AN ALGORITHM FOR THE SOLUTION OF THE

WORD PROBLEM FOR

$$N_{p,q} = \langle y, x | \bar{y} x^p y \bar{x}^q \rangle$$

IF (p,q) = 1, p > 1, AND $|q| \neq 1$

A Dissertation presented

Ъy

Raymond Austin McCartney

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Mathematics

State University of New York

at

Stony Brook

June, 1973

STATE UNIVERSITY OF NEW YORK

AT STONY BROOK

THE GRADUATE SCHOOL

RAYMOND AUSTIN MCCARTNEY

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance or the dissertation.

Paul Memph allant. Tucker. ZQR. Shanny Bernd Minht

The dissertation is accepted by the Graduate School.

Dean Herbert Weisinger, Graduate School

ABSTRACT OF THE DISSERTATION AN ALGORITHM FOR THE SOLUTION OF THE

WORD PROBLEM FOR

 $N_{p,q} = \langle y, x | \bar{y} x^p y \bar{x}^q \rangle$ IF (p,q) = 1, p > 1, AND |q| + 1

by

Raymond A. McCartney

Doctor of Philosophy

in

Mathematics

State University of New York at Stony Brook

1973

The word problem for a group with one defining relator was proved solvable by Magnus in 1931¹. However, he did not give an algorithm for the solution. This paper provides an algorithm for the solution of the word problem for the groups $N_{p,q} = \langle x, y | \bar{y} x^p y \bar{x}^q \rangle$ if (p,q) = 1, p > 1 and $|q| \neq 1$.

The paper uses the fact that the subgroup of $\mathbb{N}_{p,q}$ generated by x is isomorphic to $\mathbb{H}_{p,q} = \langle \mathbf{b}_1 : \mathbf{i} \in J | \mathbf{b}_1^q \mathbf{b}_{1+1}^p : \mathbf{i} \in J \rangle$.

A normalization process is given to find a unique representative for each word in $H_{p,q}$. Using the fact that

 $S_{p,q} = \langle \frac{m}{p^{S}q} | m \in J, s \in J, t \in J \rangle, + \rangle$ is a homomorphic image of $H_{p,q}$, and by expressing $H_{p,q}$ as a free product under amalgamation it is shown that every word in $H_{p,q}$ that is equal to 1 in $H_{p,q}$ becomes 1 under normalization.

The definition of when a word $W \in H_{p,q}$ is in normal form is presented here, however the algorithm itself is too lengthy to describe here.

Definition. If $W \in H_{p,q}$, (p,q) = 1, p > 1, $|q| \neq 1$ then W is in normal form if and only if

i) $W \equiv 1$; or

11)
$$W \equiv b_{x}^{\alpha}$$
 with $\alpha \neq 0 \mod |q|$; or

- 111) $W \equiv b_{\tilde{J}}^{J} \prod_{i=1}^{n} b_{\tilde{J}_{i}}^{\alpha}$ with the following properties $\tilde{J} \neq \tilde{J}_{1}$,
 - Ĵ₁ ‡ Ĵ₁₊],

 $\begin{array}{l} \text{if } j < j_{1} \text{ then } \alpha \ \ \ \ 0 \ \ \ \text{mod} \ \ \left| q \right| \ \ \text{and} \ \ 0 < \alpha_{1} < p, \\ \text{if } j > j_{1} \text{ then } \alpha \ \ \ \ 0 \ \ \ \text{mod} \ p \ \ \text{and} \ \ 0 < \alpha_{1} < \left| q \right|, \\ \text{if } j_{1} > j_{1-1} \ \ \ \text{then} \ \ 0 < \alpha_{1} < p, \\ \text{and if } j_{1} < j_{1-1} \ \ \ \text{then} \ \ 0 < \alpha_{1} < |q|, \\ \end{array}$

¹Magnus, W. 1931, Untersuchungen über einige unendliche diskontinuierliche Gruppen. <u>Math. Ann. 52-74</u>.

TABLE OF CONTENTS Page . 111. Abstract . - V • Table of Contents. . . 1. Introduction . . T . • ¢. The Normal Form N(W) 7. II The Uniqueness of the Normal Form . . . 12. III 41. Concluding Theorem IV 6 a 48. References 49. Appendix a

INTRODUCTION

The group $G = \langle \mathbf{x}, \mathbf{y}, \mathbf{z} | \bar{\mathbf{y}} \mathbf{x}^2 \mathbf{y} \bar{\mathbf{x}}^3, \bar{\mathbf{x}} \mathbf{z}^2 \mathbf{x} \bar{\mathbf{z}}^3, \bar{\mathbf{z}} \mathbf{y}^2 \mathbf{z} \bar{\mathbf{y}}^3 \rangle$ is either the trivial group or a group of infinite order.¹ [6]

I conjectured in the Spring of 1971 that if W was any non-empty word on the generators of

 $G = \langle x, y, z | \overline{y} x^2 y \overline{x}^3, \overline{x} z^2 x \overline{z}^3, \overline{z} y^2 z \overline{y}^3 \rangle$

and W = 1 in G then if $W \neq 1$ it, or a short conjugate (cyclic permutation) of W, has an initial segment of length 4 that is also an initial segment of a short conjugate of one of the defining relators or its inverse.

My conjecture was based upon Greendlinger's findings. [2] He defined a l/k group (more precisely, the presentation of the group), as follows: if R_u and R_v are any two defining relators or their inverses, then whenever l/kth the symbols of R_u or in R_v can be deleted by free reduction, then $R_u R_v$ is freely equal to the empty word.

He proved if W was any non-empty word on the generators of G, G being a less than 1/6 group, then W or some short conjugate of W has an initial segment that is also a major initial segment (more than half) of a short conjugate of one of the defining relators or its inverse.

I generalized my conjecture by defining a (l/k, l/h)

presentation when pairs of distinct defining relators (not short conjugates of each other nor inverses) have the 1/kproperty, and pairs of non-distinct relators (short conjugates and their inverses) a 1/h property. My conjecture was for a (1/k, 1/h) presentation the word problem was solvable whenever k > 6, h > 3 and the length of each defining relator was odd.

In the Fall of 1972 I proved my conjecture to be false by the following counter example.

 $G = \langle x, y, z | \overline{y} x^2 y \overline{x}^3, \overline{x} z^2 x \overline{z}^3, \overline{z} y^2 z \overline{y}^3 \rangle$

is a (1/7,2/7) presentation and each defining relator has length 7. The word $\overline{y}^2 x^4 y^2 \overline{x}^2 \overline{y} \overline{x}^4 y \overline{x}$ is 1 in G and does not contain a subword, (nor does any short conjugate of $\overline{y}^2 x^4 y^2 \overline{x}^2 \overline{y} \overline{x}^4 y \overline{x}$), of length four that is also a major initial segment of a defining relator or its inverse.

We can see that $\bar{y}^2 x^4 y^2 \bar{x}^2 \bar{y} \bar{x}^4 y \bar{x}$ is 1 in G by using $\bar{y} x^2 y \bar{x}^3 = 1$.

Hence $\overline{y}x^2y = x^3$; $\overline{y}\overline{x}^2y = \overline{x}^3$ $\overline{y}x^4y = x^6$; $\overline{y}\overline{x}^4y = \overline{x}^6$ $\overline{y}^2x^4y^2 = \overline{y}x^6y = x^9$;

 $x^{9}\bar{x}^{9} = 1$

whence

 $\overline{\mathbf{v}}$

$$\vec{y}^{2}x^{4}y^{2}\vec{x}^{9} = 1$$

$$\vec{y}^{2}x^{4}y^{2}\vec{x}^{2}\vec{x}^{6}\vec{x} = 1$$

$$^{2}x^{4}y^{2}\vec{x}^{2}\vec{y}\vec{x}^{4}y\vec{x} = 1$$

I then decided to rind the solution to the word problem

for $\langle y, x | \bar{y} x^2 y \bar{x}^3 \rangle$ so as to continue my research into the word problem for

 $<\mathbf{x},\mathbf{y},\mathbf{z}\,|\,\bar{\mathbf{y}}\mathbf{x}^2\mathbf{y}\bar{\mathbf{x}}^3,\bar{\mathbf{x}}\mathbf{z}^2\mathbf{x}\bar{\mathbf{z}}^3,\bar{\mathbf{z}}\mathbf{y}^2\mathbf{z}\bar{\mathbf{y}}^3>.$

I have generalized my rinding to the solution to the word problem for

 $\langle y, x | \bar{y} x^p y \bar{x}^q \rangle$, (p,q) = 1, p > 1, $|q| \neq 1$.

The word problem was formulated by Max Dehn in 1911.

Let a group G be derined by means of a presentation. The word problem is: For an arbitrary word W in the generators, decide in a finite number of steps whether W defines the identity element of G, or not.

Novikov [5] proved in 1955 that there is some rinite presentation for which the word problem is not solvable.

Magnus [3] proved in 1931 that the word problem is solvable for any group with one defining relator.

"However, the general method for solving the word problem in groups with a single defining relator is already a rather complicated process,..." [4] page 400.

The group $G = \langle y, x | \bar{y}x^2 y \bar{x}^3 \rangle$ is the simplest known example of a non-Hopfian finitely presented group. [1] This group is the special case when p = 2 and q = 3.

Finding an algorithm for the solution to the word problem

is of interest for the following reasons.

i) It is useful in studying the properties of $\langle y, x | \bar{y}x^2 y \bar{x}^3 \rangle$, the simplest known non-Hoprian finitely presented group.

ii) Magnus did not provide an algorithm for the solution of the word problem.

 $\langle y, x | \bar{y} x^p y \bar{x}^q \rangle$, (p,q) = 1, p > 1, $|q| \neq 1$

iii) Groups with one defining relator are an important subject in combinatorial group theory. For example the fundamental groups of closed two dimensional orientable surfaces of a genus ≥ 2 are groups with a single defining relator. [4] page 398.

iv) It is useful in the understanding of groups of infinite order. For these are not free groups, free abelian groups, nor the product of two free groups under amalgamation. Hence they provide examples of groups of infinite order with just one defining relator with an algorithm for the solution to the word problem, where the groups are neither abelian nor the product of two free groups under amalgamation.

Given a group $G = \langle a_1, a_2, \ldots, a_n : R(a_1, \ldots, a_n) \rangle$ then the word problem is solvable is what Magnus proved. [3] To have some understanding of Magnus' proof, a sketch of a particular case when $R(a_1, a_2, \ldots, a_n)$ has zero exponent sum on one of the generators is provided. The particular case will be

 $G_{p,q} = \langle y, x | \bar{y} x^p y \bar{x}^q \rangle$ where $\sigma_y(\bar{y} x^p y \bar{x}^q) = 0$.

The normal subgroup of $G_{p,q}$ generated by x is isomorphic to $H_{p,q} = \langle b_1 : i \in J | b_1^q \overline{b}_{i+1}^p : i \in J \rangle$.

On this pattern, one then defines subgroups

$$\mathbb{N}_{i} = \langle \mathbf{b}_{i}, \mathbf{b}_{i+1} | \mathbf{b}_{i}^{\mathbf{q}} \overline{\mathbf{b}}_{i+1}^{\mathbf{p}} \rangle, i \in J.$$

For example $N_0 = \langle b_0, b_1 | b_0^q \overline{b}_1^p \rangle$ $N_1 = \langle b_1, b_2 | b_1^q \overline{b}_2^p \rangle$

One then sets $N_{0,1} = \langle b_0, b_1, b_2 | b_0^{q} \overline{b}_1^{p}, b_1^{q} \overline{b}_2^{p} \rangle$ which is the free product of N_0 and N_1 with the free subgroup in each generated by b_1 , amalgamated under the identity mapping.

Now N₀ ⊂ N_{0,1}.

Similarly one would define.

 $\mathbb{N}_{-1,1} = \langle \mathbf{b}_{-1}, \mathbf{b}_{0}, \mathbf{b}_{1} | \mathbf{b}_{-1}^{q} \mathbf{b}_{0}^{p}, \mathbf{b}_{0}^{q} \mathbf{b}_{1}^{p}, \mathbf{b}_{1}^{q} \mathbf{b}_{2}^{p} \rangle,$

etc., obtaining a chain of groups.

 $N_0 \subset N_{0,1} \subset N_{-1,1} \subset \cdots \subset N_{-i+1,1} \subset N_{-i,1} \subset N_{-i,1+1} \subset \cdots$ where $N_{-i,1}$ is the free product of $N_{-i+1,1}$ and N_{-i} with an amalgamated free subgroup (b_{-i+1} under the identity mapping), and $N_{-1,1+1}$ is the free product of $N_{-i,1}$ and N_{i+1} with an amalgamated free subgroup.

 $H_{p,q}$ is the union of this chain of groups.

Setting $Q_1 = N_0$, $Q_2 = N_{0,1}$, $Q_3 = N_{-1,1}$ etc. One would show by induction on j that in each Q_j , if the generators of N_1 are among the generators of Q_j , then it can be decided if an element of Q_j is in N_i , and if so, express it in N_i . Then one shows if an element of $H_{p,q}$ is an element of N_i , and if so to express it in N_i .

This paper presents an algorithm for the solution to the word problem for

$$H_{p,q} = \langle b_{1}: i \in J | b_{1}^{p} \overline{b}_{1}^{q}: i \in J \rangle if(p,q) = 1, p > 1$$

and $|q| \neq 1$.

For example, no chain of groups is used. The proof is different from Magnus'.

Following Magnus, the group H_{p,q} will be presented by

$$H_{p,q} = \langle b_{i}: i \in J | b_{i}^{p} \overline{b}_{i}^{q}: i \in J \rangle.$$

In Section II a normalization process is given to find a unique representative for every word in $H_{p,q}$.

In Section I it is shown that the group

 $S_{p,q} = \langle \{\frac{m}{p^{s}q} | m \in J, s \in J, t \in J\}, + \rangle$ is a homomorphic image of $H_{p,q}$. Using this homomorphism and expressing $H_{p,q}$ as a free product with amalgamated subgroups, it is proven in Section III that every word in $H_{p,q}$ that is equal to 1 in $H_{p,q}$ becomes 1 under the normalization.

This solves the word problem for $H_{p,\,q}$ and hence for $G_{p,\,q}$ as shown in Section IV.

SECTION 1 SOME PRELIMINARY THEOREMS

Definition 1. $F = \langle a, b \rangle$.

Definition 2. $K_{p,q} = F(\bar{a}b^p a \bar{b}^q), (p,q) = 1, p > 1, |q| \neq 1$ the normal closure of $\bar{a}b^p a \bar{b}^q$ in F.

Derinition 3. B = F(b) the normal closure of b in F. Derinition 4. If $W \in F$ then $\sigma_a(W)$ is the exponent sum of the a's.

Theorem 1. If $W \in F$ and $W = 1 \mod K_{p,q}$ then $W = 1 \mod B$. <u>Proof</u>. $W = 1 \mod B$ if and only if $\sigma_a(w) = 0$. If $W \in F$ such that $W = 1 \mod K_{p,q}$ then $\sigma_a(w) = 0$, whence $W = 1 \mod B$. <u>Definition 5</u>. $N_{p,q} = \langle y, x | \bar{y} x^p y \bar{x}^q \rangle$, (p,q) = 1, p > 1 and $|q| \neq 1$.

Definition 6. $M_{p,q} = \langle x_i : i \in J | x_i^q \overline{x}_{i+1}^p \in J \rangle (p,q) = 1, p > 1,$ $|q| \neq 1, J$ being the set of integers.

<u>Theorem 2</u>. $N_{p,q} \approx \langle y, M_{p,q} | x_1 = \overline{y}^1 x_0 y^1 : i \in J \rangle$.

$$= \bar{y}^{1+1} x_0^p y^{1+1} = \bar{y}^1 x_0^q y^1$$

$$= (\bar{y}^1 x_0 y^1)^q (\bar{y}^{1+1} x_0 y^{1+1})^{-p} = 1$$

$$= N_{p,q} = \langle y, x_0 | (\bar{y}^1 x_0 y^1)^q (\bar{y}^{1+1} x_0 y^{1+1})^{-p}; i \in J \rangle$$

$$= N_{p,q} = \langle y, x_1; i \in J | (\bar{y}^1 x_0 y^1)^q (\bar{y}^{1+1} x_0 y^{1+1})^{-p},$$

$$= \bar{y}^1 x_0 y^1; i \in J \rangle$$

$$= N_{p,q} = \langle y, x_1; i \in J | (\bar{y}^1 x_0 y^1)^q (\bar{y}^{1+1} x_0 y^{1+1})^{-p},$$

$$= \bar{y}^1 x_0 y^1, x_1^q \bar{x}_{1+1}^p; i \in J \rangle$$

$$= N_{p,q} = \langle y, x_1; i \in J | x_1^q \bar{x}_{1+1}^p; x_1 = \bar{y}^1 x_0 y; i \in J \rangle$$

$$= N_{p,q} = \langle x_1; i \in J | x_1^q \bar{x}_{1+1}^p; i \in J \rangle$$

$$= N_{p,q} = \langle y, M_{p,q} | x_1 = \bar{y}^1 x_0 y^1; i \in J \rangle.$$

Derinition 7. $F_b = \langle b_i : i \in J \rangle$.

Definition 8. $\rho(w)$ is the freely reduced word equal to w in the free group on the generators.

Definition 9. $U \equiv V$ means that the word U is identical to the word V. For example $\overline{a}b^2 a\overline{b}^3 \equiv \overline{a}bba\overline{b}\overline{b}\overline{b}$ in any group, but $\overline{a}b^2 a\overline{b}^3 \ddagger \overline{a}bbb\overline{b}a\overline{b}\overline{b}\overline{b}$ and $\overline{a}b^2 a\overline{b}^3 \ddagger 1$ in $\langle a, b | \overline{a}b^2 a\overline{b}^3 \rangle$.

Definition 10. $\beta: B \to F_b$, β is a mapping such that if $W \in B$, $\sigma_a(w) = 0$ and

 $\sigma_{a}(w) = 0 \text{ and}$ $i) \quad \text{if } \rho(w) = \frac{n}{1 = 1} a^{\alpha} b^{\beta} i \text{ then } \beta(w) = \frac{n}{1 = 1} b^{\beta} i \text{ } j$ or $(\overline{j} = 1 \alpha_{j})$

ii) if $\rho(w) \equiv 1$ then $\beta(w) = 1$. [Note: $\beta(\overline{a}^{i}ba^{i}) = b_{i}$ and completely defines β , as $\sigma_{a}(w) = 0$ for all $w \in B_{\bullet}$] <u>Theorem 3.</u> $\beta: \mathbb{B} \to \mathbb{F}_{b}$ is a homomorphism. <u>Proof</u>. Let $U, V \in \mathbb{B}$ such that $\rho(U) = \prod_{I=1}^{n} a^{\alpha_{1}} b^{\beta_{1}}$ and $\rho(V) = \prod_{I=1}^{m} a^{Y_{1}} b^{\delta_{1}}$. $\sigma_{a}(U) = \sigma_{a}(V) = \sigma_{a}(UV) = 0$ $\beta(\overline{a}^{1}ba^{1}) = b^{1}$. Hence $\beta(U)\beta(V) = \beta(UV) = [\prod_{I=1}^{n} b^{\beta_{1}}][\prod_{I=1}^{m} b^{\delta_{1}}]$. <u>Theorem 4</u>. If $W \in \mathbb{F}$ and $W = 1 \mod K_{p,q}$ then $W \in \mathbb{B}$ and W = 1in $\mathbb{B}/K_{p,q}$. <u>Proof</u>. $\mathbb{F} = \langle a, b \rangle \rangle$, $K_{p,q} = \mathbb{F}(\overline{a}b^{p}a\overline{b}^{q})$, $\mathbb{B} = \mathbb{F}(b)$. By Theorem 1

9.

 $ir W \in F$ and $W = 1 \mod K_{p,q}$ then $W = 1 \mod B$.

Hence if $W \in H$ then $W \in B$.

Therefore, if $W \in F$ and $W = 1 \mbox{ mod } K_{p,q}$ then W = 1 in $B/K_{p,q}.$

Derinition 11. $\theta:F_b \to B$ under $\theta(1) = 1$ and $\theta(b_1) = \overline{a}^1 b a^1$. <u>Theorem 5.</u> $\theta:F_b \to B$ under $\theta(1) = 1$ and $\theta(b_1) = \overline{a}^1 b a^1$ is an isomorphism between the group F_b and B, and $\theta = 0^{-1}$.

Proof. $F_b = \langle b_1 : i \in J | \rangle$, $F = \langle a, b | \rangle$, B = F(b), $\beta(\overline{a}^{1}ba^{1}) = b_1$, $\beta(1) = 1$, $\theta(b_1) = \overline{a}^{1}ba^{1}$, $\theta(1) = 1$.

 θ is clearly an isomorphism onto B and $\theta = \beta^{-1}$.

$$\begin{split} \psi_{p,q}(x_{j}^{\epsilon}) &= \epsilon(\frac{q}{p})^{j}, \ \psi(1) = 0. \\ S_{p,q} \text{ is clearly a subgroup of the rationals under addi-tion. It is obvious that if $U \in M$ and $V \in M$ then
$$\begin{split} \psi_{p,q}(UV) &= \psi_{p,q}(U) + \psi_{p,q}(V). \\ \text{Furthermore } \psi_{p,q}(x_{1}^{q}\overline{x}_{1+1}^{p}) &= q(\frac{q}{p})^{1} - p(\frac{q}{p})^{1+1} = \frac{q^{1+1}}{p^{1}} - \frac{q^{1+1}}{p^{1}} = 0. \\ \hline \text{Derinition 15. } P_{p,q}(x_{1}^{e}\overline{x}_{1+1}^{p}) &= q(\frac{q}{p})^{1} - p(\frac{q}{p})^{1+1} = x_{j} \text{ and} \\ \hline P_{p,q}(1) &= 1. \\ \hline \text{Theorem 8. If } W_{b} \in F_{b} \text{ and } W_{b} = 1 \text{ in } H_{p,q} \text{ then } \psi_{p,q}(P_{p,q}(W_{b})) = 0. \\ \hline \text{Proof. } F_{b} &= \langle b_{1}: 1 \in J | > \\ H_{p,q} &= \langle b_{1}: 1 \in J | b_{1}^{d} b_{1+1}^{p}: 1 \in J > \\ M_{p,q} &= \langle x_{1}: 1 \in J | x_{1}^{d} \overline{x}_{1+1}^{p}: 1 \in J > \\ S_{p,q} &= \langle [\frac{m}{p} \cdot q] | m \in J, s \in J, t \in J], + \rangle \\ \hline P_{p,q}: F_{b} \rightarrow M_{p,q}, \ P(b_{J}) &= x_{J}, \ P(1) &= 1 \end{split}$$$$

$$\begin{split} & \psi: \mathbb{M}_{p,q} \to \mathbb{S}_{p,q}, \ \psi(x_{J}^{\varepsilon}) = \varepsilon(\frac{q}{p})^{J}, \ \psi(1) = 0. \\ & \text{ If } \mathbb{W}_{b} \in \mathbb{F}_{b} \text{ and } \mathbb{W}_{b} = 1 \text{ in } \mathbb{H}_{p,q}, \text{ then obviously } \mathbb{P}_{p,q}(\mathbb{W}_{b}) = 1 \\ & \text{ in } \mathbb{M}_{p,q}. \text{ And by Theorem 7, } \psi_{p,q}(\mathbb{P}_{p,q}(\mathbb{W}_{b})) = \psi(1) = 0. \end{split}$$

SECTION II THE NORMAL FORM, N(W)

Derinition 16. If $W \in H_{p,q}$, (p,q) = 1, p > 1, $|q| \neq 1$, then W is in normal form, (N(W) = W), if and only if

FINDING N(W)

Let $W \in H_b$. If $W \equiv 1$ then $N(W) \equiv 1$. If $W \equiv b_t^{\epsilon}$, $\epsilon = \pm 1$, then $N(W) \equiv b_t^{\epsilon}$. Let $W \equiv b_t^{\epsilon}U$, $\epsilon = \pm 1$, U in normal form. That is: 1) $U \equiv 1$; or 11) $U \equiv b_J^{\alpha}$ with $\alpha \neq 0 \mod |q|$; or 11) $U \equiv b_J^{\alpha} \inf_{\substack{j \\ 1 \equiv 1}} b_{j_1}^{\alpha}$ with the following properties: $j \neq j_1$, $j_1 \neq j_{1+1}$, if $j < j_1$ then $\alpha \neq 0 \mod |q|$, and $0 < \alpha_1 < p$

if $j > j_1$ then $\alpha \neq 0 \mod p$, and $0 < \alpha_1 < |q|$ if $j_1 > j_{1-1}$ then $0 < \alpha_1 < p$ and if $j_i < j_{i-1}$ then $0 < \alpha_i < |q|$. Then there are four cases to consider. They are Α: U ⊒ 1 B: t>j C: t < j D: t = J. Case A. If $U \equiv 1$ then $W \equiv b_{t}^{\epsilon} \cdot 1$ $W = b_t^{\varepsilon}$ and $N(W) \equiv b_t^{\varepsilon}$ is the normal form of W. For example: If p = 2, q = 3, $W = \overline{b}_3^1 \cdot 1$, U = 1, then $N(W) = \overline{b}_3^1$. <u>Case B.</u> $W \equiv b_t^{\varepsilon} b_j^{\alpha}$ or $W \equiv b_t^{\varepsilon} b_j^{\alpha} \xrightarrow{n} b_{j-1}^{\alpha}$ and t > j. There are two cases to consider. They are: B-1: $0 < \alpha < |q|$ B-2: $\alpha < 0 \text{ or } \alpha \ge |q|$. Case B-1. $0 < \alpha < |q|$ and t > j. Then W is in normal form and $N(W) \equiv W$.

For example: p = 2, q = 3, $W = b_3^2 b_1^2 b_2^2$, $U = b_1^2 b_2^2$ and $N(W) = b_3^2 b_1^2 b_2^2$.

Case B-2. t > j and $\alpha < 0$ or $\alpha \ge |q|$.

Let $\alpha \equiv \gamma_1 \mod |q|$, that is $\alpha = qm_1 + \gamma_1 \pmod{0} \leq \gamma_1 < |q|$. Since U is in normal form, $m_1 \neq 0$. Using the relator $b_{,\bar{1}}^{qm} = b_{,\bar{1}+1}^{pm}$, one gets $b_{,\bar{1}}^{\alpha} = b_{,\bar{1}+1}^{pm} b_{,\bar{1}}^{\gamma}$ and $W = b_t^{\varepsilon} b_{j+1}^{pm} b_{j}^{\gamma} 1 \underbrace{\prod_{i=1}^{n} b_{i}^{\alpha}}_{j, j} \text{ or } W = b_t^{\varepsilon} b_{j+1}^{pm} b_{j}^{\gamma}.$ There are two cases to consider. They are: B-2-Å; $\gamma_1 = 0$ B-2-B: $Y_{1} \neq 0$. $\frac{\text{Case B-2-A.}}{W = b_t^{\varepsilon} b_{j+1}^{pm_1} b_j^{\gamma_1}} \text{ and } \gamma_1 = 0 \text{ or }$ Hence q divided α . Hence $W \neq b_t^{\epsilon_b} b_{j+1}^{pm} b_j^{\gamma_1}$ and $j > j_1$. Now If t = j+1 then $W = b_{j+1}^{pm_1+\epsilon}$, a_i $N(W) = b_{j+1}^{pm_1+\epsilon}$, a_{j+1}^{α} , a_{j+1}^{β} , $a_{$ If t > j+1 then the process is iterated as follows: For t = j+2, $\alpha = qm_1+\gamma_1$, $b_j^{\alpha} = b_{j+1}^{pm_1}$ for $\gamma_1 = 0$; and $pm_1 = qm_2+\gamma_2$, $0 \le \gamma_2 < |q|; b_j^{\alpha} = b_{j+2}^{pm_2} b_{j+1}^{\gamma_2}$ whence $W = b_{\underline{1}+2}^{pm_2+\varepsilon} b_{\underline{1}+1}^{\gamma_2} \underline{1}_{\underline{1}\underline{1}\underline{1}}^{\underline{n}} b_{\underline{1}\underline{1}}^{\alpha_1}, \quad 0 \le \gamma_2 < |q|.$ Similarly, for all t = j+k > j $b_{,\bar{1}}^{\alpha} = b_{,\bar{1}+k}^{pm_k} b_{,\bar{1}+k-1}^{\gamma_k} \cdots b_{,\bar{1}+1}^{\gamma_2}, 0 \le \gamma_1 < |q|.$ Hence $b_{t}^{\epsilon}b_{j}^{\alpha} = b_{j+k}^{pm_{k}+\epsilon}b_{j+k-1}^{\gamma}$ and

$$N(W) \equiv \rho(b_{j+1}^{pm} b_{j+k-1}^{+\epsilon} \cdots b_{j+1}^{Y_2}) \underset{i=1}{\overset{n}{=}} b_{j_i}^{\alpha_i} \text{ is the normal form of } W.$$

$$\underline{Case B-2-B}, \quad \gamma_1 \neq 0, \quad t > j, \quad W = b_t^{\epsilon} b_{j+1}^{pm} b_j^{\gamma_1} \underbrace{\substack{n \\ i=1}}_{i=1}^{n} b_{j_i}^{\alpha_i}.$$

Hence $0 < \gamma_{1} < |q|$. If t = j+1 then $W = b_{j+1}^{pm_{1}+\epsilon} b_{j} 1 \prod_{i=1}^{m} b_{j_{i}}^{1}$ when this word is freely reduced one gets $\rho(b_{j+1}^{pm_{1}+\epsilon} \gamma_{1} n b_{j}^{\alpha} 1 \prod_{i=1}^{m} b_{j_{i}}^{\alpha})$ and this is W in normal form.

 $\mathbb{N}(\mathbb{W}) = \rho(\mathbf{b}_{j+1}^{\mathrm{pm}_{1}+\epsilon} \mathbf{b}_{j}^{\mathrm{l}} \underbrace{\mathbf{i}}_{1=1}^{\mathrm{n}} \mathbf{b}_{j_{1}}^{\mathrm{a}}).$

If t > j+1 then the process is iterated as follows; For t = j+2, $\alpha = qm_1+\gamma_1$, $b_j^{\alpha} = b_{j+1}^{pm_1}b_j^{\gamma_1}$ as before; and $pm_1 = qm_2+\gamma_2$, $0 \le \gamma_2 < |q|$, $b_j^{\alpha} = b_{j+2}b_{j+1}b_j^{\gamma_1}$, whence $W = b_{j+2}^{pm_2+\varepsilon} \gamma_2 \gamma_1 n \alpha_1$, $0 < \gamma_1 < |q|$, $0 \le \gamma_2 < |q|$. Similarly, for all t = j+k > j $b_j^{\alpha} = b_{j+k}^{pm_k}b_{j+k-1}^{\gamma_k} \cdots b_{j+1}^{\gamma_2}b_j^{\gamma_1}$, $\gamma_1 \neq 0$, $0 \le \gamma_1 < |q|$. Hence $b_t^{\varepsilon}b_j^{\alpha} = b_{j+k}^{pm_k+\varepsilon}\gamma_k^{\gamma_k} \dots b_{j+1}^{\gamma_2}\beta_j^{\gamma_1}$, and $pm_k+\varepsilon \gamma_k \gamma_2 \gamma_1$, $n \alpha_j$

 $N(W) \equiv \rho(b_{j+k}^{pm_k+\epsilon} b_{j+k-1}^{\gamma_k} \cdots b_{j+1}^{\gamma_2} b_j^{\gamma_1})_{\substack{i=1\\j=1}}^n b_{j\frac{j}{2}}^{\alpha_i} \text{ is the normal form}$ of W.

For example:
$$p = 2$$
, $q = 3$, $W = b_{4}^{-1}b_{-2}^{1/2}b_{3}^{1/2}$
 $b_{3}^{\alpha} \equiv b_{-2}^{1/2} = b_{-2}^{3}b_{-2}^{2} = b_{-1}^{2}b_{-2}^{2} = b_{-1}^{3}b_{-1}^{1}b_{-2}^{2}$
 $= b_{0}^{2}b_{-1}^{3}b_{-2}^{2} = b_{0}^{3}b_{0}^{2}b_{-1}^{2}b_{-2}^{2} = b_{1}^{2}b_{0}^{2}b_{-1}^{1}b_{-2}^{2}$
 $= b_{1}^{3}b_{1}^{1}b_{0}^{0}b_{-2}^{1}b_{-2}^{2} = b_{2}^{2}b_{1}^{0}b_{0}^{1}b_{-1}^{2}b_{-2}^{2}$
 $= b_{2}^{2}b_{2}^{0}b_{1}^{2}b_{0}^{1}b_{-2}^{2} = b_{2}^{2}b_{1}^{0}b_{0}^{1}b_{-1}^{2}b_{-2}^{2}$
 $N(W) \equiv \rho(b_{4}^{-1}b_{4}^{0}b_{3}^{0}b_{2}^{2}b_{1}^{1}b_{0}^{0}b_{-1}^{-1}b_{-2}^{-2})b_{3}^{1}$
 $N(W) \equiv b_{3}^{-1}b_{2}^{2}b_{1}^{1}b_{-1}^{-1}b_{-2}^{-2}b_{3}^{1}$

<u>Case C</u>. $W = b_t^{\epsilon} b_j^{\alpha}$ or $W = b_t^{\epsilon} b_j^{\alpha} \stackrel{n}{\underset{j=1}{\overset{\alpha}{=}}} b_{j,j}^{\alpha}$, and t < j. There are two cases to consider. They are: C-1: $0 < \alpha < p$ C-2: $\alpha < 0 \text{ or } \alpha \geq p$. Case C-l. t < j and $0 < \alpha < p_{\circ}$ Then W is in normal form and $N(W) \equiv W_*$ Case C-2. t < j and $\alpha < 0$ or $\alpha \ge p$. Let $\alpha \equiv \gamma_1 \mod p$, that is $\alpha = pm_1 + \gamma_1$ with $0 \le \gamma_1 \le p$. Since U is in normal form, $m_1 \neq 0$. Using the relator $b^{m_1} = b_{1-1}^{qm_1}$, one gets $b_{j}^{\alpha} = b_{j-1}^{qm} b_{j}^{\gamma}$, and $W = b_{t}^{\varepsilon} b_{j-1}^{qm} b_{j}^{\gamma} \frac{n}{1 \equiv 1} b_{j}^{\alpha}$ or $W = b_{t}^{\varepsilon} b_{j-1}^{qm} b_{j}^{\gamma}$. There are two cases to consider. They are: $C-2-A: \gamma_1 = 0$ $C-2-B: Y_1 \neq 0.$ <u>Case C-2-A</u>. t < j, $W = b_t^{\varepsilon} b_{j-1}^{qm} b_j^{\gamma_1} \frac{n}{1-1} b_{j, \varepsilon}^{\alpha_1}$ or $W = b_t^{\varepsilon} b_{j-1}^{qm} b_j^{\gamma_1}$

and $\gamma_{l} = 0$. Hence p divided α hence $W = b_{t}^{\epsilon} b_{j-1}^{qm_{l}}$ or $j < j_{l}$. If t = j-l then $W = b_{j-l}^{qm_{l}}$ and this is the normal form of

W, or $W = b_{j-1}^{qm_1+\epsilon}$ is the normal form of W. $N(W) \equiv b_{j-1}^{qm_1+\epsilon}$ or $N(W) \equiv b_{j-1}^{qm_1+\epsilon}$ is $b_{j-1}^{\alpha_1}$.

If t < j-1 then the process is iterated as follows: For t = j-2, $\alpha = pm_1+\gamma_1$, $b_j^{\alpha} = b_{j-1}^{qm_1}$ for $\gamma_1 = 0$; and $qm_1 = pm_2+\gamma_2$, $0 \le \gamma_2 < p$; $b_j^{\alpha} = b_{j-2}^{qm_2}b_{j-1}^{\gamma_2}$ whence

$$\begin{split} & \mathbb{Y}, \\ \mathbb{W} = b_{j+2}^{qm_2+\epsilon} \sum_{j=1}^{n} \sum_{i=1}^{a} b_{j,i}^{a} \text{ or } \mathbb{W} = b_{j+2}^{qm_2+\epsilon} \sum_{j=1}^{\gamma_2} 0 \leq \gamma_2 < p, \\ & \text{Similarly for all } t = j-k < j \\ & b_{j}^{a} = b_{j-k}^{qm_k} b_{j-k+1}^{\gamma_k} \cdots b_{j}^{\gamma_2}, 0 \leq \gamma_4 < p, \\ & \text{Hence } b_{t}^{t} b_{j}^{a} = b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} b_{j-1}^{\alpha} \text{ or } \mathbb{N}(\mathbb{W}) = \rho(b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} \cdots \sum_{j=1}^{\gamma_2} b_{j-1}^{\alpha} \text{ or } \mathbb{N}(\mathbb{W}) = \rho(b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} \cdots \sum_{j=1}^{\gamma_2} b_{j-1}^{\alpha} \text{ or } \mathbb{N}(\mathbb{W}) = \rho(b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} \cdots \sum_{j=1}^{\gamma_2} b_{j-1}^{\alpha} \text{ or } \mathbb{N}(\mathbb{W}) = \rho(b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} \cdots \sum_{j=1}^{\gamma_2} b_{j-1}^{\alpha} \text{ or } \mathbb{N}(\mathbb{W}) = \rho(b_{j-k}^{qm_k+\epsilon} \sum_{j=1}^{\gamma_k} \cdots \sum_{j=1}^{\gamma_2} b_{j-1}^{\alpha} + b_{j-1}$$

** . •

18.

$$W = b_{3}^{1}b_{4}^{12}b_{5}^{0}b_{5}^{1}b_{5}^{1} = b_{3}^{1}b_{3}^{18}b_{4}^{0}b_{5}^{0}b_{5}^{1}b_{4}^{1}$$

$$N(W) = b_{3}^{19}b_{6}^{1}b_{4}^{1}$$

$$\frac{Case D}{M} = b_{6}^{4}b_{3}^{6} \text{ or } W = b_{5}^{4}b_{3}^{6} \frac{11}{1-1} b_{34}^{6} \text{ and } t = j. \text{ There are three cases to consider. They are:} D-1: W = b_{5}^{4}b_{3}^{6}$$

$$D-2: j < j_{1}$$

$$D-3: j > j_{1}.$$

$$\frac{Case D-1}{D-1-R}: t = j \text{ and } W = b_{5}^{4}b_{3}^{6}.$$
There are two cases to consider. They are:

$$D-1-R: s + \alpha = 0$$

$$D-1-R: s + \alpha \neq 0.$$

$$\frac{Case D-1-A}{D-1-R}: t = j, W = b_{5}^{4}b_{3}^{4}, \text{ and } s + \alpha = 0.$$
Then W = 1, 1 is the normal rorm of W. $N(W) = 1.$

$$\frac{Case D-1-B}{D-1-B}: t = j, W = b_{5}^{4}b_{3}^{4}, \text{ and } s + \alpha \neq 0.$$
Then there exist m and s such that $\alpha_{1} + \varepsilon = q^{m} \cdot s$ where $s \neq 0$
mod $|q|$. Hence $W = b_{4}^{2}T^{4-\varepsilon} = b_{4}^{m} \cdot s = b_{5}^{2m-s}.$

$$N(W) = b_{4m}^{m-s} \text{ and is the normal rorm of W}.$$
For example: $W = b_{3}^{1}b_{3}^{-1}. N(W) = 1$
and $W = b_{3}^{1}b_{3}^{-5}. p = 2, q = 3, W = b_{5}^{-5}.$

$$W = b_{3}^{-5}H = b_{3}^{3}(-2) = b_{3+3}^{2} - b_{6}^{-1}.$$

$$\frac{Case D-2}{D-4}: t = j \text{ and } j < j_{1}.$$
There are three cases to consider. They are:

•

19.
$D-2-A: \epsilon + \alpha = 0$
D-2-B: $\varepsilon + \alpha \neq 0 \mod q $
D-2-C: $\varepsilon + \alpha \equiv 0 \mod q , \alpha \neq -\varepsilon$.
Case D-2-A. $t = j, j < j_1$ and $\varepsilon + \alpha = 0$.
Then $W \equiv b_t^{\epsilon} b_t^{-\epsilon} \stackrel{n}{\underset{1=1}{\overset{\alpha_1}{=}}} b_{j_1}^{\alpha_1}$.
Hence $W = \prod_{i=1}^{n} b_{j_i}^{\alpha_i}$
There are two cases to consider. They are:
D-2-A-1: $\lim_{i=1}^{n} b_{j_i}^{\alpha_i}$ is in normal form.
D-2-A-2: $\lim_{j=1}^{n} b_{j_{1}}^{\alpha_{j}}$ is not in normal form.
Case D-2-A-1. $t = j, j < j_1, \epsilon + \alpha = 0$ and $\prod_{i=1}^{n} b_{j_i}^{\alpha_i}$ is in
normal form.
Then $\lim_{i=1}^{n} b_{j_{1}}^{\alpha_{i}}$ is the normal form of W. $N(W) = \lim_{i=1}^{n} b_{j_{1}}^{\alpha_{i}}$.
Case D-2-A-2. $t = j, j < j_1, \epsilon + \alpha = 0$ and $\prod_{i=1}^{n} b_{j_i}^{\alpha_i}$ is not
in normal form.
Then $0 < j_1 < p$ hence $j_1 < j_2$ and $\alpha_1 \equiv 0 \mod q $. $W = \lim_{n \\ j = 1 \\ j = $
Let $W' = b_t^1, b_k^\beta \stackrel{m}{\underset{1=1}{\square}} b_{k_1}^\beta$ where $t' = j_1, k = j_1, \beta = \alpha_1 - 1$,
$m = n-1$, $k_i = j_{i+1}$, $\beta_i = \alpha_{i+1}$, and $N(W) = N(W')$.
$b_{k}^{\beta} \stackrel{M}{\underset{i=1}{\overset{\beta_{i}}{=}}} b_{k}^{\beta_{i}}$ is in normal form and N(W) is found in a
finite number of steps.
For example: $p = 4$, $q = 3$, $W = b_2^{-1}b_2^{-1}b_3^{-1}b_4^{-2}$,
$W = b_3^3 b_4^2 = b_3^1 b_3^2 b_4^2 = b_3^3 b_4^2 = b_4^4 b_4^2 = b_4^6 = b_4^3 \cdot 2 = b_5^4 \cdot 2 = b_5^8 \cdot 2$

Case D-2-B. $t = j, j < j_1$, and $\varepsilon + \alpha \neq 0 \mod |q|$.

Then $W = b_t^{\epsilon+\alpha} \prod_{i=1}^n b_{j_i}^{\alpha_i}$ and $N(W) \equiv b_t^{\epsilon+\alpha} \prod_{i=1}^n b_{j_i}^{\alpha_i}$ is the normal form of W.

Case D-2-C. $t = j, j < j_1, \epsilon + \alpha \equiv 0 \mod |q|$ and $\alpha \neq -\epsilon$.

Then there exist m and s such that $\varepsilon + \alpha = q^m \cdot s$ where $s \neq 0 \mod |q|$. There are two cases to consider. They are:

D-2-C-1: $m < (j_1-j)$ D-2-C-2: $m \ge (j_1-j)$.

Case D-2-C-1. t = j, $j < j_1$, $\varepsilon + \alpha \equiv 0 \mod |q|$, $\varepsilon + \alpha = q^m \cdot s$ where $s \not\equiv 0 \mod |q|$, and $m < (j_1 - j)$.

Then $W = b_t^{q^m} \cdot s \quad \underset{\substack{i=1 \\ j_i}}{n} \quad b_{j_i}^{\alpha_i}.$

Hence $W = b_{t+m}^{p^m \circ s} \stackrel{n}{=} b_{j_1}^{\alpha_i}$ and $N(W) \equiv b_{t+m}^{p^m \circ s} \stackrel{n}{=} b_{j_1}^{\alpha_i}$ and is the normal form of W.

Case D-2-C-2. $t = j, j < j_1, \epsilon + \alpha \equiv 0 \mod |q|, \epsilon + \alpha = q^m \cdot s$ where $s \notin 0 \mod |q|$, and $m \ge (j_1 - j_2)$. Then there exists an x such that $\alpha + \epsilon = q^{j-j_1} \cdot x$.

Hence $W = b_{j}^{q} \cdot x + \alpha_{1} + b_{j}^{\alpha_{1}}, j < j_{1}$ implies $0 < \alpha_{1} < p$. Hence $W = b_{j}^{q} \cdot x + \alpha_{1} + a_{j} + a_{j}^{\alpha_{1}}, j < j_{1}$ involves $0 < \alpha_{1} < p$. Hence $W = b_{j_{1}}^{q} + a_{j_{1}} + a_{j_{1}}^{\alpha_{1}}, j < j_{1}$ there are three cases to consider. They are:

D-2-C-2-A: $W = b_{j_1}^{j_1-j_*x+\alpha_1}$, (n=1) $D-2-C-2-B: J_1 > J_2$ $D-2-C-2-C: j_1 < j_2$ Case D-2-C-2-A, $W = b_{j_1}^{j_1-j}$, n = 1. Then there exist k and h such that $p^{j_1-j} \cdot x + \alpha_1 = q^k \cdot h$ where $h \neq 0 \mod |q|$. Hence $W = b_{1}^{q^{k}} \cdot h = b_{1}^{p^{k}} \cdot h$ and $N(W) \equiv b_{1}^{p^{k}} \cdot h$ and is the normal form of W. For example: p = 2, q = 3, $W = b_2^{-1}b_2^{19}b_3^{1}$ $W = b_2^{18}b_3^{1} = b_2^{3^{\perp}} \cdot \hat{b}_3^{1} = b_3^{2^{\perp}} \cdot \hat{b}_3^{1} = b_3^{13}.$ For example: $W = b_0^{-1} b_0^{19} b_{ll}^{1}$, p = 2, q = 3 $W = b_{2}^{18}b_{1}^{1} = b_{2}^{3^{2}} \cdot b_{1}^{1} = b_{2}^{2^{2}} \cdot b_{1}^{1} = b_{2}^{9} = b_{2}^{3^{2}} = b_{6}^{2^{2}} = b_{6}^{4}.$ $\underbrace{\text{Case D-2-C-2-B}}_{\text{Case D-2-C-2-B}}, W = b_{J_1} \xrightarrow{\text{i}=2}^{j_1-j} b_{J_1} \xrightarrow{\text{a}_1}, 0 < \alpha_1 < p \text{ and}$ $J_1 > J_2$. Then N(W) = $b_{J_1}^{J_1 - J} \cdot x + \alpha_1$ n α_i $I_1 > b_{J_1}^{\alpha_i}$ and is the normal form or W. $\begin{array}{ccc} & p^{j_{1}-j} & p^{*x+\alpha_{1}} & n & \alpha_{i} \\ \underline{Case \ D-2-C-2-C} & W = b_{j} & i \underline{\mathbb{I}}_{2} & b_{j}, & 0 < \alpha_{1} < p \text{ and} \end{array}$ j₁ < j₂. Then there are two cases to consider. They are: D-2-C-2-C-1: $p^{j_1-j} \cdot x + \alpha_1 \neq 0 \mod |q|$.

21

$$\begin{array}{l} D-2-C-2-C-2: \quad p^{J_1-J} \cdot x+\alpha_1 \equiv 0 \mod |q|.\\ \\ \hline \begin{array}{l} \frac{Case D-2-C-2-C-1}{J_1-J} \cdot W = b_{J_1}^{p^{J_1-J} \cdot x+\alpha_1} \prod_{\underline{1}=2}^{n} b_{J_1}^{\alpha_1}, \quad 0 < \alpha_1 < p, \\ \hline \\ J_1 < J_2 \text{ and } p^{J_1-J} \cdot x+\alpha_1 \neq 0 \mod |q|.\\ \end{array} \\ \hline \begin{array}{l} \text{Then } N(W) \equiv b_{J_1}^{p^{J_1-J} \cdot x+\alpha_1} \prod_{\underline{1}=2}^{n} b_{J_1}^{\alpha_1} \text{ and is the normal form} \\ \hline \\ \text{or } W.\\ \hline \\ \frac{Case D-2-C-2-C-2}{J_1-J} \cdot W = b_{J}^{p^{J_1-J} \cdot x+\alpha_1} \prod_{\underline{1}=2}^{n} b_{J_1}^{\alpha_1}, \quad 0 < \alpha_1 < p, \\ \hline \\ J_1 < J_2 \text{ and } p^{J_1-J} \cdot x+\alpha_1 \equiv 0 \mod |q|.\\ \end{array} \\ \hline \\ \begin{array}{l} \text{Let } p^{J_1-J} \cdot x+\alpha_1 = z+1.\\ \end{array} \\ \hline \\ \text{Then } W = b_{J_1}^{i} b_{J_1}^{z} \prod_{\underline{1}=2}^{n} b_{J_1}^{\alpha_1} \text{ and } b_{J_1}^{z} \prod_{\underline{1}=2}^{n} b_{J_1}^{\alpha_1} \text{ is in normal} \\ \hline \\ \text{form.}\\ \end{array} \\ \hline \\ \begin{array}{l} \text{Let } W^{i} = b_{t}^{i} b_{J}^{\alpha_1} \cdot \prod_{\underline{1}=1}^{n} b_{J_1}^{\alpha_1'} \\ \end{bmatrix} \\ \mu^{i} = J_1 \\ \pi^{i} = J_1 \\ \pi^{i} = z \\ n^{i} = n-1 \\ J_1^{i} = J_{1+1} \end{array} \end{array}$$

and $\alpha_{i}^{\prime} = \alpha_{i+1}$ N(W) = N(W').

Clearly in every case the normal form N(W) is found in a finite number of steps.

For example:
$$W \equiv b_3^1 b_3^{26} b_6^1 b_7^1$$
, $p = 2$, $q = 3$.
 $W = b_3^{-3} b_6^1 b_7^1 = b_6^{23} b_6^1 b_7^1 = b_9^{2} b_7^1$
 $N(W) = N(b_6^1 b_6^8 b_7^1)$
 $W^{\frac{1}{2}} = b_6^1 b_6^8 b_7^1 = b_3^{2^2} \cdot b_7^1 = b_7^2 \cdot b_7^1 = b_7^7$
 $N(W^1) = b_7^7$
 $N(W^1) = b_7^7$.
Case D-3. $t = j$ and $j > j_1$.
There are three cases to consider. They are:
D-3-A: $\epsilon + \alpha = 0$
D-3-B: $\epsilon + \alpha \neq 0 \mod p$
D-3-C: $\epsilon + \alpha \equiv 0 \mod p$, $\alpha \neq -\epsilon$.
Case D-3-A. $t = j$, $j > j_1$, and $\epsilon + \alpha = 0$.
Then $W \equiv b_t^{\epsilon} b_t^{-\epsilon} \frac{n}{1 \equiv 1} b_{j_1}^{\alpha}$.
Hence $W = \frac{n}{1 \equiv 1} b_{j_1}^{\alpha}$ and there are two cases to consider.
They are:
D-3-A-1: $\frac{n}{1 \equiv 1} b_{j_1}^{\alpha}$ is in normal form.
D-3-A-2: $\frac{n}{1 \equiv 1} b_{j_1}^{\alpha}$ is not in normal form.
Then N(W) = $\frac{n}{1 \equiv 1} b_{j_1}^{\alpha}$ and is the normal form of W.

Case D-3-A-2. $\prod_{i=1}^{n} b_{j_i}^{\alpha_i}$ is not in normal form, $j > j_1$ implies $0 < \alpha_1 < |q|$.

Hence $j_1 > j_2$ and $\alpha_1 \equiv 0 \mod p$. Let $W' \equiv b_{j'}^{\epsilon'} b_{j'}^{\alpha'} \stackrel{n'}{=} b_{j'}^{\alpha'} b_{j'}^{\alpha'}$

where $\epsilon' = 1$

$\mathbf{j'} = \mathbf{j'_1} =$	Jl	5.			
$\alpha_1' = \alpha_1 - 1$		•	· .	· ·	
n' = n-1					
$\mathbf{J}_{\underline{1}}^{!} = \mathbf{J}_{\underline{1}+\underline{1}}$	•	· · ·			
$\alpha'_{i} = \alpha_{i+1}$ W = W' and	α' n' bj' i≞l	αi bi is	in nor	mal fo	rm.

 $N(W) \equiv N(W')$ and again N(W) is found in a finite number of steps.

Case D-3-B. $t = j, j > j_1$ and $\varepsilon + \alpha \neq 0 \mod p$.

Then $W = b_t^{\alpha+\epsilon} \stackrel{n}{\underset{i=1}{\overset{\alpha}{=}}} b_{j_i}^{\alpha}$ and $N(W) \equiv b_t^{\alpha+\epsilon} \stackrel{n}{\underset{i=1}{\overset{\alpha}{=}}} b_{j_i}^{\alpha}$ and is the normal form of W.

<u>Case D-3-C</u>. $t = j, j > j_1, \epsilon + \alpha \equiv 0 \mod p$ and $\alpha \ddagger -\epsilon$. Then there exist m and s such that $\epsilon + \alpha = p^m \cdot s$ where $s \ddagger 0 \mod p$.

There are two cases to consider. They are:

D-3-C-1: $m < (j-j_1)$ D-3-C-2: $m \ge (j-j_1)$.

Case D-3-C-1. $t = j, j > j_1, \epsilon + \alpha \equiv 0 \mod p, \alpha \neq -\epsilon$,
$\varepsilon + \alpha = p^{m} \cdot s$, $s \neq 0 \mod p$ and $m < (j - j_{1})$.
Then $W = b_t^{p^m \cdot s} \stackrel{n}{\underset{1 \equiv 1}{\overset{\alpha}{=}}} b_{j_1}^{\alpha_1}$, hence $W = b_{t-m}^{q^m \cdot s} \stackrel{n}{\underset{1 \equiv 1}{\overset{\alpha}{=}}} b_{j_1}^{\alpha_1}$ and
$N(W) \equiv b_{t-m}^{q^m \cdot s} \stackrel{n}{\underset{i=1}{\overset{\alpha}{=}}} \stackrel{\alpha_i}{\overset{j_i}{\overset{j_i}{=}}}$ and is the normal form of W .
Case D-3-C-2. $t = j$, $j > j_1$, $\epsilon + \alpha = 0 \mod p$, $\epsilon + \alpha = p^m \cdot s$ where
$s \neq 0 \mod p$, and $m \geq (j - j_1)$.
Then there exists an x such that $\alpha + \epsilon = p^{j-j_1} \cdot x$.
Hence $W = b_{j}^{p} \xrightarrow{j-j_{l}} x \stackrel{n}{\underset{i=l}{\overset{\alpha_{i}}{=}}} b_{j_{i}}^{\alpha_{i}}$ which implies $0 < \alpha_{l} < q $
for $j > j_1$. Hence $W = b_j^q$ $i = 1$ $b_{j_1}^{\alpha_j} = b_j$ $i = 2$ $b_{j_1}^{\alpha_j}$.
There are three cases to consider. They are:
$D-3-C-2-B: J_1 < J_2$
$D-3-C-2-C: j_1 > j_2 $ $q^{J-J_1} \cdot x + \alpha_1$
Then N(W) = $b_{j_1}^{d^{-j_1} \cdot x + \alpha_1}$ and is the normal form of W. Case D-3-C-2-B. W = $b_{j_1}^{d^{-j_1} \cdot x + \alpha_1}$ in $a_{j_1}^{\alpha_{j_1}}$, $0 < \alpha_1 < q $ and $j_1 < j_2$.
Case D-3-C-2-B. $W = b_{j_1}^{q}$ $\overset{- \cdot x + \alpha_1}{\underset{1 \equiv 2}{\text{ m}}} a_{j_1}^{\alpha_1}, 0 < \alpha_1 < q and$
$j_1 < j_2$. $j_2 \cdot j_2 \cdot j_2 \cdot j_1 \cdot x + \alpha_1 = n \alpha_1$ Then $N(W) = b_{j_1} j_1 = 2 b_{j_1}^{n}$ and is the normal form
of W.

 $J_{1}^{\dagger} = J_{1+1};$ and $\alpha_{1}^{\dagger} = \alpha_{1+1}.$ W = W'.

N(W) = N(W').

Again the normal form N(W) is found in a finite number of steps.

This covers every word of the form $W=b_t^{\varepsilon}U,\ \varepsilon=\pm 1,$ with U already in normal form.

To find the normal form N(W) of any word $W \in H_b$ one successively normalizes its terminal segment.

SECTION III

THE UNIQUENESS OF THE NORMAL FORM

Theorem 9. If $W \in H_{p,q}$, (p,q) = 1, p > 1, $|q| \neq 1$, then W and N(W) represent the same word in $H_{p,q}$. [W $H_{p,q}$ N(W)]. <u>Proof</u>. This is immediate from the definition of N(W). <u>Definition 17</u>. $K_t = \langle x_i : i \in J, i < t \} | \{x_{i-1}^q \bar{x}_i^p : i \in J, i < t \} \rangle$. Definition 18. $T_t = \langle \{x_i : i \in J, i \ge t\} | \{x_i^q \bar{x}_{i+1}^p : i \in J, i \ge t\} \rangle$. Definition 19. A_t the subgroup of K_t generated by x_{t-1}^q . Definition 20. B_t the subgroup of T_t generated by x_t^p . <u>Derinition 21</u>. $L_t : A_t \to B_t$ under $L_t(x_{t-1}^q) = x_t^p$. In Definitions 17-21, it is understood that p and q [Note. are fixed, otherwise one would write $K_{(t,p,q)}$ instead of K_{t^*}] Theorem 10. For a rixed p,q where (p,q) = 1, p > 1, $|q| \neq 1$ and for any $t \in J$, $M_{p,q} = (K_t, T_t, A_t, B_t, W = L_t(W))$ is the free product of Kt and Tt with At and Bt amalgamated.

<u>Proof</u>. $M_{p,q} = \langle x_{i}: i \in J | x_{i-1}^{q} \vec{x}_{i}^{p}: i \in J \rangle$ $K_{t} = \langle x_{i}: i \in J, i < t | x_{i+1}^{q} \vec{x}_{i+1}^{p}: i \in J, i < t \rangle$ is the subgroup of $M_{p,q}$ generated by x_{i} , i < t.

 $T_{t} = \langle x_{i} : i \in J, i \geq t | x_{i}^{q} \overline{x}_{l+1}^{p} : i \in J, i \geq t \rangle \text{ is the sub-}$ group of M_{p,q} generated by x_{i} , $i \geq t$.

 A_t is the subgroup of K_t generated by x_{t-1}^q . B_t is the subgroup of T_t generated by x_t^p .

 $K^{}_{t}$ and $T^{}_{t}$ are disjoint and $L^{}_{t}$ is an isomorphism between $A^{}_{t}$ and $B^{}_{t}.$

Let
$$M_{p,q} = \langle x_{j} : i \in J | x_{j}^{q} \overline{x}_{j+1}^{p} : i \in J \rangle$$

 $F_{b} = \langle b_{j} : i \in J | \rangle$
 $H_{p,q} = \langle b_{j} : i \in J | b_{j}^{q} \overline{b}_{j+1}^{p} : i \in J \rangle$
 $P_{p,q} : F_{b} \rightarrow M_{p,q} \text{ under } P(b_{j}) = x_{j} \text{ and } P(l) = l.$

Theorem 11. If W,W' \in F_b then the following three statements are equivalent.

(1) $P(W) \underset{M_{p,q}}{=} P(W')$

(2)
$$N(W) \underset{\text{Hp,q}}{=} N(W')$$

(3) W _H W'

Proof. (1) \Rightarrow (3) is obvious. (1) and (3) are equivalent under a change of notation.

(2) \Leftrightarrow (3) By Theorem 9 N(W) = W in H_{p,q}. Hence W $\stackrel{H_{p,q}}{=}$ W' \Leftrightarrow N(W) = N(W') so (2) and (3) are equivalent. This proves Theorem 11.

Theorem 12. For any fixed p,q with (p,q) = 1, p > 1, $|q| \neq 1$. If i) W is in normal form, and ii) b_t^{γ} is in normal form or $\gamma = 0$,

q.e.d.

then
$$W = b_t^{\alpha}$$
 if and only if
 $H_{p,q} = b_t^{\alpha}$ if and only if
 $iii) \quad W \equiv 1 \text{ and } \gamma = 0, \text{ or}$
 $iv) \quad W \equiv b_t^{\gamma}.$

Proof. The proof follows in the form of five lemmas.

Lemma 12-1. Suppose i) W = 1, and ii) b_t^Y is in normal form or $\gamma = 0$. Then $W_{H_{p,q}} = b_t^Y$ if and only if $\gamma = 0$. Proof of Lemma 12-1. Let W = 1, and b_t^Y is in normal form or $\gamma = 0$, and $W_{H_{p,q}} = b_t^Y$. Then $l_{H_{p,q}} = b_t^Y$. Then $l_{H_{p,q}} = b_t^Y$. $P(1)_{M_{p,q}} = P(b_t^Y)$ $l_{M_{p,q}} = x_t^Y$ by Theorem 7 $\psi(1) = \psi(x_t^Y)$ $0 = \gamma(\frac{q}{p})^t, \ \psi(x_t^g) = \varepsilon(\frac{q}{p})^t$ So $\gamma = 0$.

Conversely, if $\gamma = 0$ then $b_t^0 = 1 \equiv W$.

Lemma 12.2. Suppose

i)
$$W \equiv b_{j}^{\alpha}$$
 is in normal form, and
ii) b_{t}^{γ} is in normal form or $\gamma = 0$.
Then $W_{H_{p,q}} = b_{t}^{\gamma}$ if and only if $W \equiv b_{t}^{\gamma}$.

30,

Proof of Lemma 12.2. $W \equiv b_j^{\alpha}$ is in normal form implies $\alpha \neq 0 \mod |q|$ and b_t^{γ} in normal form implies $\gamma \neq 0 \mod |q|$. If $W_{H_{p,q}^{=}} = b_t^{\gamma}$

then

 $\alpha \neq 0$ as W is in normal form.

 $\mathbf{b}^{\alpha}_{\mathbf{j}} \stackrel{\mathrm{H}}{=} \mathbf{b}^{\gamma}_{\mathbf{t}}$

$$P(b_{j}^{\alpha}) \underset{p,q}{\overset{M}{=}} P(b_{t}^{\gamma})$$

$$x_{j}^{\alpha} \underset{p,q}{\overset{M}{=}} x_{t}^{\gamma}$$

$$\psi(x_{j}^{\alpha}) = \psi(x_{t}^{\gamma})$$

$$\alpha(\frac{q}{p})^{j} = \gamma(\frac{q}{p})^{t}.$$

Now $\alpha q^{j}p^{t} = \gamma q^{t}p^{j}$

 $\alpha \neq 0$ implies $\gamma \neq 0$.

Moreover $\alpha \neq 0 \mod |q|$, $\gamma \neq 0 \mod |q|$. Therefore as (p,q) = 1

t = J

 $\alpha = \gamma$

and
$$W \equiv b_{+}^{Y}$$
.

The converse is trivial! If $W \equiv b_t^{\gamma}$ then $W \underset{p,q}{=} b_t^{\gamma}$.

Lemma 12.3. Let $N(b_t^{\gamma}) \equiv b_t^{\gamma}$ or $\gamma = 0$ and $N(W) \equiv b_j^{\alpha} b_{j_1}^{\alpha_1}$, $j \neq j_1$. Then $W \underset{p,q}{H_{p,q}} = b_t^{\gamma}$.

Proof of Lemma 12.3. Let $N(b_t^{\gamma}) \equiv b_t^{\gamma}$ or $\gamma = 0$. b_t^{γ} is in normal form iff $\gamma \neq 0 \mod |q|$. $W \equiv b_j^{\alpha} b_{j_1}^{\alpha_1}$, $j \neq j_1$ is in
normal rorm.

Then for $j < j_1$, $\alpha \neq 0 \mod |q|$, and $0 < \alpha_1 < p$ while for $j > j_1$, $\alpha \neq 0 \mod p$, and $0 < \alpha_1 < |q|$. (Definition 16).

Suppose to the contrary that $W = b_t^{\gamma}$, $W = b_j^{\alpha} b_j^{\alpha}$ with $j \neq j_1$ and W is in normal form, and b_t^{γ} is in normal form or $\gamma = 0$.

Then
$$b_{J}^{\alpha}b_{J_{1}}^{\alpha}H_{p,q}^{\mu} b_{t}^{\gamma}$$

 $P(b_{J}^{\alpha}b_{J_{1}}^{\alpha}) \xrightarrow{M_{p,q}} P(b_{t}^{\gamma})$
 $x_{J}^{\alpha}x_{J_{1}}^{\alpha}M_{p,q}^{\mu} x_{t}^{\gamma}$
 $\psi(x_{J}^{\alpha}x_{J_{1}}^{\alpha}) = \psi(x_{t}^{\gamma})$
 $\alpha(\frac{q}{p})^{J} + \alpha_{1}(\frac{q}{p})^{J_{1}} = \gamma(\frac{q}{p})^{t}.$

(*) $\alpha q^{j}p^{j}l^{+t} + \alpha_{l}q^{j}p^{j+t} = \gamma q^{t}p^{j+j}l$

It will be shown that (*) is impossible.

Case A. If $j < j_1$, j < t then in (*) q is a divisor of αp , (p,q) = 1, hence $q|\alpha$.

But W is in normal form and as $j < j_1, \alpha \neq \mod |q| - \alpha$ contradiction.

<u>Case B.</u> If $j > j_1$ and $t > j_1$, then in (*) q is a divisor of $\alpha_1 p^{j+t}$, (p,q) = 1 hence $q | \alpha_1$. But W is in normal form so $\alpha_1 \neq 0 \mod |q|$ as $j > j_1 - a$ contradiction.

<u>Case C</u>. If t < j and $t < j_1$, then in (*) q is a divisor of

 $\gamma p^{\tilde{J}+\tilde{J}}$. (p,q) = 1 hence $q | \gamma$. But b_t^{γ} is in normal form or $\gamma = 0$.

Hence
$$\gamma = 0$$

and $b_{J}^{\alpha} b_{J}^{\alpha} H_{p,q}^{\beta}$
 $P(b_{J}^{\alpha} b_{J}^{\alpha}) H_{p,q}^{\beta}$
 $P(b_{J}^{\alpha} b_{J}^{\alpha}) H_{p,q}^{\beta}$
 $x_{J}^{\alpha} x_{J}^{\alpha} H_{p,q}^{\beta}$
 $\psi(x_{J}^{\alpha} x_{J}^{\alpha}) = \psi(1)$
 $\alpha(\frac{q}{p})^{J} + \alpha_{1}(\frac{q}{p})^{J} = 0$
 $\alpha q^{J} p^{J} + \alpha_{1} q^{J} p^{J} = 0.$

If $j < j_1$ then $q \mid \alpha p^{j_1}$, (p,q) = 1 hence $q \mid \alpha$. But $j < j_1$ and W is in normal form hence $\alpha \neq 0 \mod |q| - \alpha$ contradiction.

If $j > j_1$ then $p \mid \alpha q^j$, (p,q) = 1 hence $p \mid \alpha$. But $j > j_1$ and W is in normal form hence $\alpha \neq 0 \mod p - \alpha$ contradiction.

Case D.
$$t = j_1$$

 $b_{J}^{\alpha} b_{J_1}^{\alpha} H_{p,q}^{=} b_{J_1}^{\gamma}$
 $b_{J}^{\alpha} H_{p,q}^{=} b_{J_1}^{\gamma-\alpha_1}$.
If $\gamma-\alpha_1 = 0$ then $b_{J}^{\alpha} H_{p,q}^{=} b_{J_1}^{0}$
 $P(b_{J}^{\alpha}) M_{p,q}^{=} P(b_{J_1}^{0})$
 $x_{J}^{\alpha} M_{p,q}^{=} x_{J_1}^{0}$

33.

 $\psi(\mathbf{x}_{\mathbf{j}}^{\alpha}) = \psi(\mathbf{x}_{\mathbf{j}_{\mathbf{j}}}^{O})$

34.

If $j < j_1$ then $q | \alpha p^{j_1}$, (p,q) = 1 hence $q | \alpha$. But $j < j_1$ and W is in normal form implies $\alpha \neq 0 \mod |q| - \alpha$ contradiction.

If $j > j_1$ then $p \mid \alpha a^j$, (p,q) = 1 hence $p \mid \alpha$. But $j > j_1$ and W is in normal form implies $\alpha \neq 0 \mod p - \alpha$ contradiction.

<u>Case E</u>. t

$$b_{J}^{\alpha}b_{J_{1}}^{\alpha}H_{p,q}^{\beta}b_{J_{1}}^{\gamma}H_{p,q}^{\beta}b_{J}^{\gamma}$$

$$b_{J_{1}}^{\alpha}H_{p,q}^{\beta}b_{J}^{\gamma-\alpha}$$

$$P(b_{J_{1}}^{\alpha}) = P(b_{J}^{\gamma-\alpha})$$

$$x_{J_{1}}^{\alpha}M_{p,q}^{\gamma-\alpha}$$

$$\psi(x_{J_{1}}^{\alpha}) = \psi(x_{J})^{\gamma-\alpha}$$

$$\alpha_{1}(\frac{q}{p})^{J_{1}} = (\gamma-\alpha)(\frac{q}{p})^{J}.$$

If $\gamma - \alpha = 0$ then $\alpha_1 = 0$, but $W \equiv b_j^{\alpha} b_{j_1}^{\alpha}$ is in normal form and $\alpha_1 \neq 0$ - a contradiction.

If $\gamma - \alpha \neq 0$ then $\alpha_{1} p^{j} q^{j} = (\gamma - \alpha) p^{j} q^{j}$.

If $j < j_1$ then $p|\alpha_1 q^{j_1}$ but (p,q) = 1 implies $p|\alpha_1$ but $b_{j}^{\alpha_1} b_{j_1}^{\alpha_1}$ is in normal form and $j < j_1$, hence $0 < \alpha_1 < p - a$ contradiction.

If $j > j_1$ then $q |\alpha_1 p^j$ but (p,q) = 1 implies $q |\alpha_1|$ but $b_j^{\alpha_j} b_{j_1}^{\alpha_1}$ is in normal form and $j > j_1$, hence $0 < \alpha_1 < |q| - a$ contradiction.

This proves Lemma 12.3.

Lemma 12.4. If $W \equiv b_{j}^{\alpha} \stackrel{n}{\underset{i=1}{\overset{n}{=}}} b_{j}^{\alpha} \stackrel{i}{\underset{i=1}{\overset{i}{=}}} \text{ is in normal form, then}$ $\stackrel{m}{\underset{i=k}{\overset{n}{=}}} \stackrel{\alpha_{i}}{\underset{j_{1}}{\overset{j}{=}}} \text{ is in normal form where } 1 \le k \le m \le n$ whenever: (1) k = 1, $j < j_{1}$ and p < |q|, or (2) k = 1, $j > j_{1}$ and p > |q|, or (3) $k \neq 1$, $j_{k-1} < j_{k}$ and p < |q|, or (4) $k \neq 1$, $j_{k-1} > j_{k}$ and p > |q|.

Proof. If $W \equiv b_j^{\alpha} \stackrel{n}{\underset{j=1}{\overset{n}{\underset{j=1}{\underset{j=1}{\atop}}}} b_{j_1}^{\alpha}$ is in normal form, then: i) if $j < j_1$, then $\alpha \neq 0 \mod |q|$ and $0 < \alpha_1 < p$, and ii) if $j > j_1$, then $\alpha \neq 0 \mod p$ and $0 < \alpha_1 < |q|$, and iii) if $j_1 > j_{1-1}$ then $0 < \alpha_1 < p$, and iv) if $j_1 < j_{1-1}$ then $0 < \alpha_1 < |q|$.

Let $W' \equiv \prod_{i=k}^{m} b_{j_i}^{\alpha_i}$ where $1 \le k \le m \le n$.

Hence by the definition of being in normal form, the only conditions to check to see if W' is in normal form are:

a) if
$$J_k \leq J_{k+1}$$
 is $\alpha_k \neq 0 \mod |q|$
b) if $J_k > J_{k+1}$ is $\alpha_k \neq 0 \mod p$
and c) if $k = m$ is $\alpha_k \neq 0 \mod |q|$.
Now if (1): $k = 1$, $j < J_1$, and $p < |q|$ then
 $0 < \alpha_k = \alpha_1 < p < |q|$ and $\alpha_k \neq 0 \mod p$, $\alpha_k \neq 0 \mod |q|$.
Or if (2): $k = 1$, $j > J_1$ and $p > |q|$ then
 $0 < \alpha_k = \alpha_1 < |q| < p$ and $\alpha_k \neq 0 \mod p$, $\alpha_k \neq 0 \mod |q|$.
Or if (3): $k \neq 1$, $J_{k-1} < J_k$ and $p < |q|$ then
 $0 < \alpha_k < p < |q|$ and $\alpha_k \neq 0 \mod p$, $\alpha_k \neq 0 \mod |q|$.
Or if (4): $k \neq 1$, $J_{k-1} > J_k$ and $p > |q|$ then
 $0 < \alpha_k < |q| < p$ and $\alpha_k \neq 0 \mod p$, $\alpha_k \neq 0 \mod |q|$.
Or if (4): $k \neq 1$, $J_{k-1} > J_k$ and $p > |q|$ then
 $0 < \alpha_k < |q| < p$ and $\alpha_k \neq 0 \mod p$, $\alpha_k \neq 0 \mod |q|$.
Hence if condition (1), (2), (3) or (4) are met, then
W' is in normal form.

36.

·

This proves Lemma 12.4.

Lemma 12.5. Let $W \equiv b_j^{\alpha} \stackrel{V}{\underset{i=1}{\overset{j}{=}}} \stackrel{a_i}{\overset{j_i}{\underset{j_i}{=}}}, j \neq j_1, j_i \neq j_{i-1}$ be in normal form, and let b_t^{γ} be in normal form or $\gamma = 0$. Then $W \xrightarrow{H^{\frac{1}{p}}}_{p,q} b_t^{\gamma}$ for $v \ge 2$.

Proof of Lemma 12.5. Induction hypothesis: $W \underset{p,q}{+} b_t^{\gamma}$ for $l \leq v \leq n$. Assume the contrary the induction hypothesis holds and $W \underset{p,q}{+} b_t^{\gamma}$, v = n $b_{j}^{\alpha} \underset{i=1}{\overset{n}{=}} b_{j_i}^{\gamma}$, w = n

There are two cases to consider. They are:

Case 1. $\gamma = 0$ Case 2. $\gamma \neq 0$. Case 1. If $\gamma = 0$, then $b_{J}^{\alpha} \stackrel{n}{\underset{j=1}{\blacksquare}} b_{J_{1}}^{\alpha} \stackrel{n}{\underset{p,q}{\boxplus}} 1 \quad n > 1$ $b_{J}^{\alpha} \stackrel{n-1}{\underset{j=1}{\blacksquare}} b_{J_{1}}^{\alpha} \stackrel{n}{\underset{p,q}{\boxplus}} b_{J_{n}}^{-\alpha}$ Let $-\alpha_{n} = q^{x} \cdot s$, $s \neq 0 \mod |q|$. Then $b_{J}^{\alpha} \stackrel{n-1}{\underset{j=1}{\blacksquare}} b_{J_{1}}^{\alpha} \stackrel{n}{\underset{p,q}{\boxplus}} b_{J_{n}+s}^{p^{x} \cdot s}$ and $b_{J}^{\alpha} \stackrel{n-1}{\underset{j=1}{\blacksquare}} b_{J_{1}}^{\alpha}$ is in normal form and $b_{J_{n}+s}^{p^{x} \cdot s}$ is in normal form. Hence by the induction hypothesis $b_{J}^{\alpha} \stackrel{n-1}{\underset{j=1}{\blacksquare}} b_{J_{1}}^{\alpha} \stackrel{n}{\underset{p,q}{\boxplus}} b_{J_{n}+s}^{p^{x} \cdot s} - a \text{ contradiction.}$ <u>Case 2</u>. If $\gamma \neq 0$ then

37.

 $b_{j}^{\alpha} \stackrel{n}{\underset{j=1}{\overset{n}{\underset{j_{j}}{\overset{n}{\underset{j_{j}}{\underset{j_{j}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,q}}{\overset{n}{\underset{p,q}}{\underset{p,$

There exist s and x such that j, $j_i \in [s,x]$. By Theorem 10, for any z

 $M_{p,q} = (K_z, T_z, A_z, B_z, W = L_z(W))).$ There are two cases to consider. They are 2A: p < |q|

2B: p > |q|.

<u>Case 2A</u>. If p < |q| then set $M_{p,q} = (K_{s+1}, T_{s+1}, A_{s+1}, B_{s+1}, W = L_{s+1}(W)).$ Now $b_{j}^{\alpha} \in K_{s+1}$ if and only if j = s and $b_{j}^{\alpha} \in K_{s+1}$ if and

only if $j_1 = s$. As $j_1, j_1 \in [s, x]$. There exist U_1, U_2, \ldots, U_n ; V_1, V_2, \ldots, V_r such that $W \equiv U_1 V_1 U_2 V_2, \dots, U_n V_n$ where $U_h \in K_{s+1}$, $V_h \in T_{s+1}$, $l \le h \le r$; and $V_h \neq l$ if h < r; and $U_h \neq 1$ if 1 < h; and for some h, $U_h \neq 1$; and for some k, $V_k \neq 1$. Also $b_t^{\gamma} \in K_{s+1}$ or $b_t^{\gamma} \in T_{s+1}$. Hence for some h either $U_h \in A_{s+1}$ and $U_h \neq 1$; or $V_h \in B_{s+1}$ and $V_h \neq 1$. But if $U_1 \neq 1$ then $U_1 \equiv b_{j}^{\alpha}$, j = s, $\alpha \neq 0 \mod |q|$ hence $U_1 \notin A_{s+1}$. And if h > 1 then $U_h \equiv b_g^{\beta h}$ where $0 < \beta_h < |q|$ hence $U_h \notin A_{s+1}$ And if $U_{l} \equiv l$ then $V_{l} \equiv b_{j}^{\alpha}$ or $V_{l} \equiv b_{j}^{\alpha}$ is $and V_{l}$ is in normal form hence $V_{1} \stackrel{i}{\underset{p,q}{H}} b_{s+1}^{p \cdot m}$ by the induction hypothesis as the normal form of b_{s+1}^{p*m} is of the form b_v^{δ} . And if $U_{l} \neq l$ then $V_{l} \equiv \prod_{\substack{i=k_{l} \\ j=k_{l}}}^{n_{l}} a_{j}$ and V_{l} is in normal form and $V_{1} \stackrel{+}{H}_{p,q}^{p \cdot m} \stackrel{b_{s+1}^{p \cdot m}}{\overset{+}{}}$ And for h > 1 if $V_h \neq 1$ then $V_h \equiv \prod_{i=k_h}^{n_h} a_i$ and is in normal form and $V_{h H_{p,q}} \neq b_{s+1}^{p \cdot m}$ Therefore for all h where $U_h \neq 1$, $U_h \notin A_{s+1}$; and for all

38,

h where $V_h \neq 1$, $V_h \notin B_{s+1}$ - a contradiction.

<u>Case 2B.</u> If p > |q| then set $M_{p,q} = (K_x, T_x, A_x, B_x, W = L_x(W)).$ Now $b_j^{\alpha} \in T_x$ if and only if j = x and $b_{j_1}^{\alpha_1} \in T_x$ if and only if $j_1 = x$ as $j, j_1 \in [s, x]$.

39.

There exist $U_1, U_2, \dots, U_r, V_1, V_2, \dots, V_r$ such that $W = U_1 V_1 U_2 V_2, \dots, U_r V_r$

where $U_h \in T_x$, $V_h \in K_x$, $1 \le h \le r$; and

 $U_h \neq 1$ if h > 1; and

 $V_h \neq l$ if h < r; and

for some h, $U_h \neq 1$; and

for some k, $V_k \neq 1$.

Also $b_t^{\gamma} \in K_x$ or $b_t^{\gamma} \in T_x$.

Hence for some h either $U_h \in B_x$ and $U_h \neq 1$, or $V_h \in A_x$ and $V_h \neq 1$.

But if $U_1 \neq 1$ then $U_1 \equiv b_j^{\alpha}$, j = t. Hence $\alpha \neq 0 \mod p$. Hence $U_1 \notin B_x$.

And if h > l then $U_h = b_t^{\beta h}$ where $0 < \beta_h < p$ hence $U_h \notin B_x$.

And if $U_1 \equiv 1$ then $V_1 \equiv b_j^{\alpha}$ or $V_1 \equiv b_j^{\alpha}$ if $\prod_{i=1}^{n} b_{ji}^{\alpha}$ and is in normal form. Hence $V_1 \mapsto p, q$ by the induction hypothesis as the normal form of b_{x-1}^{qm} is of the form b_v^{δ} .

And if $U_1 \neq 1$ then $V_1 \equiv \lim_{\substack{i=k_1 \\ j=k_2 \\ p,q}} a_1^{\alpha_1}$ is in normal form and $V_1 \mapsto b_{x-1}^{qm}$.

And for h > 1 if $V_h \neq 1$ then $V_h \equiv i I_{k_h} a_i$ and is in normal form and $V_h = b_{x-1}^{qm}$.

Therefore, for all h where $U_h \neq I U_h \notin B_x$ and for all h where $V_h \neq I$, $V_h \notin A_x$ - a contradiction.

This proves Lemma 12.5 and completes the proof of Theorem 12.

Theorem 13. If $W \in H_{p,q}$ then W = 1 if and only if N(W) = 1. <u>Proof</u>. This follows immediately from Theorem 12.

SECTION IV

CONCLUDING THEOREM

Let
$$N_{p,q} = \langle y, x | \bar{y} x^p y \bar{x}^q \rangle$$
, $(p,q) = l, p > l, |q| \neq l$.
 $F = \langle a, b | \rangle$
 $K_{p,q} = F(\bar{a} b^p a \bar{b}^q)$, $(p,q) = l, p > l, |q| \neq l$.
 $N_{p,q} \simeq F \mod K_{p,q}$

and δ the obvious isomorphism from N to F/K p,q.

Also let
$$F_b = \langle b_i : i \in J \rangle$$

G = F(b)

7

and \emptyset : G \rightarrow F_b the isomorphism given as follows:

If
$$W \in G$$
, and $\rho(W) \equiv \prod_{\substack{i=1 \\ j \in J}}^{n} \alpha^{\alpha} j \beta^{i} j$
then $\beta(W) = \prod_{\substack{i=1 \\ j \in J}}^{n} \beta^{j} j j$
 $(\overline{j} \sum_{\substack{j \in J}}^{n} \alpha_{j})$
and if $\rho(W) \equiv 1$ then $\beta(W) \equiv 1$.

For $W \in F_b$, N(W) designates the normal form of W as defined in Section II.

Theorem 14. If U is a word on the generators of $N_{p,q}$ then U = 1if and only if

i) $\sigma_a(\delta(U)) = 0$, and

11) $N(\emptyset(\delta(U))) \equiv 1.$

<u>Proof</u>. Clearly U = 1 if and only if $\delta(U) = 1 \mod K_{p,q}$. If W = 1 mod $K_{p,q}$ then $\sigma_a(W) = 0$ since then W is the product of conjugates of $\overline{ab}^{P}a\overline{b}^{q}$. [4] pp. 71-72. Hence if U = 1 then $\sigma_a(\delta(U)) = 0$. By Theorem 6, $W = 1 \mod K_{p,q}$ if and only if $\beta(W) = 1$, hence U = 1 if and only if $K_{p,q}$ $p(\delta(W)) = 1$. By Theorem 13, W = 1 if and only if $H_{p,q}$

 $N(W) \equiv 1.$

Therefore, U = 1 if and only if 1) $\sigma_a(\delta(U)) \stackrel{Np,q}{=} 0$, and 11) $N(\emptyset(\delta(U))) \equiv 1$.

This solves the word problem for

 $\langle y, x | \bar{y} x^p y \bar{x}^q \rangle$, (p,q) = 1, p > 1, $q \neq 1$. For example $y^2 x^3 \bar{y}^3 x^4 y \bar{x}^6 y \bar{x}^2 \bar{y} = 1$.

 $\frac{\text{Proof of example.}}{\delta(y^2 x^3 \bar{y}^3 x^4 y \bar{x}^6 y \bar{x}^2 \bar{y})} \equiv a^2 b^3 \bar{a}^3 b^4 a \bar{b}^6 a \bar{b}^2 \bar{a}$ $\sigma_a (a^2 b^3 \bar{a}^3 b^4 a \bar{b}^6 a \bar{b}^2 \bar{a}) = 0$ $\emptyset(a^2 b^3 \bar{a}^3 b^4 a \bar{b}^6 a \bar{b}^2 \bar{a}) = b_{-2}^3 b_1^4 \bar{b}_0^6 \bar{b}_{-1}^2$ $\text{Normalizing } \emptyset(\delta(y^2 x^3 \bar{y}^3 \bar{x}^4 y x^6 y \bar{x}^2 \bar{y})) \text{ one gets }$ $N(\emptyset(\delta(y^2 x^3 \bar{y}^3 \bar{x}^4 y x^6 y \bar{x}^2 \bar{y})) \equiv N(b_{-2}^3 \bar{b}_1^4 b_0^6 \bar{b}_{-1}^2).$

One normalizes $N(b_{-2}^3 \overline{b}_{-1}^4 b_0^6 \overline{b}_{-1}^2)$ by successively normalizing its terminal segment.

	$N(\vec{b}_{-1}^{l}) = \vec{b}_{-1}^{l}$	
	$\mathbb{N}(\overline{\mathbf{b}}_{-1}^{2}) \equiv \mathbb{N}(\overline{\mathbf{b}}_{-1}^{1} \cdot \mathbb{N}(\overline{\mathbf{b}}_{-1}^{1})) \equiv \mathbb{N}(\overline{\mathbf{b}}_{-1}^{1}\overline{\mathbf{b}}_{-1}^{1}) \equiv \overline{\mathbf{b}}_{-1}^{2}$	
	$\mathbb{N}(\mathbf{b}_{0}^{1}\overline{\mathbf{b}}_{-1}^{2}) \equiv \mathbb{N}(\mathbf{b}_{0}^{1} \cdot \mathbb{N}(\overline{\mathbf{b}}_{-1}^{2})) \equiv \mathbb{N}(\mathbf{b}_{0}^{1}\overline{\mathbf{b}}_{-1}^{2})$	
	$= \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{3}\mathbf{b}_{-1}^{1}) = \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{0}^{2}\mathbf{b}_{-1}^{1}) = \mathbf{\bar{b}}_{0}^{1}\mathbf{b}_{-1}^{1}$	
	$\mathbb{N}(\mathbf{b}_{0}^{2}\overline{\mathbf{b}}_{-1}^{2}) = \mathbb{N}(\mathbf{b}_{0}^{1} \cdot \mathbb{N}(\mathbf{b}_{0}^{1}\overline{\mathbf{b}}_{-1}^{2})) = \mathbb{N}(\mathbf{b}_{0}^{1}\overline{\mathbf{b}}_{0}^{1}\mathbf{b}_{-1}^{1}) = \mathbf{b}_{-1}^{1}$	1
	$\mathbb{N}(\mathbf{b}_{0}^{3}\overline{\mathbf{b}}_{-1}^{2}) \cong \mathbb{N}(\mathbf{b}_{0}^{1} \cdot \mathbb{N}(\mathbf{b}_{0}^{2}\overline{\mathbf{b}}_{-1}^{2})) \cong \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}) \cong \mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}$	1
	$\mathbb{N}(\mathbf{b}_{0}^{4}\overline{\mathbf{b}}_{-1}^{2}) = \mathbb{N}(\mathbf{b}_{0}^{1} \cdot \mathbb{N}(\mathbf{b}_{0}^{3}\overline{\mathbf{b}}_{-1}^{2})) = \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1})$	
	$\equiv \mathbb{N}(\mathbf{b}_{0}^{2}\mathbf{b}_{-1}^{1}) \equiv \mathbb{N}(\mathbf{b}_{-1}^{3}\mathbf{b}_{-1}^{1}) \equiv \mathbf{b}_{-1}^{4}$	
	$\mathbb{N}(\mathbf{b}_{0}^{5}\overline{\mathbf{b}}_{-1}^{2}) \equiv \mathbb{N}(\mathbf{b}_{0}^{1} \cdot \mathbb{N}(\mathbf{b}_{0}^{4}\overline{\mathbf{b}}_{-1}^{2})) \equiv \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{4})$	
	$\equiv \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{3}\mathbf{b}_{-1}^{1}) \equiv \mathbb{N}(\mathbf{b}_{0}^{1}\mathbf{b}_{0}^{2}\mathbf{b}_{-1}^{1}) \equiv \mathbf{b}_{0}^{3}\mathbf{b}_{-1}^{1}$	
	$N(b_0^6 \overline{b}_{-1}^2) \equiv N(b_0^1 \cdot N(b_0^5 \overline{b}_{-1}^2)) \equiv N(b_0^1 b_0^3 b_{-1}^1)$	
	$\equiv N(b_0^4 b_{-1}^1) \equiv N(b_{-1}^6 b_{-1}^1) \equiv b_{-1}^7$:
	$\mathbb{N}(\bar{\mathbf{b}}_{1}^{1}\mathbf{b}_{0}^{6}\bar{\mathbf{b}}_{-1}^{2}) \cong \mathbb{N}(\bar{\mathbf{b}}_{1}^{1}\cdot\mathbb{N}(\mathbf{b}_{0}^{6}\bar{\mathbf{b}}_{-1}^{2})) \cong \mathbb{N}(\bar{\mathbf{b}}_{1}^{1}\mathbf{b}_{-1}^{7})$	
,	$= \mathrm{N}(\bar{\mathrm{b}}_{1}^{1}\mathrm{b}_{-1}^{6}\mathrm{b}_{-1}^{1}) = \mathrm{N}(\bar{\mathrm{b}}_{1}^{1}\mathrm{b}_{0}^{4}\mathrm{b}_{-1}^{1})$	
	$\equiv N(\bar{b}_{1}^{1}b_{0}^{3}b_{0}^{1}b_{-1}^{1}) \equiv N(\bar{b}_{1}^{1}b_{1}^{2}b_{0}^{1}b_{-1}^{1}) \equiv b_{1}^{1}$	b ^l b ^l
	$\mathbb{N}(\bar{\mathbf{b}}_{1}^{2}\mathbf{b}_{0}^{6}\bar{\mathbf{b}}_{-1}^{2}) = \mathbb{N}(\bar{\mathbf{b}}_{1}^{1} \cdot \mathbb{N}(\bar{\mathbf{b}}_{1}^{1}\mathbf{b}_{0}^{6}\mathbf{b}_{-1}^{2})) = \mathbb{N}(\bar{\mathbf{b}}_{1}^{1}\mathbf{b}_{1}^{1}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}$	$) \equiv b_0^{l} b_{-l}^{l}$
. :	$\mathbb{N}(\mathbf{b}_{1}^{-3}\mathbf{b}_{0}^{6}\mathbf{\bar{b}}_{-1}^{2}) = \mathbb{N}(\mathbf{\bar{b}}_{1}^{1} \cdot \mathbb{N}(\mathbf{\bar{b}}_{1}^{2}\mathbf{b}_{0}^{6}\mathbf{\bar{b}}_{-1}^{2})) = \mathbb{N}(\mathbf{\bar{b}}_{1}^{1}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1})$	$= \overline{b}_{1}^{1} b_{0}^{1} b_{-1}^{1}$
4.		

43.

$$\begin{split} \mathrm{N}(\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2}) &= \mathrm{N}(\mathbf{5}_{1}^{1}\cdot\mathrm{N}(\mathbf{5}_{1}^{3}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2})) &= \mathrm{N}(\mathbf{5}_{1}^{1}\mathbf{5}_{1}^{1}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}) \\ &= \mathrm{N}(\mathbf{5}_{1}^{2}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}) &= \mathrm{N}(\mathbf{5}_{0}^{3}\mathbf{b}_{0}^{1}\mathbf{b}_{-1}^{1}) &= \mathrm{N}(\mathbf{5}_{0}^{2}\mathbf{b}_{-1}^{1}) \\ &= \mathrm{N}(\mathbf{5}_{-1}^{3}\mathbf{b}_{-1}^{1}) &= \mathbf{5}_{-1}^{2} \\ \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2}) &= \mathrm{N}(\mathbf{b}_{-2}^{1}\cdot\mathbf{N}(\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2})) &= \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{-2}^{2}) \\ &= \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{-1}^{2}\mathbf{b}_{-1}^{0}) &= \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{-2}^{3}\mathbf{b}_{-1}^{0}) &= \mathrm{N}(\mathbf{5}_{-2}^{2}\mathbf{b}_{-1}^{0}) &= \mathbf{5}_{-2}^{2} \\ \mathrm{N}(\mathbf{b}_{-2}^{2}\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2}) &= \mathrm{N}(\mathbf{b}_{-2}^{1}\cdot\mathbf{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2})) \\ &= \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{-2}^{2}) &= \mathbf{5}_{-2}^{1} \\ \mathrm{N}(\mathbf{b}_{-2}^{3}\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2}) &= \mathrm{N}(\mathbf{b}_{-1}^{1}\cdot\mathrm{N}(\mathbf{b}_{-2}^{2}\mathbf{5}_{1}^{4}\mathbf{b}_{0}^{6}\mathbf{5}_{-1}^{2})) \\ &= \mathrm{N}(\mathbf{b}_{-2}^{1}\mathbf{5}_{-2}^{2}) &= \mathrm{N}(\mathbf{b}_{-2}^{0}) &= \mathrm{I}. \\ \mathrm{Hence} \ \mathbf{y}^{2}\mathbf{x}^{3}\mathbf{y}^{3}\mathbf{x}^{4}\mathbf{y}\mathbf{x}^{6}\mathbf{y}\mathbf{x}^{2}\mathbf{y} \xrightarrow{\mathrm{N}}_{\mathrm{P},\mathrm{q}}^{1} \\ &= \mathbf{y}^{2}\mathbf{x}^{3}\mathbf{y}^{3}\mathbf{x}^{4}\mathbf{y}\mathbf{x}^{6}\mathbf{y}\mathbf{x}^{2}\mathbf{y} = \mathbf{1}. \end{split}$$

Note: Set $R = \bar{y}x^2y\bar{x}^3$, $R^{-1} = x^3\bar{y}\bar{x}^2y$. $y^2x^3\bar{y}^3x^4y\bar{x}^6y\bar{x}^2y = 1$ in N hence it can be written as a product of conjugates of R p, qand R^{-1} . As a check on the computation, such a product will be shown.

$$y^{2}x^{3}\overline{y}^{3}x^{4}y\overline{x}^{6}y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}^{3}x^{2}y\overline{y}x^{2}y\overline{x}^{6}y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}^{3}x^{2}y \cdot \overline{y}x^{2}y\overline{x}^{3} \cdot \overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}^{3}x^{2}y \cdot \mathbb{R} \cdot \overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}^{3}x^{2}y\overline{x}^{3} \cdot \mathbb{R} \cdot \overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}^{2} \cdot \overline{y}x^{2}y\overline{x}^{3} \cdot x^{3}\mathbb{R}\overline{x}^{3} \cdot y\overline{x}^{2}\overline{y}$$

44.

q.e.d,

$$= y^{2}x^{3}\overline{y}^{2} \cdot R \cdot x^{3}R\overline{x}^{3} \cdot y\overline{x}^{2}\overline{y}$$

$$= y^{2}x^{3}\overline{y}\overline{x}^{2}y\overline{y}^{2}yx^{2}\overline{y} \cdot R \cdot x^{3}R\overline{x}^{3} \cdot y\overline{x}^{2}\overline{y}$$

$$= y^{2} \cdot x^{3}\overline{y}\overline{x}^{2}y \cdot \overline{y}^{2}yx^{2}\overline{y} \cdot R \cdot x^{3}R\overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= y^{2}R^{-1}\overline{y}^{2} \cdot yx^{2}\overline{y}Rx^{3}R\overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= y^{2}R^{-1}\overline{y}^{2} \cdot yx^{2}\overline{y}Ry\overline{x}^{2}\overline{y} \cdot y\overline{x}^{2}\overline{y} \cdot y\overline{x}^{2}\overline{y}\overline{x}^{3}R\overline{x}^{3}y\overline{x}^{2}\overline{y}$$

$$= AR^{-1}A^{-1} \cdot BRB^{-1} \cdot CRC^{-1}$$

$$A = y^{2}, B = yx^{2}\overline{y}, C = yx^{2}\overline{y}x^{3}$$

Theorem 15. No initial segment (subword) in $\bar{y}x^2y\bar{x}^3$ or any short conjugate, K, or $\bar{y}x^2y\bar{x}^3$ is equal to 1 in N.

<u>Proof</u>. $\sigma_y(U) = \sigma_a(\delta(U))$ and Theorem 14 gives a necessary condition for U = 1 in N. It is that $\sigma_a(\delta(U)) = 0$ hence one needs only to consider those initial segments U or $\bar{y}x^2y\bar{x}^3$, or K, with $\sigma_y(U) = 0$.

Hence, the only words to consider are:

		-
i)	yx ² yx ²	
ii)	<u>ÿ</u> x ² yx	
111)	<u>y</u> x ² y	
iv)	хуѫ ^{҇Ӟ} ӯ	
v)	yx ³ yx	
vi)	$y \bar{x}^3 \bar{y}$	
vii)	$\bar{\mathbf{x}}^2 \bar{\mathbf{y}} \mathbf{x}^2 \mathbf{y}$	· · ·
viii)	$\bar{x}\bar{y}x^2y$	
i)	$\delta(\bar{y}x^2y\bar{x}^2)$	$= \bar{a}b^2a\bar{b}^2$
	$\phi(\bar{a}b^2a\bar{b}^2)$	$= b_1^2 \overline{b}_0^2$

$$\begin{split} & \mathsf{N}(\mathsf{b}_{1}^{2}\mathsf{B}_{0}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{2}\mathsf{b}_{0}^{1}\cdot\mathsf{N}(\mathsf{b}_{0}^{1})) = \mathsf{N}(\mathsf{b}_{1}^{2}\cdot\mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{0}^{1})) \\ &= \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{2}\mathsf{b}_{0}^{1})) \\ &= \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{1}^{2}\mathsf{b}_{0}^{1})) = \mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{1}) = \mathsf{b}_{0}^{1} \neq \mathsf{1}. \\ & \mathsf{11}) \quad \delta(\bar{y}x^{2}y\bar{x}) = \bar{a}\mathsf{b}^{2}\mathsf{a}\mathsf{b} \\ & \beta(\bar{a}\mathsf{b}^{2}\mathsf{a}\mathsf{b}) = \mathsf{b}_{1}^{2}\mathsf{b}_{0}^{1} \\ & \mathsf{N}(\mathsf{b}_{1}^{2}\mathsf{b}_{0}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{2}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{1})) \\ &= \mathsf{N}(\mathsf{b}_{1}^{2}\cdot\mathsf{N}(\mathsf{b}_{0}^{1})) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{1})) \\ &= \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{2}\mathsf{b}_{0}^{2})) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{2}) \\ &= \mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{1}^{1}\mathsf{b}_{0}^{2}) = \mathsf{b}_{0}^{2} \neq \mathsf{1}. \\ & \mathsf{1.1.1}) \quad \delta(\bar{y}x^{2}y) = \bar{a}\mathsf{b}^{2}\mathsf{a} \\ & \beta(\bar{a}\mathsf{b}^{2}\mathsf{a}) = \mathsf{b}_{1}^{2} \\ &\mathsf{N}(\mathsf{b}_{1}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{1})) = \mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{1}^{1}) = \mathsf{b}_{1}^{2} \neq \mathsf{1}. \\ & \mathsf{1.1.1}) \quad \delta(\bar{y}x^{2}y) = \bar{a}\mathsf{b}^{3}\bar{a} \\ & \beta(\bar{a}\mathsf{b}^{3}\bar{a}) = \mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{3} \\ & \mathsf{N}(\mathsf{b}_{0}^{2}\mathsf{b}_{-1}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{1}^{-1})) = \mathsf{N}(\mathsf{b}_{1}^{1}\mathsf{b}_{1}^{1}) = \mathsf{b}_{1}^{2} \neq \mathsf{1}. \\ & \mathsf{1.1.1} \quad \delta(\bar{x}y\bar{x}^{3}\bar{y}) = \mathsf{b}\mathsf{a}\mathsf{b}^{3}\bar{a} \\ & \beta(\bar{a}\mathsf{b}^{3}\bar{a}) = \mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{3} \\ & \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) = \mathsf{N}(\mathsf{b}_{1}^{1}\cdot\mathsf{N}(\mathsf{b}_{-1}^{1})) = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) \\ & \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) \\ & = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}\mathsf{b}_{-1}^{2})) = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}) \\ & = \mathsf{N}(\mathsf{b}_{0}^{1}\mathsf{b}_{-1}^{2}\mathsf{b}_{-1}^{2}) = \mathsf{b}_{0}^{2} \neq \mathsf{1}. \\ \\ & \mathsf{V}) \quad \delta(\bar{y}\bar{x}^{3}\bar{y}) = \mathsf{a}\bar{b}^{3}\bar{a} \\ & \beta(\mathsf{a}\bar{b}^{3}\bar{a}) = \mathsf{b}_{0}^{3}\bar{a} \\ & \beta(\mathsf{a}\bar{b}^{3}\bar{a}) = \mathsf{b}_{0}^{3}\bar{a} \\ \\ & \mathsf{b}(\mathsf{a}\bar{b}^{3}\bar{a}) = \mathsf{b}_{0}^{3}\bar{a} \\ \\ & \mathsf{b}(\mathsf{a}\bar{b}^{3}\bar{$$

46.

$$\begin{split} & \mathbb{N}(\bar{\mathbb{S}}_{-1}^{3}\bar{\mathbb{b}}_{0}^{1}) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{2}\cdot\mathbb{N}(\bar{\mathbb{b}}_{0}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\cdot\mathbb{N}(\bar{\mathbb{S}}_{-1}^{2}\bar{\mathbb{b}}_{0}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\bar{\mathbb{b}}_{0}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\bar{\mathbb{b}}_{0}^{1}) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{3}\bar{\mathbb{b}}_{0}^{1}) \\ &= \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{b}}_{0}^{1}) = \bar{\mathbb{S}}_{0}^{1} \neq \mathbb{I}, \\ \mathbb{V}_{-}^{1} = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{s}}_{0}) = \bar{\mathbb{S}}_{0}^{3} \neq \mathbb{I}, \\ \mathbb{N}(\bar{\mathbb{S}}_{-1}^{3}) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{2}\cdot\mathbb{N}(\bar{\mathbb{S}}_{-1}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\cdot\mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\bar{\mathbb{S}}_{-1}^{1})) \\ &= \mathbb{N}(\bar{\mathbb{S}}_{-1}^{1}\bar{\mathbb{S}}_{-1}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{3}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}) = \bar{\mathbb{S}}_{0}^{2} \neq \mathbb{I}, \\ \mathbb{V}_{+}^{1} = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{2}\bar{\mathbb{S}}_{-1}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{-1}^{3}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{0}^{2} \neq \mathbb{I}, \\ \mathbb{V}_{+}^{1} = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{1}^{1}\cdot\mathbb{N}(\bar{\mathbb{S}}_{1}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\cdot\mathbb{N}(\bar{\mathbb{S}}_{1}^{1}\bar{\mathbb{S}}_{1}^{1})) \\ &= \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{1}^{1}\cdot\mathbb{N}(\bar{\mathbb{S}}_{1}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\cdot\mathbb{N}(\bar{\mathbb{S}}_{1}^{1}\bar{\mathbb{S}}_{0}^{1})) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{0}^{2} = \bar{\mathbb{S}}_{0}^{1} \neq \mathbb{I}, \\ \mathbb{V}_{+}^{1} = \mathbb{N}(\bar{\mathbb{S}}_{0}^{1}\bar{\mathbb{S}}_{1}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{1}\bar{\mathbb{S}}_{0}\bar{\mathbb{S}}_{0}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{1}\bar{\mathbb{S}}_{0}^{2}) = \bar{\mathbb{S}}_{0}^{1} \neq \mathbb{I}, \\ \mathbb{V}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{1}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{2}\bar{\mathbb{S}}_{1}^{2}) = \mathbb{N}(\bar{\mathbb{S}}_{0}^{1}\bar{\mathbb{S}}_{0}^{1}) = \mathbb{N}(\bar$$

THE END

REFERENCES

- [1] Baumslag, G. and Solitar, D., 1962, SOME TWO-GENERATOR ONE-RELATOR NON-HOPFIAN GROUPS, <u>Bull. Amer. Math. Soc</u>. 199-201.
- [2] Greendlinger, M., 1960, DEHN'S ALGORITHM FOR THE WORD PROBLEM, Comm. Pure and Appl. Math., 67-83.
- [3] Magnus, W., 1931, UNTERSUCHUNGEN ÜBER EINIGE UNENDLICHE DISKONTINUIERLICHE GRUPPEN, Math. Ann. 52-74.
 - [4] Magnus, Karrass, Solitar, COMBINATORIAL GROUP THEORY, Interscience Publishers, New York, 1966.
- [5] Novikov, P. S., 1955, ON THE ALGORITHMIC UNSOLVABILITY OF THE WORD PROBLEM IN GROUP THEORY. Trudy Mat. Inst. im Steklov, No. 44., 143 pp. <u>Izdat Akad. Nauk. SSSR</u> <u>Moscow</u> (Russian). English text in "Russian Translations", Series 2, Vol. 9, 1958. Edited by the American Math. Soc.

[6] Strasser, E. Rapaport (see appendix).

APPENDIX

The following theorem was proved by E. Rapaport Strasser. <u>Theorem</u>. Let G = (a,b,c;āb²ab³, bc²bc³, ca²ca³). If G/N is finite then G/N = 1. <u>Proof</u>. Let b^j = a^k = c^l = 1 in G/N, jkl > 0. Then $ab^{2}a = b^{3}$, $ab^{2}{}^{t}a = b^{3 \cdot 2^{t-1}}$ $a^{2}b^{2}{}^{t}a^{2} = b^{3^{2} \cdot 2^{t-2}}$, ..., $a^{t}b^{2}{}^{t}a^{t} = b^{3^{t}}$. If t = k then $b^{3^{k}} = b^{2^{k}}$ or $b^{3^{k}-2^{k}} = 1$.

Then $3^{k}-2^{k} = nj$ and is prime to 2 and to 3, so (j,2) = (j,3) = 1. Similarly (k,2) = (k,3) = (p,2) = (p,3) = 1.

Then b^2 has order j, and so $\exists u \ni (b^2)^u = b$, (u,j) = 1and so (3u,j) = 1. Thus $\bar{a}ba = (\bar{a}b^2a)^u = b^{3u} = b^t$ and (t,j) = 1, t > 1.

Let $t^{V} \equiv 1 \mod j$, v least such positive number. Then $\vec{a}ba = b^{t}$ implies $\vec{a}^{2}ba^{2} = b^{t^{2}} \dots \vec{a}^{V}ba^{V} = b^{t^{V}} = b$, whence $[a^{V},b] = 1$ (a^{V} commutes with b). If (g,k) = d then a^{d} commutes with b, so $\vec{a}^{d}ba^{d} = b^{t^{d}} = b$ and d = v. So g divides k. $k = v\tilde{k}$. Similarly $[b^{r},c] = 1$ with $j = r\tilde{j}$

and $[c^{S},a] = 1$ with $l = s\tilde{l}$.

Let j_0, k_0, ℓ_0 be the least prime factors of j, k, ℓ respectively. If one of these is 1 we are through, since e.g. [a,b] = 1implies G/N = 1. So let $j_0 > 1$. Since $t^V \equiv 1 \mod j$, $t^{V} \equiv 1 \mod j_{0}$. Let $t^{V_{0}} \equiv 1 \mod j_{0}$ for the least positive integer v_{0} . Then $v_{0} < j_{0}$ and $v = v_{0}^{m}$. But $k = v\tilde{k}$, so v_{0} divides k, whence $k_{0} \le v_{0} < j_{0}$.

Similarly, one get $j_0 < \ell_0$ and $\ell_0 < k_0$, whence $j_0 < k_0$ - a contradiction. Thus $j_0 \ge 1$ and j = 1, whence G/N = 1.

q.e.d.