(2) ~ is associative. | .
(3) For ¢ ¢ AT(AE) ana v € ASUATE), oap = (1T Mg

(4) For ¢ and ¢ as in (3), dv(¢A¢) = (dv¢)A¢'*(-1)r¢“dv¢-

We will use the canonical identification of

functions on Ml with n-forms to convert elements of
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. AY¥ (APTM) into ordinary differential r-forms on M; this

will allow us to integrate such (r,n)-forms without
further comment. More generally, any (r,r)-form -
restricted to an r-plane can be thought of as a number;

an example of this occurs in the next paragraph.

A curvature form on a Euclidean vector space'?/
is a 2-form Q_on'?/ﬁith values in 2-forms on ﬂ‘guch_'~
that Q satisfies the Jacobi identity in the first
three arguménts. Assume that ?/is even-dimensional,

dim ﬂﬂi 2j. The algebraic Hopf conjectﬁre is that if
-0 is nonnegative or positive on all 2-planes:h17/r
then (--Q)j 1s nonnegative or positive on 1//respect1vely.

Notice that @ restricted to 2-planes in ?/ls
ﬁust the usual sectional curvature function. The
conclusion of the Hopf conjecture is true under certain

extra algebraic conditions which have no geometric

-51gn1flcance in our smtuatlon.

Define the curvature form Q ¢ A2 (A2TM) on M
with respect to V by B
Y W,V = <d%a%u(x,Y) V> = <R (X,Y)U,V>
for vector fields X, Y, U and V on M; here R is the

.usual curvature tensor on M. The Bianchi identity

qiow takes the form

e T R Y T R SO R T T P N T T T PR




.8 & VM,

dave (u,v) (s) = m*Q(u,v) (n*I,s).

{(4) =*Q{u,v) = 0 for vertical vectors u,v & TTM.

For 1 £ 1 < k, let

Hi 1= nf\ezi—l"\'ﬁ*gk—i € An_l (An) ,
and s |
L0 gkok-itlkoiyy (2i-1)1
Dbefine
k
It := iil Cini'-

The key points in the classical Chern argument

[2] are the fbllowing: first of ail} on TlM,
| S 5 D L.

ki (2m¥
second, on the unit sphere Sg-l in Mg T is a constant
times the volume form, and in particular,

p

“These equalities are proven by choosing special bases

and then applying the definitions and facts (1) - (4).

' Define the Euler form on M by

- k :
X = -i:ll_E ok e an(aM).
' ki (2m) :

1*¥ is exact on TlM. X is often called the Chern inte-

grand.




Let H be an (n-l)-dimensional submanifold of
M equal to a level set ffl(c) for some £ in FM and
some regular value ¢ of £. The Hessian form of f at
p is the symmetric bilinear form hp:MpxMy —> R
defined by hp(u,v) 1= <Y, V£,v> for u and v in Mp .
Notice that for p in H, hP restricted to ﬁprp is
just |VE(p)] times the second fundamental form of H

at p with respect to the unit normal fieid ij;i VE
Vi

on H; call this restricted unit normal field X.

We want to estimate [X*I. To do this we first

 evaluate g(p), where g is the function on H deter-

mined by the identification
% o~ . -
[X*T1, = g(p)+dy(voly);
here d(voly) is the volume form on H. Let uy := Xp,
and - let uj, ..., Up-1 be the principal cuxrvature

directions of H at p with principal curvatures

"Als eees Ap-1 respectively. Then .

g (p) = g(p) 'dp (VOlH) (ulr sy un_l) )

| = X*H.(ul, e vt un_l) (u;, .o vy un_l)

n

iElCiX* (‘n"\e2i-l'\gk_i) (ul' .e l) (uoy » ,. o)
1

Zc-$5gn(o)sgn(r)—-—————~
* (n-2i) 12

)(‘u,.r ',--.-,ll,l. )f

‘;-.‘X*H*Qk-i u eee
( 021 rTo 23 n-1

n-1

<X:u1:o> <Vx*u§ix fX#uTl>

T AT R P S I A BT e
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where the inner sum is taken over all o € 5,9 acting
on {1, ..., n=1}, and T & Sy acting on {0, «..y n-1},
and everything is evaluated at p.

<X,uTO> = 44 by the definition of the uj.

1 To

Thus g(p) is equal to

k . b -
: 1 . . . k"'l
5(21 1).clzhjl...k32i_lﬁ

where k-1 is evaluated on ugl, evey Uy 21! and the
n-21i

jinner sum is taken over all jj3 < ... < jzi-l and

23 < eee < &n-2i such that -
={l' e s s g n""l}.

2

If the boundaries of the sets Ct were C“ for

- all sufficiently large t, the remaining work would be

simple; unfortunately, the boundary of a totally |
convex set is in general only continuous, and the set
of éoints of non-differentiability. can in fact be
dense in the boundary. The nicest way around the
difficulty would be to apéfoximate ;ach,set by a
totally convex set with Cz boundary: S© far_we‘have
been unable to prove that this is possible in generél.
For our purposes it is‘sufficient to have an approxi-

mating set with a differentiable boundary which is

only close to being totally convex.




I

‘Recall that on a manifold a convex function is
a continuous function fiM —> R such that for every
geodesic ¢ in M, fec is a convex fupction on R in the
standard sense, that is, givan.real nuﬁbers a and b,
foc(sat (1-s)b) g sfec(a) + (1lrs)fec(b)
for 0 < s < 1. All the sublevel sets of a convex
fpﬁction are totally convex. _
In our situation,-the function f:M —> R
such that : -
0 if p € Cq,
£(p) = { |
' t if p & 3Cy for t > o,
is convex. -This follows since on Cg. [p +—> =-p(p,3C¢)]
is a convex function (see [11), and £(p) = t - p{p,3Cy¢)
for p in C,.
A In attempting to find a c® convex approxima-
tion for f one is naturally lead to the idea of con-
volving f with a c* bump function; The result fails
to be convex, but is close in the sense of the
following leﬁma.

Lemma 1: Given K compact in M, choose € > 0

as in Lemma 3. Suppose f:M —> R is convex. Then
+here exists an open neighborhood U of X and a family
’{fr e FUV|'r'e (0,6)}.such that |
| 41) the functions fr|x converée uniformly to f|g

as r+0;

TR St i i Lu e T AN A 2 et i R e e e L S SRR
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(2) £, approaches £ monotonically from above;

(3) lim { inf Che (u,)) 2 0, where hf is the
r+0 ueTlK

Hessian form of £,.

A complete proof of this result has been
given by Greene and Wu in [5], so we will give no
more than the explicit construction of the functions
£, for later use.

Let uy:R —> R be a nonnegative c” bump
function'with support in [-1,1] which is constant

near zero and such that

I M!Ml)dv =1.

Define

: 1
£.p) = 5 i feexp(v)u[u%ﬂjdv F

r .

Theorem. Let M be a complete priented Rieman-
nian manifold of noﬂnegative sectional curvatﬁre and
| even dimepsion 2k. Assume that the algebraic Hopf
conjecture holds on M. Then the total curvature of
M ekists and is bounded between zero and the Eulerx

characteristic of M.

proof: TFor each positive integer i, let €; >- 0 be a

constant as chosen in Lemma 3 for the set Ci in the

CRERETEL AT
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filtration of M by compact tofally convex sets Cy.
Fix a positive integer i > 2. Let {f.|r e (0,€;)}
be a sequenée of ¢® functions on a neighbbrhood U of
Ci as given by Lemma 7 for the fundéion f indexing
the sets C..

First we prove that for r sufflclently small,
fr has no critical points off of a neighborhood of
Co in €1 and £~ 1(-w,i] is homeomorphlc to Cj ‘

Choose a positive § < min {€;,1} for the set
Ci{ as in Lemma 4. Let i-8 < a' < a < i. Then we have
a continuous gebdesic conﬁraction of C; onto Cy' and
the distance function d from Cj to Ca' is ¢l on Ci-Ca'.
For each-pAin 3C, there is a unique geodesic Yp through

p such that Yp(0) = p and Yp(0) = Va(p); Yp is a repar-

ametrization of one of the geodesics given by the

contraction of C; onto Cat. 9Cy is transverse to Yp
and‘therefore f is strictly increasing along Yp+ By'
continuity, for each p there is a cone Wp of normal
geodesics through p abbutYp such that f is strictly
increasing along each ¢ in‘WP. We may assumeAthat
there ié some positive number o such that for all p,
Wp is the set of all normal geodesics on the interval

[-~8,1] which have c{0) = p and 4(6(0),?p(0)) < oy

where B is some positive number less than a-a'.




Let W := U . w

pehCa P Then {foc|(_g,1] | ¢ € W} is a con-

tinuous compact family of strictly increasing functions,

all'of which are convex and have the value a at 0.
All of the difference gquotients
foc(t) —a ¢ %0, ce W,

- t
are positive, and it is a straightforward proof that

the difference quotients for t > 0 have a uniform
positive lower bound k. Then by monotonicity of the

difference gquotients of a convex function,

foc(t) - foc(s)
t - 8

A

if 0 ¢ s < tand ¢ g W.

rurthermore, there exists a positive number r,
‘such that for all ¢ in W, the difference quotients of
f along every curve of the form [t FH—> expc(t)v(t)]
are greater than or equal to %, where each V is a '
parallel vector field along c for which vt < ro-

We may assume that ry < €.

Now let c = for some p in 3CL;. We want to

Tp
calculate (fpec)'(t) for t > 0. Now
rM(f,0c(s) - f£yoc(t)) is equal to

/ foexpc(s)(v)p[ﬂzm)dv - f°expc(t)(v)u(ﬂ§L)dv
Mg (s) t o Moqe)
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= ﬂ (fQéch(s)V(s)‘ - 'foexpc(t)V(t)]u(l¥m]dv
c(t) _

where V is the parallel vector field along ¢ with
vit) = v;' Thus, if r < Tor |
£poc(s) = £gec(t) 2 (s-t),
‘and therefore (fpec)'(t) > ;. But this means that
<V£,,Vad> is positive for r < ro; notice that by the
same argument we can prove that off of a small"
neighborhood of C,, the derivative of f, in a direction -
transverse to the boundary of each set Cy is positive
' for sufficiently small r. In particular for small r,
we ﬁay use the gradient flow of some distance function.
-d@ to obtain a homeomorphism between C; and Ep := fr‘l(—w,il.
This is a crucial step in the proof of the theorem
.since it allows us to equate the Euler characteristic
‘of Ep with the Euler characteristic of M:
Xg. = Xci = Xg = Xpm-
We will also use the fact that f, has no cri-
‘tical points near 3C; since that means that Zp = £,.71(i)
is a submanifold. i
From here on the proof is almost identical to
--what it would have been if the boundary of C4; had been
c2, |

“We may approximate V£, by a C* vector field

TR, S CErsie el o



As before, [ Y, *I =
35,

V, which equals V£, near 2%

r and has only isolated

zeros. By the Poincaré - Hepf Theorem [9], the sum

of the indices of the zeros of V. is just the Euler

characteristic of E,, that is, Xy. Let ¥, := —L V.

fvell

on E, - {zeros of Vy}.

Then .
[ X = | [ Y% + Xy.
Zr 3Er :
But ‘ : -

since £, > £, and then

[ X =1im [ X.
Ci 0 gy

In particular, the limit of Y, *1 exists as r+0.

r

[T}

9

[ gr(p);dp(volasr), and
3Ey : )

{m=1)1

grlp) = -1 - EAg, e eAggn
m=1 K Ll R iy J1 J2m-1

(-) k-1,

where (-2)¥"%1 is evaluated on the plane spanned by -
Vog through vln o’ and the inner sum is takenr over

all j3 < oo < Jpp-p and &1 < e < 2p.2p such that

{jlf LI jzm.-lf 2'lf s 2'n'_zl“} ={lf reey n—l]'.

Here vy, ..., Vp.] are fhe principal curvature
directions of 52y at p with corresponding principal

curvatures A1, ...; Ap-1. By the choice of the

functions £, and the fact that the Hessian form of




fr-at p is just |[Vf£,(p)|| times the second fundamental

form of 38, at p, we see that _i_%%_ Ajpeeedjopay 2 0

Since we have assumed that the Hopf conjecture is
true on M, (- k-1 is nonnegative. The result is
that llg dr(p} £ 0, and consequently,

r+ .

lim Y*II < 0.
r+0 a£ U=

: _ x

But then,
[ X =1im [ X
Cy, r»>0 4

; XM.

_ Again by the Hopf conjecture, 0 < [ X £ f X for all i.
Ci - Cin

Therefore [X exists and 0 £ [X & Xym.
' M M




§ 4. Some-remarks.

Cohn-Vossen classified the complete non-compact
surfaces of nonnegative curvature [4]; for such a
surface M, the soul S is either a point or is diffeo-

1

morphic to 8~. If S is a point, then M is diffeomorphic

to R2, and Cohn-Vossen proved that the total curvature

is bounded between 0 and 1; these estimates are sharp.

If s is diffeomoxrphic to Sl, then M is isometric to

‘one of the two flat line bundles over S. and has zero

total curvature.

‘Our result gives a new proof of the Cohn-Vossen

“total curvature result.

-~

Cheeger and Gromoll classified the complete

non-compact 3-manifolds of nonnegative curvature

‘using the soul theorem [1]; the soul is diffeomorphic

to one of the following: a point, s!, s2, RP2, the

"f£lat torus, or the flat Xlein bottle. 1In addition,

they proved that if the soul S of an arbitrary éomplete
Rieménnian manifold of nonnegative curvature has codim-
ension 1, then M is isometrically a flat line bundle
over S. |

Gromoll and Meyer proved that if the curvature
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of M is -everywhere positive, then the soul is a point
(see [7]). From this they proved, for nr# 3 or 4,
that M and R® are diffeomorphic; our result implies
directly that for any manifold for thchAthe soul is
a point, the manifold is diffeomorphic to RP and the

. total curvature, if it exists, is bounded above by 1.

We will assume that all our manifolds are
orienteé; by considering the orientation coﬁering,
similar information can be gotten for non-oriented
manifolds. No attempt will be made to classify
anything, but we will make some comments about the

cases of dimensions 4 and 6.

Dimension 4: The only possible souls with

posftive Euler characteristic are a point and §2.
Thus we see immediately that 0 < [ X < 2.

- If the soul is diffeomorp?ic to Sl, then

- the‘total curvature of M is zero.
Suppose dim 8§ = 2.- If 8§ is the flat torus,

thenrM is 10call§ isometrically trivial over S-(sece [11},
and in such a case the Chern integrand is identically
zero. If S is diffeomorphic to S2 and the total

curvature of M is positive, then M is not isometrically

the product s2xR2; M may still be the product of s2




and some nonnegatively curved surface diffeomorphic

to R2, and there are examples where M is not even
locally isometrically ahproduct, €.,y T82.

If dim 8 = 3, then Xy is of course zero, as
is the case whenever the soul of M is odd-dimensional.
In addition, in this case M is isometrically a flat
line bundle over S with zero Chern integrand.
Despite‘these restrictions there are still many
possibilities for M, since there are already 6 flat

compact orientable 3-manifolds [11].

Dimension 6: Here we cannot in general say

that the total curvature exists, but since the
boundary terms involve only the first and second
powers of the curvature form, we do know that

Iim [ X £ Xy.
Ci

i
Even if.the total curvature does exist, without
more information we have no guarantee that it
will be nonnegative., The number of manifolds here
will be quite large since in the flat cése aloﬁe '
there are very many manifolds of dimension less than
six. Notice héwevef that if § is flat, then the
Chern integrand is identically zero on M since

locally M has a flat factor [1].
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