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Abstract of the Dissertation

Deformations of Fuéhsian Groups
by |
Ranjan Roy T
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1973

in this dissertation we generalize the results of
Kra on deformations of Fuchsian groups to include deforma-
tions which have branching. We derive necessary and suf-
ficient conditions £6r the existence of such deformations.
For the case of finitely generated Fuchsian groups of the
first kind we obtain the necessary condition on the total
branching order of the deformation for the existence of
such deformations. This generalizes a similar result of
Mandelbaum for the case of compact Riemann suffades. We
also give two proofs of the‘uniqueness of a deformation
under certain restxicﬁions. One of the proofs shows that
the problem of unigueness of a deformation-with branching

can be reduced to that of a deformation without branching.
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Introduction

The problem of uniformization is related to the
éroblem of finding-all complex analytic structures, in
which the transition function51are fractional linear
transformations, subordinate to a given complex analytic
structure. Gunning studied this problem by cohomological
“methods. Kra showed that it could also be studied by
classiéal_méthods, some of which are contained in the
works of Poincare.

Mandelbaum extended Gunning's work to inclqde
structures which were branched. In this dissertation we
shall show that this extensiqn can also be treated
elassically, and in particular by the methods used by Kra.

In Section 1 we give some preliminary definitions

and statements of some known results concerning Fuchsian
groups and Riemann surfaces., The general definition of
a deformation which will cover the case considered by

Mandelbaum is given in Section 2 and some of its elem-

Sections 2 and 3. 1In

entary properties are derived in

Section 4 we prove the existence of defeormations for

finitely generated Fuchsian groups of the first kind,

under certain regtrictions. Mandelbaum had this result



~

for compact Riemann surfaces.

In Sections 5 and 6 we give two proéfs of a
uniqﬁeness theorem for deformations. One is a direct
proof and the other is obtained By reducing the problem
to that of deformations which do not have any branching.

In Section 7 we consider l-deformations in more
détail and obtain uniqueness theorems for it, and in

Section 8 we show that divisors used to define deformations

can be extended to include parabolic fixed points.




The author thanks his advisoxr, Professor Irwin

Kra, for his continual encouragement and patient assistance,

and for his many contributions to this dissertation.
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Section 1 Preliminaries

In this section we summarize some basic facts.

We shall be studying groups T" whose elements are M®bius

transformations, that is, mappings

az + b

+d,ab—bc=l.
cz

Y: z+—*
Hence the élements of T are conformal self-mappings of € Uie},
If ¢ = 0 then the mapping is called affine.
Let T be the subgroup of the group of all Mbbius trans-

formations, then for ze CU o] we let T, denote the stabilizer

of z; that is,

= fveTrye =2}

We shall say that T is discontinuoug at z if
| (i) T, is finite énd
(ii} there is a neighborhood U of z such that
Y{U) = U for all ¥y "'T'z and
y(un v ié empty for Y e .T'-T‘z.

We set 1 =0N(P) = {zf.- c U{NJ‘ T is discontinuous at z}, and

call ) the reqion of discontinuity of P'. The group T

is called discontinuous if £ is not empty. The limit set
A 1is defined by
A=Cuvi=)-N2.

Obviously {d is an open, I’ ~invariant set {Yfi=N, all Y€ T ).

1




It can be shown that card A = 0, 1, 2, orw. If caxrd A g2,

then I' is called elementarv; otherwise it is called a

nonelemertary Kleinian group. For a Kleinian group

A is a closed, perfect, nowhere dense subset of € U {w=},

We can classify the elements of T according to
‘the following scheme. Define
;ﬁ | | trace2 Y = }a + d)z- If Y # identity, Y is
. elligtic iff O & traéezY <4,

parabolic iff trace?y = 4,

loxodromic iff traceZy ¢ [0, 4].

Those loxcdromic elements vy with trace2 Y » 4 are called

“hyperbolic. An element is parabolic if and only if
ithas one fixéd point.
IfT7 ié Kleinian, and if there is a cirxcle C
in the extended complex plane (a straight. line is a circle

through =) such that the interior of C is fixed by T, then

"is called Fuchsian. In this case A cC. If A= C,

T is called of the first kind; of the second kind otherwise.
A Fuchsian group cannot contain non-~hyperbolic loxodromic
elements.

- We can always choose the circle to be the

real line which is the boundary of the upper half plane U, .




For a Fuchsian group G we define a g~form 4 as a mero-

morphic function on U which satisfies the condition
¢(Az)A’(z)q = ﬁS(z) for A€ @ angd z &€ U.

Suppose p is a parabolic fixed point of an element A & G.

Then by conjugation we may take p =o@and Az = z + 1. Then
f(z + 1) = b(z) |

and 6 has a Fourier series expansion at O

- .
@(Z) s é‘a e'ﬂ.ﬁtlﬂ\@'.
ey R
Z ruinz . o
If (=) = a,e""""% ywhere ay # 0 and m is positive then

2
b

we say that has a zero of order m at p; if m is negative

then f% has a pole of order n at P.

More generally if £ is a meromorphic function on U and

foad=r¢ Az =z + 1

and f has the Fourier series expansion at o<

P 2 QamT
f(z) = éane P

m Coom
then the orxder of f at & is q-

,a #0
m

| The function f is holomorvhic at the fixed points if m2 O
at the fixed points. -

iIf ¢ is a Fuchsian group and £lis rits region of discontinuity
thenf}/¢ has a natural conformal s‘truc.:ture which makes each

component of $3/G a Riemann surface.

Suppose M is a compact Riemann surface of genus G.




T

morphic g-differential o we similarly assign a divisor (a«).

A divisor a on M is a finite formal sum

n

a = nax.,, n.e#&, x. € M,
2 = FBi%ye Dye j
A divisor is called positive (a » 0} if nj » 0 for all j.
The degree of the divisor a is

d s

eg a = n:.

g Jsi J

If £ is a non-zero meromorphic function on M, then f
determines a divisor r(f) by

(£) = x%‘(ordkf)x.‘ |
(If z is a local coordinate vanishihg at x and if £(z)=z"g(z)

near x, with g(®) # 0 and c_:;"(O) # o then n = ord,f.)

A meromorphic g-differential on M is an as.signment

of a meromorphic function )u(z) to each local coordinate =

such that p(z)dzq is a conformal invariant, To any mero-

This divisor is called a g-canonical divisor,
Let K(M) be the field of meromorphic functions

on M, If a is a divisor on M the space Q_t; the divisor

a is defined ]c>y=

Li{a) = {f e K(M); £ =0or (f) +a» 0.
We set dim a = dimL (a).
The theorem of Riemann-Roch states:

Theorem: If a is any divisor on M then dim a = deg a + dim{(w-a)+1-g3

where w is. any l-canonical divisor.




Latexr we shall also refer to the structure theorem

for finitely generated Fuchsian groups of the first kind.
It states that any such group ¢ has a set of generators

A LA B_; C

1'7‘.::7-, 29; Bl,o-o’ s C

g+1’° Y

satisfying the relations

| -1 . = - =
A::IA‘ZAV;L-’A2 . °A29--1A2gA2gwlA2gBl' . .BSCS+1. . ,Cn =1
ey .
anda:C. = I.
L st

The A; may be chosen as hyperbolic transformations, the

B; as parabolic, and the C; as elliptic transformations

of finite ordex My, My ¥ I5,9-




Section 2 Deformations of Fuchsian Groups.

Let G be a discrete group of Mbbius transformations
acting on D; where D is either the complex plane ¢, or
the unit disc {upper half plane) U. Let Ml denote:the

group of all affine transfoimations and M, denote the group

of all Mbbius transformations.

The pair (X, f) is called a v-deformation (V=1 or 2)
of G if (i) X is a homomorphism of G into My, and (ii) f is
a local homeomorphism except at a finite number of points

in a fundamental domain of G. Let these points be ZyseeeZpy

gy

and suppose that in the neighborhood of these points £ is
anrml to 1,..4m, to 1 mép fespectively, and f is meromorphic
on D such that

f oA =X(A) o £ for A € G,
It is clear from the last relation that if f is an m; to 1
-map at z; then £ is also my to 1 at Azj. Hence z; could
have been replaced by Azi. The definition is therefore

" meaningful. Two V-deformations (X, fl) and (Xé, fz) are

V-equivalent if there is an element B e Mysuch that

and

X.é(A) = B o xl(A) o B-l for A ¢ G.




Let £ be a meromorphic function on a domain S and

define
e,f - £
1 *r
and
e 1ETV _ L (€2
%f' ?) i‘?’

Then it is an easy calculation that for any meromorphic
functiocn h on £(8)
By(h o £) = [(pyh) o f]f"v’_fh o,f .
and | |
6,f = 0 if and-only if £ e M,. .
A meromorphic function ? on D is called a multipli-

cative-g-form (where g is any integer) for G if

p(az)a' (z)? = cpp(z) for z e D, A € G,
whére Cp € ¢* = C - {0} depends only on A. If Cp = 1 for
all A € G, then we have a g-form for G.

It is easy to see that if (X,f) is a 2~deformation
then & ,£ is holomorphic except at the points where f is not
dne to one. Henceiezf has only a £inite numbe; of poles
in the fundamental domain.of G. Similarly if (1# £) is
a l-deformaticn then ©1f has residues # -2 only at a finite

number of points in the fundamental domain. These are

actually the points where f is not one ot one. Since £ could




have a peole of the form % + ... and still be one to one,
Glf can have residues = -2 at as many points as one wants.
This leads us to define a connection. A mero-

morphic function ¢ on D is called a l-gonnection for G if

(p o A)A* + 87A = §p for all A & G
and ¢ has residues # =2 at only a finite number of points

in a fundamental domain of G. A meromorphic function ¢ on

D is @alled a 2-connection for G if

(¢ o A)A'2 = ¢ for all A e G
and has poles at only a finite number of points in the
fundamental domain of G. We see that a 2—connecti§h is
a 2-form. In aﬁy case the difference between two V-
-cdnﬁections (¥ =1, 2) is a v-form.

Following Mandelbaum (1l): A v-connection is said

to be integrable if we can find a meromorphic function £ on

D such that Oyf = ¢.
With these definitions we have

Proposition A: There is a canonical one-one correspondence

between the set of equivalence classes of V-deformations of

G and the set of integrable v -connections for G.

Remark: Every group admits an integrable 2-connection,

namely ¢ -= 0.




Proof: Eet {X, f) be aVv -deformation of G. Then 6,f is

a meromorphic function of the type described above. Since
f oA =X(A) o £ for all A € G
and
X (A) e M,
we obtain by applying 6,,1-;0 both sides of this equation
(é,f) o A"+ A = O,f for all A & G.
Hence €,f is the requii:éd integrable v—connecfc_ion.
IE (X, £) is equivalent to (Xq . fl)' there exists aﬁ element
E € M, such that .
f1 = B ¢ £.
Hence Gvfl = Byf and we get the same integrable v —connection.

Now suppose ¢ is an integrable ¥ -connection, then there

‘exists a meromorphic function £ such that 6y,f = $. Obviously

f is not one-/to one at only a finite number of points in the
fundamental domain of G. Now
¥ ¥
Ppylf o A) = (8,f) o AA + OyA = (¢ o A)A'" +
+Oa = ¢ = 8,f for all A e G.
Hence there exists an element X(A) & My such that
f oA =X(A) © £E.

This implies immediately that x{(A e B) =X(Aa) o X(B) for

A, B ¢ G. Thus X is a group homomorphism and (X, £) is a

A e i e e i
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YV —~deformation. ' |

Suppose there is another meromorphic function g such that

6,9 = $. This gives another deformation (z&,g). Then
Oy = 6,9
which implies that
| f =B o g for B € My.

Also

BogoA=X(A) B og or
BoXy(Ad) o g=X(A)e B og.
Hence - ‘ ' _ .
X (a) = B o x;(A) o B™L;
that is, Lx, f) and (xi,g)aré equivalent ¥ —deformations.

Proposition B: The F6llowing are equivalent conditions

-_fér a Fuchsian Group acting on D:
(a) G admits a multiplicative l~form all of whose
residues Qanish and it has poles of order greater than two
and zeros at only a finite number of points in the fundamental
aomain of G.
‘(b) G admits an integrable l-connection.
(c) There exists a l-deformation of G.

Pwoof: (a) implies (b). Suppose f is a multiplicative l-form

described in (a). Then
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£(Az)A' (2) = Caf(z) | (a)
and the equation g% = f{z) has a meromorphic sblution hi(z).
Now differentiating (A) we get

£1(az)A" (2)2 + £(Az)A"(2) = CuE'(2) . (B)

Dividing IA) by {(B) we get

£ ooan 4 AL £
£ | A £
and since h' =f
EQAA'-I-L:}]‘_".'
h' Al h'

that is,

(6;h) o AR' + 03A = glh.
From the condition on fuit folioWS\that 81h has residues
# f2 at only a finite number of points in the fundamental
‘domain of G. Hence ¢ = f,h is the required integrable 1~
‘connection.
(b) implies (¢). This follows from Proposition A.
(c) implies (aj. Let (X, £) be a l—deformation.w Then

f oA =X(A) o £ where X (B) ¢ M;.
Hence |

X(a)z = Az +Rp ang therefore

Differentiating this equation we get




(£' o A)A" =6(Af'.

Now f' is a multipliéafive l-form of the required type.
Corollary: There existé a l-deformation of G.
Proof: If D = € then every A € G is.an affine mapping.
Thus ¢ = 0 is an integrable i—connection for G and there
exists a l-deformation of G in this case. If D = U then

Case 1. U/G is a compact Riemann surface. Then G is a
finitely generated Fuchsian group of.the first kind with-
out parabolic elements. For such groﬁps there exists a
nongonstant meromorphic function such thét

L

fod =Ff for AeG.
- - T _
By differentiating we get (£f' o A)A' = f' for A e g, Thus
' is a l~form all of whose residues vanish.

Case 2. U/G is an open Riemann surface, In this case

Kra (6) has shown that there exists a multiplicative l=form

which is holomorphic and does not wvanish at any point.

12




Section 3 The Type of a Deformation

Let R be the fundamental domain of the group G

acting on the upper half plane U.. If Zy,--92Zn € U are’

n

points in R and associated with them are integers m

l—l'.'-

m, -1 respectively, then we call D = ;%Jn&—l)gi a divisox
on the fundamental domain. The points zi are not parabolic
fixed points of G. A 2-deformation (X, ff/is of type D =
2, (mj~1)zi if and oniy if £ is a homeomorphism at ever§ point
except in the heighborhooﬂ of z; (i = l,o;vn) and points
equivalent to them, where it is mjtel (i= 1,...n)
respectively. Al2—defdrmation is of zero type if my =1
for ali i= l,.i%n.

Suppose G is finitely generated and of the first
kind. Then a 2-deformation (5(, f) satisfies the cusp gon-
dition if @,f(z) =V¢(z)-—+ 0 as z — parabolic fixed points
- of 6 through a cusp region belonging to the fixed point.

A 2-form is of type D if and oﬁly if in the ﬂeighborhood

of each z. (3 = 1,...n)

J
¢(Z) = i “_m__}- o t-i ot §t-(z_z.)i
2(z "2,])1' 2-z) T:0 - 3

and ﬁ is holomorphic at all other points of the fundamental

domain. Since

13
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lim  (Bz - Azs) $(Az)

Az—AzZ. . - :
J .

= lin  (Az - Az))? (2-z;)% $(az) A @
AZ—:)AZj (z - z;)* Alz)®
= 1lim ‘iz__‘:_@ﬁi)z (z-2;)" $2)

Az Az z-% Alzy*

1 —m.2
=1 2mg ,

the 2~-form ﬁ has the correct expansion at all equivalent
points and the definition is therefore meaningful. A
2-form ¢ satisfies the cusp condition at the puncturé

if ¢(z) — 0 as z2 -— pérabolic fixed points of G.

. We can now state the following

Theorem 3.1: For each positive divisor D (miz,l) there

exists a canonical bijection between the equivalence classes
of the 2-deformations of type D and the integrable 2-forms

" of type D.

Proof: It is sufficient to show that if f is a meromorphic

function which is m—>1 in a neighborhood of z, then

_ 1 -m* t.y
8 2£(2) oyt TE TR

where t_3 = 0 if m = 1 and A(z) is an analytic function.

i

We may assume zg = 0. Then we can write locally

£(z) g(z)d:m wheré g(0) = 0; g'(0) # 0. Then

f" _ 1 " . .
T = (tm - l)%ﬂ_+ g*' hence

N C

14




by an easy calculation. But 9'(z) =21, nolomorphic

g(z) 2

function while 8,9 = holomorphic function.

Corollary (Kra): There is a canonical bijection bﬁfween
equivalence classes of the 2-deformations of type zero
and the 2-forms of type zero.
2292£= A 2-form ¢ of type zero is a holomorphic function =
and hencé there exists a meromorphic function £ such that
Bzf = ¢. gince f is locally one-one (X, £f) is a deformation
of type zero. _donversely if (2, f):is a 2-deformation of
zero type, then f is locally one-one at each’ point and hence
£' # 0. This implies that ©3f is holomorphic and hence
of zero type.

| Later we shall be concerned with solutions of the
equation 8,f(z) = ¢$(z) where $(z) is a meromorphic function.
It ie known,(Hille, 4 ), that the préblem of solving this
equation ié‘equivalent to the simpler problem of finding
" twd linearly independent solutions wi and wy.of the linearly
homogéneous equation of seéond order |

w'(z) + %¢(z)w(z) = 0,

If ﬁlaandzgzusolve this equation then ;% solves the originai

equation. However Y1 need not be a meromorphic function
w2

and in general could be a multivalued function. This

15




difficulty occurs only at the poles of ¢(z). ‘Hence we
shall determine the condition when the solution is mero-

morphic in '‘the neighborhood of the poles.

~ 1-m2 t-1 a i
Suppose ¢(z) = > -+ + 2, t;z0 forlzl<1l
22 z o -

Then we have the following

-
*

Lemma 3.,2: There exists a polynomial A{m) in C[Xl:---xﬁ\

such that
£ + %¢£ = 0

has two linearly independent solutions whose ratio is

meromorphic if and only if

| A(mj(t

Proof: Assume a solution of the form

_1rteetpe2) = 0.

£=25A0 +Ajz + ...+ Ap2l ¢ LLL).
Then by substituting in the equation we get

(s{s - 1)AozS + cea # {n + 8)(n + 5 - 1) Anzn+s

C 92 .
li(l_%_ ‘-_|-7 t_lZ + .--)ZS(AO + Alz + ---) = 0-

By equating coefficients we get the relations

2_
s(s - Dag + T2 ag = 0 (1)

and

. 2
¢n+s)(n+s - 1) +¥—)An+

%(An_lt_l + A otp F ... Aotn~2) = 0 for n

- :
From (1), &= —5—~ S0 that one of the solutions is

N

le

+ ...} F

i,




u(z) = z-':%'ﬂ (Ap + A1z + ...)

where the Aj can be determined from (2). For the other
solution we assume f(z) = u(z)v(z) which on being sub-

stituted gives the relation

dv' - -2du: or
V' u

SN S §
v vl n
The condition that v be meromorphic, that is, have no
logarithmic term, is that the coefficient of zM in

(1 + A1z + ... + 1‘3‘mz“-‘)"2

should be zero. Thé coefficien£ is obviousiy a polynomial
in A; and henee by (2) it is a polynomial.in ti, i =
—l,m,..,mf2. This proves the lemma.

Suppoze ¢ is a 2-form of type D = F(iy - 1)z;.
‘Then we have f
Corollafy:i There exist polynomials A{m;) in C Lxl,..oxﬁ]
such that 65f = ¢ has a meromorphic éolution in U if and’
only if

A(mg) (thy,eoothy) =0, i = 1,.. .0

ggggiz- By the_lemma, loc#l meromorphic¢ solutions at each

point exist. Now since U is simply connected, a global

meromorphic function can be obtained from the family of

m_l(A +Ajz + ... +A 20+ L) c.
0 1

17




locally defined functions by the Monodromy theorem.

We now give another form to the gorcllary.

Proposition C: The following are equivalent conditions

for a Fuchsian group acting on.U.
(a) There exists a 2-deformation of type D = 2 (mi-1)z4.

(b) G admits an integrable 2~form of type D.

(¢) G admits a 2~-form ¢ which is holomorphic except
at zj3,...2,, the points in the fundamental domain of G

in the neighborhood of which points

‘ 1 - hﬂ +_ i
#(z) = = '—(;_";"')z"' z-il + Z":;(Z —z24) "
and the coefficient of z Min

-2
(1$Alz+u..+A T3

‘vanishes, ,where Ai are defined by

] ((nJ + 84 )(n + 54 -1) + ___jA + |  \

+ 15(1-3,\‘_11:_1+ ce. + tn,.;) =0

"'= T T . =_I_H_L‘£"_3;
nj l,...mj, | 1,...n; and sj 5.

Proof: {a) implies and is implied by (b). This follows

from Theorem 3.1.

(b) implies (c). This follows from Lemma 3.2.

(e) implies (b). This follows from the Corollary.




Section 4 Deformations of Finitely Generated Fuchsian

Groups of the First Kind

Lef G be a finitely generated Fuchsian group of the
first kind with signature (g; V4,...,My) , where g is an
integer gre.ater than or equal to zero and 2§ Vi€ - . < Vpg .
Let n be the largest integer less than or equal to N such
that Y.< (if N = 0 set n = 0). Then S = 676 (the com-
pactification of the Riemann éurface U/G) has genus g,
and the generators of the group (as given in section 1}
contain n elliptic elements and N - n parab?lic elements.

In this section we shall only be concerned with groups as
described above. |

We have_already seen that the existence of 2-

_ deformatioﬁs of type D is egquivalent to the existence of
integrable 2-forms of type D. Since the latter are easier
to work with we shall be coﬁcerned with them. We shall
work with 2~forms of type D satisfying the cusp condition
sinée these will be seen to have finite dimensionality as &
affine spaces. 1In any case the distinction between éwforms
satisfying the cusp condition and 2-forms exists only for -

groups which have parabolic elements.

19
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Let D = 12 (mi - 1)zy and s be the number of Z;
1 -

which are not elliptic fixed points of the group G.

Theorem 4.1: (1) The integrable 2~-connections of type

D= ii':. (m; - 1) satisfying the cusp condition for a group
G have the structure of a complex affine subvariety of the
3g - 3 + N + s dimensional complex linear manifold of all
2~connections of type D satidfying the cusp condition.
(2) Theisubvariety is nonempty if
{a) kX =0o0r 1 or
{b) none of the z4 are fixed points and
3 (my-1)

(<) mg 2,1=1,...k, and k €39 - 3 +N +

A

2g - 2 + N or

an

O (4) for fixed points zi,m; € 3 and
k €39 -3 +N+ s and 3 (m;~1) < 29 - 2‘+N.

Proof: We first show the existence of a 2-form with a double
pole at z;, Let S = U/G and let z be the local coordinate
on y and Z on U/G. ':hen if e is an elliptic fixed point of
order b, |

z = (z - e)°.
A 2-form ¢(z) projecté to a quadratic differential § on

U/G according to the formula

(=) = $(2) (P 7.




M: U-—oU/G is the projecting map. If 6rde ¢ =r .and
ordn'(e) § = R then we have from the above relations

| - -r=Rb+2A(b—l) or r + 2 = b(R + 2).
At a parabolic fixed point, which'may be assumed to be
a;, we can take Az = z + 1 as the parabolic transformation.
We then get ¢(zﬂ+ 1) = ¢(2) and ¢ has a Fourief series
expansion at e which is given by

¢(z) = 2?_ane2"inz since gb(z) — 0 as z —iw,

Here the uniformising variable is 2 = e2 12 ang

s - 2Hie2nlzg .

dz .
We therefore get

== R + 2,

Now suppose ¢ has a pole of order at most 2 at z; which is
a fixed point of orderxr Vi. At every other point it is holomor—
phic. This gives us the féllowing conditions:

Rﬂ'(zl) > -2

R >,-('_2.(l - %)) = -1 at all fixed points # z; .
(If x is a real number then [}f] is the greatest integer in x)
and |

R % ~1 at the parabolic fixed points.
We therefore define a divisor e on U/G

K = 3 n(p)p where nip) = -1
P:Z%(p p P
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for p e U/G, p #T(z;) and p an elliptic fixed point,.
n(p) = -2 for p =TT(zi), n{p) = -1 for p € U_M-/G - U/G, ;

and n{p) = 0 for all other points. Hence every 2-form ¢

with at most a double pole at zj projects to a meromorphic

quadratic differential ¢ on U/G such that

(§) - « %0, and conversely.

Let @ be any meromorphic quadratic differential on U/G and

let w = (&) and let a = 2w -,

Then f & L{a), the space of meromorphic functions whose

divisors are multiples of the divisor a if and only if

(£60%) - = (£) + 2w=-a= (f) + 2w -d 0.

Thus L{a) * space of 2-forms with at most a double pole

at zj. By the Riemann Roch Theorem

dima=dega-g_+l+dim (w - a).

dega=4g -4+ 21 +N-n+2
Pru@)
peelt, fined pE.

where N - n is the number of points in T/c - U/G and n

is the number of elliptic fixed points and ' ,7 .

pinei)

deg (w - a) = -2(g - 1) -N-2+n - 21,
" g 7 ’Sfl'ldpt'

Tt can be easily shown that deg (w - a) <« 0 and we get




dim (w - a) = 0. Therefore

dima =3g ~3+N-n+2+ 51.
' pFrss

In the same manner we can calculate the dimension of the
space of 2-forms with a simple pole at z;. This dimension

turns out to be

3g-3+N-n+1+ 32 1.;
P niEn

Hence there exists a 2-form satisfying the cusp condition
with a double pole at z;. Call it ¢i° We can always

choose fi so that

¢l(z) = !'_:_m:- + éﬁ-l + Z ﬁjﬁz"zi)

2(z-zY* EZg J=1-

Now let ¢ = $¢i; then ¢ is a 2-form of type D satisfying

the cusp condition. All the others are-found.by obtaining
all 2-forms which hav; at most simple poles at Z{ wWhere
i=1,...k. The dimension of this space X c¢an be shown

‘to be 3g -3 + N + s where s is the number of points among
the z; which are not elliptic fixed points. Then for

any x e X, ¢ + X is also a 2~form of type D satisfying

the cusp condition. Thus the dimension T of the affine
space of all 2-forms of type D with the cusp céndition is
3g - 3 + N + s. Now .

3g -3+ N< T <3g -3 +N+%k

where 3g - 3 + N is the dimension of the space of cusp forms.

23
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P

We also note that there is no 2-form (with cusp condition)
with 2 pole of order 1 at z; if z; is an elliptic fixed

point. By rearranging 24 we can assume that z.

i where |

i=1,...s are not elliptic fixed points. Thus there
exist 2-forms }bi (i =1,...s) with simple poles at z;

(L = 1,...s) respectively. Hence any 2-foxm M of type D

with the cusp condition can be written in the form

s
M=9¢ +l§ Cipi + Zﬂ'iai where 85 are the
cusp forms. Let ’P = -(?:l."‘ 2 %) and 0 = (8, .. .,f931"3+u)

and

(£, @) = (t3,-..tg, GG,enn, Tagagen)
and for each | o
(ti, c)ée CSX ¢ 93+ we let
.(t,cr)}»l= ¢ +yt +0.6,
F(D) denotes the space of all 2-forms satisfying the cusp
condition so that
IF(D) = fintegrable 2-forms _of type D
satisfying the éusp condition } -
is equivalent to —,

e, ore €8x g6 = (¢, 0)p

has a meromorphic solution}.

By the corollary to Lemma 3.2 we know that this is equivalent to
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39-3+m ’ $(2) + _i(t." th){(:) co

{(t,o) € ctx ¢
has two linearly independent solutions whose ratio is
meromorphicj.
By L.emma 3.2 there exist polynomials A(my) € G:[xl,...xmi]
with leading term oklxlmi (o # 0) such“that £'(z) + % pohtliEizo
has linearly independent solutions whose ratio is meromorphic
i1f and only if

Almi) (¢oM-as - - -, e Mmg-2) = 0

where . M; are obtained from

1-m; e E e Mi C’“Za)'i
(¢ (F) = Ziz-zi)* v I s &~ _

Now (tlﬂf*(") = 56 + t.¥+6-6. Hence at the points Zi;

(i =1,...8), that is, the points which are not elliptic ?

fixed points,

(t d‘)/u"i = ?_1 +tJ ; for h=0 (t,c)/‘bz ¢h+ Oh-ﬁ' +\Ph-t, ﬁ’gh:”h.

' h
are the coefficients of (z - zi) in the Laurent expansion

of ¢, @, Y respectively; At the other points 2y M= Py

but
(e n = Sb,, + 8,0+ 'Pu'# .

Therefore the polynomials A(my) (4, - - -, tePug) are actually

polynomials in tireecty, Oroee; O3g-24n+ Mandelbaum (11)

has pointed out that the polynomial

' : h Sm
A(mi) (x1,0. axmi)= (Ej_” )‘dti,...jmi) Ky - Km,
i

1 3
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m;
is such that ka Je = mj. Therefore we have n polynomials
4

Kyseo-Kp € Cxq,.. 'X.-;?g—s +~n 1 Wwhere polynomials K; corres-,
ponding to the points Zjiwhich are not fixed points have

! 2 Mia
leading term of the form a&it;° *and all other terms are of

total degree SL-ZI?-J':-]and at the other points z; the polynomial
has 2ll terms of degree s[g-j:-l, and these polynomials
are such that
A(mj) (eefors - creeMmy-a) =0
if and only if Ky(t,8) = O.
If we not let . ' .

- ™ = . . - 1'.‘. «
Vp = {ct,o-)ed;sx @393 g (t,e)=0, 1 ,}
then IF(D) o~ VD'which is the required subvariety. TIf

n =20 or 1 the ‘subvariety is obviously nonempty.

‘We now assume that the Zj, i = 1,...k,are not elliptic
fixed points. 1In this case there exist 2—forms with

simple poles at z Suppose that we could choose 2-forms

ic
Y’j' j=1,...%, such that they are holomorphic everywhere
except that Y’j has a pole of order 1 at z5 and zeros of

order m;-1 at z; # zj. Then the system Qj, jJ=1l,... 3g=-3+N

and ‘*’j' j' =1,...k, will again form a basis for 2-forms

with at most simple poles at z;. If we calculate Kj(t, o)

with this basis, it is easy to see that since the Vi, 3 # i,
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have no term of degree less than mi-l at z;,

Ki(tlo.) =Ki((o:"'t "),G-).

3
Thas for each i, Ky will be a polynomial in t; and g with

leading term cott # 0. Thus for any fixed ¢, if we let

t¥ be a root of K;(t,6) =0 for i = 1,...X we

immediately see that
(t*,0 ) € Vv where th(tf, ... tf).
Thus v, # ¢.
We must of course show that the P, defined above exist.
Suppose the points zy (1 =1,...k) projeet down to pj on u/G.

We define a divisor . o i

d,= 2in
1= o &l (p)p
where
n(p) = [g - éﬁ)] = 1 at the projection of ' ?

a fixed'point of oxder v(p).

n{p) = =1 if p ¢ U/G - U/G.
and
n(py) =my -1 i #j
R
n(py)
Define &5 = 2Zln(p)p where everything is the same as in

&; except that nl(pj) = 0,

Call ag = 2w - (s = 1, 2), where w has the same meaning

as it had before. Consider the spaces L{ag) where .




f € L(ag) if and only if f is a meromofphic function on
U/G such that (f) + a8y % 0. To show the existence of Vit
is enough torshoﬁ that dim L(a;) - dim L(az) 7% 0. Now

| dim L(aj) = deg a; — g+ 1+ dim (w - aj).

But

deg a; - deg a; = 1 so that

dim L(aj) > dim L(a,) provided

dim (w - ai) = 0 .and this is so if

deg (w - ai) < 0.
This last ingqgality is true if

Z(my - 1) € 29 - 27+ N.

If my is at most 2, that is m; - 1€ 1, then the polynomials
Ki(t,w),...Kk(t;U) are of degree 1 in G and t;. 1In
this case if k<39 - 3 + N + 8 then we have n equations
@f the degree 1 in 3g - 3 + N + s variabies and they

certainly have nontrivial solutions so that Vp # 0.

Again, if s of the points z;, i = 1,...k, are not elliptic

A

fixed points (say, Z],-++2g), then the polynomial
K, € (Kl,...KS) has degree m; — 1 and.the polynoﬁial.
. m= . .
Ky € (Kgy1.---Ky) has degree 5[“513. Hence if z, is an

elliptic fixed point and m; € 3 then the polynomial

317 . . _ ‘ .
Ki has degree € [3] 1 in o; and ‘t;. Moreover 1f_we
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ro: of order mj at zj # z; theﬁ

Hence if'k; 

are solvable £

ubstituting these values in

Ki e (Kl,.;iki ;Ve for t;. S0 we again get

point

showed earlier.




Section 5 Poincare's Theorem

We now consider the following problem: Given a
deformation (X, ff, to what extent is the map f determined

by the homomorphismx? We have the following theorem due
to Kra (8).

Let G be a finitely generated Fuchsian group of the first
Kind. If (X, f) and (X, g) are 2-deformations of type
zero satisfying the cusp condition then f = g

We shall be concerned with geﬁeralizations of this theorem
to deformations of non-zero -type. '

"We call a déformation (X, f)ﬂgarabolic if whenever A & G is f
a parabolic element of G, X(A) is either parabolic ér the
identity. |

‘LQEEQ_E&;: Let (X, £) be a 2-deformation of G of type D
satisfying the cusp condition and which is parabolic. ﬁet
A € G be parabolic with fixed point p € R V {™}; then

(a) X {A) is parabolic
(b) frénd £' have limits as z —p in any cusped region

beloﬁging to p. (We assume A gengrates the stability subgroup of p.)

Proof: We may assume by conquation_that p ==eand

Az = z + 1. Since X is parabolic we can cénjugate again
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to get K(BA)z= 2z + b, Since
. £foA=X(A) o f we get
£(z + 1) = £(z) + b and
£f'{z + 1) = £'(=).
Now f is not locally one-one at only a finite number of
points in a given fundamental domain. Also by Ahlfors (1)
there exists a domain U, = {zeC; Inz ; ¢} sucﬂ that
two points z ana z' in U, are equivalent under G if
and only if z' = z + n for some integer n, that is,
: if and only if z' and z are equivalent under the groub
generaFed by A. We can choose ¢ large enough so thét i
is locally univalent in U,- Hence in a cusped region \‘
belonging toe, £' is a nonzero meromorphic function all of
. whose poles are of order 2, and all its residues vanish.

Thus there exists a well defined holomorphic function

yi= (f')_% in U,. It is well known that y satisfies the
second order differential equation

2y" + $(z2)y(z) =0 (A) |
for z g Uc: ?(z) = Bzf(z). Obviously'¢iz + 1) =_¢(z).

Also either yv(z + 1) = y(z) or

y(z + 1) = -v(z),

We may assume the first equation to be true without loss

of generality since we could have worked with A2 instead of A,




The cusped region {z € Ugs z = x + iy, Osx<l.} can be mapped
conformally onto the punctured disc by the map z-)e . Hence

we have functions ¥ and ¢ on A - §0} such that

Letting § = ezm; , then ¥ - 2nidY |
dz as
aty &
ot (2mri)s st (2mi) S s*'

Hence equation {(A) becomes

&V, 1 dy _ 1 (8= 0.

JntTT w Tam s*Y (B)_
Since (X, f) is a deformation satisfying the cusp condition,
O5f «0 as zyw, 5(0) = 0 and <;S' is actually ﬂolomorphic in A.

I.t is known (Boyce-DiPrima, 3) that the general solution

is of the form

v(8) = clqal(:) + Colpa(s) + 4>l(s)logt)
where 561 and 51:2 are analytlc functions. Now since ¥y is a

single valued holomorphic function in A -{0}, 02 = 0,

Now suppose that _
<,6,(s) =Ag+AS+--- 5 d(D = a8 a,5ts ... >
then on substituting these relations in the egquation (B) we get
| 2
pAn = “,(alAn 1+t ... +a Ao) for n $ 2 and.

- 2
A, = %ale.

Obviously if A, = O then A =0 for all n and ()= 0
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and y(s) = 0 Wthh'_.ls false and hence A, # 0, that

951(0) # 0. 'I‘hus y(g) = cl¢l with c, £ 0 and ¥(0) # 0.

240

1 _
Now lim £ (z) 11m yz(O) = C ?5 0. Hence f' has a

finite nonzero: llmlt as Z—w through @ cusped region

belonging to oo;f'_."_s':inc-e?-f'(z-!-l) = £'(z) for z e U, £' has

fl(z) = zalne?."iﬂz .z e U

as a Fourier series ‘eXpansion.

Since f' has a finite nonzerc limit as Z =%*s , we have
an=0forn<0anda0;é0,thatis, _

'f'(z) ganez"inl ' Z & U.‘ Thus

£(z) = ﬁbne""‘“+ bz with b # 0. Thus

1 T
If(z)|= 0(fzl) as z-3w and
’f( = = 0(1) as z—3e .

We can extéend Lemma 5.1 to a more general situation,

Let {(x, f) be a deformation of G such that @>f is holo-

morphic., ret pl,...pr be a complete gset of inequivalent

fixed points of parabolic elements of G, Let Al,...A

be the parabolic elements w:Lth flxed points pl,...p

respectlvely. Suppose B; is a M®bius transformation which

fixes U and has the following Properties:

(ii) B;% A, © B,(z) =z +1

Ry




'(iii) if v, = {ze ¢ ; Imz > c},_ then for suffieiently
- large ¢ two points of B(U,) are equivalent
under:G if and only if they are equivalent
under the cyclic subgroup generated by Az

These B; exist (Ahlfors,l ).

2
i

Then (X, f) is called a special deformation if lim ez(he;):zn‘m
T ie

! for i = 1,...r where m; are integers. We shall also say
. that the limit of (x, f) at p; is m,. The limit is indepen-
dent of the Bj.

Lemma 5.2: If -(I, f) is a parabolic special deformation

and if its limit at p is m then |

oo ) \
. 2minz
£'(z) = ‘?,, ane z € U around o and
- - ] -
: n
f{z) = ;nbnez M bz oz ¢ U.

In the expression for f£(z) b might be zero.
Convexsely if f has the above Fourier expansion then |
the limit of (X, £) is m.

Proof: We calculate exactly as iﬁ Lemma 5.1 until we come

to the equation

92f = $ is a holomorphic function even at the fixed points .

and hence is acﬁually holomorphic on A and $(O) = 2n2m2.,

The point § = 0 is then a regular singular point and we
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~

can obtain solutions of the equation which are of the form

+ . . . ~, '
Eanzn S. Substituting this for y in the equation we get

s =+ fomts _+m
TV gnm T2

Arguing as in Lemma 5.1 o

F(§) = c14;(8) where ¢.8= X a 33, ag # o.

h -2
Trus l_:_;_(.” - O(e 2 my) 2 i

Since f'(z + 1) = f'(z),f' has a Fourier expansion

. L+ -] "
" » . I :
£'(z) = Z: ane" M and the growth condition on i
-5

o0 -
£'(z) gives £'(z) = Z’anezmytz Z e U and hence
-m
ﬂ, -
f(z) = anez“mz+ bz. :
-m

For the converse we notice that

" a2 . 2 .
g6 = £ .3 (£)= rim)- 2 Grim)ta 2mim®

. This proves the lemma.

' n
Let (X, £) be a deformation df type D =‘Z (m;-1)Z;
=1

-

We denote the total branching order Z(f_cjby o(£f). f
vi{z¢) :

Here v(zi) is the ramification order of.zi {oxd Gzz .

We can now prove the following generalization of Poincare's
theorem (Kra, 8).

Theorem 5.3: Let (X, f) and (X, g) be parabolic deformations

n : [
of type Dg = .:Z (mj - 1)zj and Dy = §(dj_ - 1)§; respectively )

satisfying the cusp condition, of a finitely generated




Fuchsian group G of the first kind. Let k' be the genus

of G and A(G) = 2k - 2 + l - -i-) where v is the
(@) pech}c,( = (p)

ramification index of p. If O(f) + 0(g) < 2A(G) then

£f=g.
Proof: Consider the function
‘ 2
viz) = C(Fer-3@)
f(18'(z)

This is actually the square of the€ function considered
in Kra (8). By following the proof giveﬁ there, it can
be shown that V is a multiplicative 2-foxm. This, however,
involves multivalued functions so I shall give thé simpler
pfoof suggested to me by Professor Kra.
It is easy to verify that if A is a Mbbius transformation: :
thén 

(as - az)2 = (5 - z)%aaz. (a)
Since f(Az) = )X(A)f(z) we get

£'(Az)A'(=2)

I

(K(a)' £)(z) £'(=) (B)
and similarly

g'(Az)A'(z)

(®(A)' 9)(z) g'(z) ()
for A G. rNow

v{az) = (35_("‘”(13 - X (A9 (z))*
f(az) g’(gz) )

From (A}, (B), and (C)

2 ' P
(£€2) -9) X@HOXDIE)  (Cpizy-gemy) 2, 2

Viaz ——
(Az) fi{Ar) g'(Az) f'x)9'(z)

2 -
= V(z)}A'(2) , that is, V(Az)A'(2) = V(z),




that is, V is a -2-form.
We shall determine the behavior of V in the néighborhood
of the parabolic fixed points. ILet q be a puncture on

U/G. It involves no loss of genéi:ality to assume that

the puncture g is generated by the parabolic element

Az = z + 1. (Merely replace G by Be G o B":L for a
éuitab}.e self-map B of U.) In this case
viz + 1) = v{z).
Lemma 5.1 also gives the following:
I£(z)] = o(lzl) = as z -3 and.
lf'_ﬂ%zﬁ)“lﬂ_‘ o(l) = l-é-r%*éTl as z -»ei:t. Hence |
v{z) = 0(|zlz) as z o . (D) |

V 'also has a Fourier series expansion around

w -
2Ny .
viz) = _%ane z e U.

(D) gives a, = 0 for n « 0., Hence V has a zero of order

I 3 0 at the parabolic fixed points.
n
Df = ‘Zi(mi - 1)zi. Suppose z; is not an elliptic fixed

point. If f has a pole of order mj at z; then f£' has a
zero of my - 1 at z; and again V has a pole of o.rc“zer at

most my -~ 1. If z; is a fixed point we have to compute '

the order by dividing the ordinary order by the order

of the fixed point. Hence even at a fixed peint V has a




pole of order at most Ei;;—i . Hence the total order
of poles of V is at most O(f) + O(g).
Since V is a -2~form we have from Lehner (10} that unless

V £ 0 deg V =-28(G). Hence V has poles of order at least

22(G) so that if O(f) + O0(g) < 2A(G) then V z 0, that is,

-

fzgqg énd the theorem is proved.
Corollary: (Kra) If (X, £) and (X, g) are two deformations
of type zero satisfying the cusp condition then £ = g. |
Proof: 1In case (X, f) satisfies the cusé condition'énd

is of type zero then it has been shown by Bers (2 ) and
Kra (7 ) that (X, f) is parabolic and hence we havé the
corollary.

We now give a simple example of two 2-deformations
~which have the same homomorphism but are defined by two
different functions. Let G be the covering group of a
compact Riemann surface of genus g > 1 and let £ and g
be two automorphic functions for G. Project £ and g to
meromorphic functions £ and gron the Riemann Qurface.
Then £ and g give the Riemann surface as an n;shéeted
coverihg surface of the sphere. (For £ and g n may be
different.) It is well known (Springer,13)

O(f) = 0(%) = 2{n+ g - 1) » 2g -~ 2, Hence
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O(f) + 0(g) > 4g - 4,
But here we haﬁe 2-deformations of G,'(I, £), (I, g) where
I is the trivial homomorphism and f # 9. We may generalizé
our last theorem in the following way: Suppose D = 2} (Mj -1)z;
then we denote by deg D the sum Z:(mi - 1).

Theorem 5.4: Suppose (X, £) and (X, g} are deformations

which satisfy the hypothesis of the previous theorem. Let

D + bf and D + Dg be the types of f and g respectively

; " . |
where D = 2 (mj - )220, 1If
1)

g : deg Df + deg Dg < 2{A(G) + n)- then £ = g
" provided f(z;) = g{z;), 1 =1,,...n.

2 ' Qo
Proof: viz) = (F-9)@ _ 4 £2(2) 9*ry

‘F ’(‘) g'(l] - 'F {I) 73-2;) {-'(l] 9'(2]

Suppose £ and g have a pole at z; of order m, . Then
1 1,2
(E{zy - ETETJ has a zero of order = 2mi at z; and
Z 2 .
%T%* has a pole of order 2mi — 2 and V has a zero of order
of at least 2, ot
Now if f(zi) = g(zi) = a # o then (f - g)2 has a zero of

1
ordex at least 2m; at z; and £'(z)g'(z) NM3@s a pole of order

1

Zmi - 2 and again V has a zero of order at least 2 at z;.
In any case the points zj contribute zeros of order 2 to
V. Hence altogether the total order of zeros contributed

by z; is 2n. The result now follows from the previous theorem.
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Section 6 Deformations Without the Cusp Condition

We"shall now approach the problem of uniqueness
in a slightly different manner. Suppose (x; f) is a
2-deformation of type D = z:(mi.— 1)z; of a Fuchsian
group G acting on the épper half plane U éﬁd (x; £)
satisfies the cusp condition. Let Ug = U - {qszi}.
Then G acts invariantly on Uy and £ is locally univalent
on Uy since the poihts where it is not a local homeomorphism
havelbeen removed. Then with the help of the universal
covering map T: U-—Ug we lift the group G to a Fuchsian , :

" )

group F acting on U and the deformation (X, £f) of ¢ is

lifted to deformation Li, £) of F. Now T is locally uni- | |

-

valent, which makes things simpler, though 92% is never .
é cusp form. However, 62§ is a holomorphic 2-form and
-‘the difficulty_which arises from the fact that it is not
a cusp form can in some cases be overcome.

For the time being we consider_a slightly more
general case. Let T be a non~elementary Kleinian group

with an invariant domain D. Let Dy =D ~{§{P2i}where

zi (L = 1,...n) are points of D inequivalent under T.

Then T acts invariantly on Dy. Letn: U— D, be the

universal holomorphic covering map. Since Dy has more




than two points on the boundary, U can be taken as the

upper half plane. Let G be the covering group of If; that is

G consists of those conformal self-mappings g of U for
which Te g = I, we 1ift T to a discrete group F of
eonformal self-mappings of U as follows:- Let Ye T and
Z e U. We construct a self-mapping h € F of U such that
the diagram
" h
U ————> U
] E

Dy —X 5 Dy
commutes. For z e U, consider the points n'(z) and Y{(m(z)).
"The mapping e Y o Nljg defined in a neighborhood of Z.
Hence we have a family of locally defined holomorphic

functions and since U is simply connected they define

a global map by the Monodromy theorem. The map h obtained

is a conformal self-map of U, It is obviously holomorphic.

Now suppose h(zl) = h(25). Then n(zl) = ﬂ(z2). Hence
there exists g € G such that gz = 22. Then in the neigh-
borhood of z2; h e g = h and hence g is the iden?ity and
zy = z

5+ This proves that h is conformal, We have in

fact constructed an exact sequence of groups:

{i}—sciyrd L7 1} ,
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where 1 is the inclusion maﬁ, and if h'é F then j{h) is
determined via
MTeh = j{h)ermr ,

that is; j is the invérse of the -lifting map used in the
construction., |

Now suppose D/T is of finite type, that is,
it is a compact Riemaﬁn surface with a finite number of
punctures., We denéte the compact Riémann surface from
whicﬁ D/T is-derived by'ﬁyh. Then D/p - D/1 is a set

with a finite number of points. Also D/7 has a finite
_number of distinguished (ramlfled) p01ﬁts which arise
-from elliptic elements of T. In this case Dy/T is also
of finite type. Since U/F is conformal to Do/p, U/F is
.oﬁ finite type so that F is a finitely geneéated Fuchsian
group of the first kind. The details are in Kra (s5).
Now consider the pair (j, ), j: F—>Tand 1 is
a locally univalent map on U such that M oh = j(h} e
for all h € F. Hence (3, m) is a deformation of F. We
shall determine what 0,7 looks like. If Dy =‘D'then it

was shown by Kra (7 ) that 92n is a cusp form. With the

above notation we have

Theorem 6.1: If D/ is of finite type, then @,m is a
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2-form which is holomorphic at every pbint including the

parabolic fixed points of F.

Proof: The punctures on DO/? arise either from parabolic

fixed points of I or from“"elliptic“ elements of orderd> 1.
of courSe'if d = 1 then it is not an elliptic element

but we are calling it that for convenience.

Case 1: Punctures arising from parabolic elements:

We calculate as in Kra.(7 }. Let p be a puncture on Do/r

and g the corresponding puncture on U/F, According to
Ahlfors ( 1), to the puncture g there corresponds a ‘ j

cyclic subgroup of G generated by a parabolic élement

A € F. We may assume Az = 2 + 1. In this case there is a
¢ > 0 such that

U,={zed; Imz > c} .

factorxed by the subgroup generated by A is conformally

equivalent to a deleted neighborhood of q in U/F, Similarly,

by conjugating T if necessary, we may assume that the

puncture p on Do/ corresponding to q is also generated by

A. We may also assume that in this case O 3 U, for sufficiently

high ¢. Since N induces a conformal map §* U/F to Do/7,

we have, for some integer X,

TM(z + 1) =W(z).+ k, z € U. Since
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m'(z + 1) = nM'(z), z e U. We have for some ¢ » O

© . }
m'(z) = Ja e’ "%, 2z e U., and thus
<% “n c
B =1 2ming
m(z) = ,ann(znm) e "+ kz + b, z e U

~We can choose a local parameter § at g such that in terms

of this local parameter, the projection map U— U/F is

270

22 for z e Us. Similarly, 2 = e * is such

given by 3§ = e

a local parameter at m*(g) = p.

T (=z) =ﬂ=§o an(2nin)-l§n + 2—]:—1._-10gs + b

il

z eUc—-—-eoUca X

2miz_ l L

. _ —_ 2mix
=8€ U/F—Dp/np ® Z = e

The mapping IT* yvields Z as a holomorphic function of §
with Z(0) = 0 and Z'(0) # O.

- By looking at the diagram we get

Z{§) = skexp(b + 31 an(2nin)_l$n) .
nFo _
Since Z is holomorphic a, = © for n< 0 and since 2'(0) # 0,

k =1, Hence,

$=6,m=D1_2(0)2 yow

m '-

2MINZ
Sib e at e,
e I

IH

so that ¢ has a Fourier expansion ¢ (z)

Obvious ly

lim 92H= 0 and hence b, = 0 for n < 1, i.e.,
Z=»ico

o0 .
¢(Z)7= ‘? bnezmnz', z ¢ Ug




45

and QS is holomorphic and vanishes at the puncture,
Case 2: Punctures which arise from elliptic elements of P
Again let gq be a‘puncture on U/F. This comes from a para-

bolic element Az = z + 1. Tet P be the corresponding

puncture on Dol/n which comes from an elliptic element

B €D of ordér d. By conjugating T if‘necessary we may
assume that the- fixed points of B are 0 and oo and that

the point corresponding to g is the origin. Hence Dy
contains a deleted neighborhood of the origin and Bndivides
the disc into d sections each of aﬁgle 2m/4,

Since IT inducés a conformal map ﬁ*: U/F —-)Lﬁo/ T we get

ezmk/d

M(z + 1) T (z) for z € U where o<ked. (B)

(Note that this already shows that 6271 cannot be a cusp

fo_rm since if it is, then it follows from Kra (7 ) that
'j: F -3 7T takes parabolic elements to parabolic elements
which is obviously not the case.)

(A) gives us the following Fourier expansion for

o afi{nskjq)z  2mikyz & i
n(z) = Zane { i)z e /d Xa ezmnz’ 2 e U_.
- -0 I C

Let § be the local parameter at g such that the projection

U-—3U/G is given by § = e*™for 2 ¢ U Similarly 2 = zd

co

Y

is the local parameter at mM*{qg) = p. Weget the diagram




Z2eUs —s Dy 27 (z)

w4

e =§eu/r ~—3Dg/p 2 Z(5) =TT(Z)d.

Once again rt* is conformal and 7 is a holomorphic function

J

of § with
Z(0) = 0 ana 2'(0) # o.
Looking at the diagram we get
kg & a .
2(s) = (5§ Za,s™)% = sk( DaneM) 9,
- -0
Since Z{(0) =0 and 2 is holomorphic
” ) -
2 = Sk( 2. ans" )d with leading term a_dﬂgk an
-N
S0 that k % dN but k < d. Hence N = 0 and k = 1.

Also a, = 0 for n <« 0 and

2Ti(n+1/4) 2
M({z) = a_e )
n
ani(noi)z

w{(z) = a (n + -(Ji-)znie and similarly

o[Mg o078

- we determine " and n"{z}.

liqu(z) = lim LA -T-r-“)z_]

i 2200 L ESAR
= . ll-"zdu 3 ‘l-ﬂ'qu
gmz ¢ 2 T

Tar

Hence Ozﬂalways has finite limits at the fixed points,

that is, it is a holomorphic 2-form,
Now let (X, f) be a restricted 2-deformation of

n _ ,
type D = 2 (3 -~ 1)z; of a Fuchsian group G, which is
_ 1-1 :




finitely generated and of the first kiﬁd, acting on th’éﬁz

upper half plane U. Let Ug = U‘—{lg.:IGzil. T: U—Uy is
the universal holomorphic covering map.
Suppose G lifts to the Fuchsian group H. Then H is of
£he first kind and finitely generated., There is a.homo——
morphism j: H—G such that

Moh = j(h) o T for all h e H.

Now (X o j, £ omWw) is a deformation of H, since

Il

fomMoh=1Ffaj(h) e heH

X(i(h) o £ oM.

Because £ o1 is locally univalent, (KX e j, £ o) is
of zero type. However (X o j, fo l’T-) o‘bviously doesrnot
sgtisfy the cusp condition.

Since (X, ‘f) satisfies the cusp condition @,f -0 as

z —y parabolic fixed points of G.H The punctures on Ugy/G
arising from these points 1lift to punctures on U/H. We
have already shown that §,T—0 as z —a fixed point
arising from these punctures on U/G and that 7’ — 1.

2 4 eznand hence 62(f° m)Y—o0

Now @,(f o ) = (0,E)omm m
at these points. Now consider punctures on U/H coming

from the points zji = 1,...n. As already mentioned we may

assumne Zl

= 0., Then @>f has the following expansion

|
i
i




around z; (which is a fixed point of order di)‘
2 o .
_ 1l-my t-1 . i
€,f = 222t = %.tiz . Hence
lin £, m(z)] m'(2)2 +§nm, 2}
Z-iw 2
. 1- w; 2 L & 2“?.
= lim i m@” . t, m'@ ]-i-
Z3im 2T ()* 1 v(2Z) + di
= an'm;'

di

Hence we now have to consider deformations (X, £) which are
of zero type but sz are not cusp forms. The 92f, however,
are holomorphic. We now have

Thecrem 6.2: If (X, £) is a 2-deformation with the cusp

condition of type zero and (X, g) is of type zero such that

929 is holomorphic and is either non-special or a éusp

form then f = g,

Proof: Since (X, £) satisfies the cusp -condition X maps

parabolic elements to parabolie elements whence 6 29 must

be special so that it is a cusp form by hypothesis. Tt

now follows from the corollary to Theorem 5.3 that f =gqg.
Now let (X, f) and (X, g) be tw.o deformations |

of type D = i%i(mj_ - 1)zi and j;zl.‘:;(di - 1)§; of § group G,

Let UO‘ =U - fieri {;IGS_.;_} and M: U3 Uy be the universal

holomorphic covering map. If none of the points Zj, 1=l,...n
or gi, i =1,...% is an elliptic fixed point then we have
already seen that (X « j, fo ﬁ') and { X ¢j, g eT) are

special deformations of F, the group to which G is lifted.




Now if X is parabdlic then X o j is als;o parabolic since the
homomorphism j takes parabolic elements to parabolic elements |

or the identity. Hence if (X, £) and (X, g) are parabolic
sorare { X o j, fFolM) and (= ©j, gem),

Let A(G) = 29 - 2 + (1 —.;,]f.) as before. Then A(F)=A(G)+n+k
sincé F has n + k extra parabolic elements arising from

zi' and Si. We have of course assumed that 91 aﬁd z; are

distinct but it is hot necessary to do so. Denote (KXo j, fom)
and (X o j, g o ) by (X, £) and (X, §) respéctively and

consider the function

(e -joy*
@9 |

V is a 2-form as we proved earlier. V is holomorphic in )l

v(z) =

U and we have only to check its behavior at the parabolic
fixed points. Lemma 5.2 tells us that : |

W0 .
viz) = Zane"mnzat points arising from z; and
'(ml-u)

o 2Minz .
b_e at points arisi frxom ¥. and
_(d%',‘} n P ing $; an

S, TNz
}c:’.'cne2 ™ at all other punctures.

I

Hence V z 0 provided

"
2a(m

1=1
ie. Z(my - 1) + 2.(4; - 1) <2a(c),

k .
1)+ i%L(di+1);_<2(A(G)+n+k

that is, f = g which implies that f = d. We have therefore

reproved Theorem 5.2 under the condition that none of the




z; or §; are elliptic fixed points. We can however gen-

eralize to include the case when z; and §; are elliptic
fixed points. To do this we consider the following

generalization of Lemma 5.2.

2 nht
dz

X{A) is an elliptic element of order @ -(A is the parabolic

Lemma 5.2': Suppose (X, £) has the limit and that

element Az = z + 1). Then

- ' : > aninz
£f'(z) = Z b,e d and
‘ zmnz
£f(z) = Z‘b‘ .
. ' d .
Proof: Here since K{a) = Identity
f(z + d) = £{z)
and then calculating exactly as in Lemma 5.2 we have the -;|

required result,

Remark: Note that if -(3(‘., f) has a limit different from

Cantmt y . .
= then X (A) will be loxodromic.
Now suppose that zi is a fixed point of order d; . Then
~ amnz.
£fr(z) = Zb e d; and

-mM
i zmnr_

£(z) = Zb' e dj .
We have similar relations for §'(z) and §(z) and since

V{z + 4;) = V(z)

the condition on ¥, £', etc. gives us

oo al‘h‘h?—

V(z) = Z .




Hence the order of V at the parabolic fixed point arising
from an elliptic fixed point is again at most :iméi 1)
i

and by the same analysis we get the result in the more

general situation, ’

As an application of this unigueness theoiem we
prove a p;rticular case of a theorem due to Maskit (33).
The idea of the proof is from Kra.(9 ).
Supppse G is a finitely generated Kleinian group with
invariant domain D. Suppose M U-—~D is the holomorphic
universal covériné map and G is lifted to a Fuchsian group

F by this map.

Theorem 6.3: Suppose w: D—A is a holoﬁorphic mapping .

~such that A is invariant uﬁder G andw e h =h ¢ w for
all h e G.l Suppose also that in a fundamental domain
of G w is an m to 1 map at zi'(i = 1,...n} such that

Z.(__l_)_<A(F)
where di is the order of Géi and it is a local homeomorphism

at other points. Then w is the identity mapping.

Proof: Let Do =D - UGz; and 4, be the image of D0 under w,

n

4,
i
h
——

0 e
O

0

x
D> U

|-

B e—
3

[~]




The function @, has the limi : : at punctures which -

d .
arise from z; and vanishes at 'ofﬁéf}fi:_}unéturesg and the
function §,(w o 1T} has the limit —5—~ at the punctures

which arise from z, and vanishes at other punctures.

Hence as before we can consider the function

(@ - wiren)?
n'(z) (won) (z)

v{z}
and from the condition on w

VO and hence M= waT implies

w is the identity.




Section 7 1-Deformations gﬁ Type D

To study l-<deformations (7, f) of type D we

distinguish the points where f has poles. Thus if f is
'mi tolat z. (i =1,...n) and if:f has a pole at z. only

i < "
(j = s+1,...n) we say £ is of type D = 2:(mi-l)z. - 2:(m-+l)z..

: . 1 1 §43 1 B

A multiplicative l-form ¢ is of type D if d&has zeros of
order m, - 1 at z; (i =1,...8) and poles of order mi-+ 1
at z3 (i = s+l,...n) and ¢ has no other zeros or poles
of order greater than two.
A one-connection ¢ is of type D if ﬁrhas residues m; - 1
at z; (i =1,...s) and -{(mj + 1) at z, (i = s+1,...n)
and ¢ has no residues # -2 at any other point,

We then have

Theorem 7.1: The following are equivalent conditions for

a Fuchsian group acting on U:
(a) G admits a l-déformation of type D
(b) G admits a multiplicative l—form of type D
(c)' G admits a l-connection of type D. which is integréble.
Proof: The proof is exactly the proof of Proposition B,
| We can prove uniqueness Eheo;ems for l-deformations.

Suppose G is a group of the first kind and finitely gen-

erated. We call a l-deformation (X, £f) of G holomorphic
53




if f e (%X, £) is holomorphie in U.
Theorem 7.2: If (X, £) and (X, g) are two holomorphic
l-deformations such that f(z) = g(z) at at least one
point z ¢ U then f = g.
Broof: From f oA = &,f + @,

g o A‘= A,g + By we get.

(f - 9)(Az) = o (£ - 9)(2).
Hence £ - g is a holomorphic multiplicati{ze p.-form. Since
f - g has at least one zero it is identically zero.

We can also prove a theorem similar to Theorem 5.3.

Suppose (I, f) is parabolic and Gif-&O as z-—» parabolic
- fixed point through a cgsped region. If we assume that
a pafabolic ellement A € G is Az = z + 1 then we get

f(é + 1) = £f(z) + ¢. Therefore

£f'(z + 1) = £'(z)

~and from the fact that £"-— 0 we get

oo )
2MWiINZ2
f1(z) = Z',ane + ¢ and
1
" .
emine
£f(z) = Zar‘le + cz.
i

We then have the analogue of Theorem 5.3.

Theorem 7.3: If (X, f)!and (X, g) are parabolic l-deformations

such that § ;£ — 0 and Glg—-) 0 at the fixed points and

O(f) + 0(g) < 2A(G) then £ = g.

Proof: The proof is the same as the proof of Theorem 5.3.
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Section 8 Divisors Which Include Parabolic Fixed Points

We shall now consider the more general situation

may

"where a divisor D = Z:(m:-L - l)zi is such that z3

be a parabolic fixed point.

Suppose z is a parabolic fixed point of a Fuchsian
group G whicﬁ is fihitely generated and of the first kind.
We may assume the fixed points 1';0 be @ and Az = z + 1
to be the parabolic element which fixes it. We can map
@ cusped region belonging to @ into the punctured unit

2niz

disc by the map z-—se . If a function f is m to 1l in

the neighborhood of o within each cusped region then the
. - 2wiz .
- function £(§) = £(z), § = e will be m to 1 in the
punctured disc. £ has an expansion of the form
£($) = S ta,qh
(5) = a, + t;ﬂang .
However in this case X(A) is not loxodromic. We then define

f to be m to 1 in the neighborhood of infinity if

o0 T
f(z) = ag + Z'anez 5"7'.
+*m
In this case
a_ 3
lim 8,f = 20 M
Z-vic0 g%

Suppose a deformation (DC,. f) is such that X(a;)
(i =1,...5) is either paraboliec, the identity or an

elliptic element of order d; where Ai are parabolic
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elements of G which fix z, (i = l,...8). Then we say that

s n , .
(X, £) is of type %; miz, + ég(n& - 1llz; (25, 4 =5+ 1,...n)
.. 2 .z
are not parabolic fixed points) if Iim (X, £) = zT;;ﬂi
: i

and f is m; to 1 at z, (i =1,...8).

If (X, £) is a deformation of the above type

then we define ~ 1}
5 7
my— 1
of) = Zm, + 3 im- 1)
: i i Sta Vi .

where vy is the order of G, .
- . 1

With this definition we have

Theorem 5.3': If (X, f) and (X,g) are 2~deformations of

‘types D¢ and Dg respectively, (X, f) and (X, d) satisfying

the cusp condition at all fixed points not in Df and Dg

respectively, and O(f) +/0(g) < 2A{(G) then f = g.
Proof: We note that if z; € Df is a parabolic fixed point

then the function

v(z) = L2 - 9(2))® o
£f'(z)g'(z2)

has a pole of order at most m, at z; The result therefore

1°
follows.
The existence thecrem 4.1 can similarly be gen-

eralized to this situation.. The only difference is that

we shall have to consider 2-forms which have nonzero limits

at some parabolic fixed points.




(1)
(2)

(3)

(4)
(5)
(8)
(7)
(8)
(9)
(10)
(11)
(12)

(13)

References

Ahlfors, L.V., Finitely Generated Kleinian Groups,
Amer., J. Math., 86 (1964) 413-429 and 87 (1965) 759,

Bers, L., On Boundaries of Teichmiiller Spaces and
on Kleinian Groups, I, Ann. of Math. 91 (1970) 570-600.

Boyce, W.E. and DiPrima, R.C., Elementary Differential
Equations and Boundary Value Problems, Wiley, New
York, 1965. pp. 186-189.

Hille, E., Lectures on Ordinary Differential Equations,
Addison-Wesley, Reading, Mass., 1969. p.540,. -

Kra, I., Automorphic Forms and Kleinian Groups,
Benjamin, Reading, Mass., 1972. pp.48-50.

Kra, I., On Affine and Projective Structures on
Riemann Surfaces, J. Analyse Math,, 22 (1969) 285-298.

Kfa, 6 I., Deformations of Fuchsian Groups, II, Duke

[

‘Math., J. 38 (1971) 499-508.

Kra, I., A Generalization of a Theorem of Peincare.
Proc. Amer, Math, Soc. 27 (1971) 299-302.

Kra, I., On Spaces of Kleinian Groups, Comment. Math.
Helv. 47 (1972) 53-69.

Lehner, J., A Short Course in Automorphic Functions,
Holt, New York, 1966. P.96.

Mandelbaum, R., Branched Structures on Riemann Surfaces,
Trans. Am. Math. Soc. 163 (1972) 1-15.

Maskit, B., Self-Maps of Kleinian Groups, Amer. J.
Math., 93 (1971) 840-856.

Springer, G., Introduction to Riemann Surfaces,
Addison-Wesley, Reading, Mass., 1957. p.275.

57




