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Tet ¥ bs the free proup on bwo generators, ¥

and . The object flﬁ'ﬁkﬁgf paper ig &
uﬁviﬁét§ m of the fre@ goneretors of X The

beais Qf ﬁhiﬁ ﬁork will he the frec differantial

caléuiﬁﬂg &é%elop@ﬂ by R, B. Fox. The setting is the

iﬁtegﬁal BEroup i, 72X, of .

o A dériva%ion”in the group ring is a mapplng

D 7X 07X sﬁéh_ﬂhat for any two elements p'aﬂd.q in 4%,
Dp o+ a)

n(pa) =

il

D(p) + Dlq)

D(pJa* + pbh(a)

Wherﬁlgw_ié the imége of ¢ wvopder what is called the
éugmanﬁaﬁioﬁ hoﬁomefphiém of ZX onto ¥y it maps the
elément ginigi of Z¥ onto its‘coéfficieﬂt S,

The derivaﬁiong in ZX form a righﬁ ZR-module

which is geuersted by the devivations DY and Dvg called,

e

respeetively ., the partiel derivalive with wespec

114




siod the partial derdvasbive with ranpect Lo ¥, DX SRRTN]

Do(x) o= O, 0 (y) = L,
!} 7
For any zlement ool Z2X, Uhe partial derivatives of p

will be denoted by p and [ .
2

There is & Yormele; due vo ¥ox, viich stat

L T R S L T .. Lo rats
that Tow an arbits Ay e lenene ool A <

This, from the partiel derivabives of ap slemsnt, one
can rocever that element.

An eloment v of ¥ will he =zaid te have

there eyiss

elem@ntazﬁ and g of 2¥ such that_uxp +ou g o= 1o It g
showit thet if u ds a free generstor of ¥, then u hag
relatively priwme partial derivatives.
As a Tlirst step in esteblishing the converse
of this theorem, 1t 1ls shown that if en element o of X
hag relatively prime partial derivatives, then, modulo
the first cowmutator subgroup, v is & free menerator.
It is then proven that, in fact, v must be a free
generator modulc the second commubabtor subgroup; that
is, u must be the product of a free generator with an
element of thé gecond commutstor subgroup,
Obstacles to extending these results to free

grovps on wore than two generators are also discussed.
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Hposoq) o= D) o g

Dipay = Dipde¥ + phla)

g hhe daan of o undey what is

[N

where qF

entation homomorphism of 2% onbo X3 it maps the

element fiﬂigﬁ of 2% onbto its coefificient swum.

-

The derivations in 72X foruw & right ZX-moduole
which ls gencrated by the dervivatlions Dy and Dy9 called
e
regpectively, the partial devivatlve with respect to x

and the partial derdivative with respect to y. Dx and

D are delined by
Y

%

E

Ly Dy(y) = O
O.; Dy(y) T

D, (=)
Dy (=) =

For any elewent p of ZX, the pertial derivatbtives of p

i

will be denoted by P, and pye
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g of Z2X such That w,p + v g = L. In Ssction 1 we
R g
prove thoh 10w ls o free gencoobor of ¥, then u has

derivatives,. The other

.2:‘
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resulbs of Secvion I arve taken frowm Fox's paper i & ..
L - 1 ad

To lay the groundwork for the gensraliszation of the
results in the following pages to frec groups on rore
than ﬁWO-gEﬂGTHtOPS? it is not asswumed that ¥ has only
two generators until Section I¥. In that Section, i% .
Sds proven that ﬂf an element uw of X has relatively

3 o

prive pastial derivatives, then, wmodulo the i

*

i
comimutatonr subsroup, u is a free generator. In
Section TTL 1t is proven that if u has relatively

prime parﬁial_derivativegs then, in fact, v is a free

generator modulc the second commutator subgroup. Thus,

if v dg a free generator, then u bes relatively prime 8
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weely Dovmal way of

Juxtaposing mh = (n ¢+ w) g if and

only i g o= multiplication by

imjgihj}°

Ldentified with the
group ring element 1g, and the integer n is identilied
with the group ring element nleg where lG ig the group
identity. JTo this way. both 7 and G are considered ag
subsets of 72G. |

Given a homomorphism of groups £:G-2H, one

) u%iﬂﬁf(gi)u Tet I be a normal subgroup of G

and let £:6-+0/N be the natural homoworphism. Then

n
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Mool G, congis

subgrone 1

idnnl which detcermines 1.

-

Let £l G/H be the natural howmowcrphism,.
Then 1 4s just the kernel of the exbension of 1 Ho G,
g0 the normal subgroup de
group~kernsl of
of £, which is the kernel of the howonorphism we

A

started with, which is
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group-kernel ¥. Suppose & = fo.g, is any element of

the ideslT . Then
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whoere A, is ths oum of those n, such that T{g. )
L L
Wow O = TQ Tl ) dwpllos that sach A, ds zero, since
digtinct coseta of N are Linsarly indspendent in
G/ . Mo show that & must also hﬂ‘ox' to the idesl

€, we csloulabe

A e - ,
ii(c'*f’ : 4{.”( ‘l‘}'f)ﬁ, G

¢ S Y G e T) 4 i ~ 1 ¢ .—'
=L ) 3L andg Only 0l \l =
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restricted to G and © restricted Lo ¢ have LHhe sonme

kernel. fhus #{a)

tlhoss s such that

e e . , e oy s PAEE g ¢
for each j.  Thevelfore, ¥la) = 0, and so B beloums bo O,

'Thé;fgllowiﬂg theorem ghows how elewentas of
the ideél coryvesponding to a gliven normal éubgf@up are
relateﬁ to the elements of thalt subgroup.

Theorem 2.

If the normal subgroup H of ¢ is generated by

{hts'9 then the ideal X corrvesponding to H is genervated
{hﬁ - l}o
frool.

Let £ be the homomorphism with group-hkernel H
and ring-kernel ¥ , and letﬁinigi be ahy element of ¥
g0 O = f(inigi) - gﬂdi(gi)o Yor each J such that
f(gj) = f(gl}? we have £n, = O, so
=] ' '

[
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Throughout this paper, we will designate by 7

the trivial howmomorphilsm, 7 «G-+1, whose group-kernel

is G ltselli. The indveced homomorphism maps 26 onto 2
G

by v{En.g.) = 3n.y  thus, en element of ZG is mapped
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bhe used to denote The coefficient swn of the eglement a
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in Z6. The ring-kernel of 7, denoted by#, is called
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the fundsmental ideal, or the auvgmnentation ideal, of
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(8,05 Dla ¢ b o= Dlay + Dio)

“
,
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, wherae

the a, belong to 4G

(B8.7) D) = -5 "D(g)

The set of derivaticus in ZG foyms a right
ZGewodule, where additlion is defined by
(Dl + ﬁg)(a) s Dl(w} + Dg(aﬁg and right multiplicawiog
by ean element b of G is defined by (Db)(a) = D(adb.
It dis trivial to verify that what we have defined are

stlll dexrivations.

We now turn te derivations in the group ring

n

of a free group. Althovugh the rain results of this

paper arve valid only for the free grovn on Hwo




FEEA B

the Toibn oy

Tree

T

GOl va

an elenent of Lthe ITreoe

Lative,

redvuced reprose

Y [Py
AL SRR ¥

The fundamental ideal of X will be denched by
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a derivation Djﬁa“
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Ao show, now, Thet the x, -~ L
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Since esch b, must bhe zero, the Xy o 1 sre independent.
The fundamental formula states, that for any

element a of 7%,
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